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COLLISIONLESS ION ACOUSTIC SHOCK WAVES

IN A TWO COMPONENT PLASMA

M.Q. Tran, M. Bitter and P.J. Hirt

Abstract

The structure of stationary ion acoustic shocks in a two component plasma
has been studied. Unlike to the situation in a one component plasma there
exists an oscillatory structure of the trailing edge even for zero ion tem-
perature due to the ref]ectioq of light ions. The wavelength and amplitude
of these oscillations have been calculated in dependence of the Mach number

and the concentration of light ions.
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Introduction

Recently WHITE et al. (1972) studied the effect of 1ight ions on the shock
or soliton structure in a two component plasma. Using the fluid equations

for a plasma model of cold ions and hot isothermal electrons they showed
that, according to whether the light ions are reflected or not, there exist
two types of stationary solutions in the parameter space of Mach number and
light ion concentration within Timited ranges separated by a region of tur-
bulence. On the basis of a VLASOV equation treatment they also found that
thermal ion motion causes only quantitative changes, so long as the ion to
electron temperature ratio Ti/Te is not too large to prevent shock or soliton

solutions at all.

We have studied again the kind of stationary solutions and find that the
analysis of WHITE et al. (1972) does not describe the down stream part of
the shocks in cases, where the light ions are reflected but reflection of the
heavy ions is negligible. According to our study based on the cold ion-hot
isothermal electron-model there exist periodic potential oscillations in the
trailing edge of the shock under these conditions. These oscillations must

be distinguished from the MOISEEV/SAGDEEV type of oscillations resulting

from a reflection of the heavy ions (WHITE et al. 1972).

In section I we derive the equations describing the shock structure and cal-
culate the wavelength and amplitude of the oscillations in the trailing edge
in dependence of the Mach number and the concentration of light ions. The

nature of the oscillations is discussed in section II.



I. Analysis

For our plasma model and stationary conditions the conservation laws in the

shock rest frame are

HA'(X) V() (x) = “o‘)' Vo (1)
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Assuming that the electron thermal velocity is large compared to the drift
velocities in the plasma, the convective term in the momentum equation for

the electrons can be neglected and one obtains

He G+ Nae exp fe § /R, .

The system is closed by Poisson's equation

d* e
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In equs. (1) to (4)m N, V ., and § represent the particle mass, density,
flow velocity and electrostatic potential, respectively, with e and j = 1,2

labeling the electron and ion species. Requiring charge neutrality ahead of

the shock at X <» 4 po , we assume HOQ =Hoi4 r\oz .

Introducing/u :MiA‘z >4, L'z =Q§/QTQ , the Tight ion concentration

J = NO]/(N04+ NOZ) , the Ma:/ch number M = Vo (QTQ/Mi)-/’l and the Debye
(A

1 .
length 2 :[&T&eo/ﬂ e and using equs. (1) to (3), Poisson's
D eo
equation takes the dimensionless form
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where C ;I/;\band u(Y)w the SAGDEEV potential, showing the analogy of
equation (5) to the equation of motion for a particle in a potential well.

Integrating equ. (5) once, yields

YT Q) - comt (6)

S
with Y = --!-‘
d &
Physically, one has to distinguish two cases:
A 1
1) No reflection of Tight ions (’\rsf -tg-)

The well-known soliton solution

HCATEVES Bl VAR AR P PR K

4 e«fyr-d} (7)

is obtained by choosing the constant of integration in equ. (6) equal to

zero and imposing \L(. =0 The solitary pulse passes through the two

component plasma withouf.changing the state or the concentration.

2) Reflection of the 1ight ions (‘;r/l;(%ar< —t‘:})

There exist stationary solutions describing shocks that move through the
plasma like a semi-permeable membrane allowing only the heavy ions to flow
into the down stream region. The part (Og‘\{)’< HZ}) of the leading edge is
still described by equation (7), if ol is replaced by °L’=1°L/(1+ol) and the
whole expression on the right side multiplied by (1 +dl ), in order to keep
the same Debye length and normalization, whereas the remaining part of the
shock is described by a solution of equ. (6) for the one component (heavy
ion) plasma with an appropriate matching at\ﬂf:’ﬁ}é}g , Wwhere 1?' and \("

are continuous:

Wy M o)=-(1+a){M* (1—4')(\/4-%[-4.)-% +ep Y1 0®
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Fig. la presents examples of the SAGDEEV potentials, for both types of soly-
tions, the solitary pulse (no reflection of light ions, curve I) and the shock

wave (reflection of the Tight ions, curve IT).

Due to the reflection of the Tight ions, curve II shows a cusp at 1#': "za/&
The dashed part of curve II is the prolongation of the potential given by

equ. (8). This part is missing in corresponding curves of WHITE et al. (1972)
although it determines the trailing edge of the shock*, as may be seen by util-
izing the analogy to the particle motion in a potential well: A particle star-
ting at YW= O with zero velocity moves over the cusp at V:Hyz/a into
the potential well described by equ. (8) up to me withu (\fmx):()(end of
the leading edge of the shock). Then it returns to the cusp and subsequently,
since there are no light ions in the down stream region, follows the prolon-
gation of the heavy jon potential (dashed curve) up to 'Wh;n with u (V =0,

min
from where it returns, thus performing periodic oscillations between 1(}“ax

and Vm\‘“ .

In the following we study the wavelength and amplitude of these oscillations
in dependence of the parameters ’1,d. andJ}A<

Using equation (6) the shock structure 1v‘(x)can be obtained by numerical

integration of
2
(dv 4y

¥y /- 2UGy) 4 cowt”

o
or by use of the computation method of RUNGE and KUTTA.

X

Fig. 1b shows as an example the soliton/shock structure for the two potential
wells in fig. la. One can see from fig. 1b that the oscillations in the trailing

*
Omission of the dashed part of curve II would give the symmetric soliton
solution.
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edge of the shock are not sinusoidal, as the maxima and minima are of dif-
ferent width. The wavelength of the oscillations is about a few Debye lengths,

which is of the same order of magnitude as the width of a solitary pulse.

The dependence of the wavelength and oscillation amplitude on M, & and‘}x
is shown in fig. 2a and fig. 2b, respectively. The wavelength is rather in-
sensitive to a variation of the parameters. The oscillation amplitude 1is
roughly proportional to r11' and depends only little on oA and‘/u .

1I. Discussion

It is already known from a one component plasma that a reflection of ions
breaks the symmetry of the potential 1{-(x) and leads to undamped oscillations
in the down stream region (MOISEEV and SAGDEEV, 1963). The oscillations con-
sidered are due to the same mechanism, however, one must notice the following

difference:

In a one component plasma a reflection of ions occurs only, 1f there is a

sufficiently large spread in the ion velocities (V(&T /m) M \/QV‘MX)

and a symmetric soliton structure is obtained for zero ion temperature or
T. /T - values so small, that the amount of reflected ions is negligible;
whereas in a two component plasma an oscillatory structure of‘\fbdcan exist

even for T1= 0 due to a reflection of the light ions.

The oscillatory shock structure, which we derived under the assumption of
zero ion temperature, is still a valid description for the stationary
shocks in a two component plasma with finite Ti/Te - values, so long as
practically all the Tight ions are reflected but a reflection of the heavy

jons is negligible.

In contrast to solitons, shock waves of the type discussed here can exist
only in a plasma with small (V% = 3%) concentration of light ions. There

exists a critical concentration depending on‘}1 and b‘ , above which the
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shock solution changes discontinuously to the soliton solution (WHITE et al.
1972). For concentrations below this critical value both, the soliton and
the shock solution, are possible, however, the solitons are strongly reduced
in amplitude, especially for large values of J}A (TRAN and HIRT, 1973).

This is important for the design of experiments :

Shock wave experiments should be best done in a heavy ion plasma (for ex-
ample: Argon), since under usual working conditions (Argon pressure: 10_4 Hg,
residual gas pressure: 10-6 Hg) the contamination of the plasma by Hydrogen,
Nitrogen and Oxygen is then of light ions. On the other hand experiments on
solitons will be better done in a light ion plasma (for example: Helium), in

order to deal with solitons of observable amplitude.



Figure Captions

Fig. la shows the SAGDEEV potential (1.(qr) for the soliton (& =1 %, /M =4,
M2 = 1,1 ; curve 1) and shock (ol = 1%, /}A =4, M2 = 1,5 ; curve II) solutions.

Fig. 1b presents the corresponding soliton (curve I) and shock (curve IT)

structures.

Fig. 2: Wavelength and amplitude of the oscillations as a function of M2 for

different concentration of light ions (L= .5%, 1%, 1.5%) and mass ratios

(=4, 10).
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