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STABILITY OF A DENSE PLASMA CONFINED BY
A ROTATING MAGNETIC FIELD

F. Troyon

Abstract.

The stability of a dense plasma (negligible skin depth) confined
by a rotating magnetic field which is parallel to the surface is
analyzed for plane and cylindrical geometries. This analysis cul-
minates in an integro-differential equation for each mode of de-
formation. Specific properties of the plasma enter only through
the normal acoustic impedance. The concept of average stability
is introduced. Very general restrictions on the acoustic impe-
dance of the plasma are introduced which allow the derivation of
various stability criteria. These criteria are applied to dif-
ferent cases of interest. The plasma 1s described successively

by fluid models of increasing complexity and a free particle model.
Numerical estimates of the freguency needed to achieve stability

for each mode are given.

(Submitted for publication in Physics of Fluids )
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Introduction

Many authors (1-6) have proposed the use of alternating magnetic
fields, with or without a static field, to confine a plasma. There

are two main advartages to this. Firstly, field configurations can

be obtained which are impossible to produce with static fields alone,
such as a sphnerical geometry for example (g). Secondly configurations
which would be unstable with static fields due to exchange or Rayleigh-
Taylor instabilities can be made stable with alternating fields. We

are interested here in this second aspect which is not well established

at the present time.

Confinements with pure high-frequency alternating fields belong to

the field free class of configurations, the skin depth being consi-
dered negligible. It has been recognized for some time that in geome-
tries which would be unstable with static fields, alternating fields
can provide an average positive restoring force, or as we shall call

it : "average stability". In the case of confinement by a static field
alone, surface waves propagating in a direction contained in a sector
around a direction perpendicular to the field are unstable. The larger
the destabilizing force (acceleration, curvature), the wider this
sector. We can choose the geometry in such a way that waves propagating
along the field lines are stable. By rotating or oscillating the field
the sector rotates or oscillates too. A wave 1in a given direction passes
alternatively through stable and unstable phases. The net average re-
sult may be stable. This is the fundamental idea of stabilization

with alternating fields.

The restoring force is in fact a linear functional of the surface
deformation, but having an oscillating time dependence arising from
the alternating field. Averaging over a period of the alternating
field gives the average restoring force used above. This paper 1is

a study of the influence of the explicit time dependence of the
restoring force in situations where there is average stabllity. It

is suspected by analogy with parametric cscillators that average



stability does not always imply stability in the usual sense. The
frequency of the confining field is the important parameter which
is expected to control the stability. This point has been already
examined for some particular geometries and plasma models by most
of the authors cited above (1, 4, 5, 6, 8). Let us compare their

hypotheses and their results.

J. Berkowitz et al (l) investigate the problem of g half-space filled
with an incompressible inviscid fluid supported against gravity by

a homogeneous rotating field parallel to the plane horizontal inter-
face. There is no average stability for long wavelengths and they
find that even in the domain of wavelengths where there igs average
stability, it is impossible to choose = frequency which provides
stability. The addition of a perfectly conducting plane parallel

to the interface, at a suitable distance from it produces average
stability but does not change Berkowitz results. When we refer herein
to Berkowitz's results it should be understood to refer to the case
with the conducting plane. It was also found that the growthrate of
the instabilities is bounded when the wavelength of the deformatsion
vanishes, which is an improvement over the unbounded growthrate found
with a static field only. We can say that the rotating field allows

one to control the growthrates of the instabilities.

R.J. Tayler (i) considers a cylindrical discharge confined by a
rotating field. The plasma is represented by a compressible fluid
model ; transport terms are neglected. Because of the mathematical
difficulties he only considers the limit of infinite freguency. He
finds, in this limit, that the long wavelengths are unstable. This
is due to a lack of average stability for these modes. Furthermore,
using the same plasma model as Berkowitz, he finds essentially the
same results, viz. there are always instabilities for short wave-

lengths.

From the abstract it appears that N. Rostoker (i) merely rederives

Tayler's results.



E.S. Weibel has stated (7), without proof, as early as 1958, that
for a perfectly diamagnetic cylindrical plasma average stabllity

can be obtained by the superposition of an axial and an azimuthal
field, of which at least one is oscillating. He proves this in a
subsequent paper (é) for the superposition of a static axial field
and an alternating azimuthal field. This result also holds true for
the rotating field case, but it does not affect the short wavelengths
instabilities found by Tayler and Rostoker since for these wave-
lengths there is always average stability. Weibel attributes the
results of Berkowitz, Tayler and Rostoker to an unrealistic choice
of a plasma model. In order to prove his point hé examines the
stability of a @-pinch and a superposed alternating 3—pinch, with a
concentric conducting envelope. The plasma is treated as an assembly
of non colliding particles. He then proves that any mode can be sta-
bilized with a sufficiently high freguency. However this frequency
is an unbounded function of the wave-number. But he proves also that
for zero wavelength there is stability for any frequency. Physically
then, 1t is very probable that there must be a finite frequency for
which all the modes are stable although this is not proved and no
estimation of this frequency is obtained. This loophole 1s closed

in the present paper. In his proof of the possibility of stabilizing
any given mode for a sufficiently high freguency the only proverty
needed 1s that the plasma is dissipative at all frequencies. This
leads him to the conjecture that if transport terms (viscosity,
thermal conductivity) had been kept in the fluid model used by the
previous authors they would have also found that for a sufficiently

high frequency there is stability.

J.W. Miles (§) makes such an attempt introducing viscosity into the
compressible fluid model. He proceeds to investigate the same pro-
blem as in (é). Miles claims that the inclusion of viscosity does not
suppress the instabilities. Objections can be raised to this paper on
some points. The impedance used corresponds to unrealistic boundary
conditions at the interface, that is the stress tensor is not conti-
nuous for a non vanishing viscosity and the oscillating terms in the
pressure response are assumed to be much smaller than the average term,

a condition which is not actually the case since both are of the same
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order of magnitude. It could nevertheless be argued that, physically,
if there are instabilities when the oscillating terms are small then
they should become even worse when these terms are large. But even
accepting all these premises the mathematical treatment does not ap-
pear correct. Judging from the slab problem which is investigated
herein, Miles should have found that 1t was possible to stabilize

all the modes with a frequency much smaller (in the ratio of the
oscillating terms to the average value of the pressure response)

than the cut-off frequency which defines approximately the limit of
validity of the model.

The main object of this paper is to shed some light on what appears
to be a confused issue and to verify Weibel's conjecture. We shall
try to remain general, avoiding as long as possible the choice of a
specific plasma model. Some of the results have been available in
restricted publications (9) only and in abstract form in (10). The

following is a summary of the salient results obtained in this study.

In plane or cylindrical configurations, where all the properties de-
pend only on the distance to the plasma interface, a Fourier analysis
of the deformation in normal modes reduces the stability analysis to
the examination of an integro-differential equation for each mode. The
plasma enters the equation only through 1ts normal acoustic impedance.
Four general assumptions are made : there 1s average stability; the
plasma is stable, implying that only surface waves can become unstable;
the acoustic impedance has a non negative resistive component for all
freguencies and which does not vanish at infinite frequency. Using
these assumptions various stability criteria can be derived. A gene-
ral stability criterion, necessary and sufficient, is given. It is

not convenient and other sufficient criteria are given which are of

a more direct use. These suffice to show that each mode can be stabi_
lized with a high enough frequency, just as for Weibel's model. This
does not prove yet that all modes can be stable using the same fre-
gquency. In general two difficulties can arise : the first one can ap-
pear at short wavelengths as is the case in (6) and it cannot be
solved without having more information about the plasma; a second
difficulty may arise for long wavelengths and it 1s again not pos-
sible to draw general conclusions without choosing a specific model

of the plasma. We then are compelled to discuss specific models of the

plasma in order to answer the stability problem. To help solve the short



wavelength problem another simple sufficient stability criterion
is derived which requires an additional assumption to be made con-

cerning the impedance.

We first study the same configuration as Berkowitz (with the conduc~-
ting plane) using as plasma models successively : an inviscid '
compressible fluid with no acceleration field; the same with an
acceleration field; a free particle model without and with an
acceleration field, and finally a viscous compressible fluid with

no acceleration field. These various models when taken together
present all the possible complications which can arise at long and
short wavelengths. Their relative simplicity enables one to carry
out a complete discussion of these complications. They constitute
therefore a good test of the criteria derived in this paper. The
results for the collisionless model are very different from those
obtained with the fluid models. For the collisionless model there

is always stability at a sufficiently high frequency. The minimum
frequency for which there is stability is proportional to the ac-
celeration. On the other hand the compressible inviscid fluid model
predicts instabilities for a sufficiently high frequency. This last
result remains valid when an acceleration field is introduced although
the very long wavelengths may become stable depending on the value
of ¥». Introducing viscosity, 1t is found that for a frequency of
the order of or larger than the collision frequency all the modes

are stable.

To estimate the possible effect of the finite thickness of the plasma
we choose to study the problem of a slab of plasma confined by the
same rotating field on both sides (same means parallel at all times).
This geometry is chosen because of its similarity to the cylindrical
geometry. The problem divides itself naturally in two parts, namely
the problem of symmetric deformations and the problem of antisymmetric
deformations which correspond respectively in the cylindrical problem
to the modes m even and m odd. Two plasma models only are examined :
the free particles model and the viscous compressible fluid model,
both without acceleration field. As expected the viscous compressible

fluid model does not yield results significantly different from the



half-plane. The finite depth of the plasma manifests itself only

at long wavelengths whereas it is the short wavelengths which deter-
mine the stabilizing frequency. The collisionless model again pre-
dicts stability for a sufficiently high frequency, namely a frequency

higher than the ion transit frequency.

The case of a cylindrical plasma enclosed by a concentric cylindri-
cal conductor is also treated. It is shown that if the radius of +the
conductor is less than ‘J%Ttimes the plasma radius then there is
average stability. The stability problem can easily be solved for the
collisionless model. The result is naturally the same as for the slab,
except for a numerical factor. For the fluid model the cylindricity

is not expected to exhibit any new result; since the impedance for

this model is extremely complicated we do not examine it here.

From the above it is clear that the solution of the stability problem
is strongly model dependent. In the range where the collisionless
model applies there is certainly stabllity and the minimum frequency
is equal within a numerical factor, to the average transit frequency
across the plasma. In the case of the fluid models the minimum fre-
quericy is of the order of the ion collision frequency if the mean
free path is smaller than the depth of the plasma and of the magnetic
field. This frequency lies outside the range of strict validity of
the models : nevertheless it can.be argued that. the.existence of a
cut-off frequency for acoustic waves is independent of the model

and thus the result must still be qualitatively correct.

The best solution of course would be to use a model which represents
correctly the transition from the fluid region to the free particle
region. The formulation of such a model which does more than simply

interpolate between the two models is itself an unsolved problem.



IT Derivation of equations

2.1. General assumptions

Let us consider a plasma in equilibrium confined by an alternating
field or a superposition of such fields, ﬁ(t). The following is a

list of the relevant physical quantities which appear in this paper.

§ = skin depth
A = mean free path

characteristic dimension of the plasma

[l
it

¢ = deformation of the surface about the equilibrium position.
h, n or H = wave number of the deformation

frequency of the magnetic field ; there may be more than one.

€
i

v = sound speed or mean ion velocity
We assume that
w$

1
(1) 5445 s gélk 3 S(<E ATy << 1

These inequalities express the fact that the skin depth is negligible.

The assumption of small motions implies that
. 1 )
(2) eV €<<ﬁ and € «<L

The frequency is considered to be sufficiently low that displacement

currents can be neglected, that is

. C
(3) L«=

The magnetic field satisfies the equations

-
4 curl B =
(4)
div -g =

The magnetic field exerts only a normal pressure on the surface and
the equality of this magnetic pressure P and of the plasma pressure

Pq constitutes the eguation of motion of the surface. It reads

(5)  pg =0



2.2. Acoustic impedance

For plane (semi-infinite or slabs) or cylindrical plasmas, whose
equilibrium properties depend only on the distance to the surface,
a2 double decomposition in normal modes can be performed. The gas
pressure pa at the deformed surface can be written for each mode

as
t

-

Py
(6) pa(n,n,t) = p + == e(n,h,t) - R(n,h,t-t') &(n,n,t') dt!
G o n

0
27

where P, ig the initial pressure at the undeformed surface,iz—

is the normal component of the pressure gradient with the positive
normal pointing out of the plasma and n and h are the indices of

the mode. R(n,h,t) is the plasma response function which can be
related to the normal acoustic impedance (ll)in the following

manner. The normal acoustic impedance Z(Q) is defined as the analytic
continuation of ﬁ(n,h,s)

(7) z(w) ='§(n,h,i@) @ real

J

where R(n,h,s) is the following Laplace transform
oo

~ ~-st
(8)  R(n,nh,s) = )R(n,h,t) e at

0

We shall also make use of the name acoustic impedance to refer to

s
R(n,h,s).
r~
The following assumptions are made regarding R(n,h,s)
For Re s320

~J
a) R(n,h,s) is holomorphic, continuous on Re s = 0, with the

possible exception of a pole at the origin.
~
(9) b) lR(n,h,s)] > constant as s —> oo

S
¢) Re R(n,h,s) 2 0; the equality can be satisfied only for s = O
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The first assumption is equivalent to the following statement :

the unperturbed plasma is in a stable equilibrium 1). The second
assumption expresses the fact that R(n,h,t) is at least as singular
as a S.function for t = 0; every realistic model should satisfy
this requirement since the velocity of the surface must remain
finite when a pressure pulse is applied. The third assumption
expresses the fact that the plasma is dissipative (é). Many

of the subsequent results will remain true when the inequality (9c)
1s satisfied only in the open half—plane7%e 5> 0. However the
essential results demand that this inequality be satisfied on the
imaginary axis. Note that (9¢) is satisfied if it holds true along
the imaginary axis and for large values of s. The three assumptions
(9) thus constitute very general restrictions which any realistic

model should satisfy.

Note the crossing relation
~J ~/

(10)  R(n,h,s® = R*(n,h,s)

which follows immediately from the definition (8). The asterisk

refers to the complex conjugate.

2.5. Magnetic pressure.

We calculate here the magnetic pressure P at the deformed surface
for both plane and cylindrical geometries in the case of a rotating

magnetic field.

a) Plane geometry

Consider a plane interface (X,y) between the plasma and the rotating
magnetic field, which is parallel to the surface, homogeneous and

is limited by a perfectly conducting plane located at some distance

1) For n=h=0 there is a pole at the origin if the plasma has a finite
thickness. This mode is the only one for which there is a change
of volume. After an infinite time therefore the change in plasma

pressure becomes proportional to the displacement e.
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-’
D from the plasma. B(t) has the form :

(11) B = B cos wt
X (@]

B = B sin wt
¥y o)

The indices n,h are defined by

(12) e(x,57,t) = e IXTIRY )

The magnetic pressure is given by

pOH cosh DH
<l§) pm(n,h,t) = Tsinh DH (l+ cos 2 wt) e(n,h,t> + P,

—
H = v/h2+n2

The time average of this pressure is

pOH cosh DH
(14)  <p (n,h,t)> = Pt TSTEnoE e(n,h,t)

We note that the average force is a restoring force. Purthermore

(15) pm(n’h,t) - po
oy 2O

<2 (nshyt)> -p

tﬁ{*d
o

e(n,h,t)

These last two equations show the stabilizing effect of the rotating

field as compared to the static field.

Consider an infinite cylinder of plasma of radius a confined by a
rotating field Bz’ B@ and which is limited by a concentric, perfectly

conducting cylinder of radius b. We have
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i

(16) B,

B cos wt
0

B =B sin wt

] o)

Bl

The normal mode indices n, h are defined through

(17) r =a + e(n,h,t) eihz + ind

The magnetic pressure response for any BQ, BZ is computed in (é).

the result is

(18) pm<n,h,t) = D —€<n’h’t> <&n(h’a)

2 2
o * ay'n(h,a) (Bgn + Bzah) + By )

with

i

(19)  yy(hya) = xy (Inlv) 1 (jnta)- Tt (Inib) K (nia)

where Kn(x) et In(x) are the modified Bessel functions.
Using (16) pm(n,h,t) becomes

pe(n,h,t)
(20)  p(nynyt) = p + —=———— {1 (n) + g (n) - 1 +

+ (gn(h) - fn(h) + 1) cos 2wt + 2 1/gn(h> fn(h) sin Zwt}

2
-n.y (h’a)
g () = ———*fL—-fy—
n ay'n h,a
—ahzyn(h,a)

y'nih,ai

£, (1)

It

where y'n(h,a) is the derivative with respect to a. Shifting the

origin of time enables us to rewrite (20) in the form

pos(n,h,t)

(21) o (mbyt) = py w2 e () g () <1

1
* V/<fn(h) + gn(h) - 1)2 + 4 gn(h) cos Zw?}
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The functions gn(h) and fn(h) have been studied extensively by
Weibel (6) and only the results needed here are guoted. They

are both positive definite, gn(h) is a monotonically increasing
function of h and fn(h) a monotonically decreasing function of h.

Furthermore

2

(22) £ (n) + g (n) - Ly

We shall assume that b%:Bag so that the expression (22) is positive.

In analogy with the plane geometry we note the inequalities

. 2
(23 <p(mn,0)>-p o (3a”-p%)
2 2
-a%)

e(n,h,t) a(b

(n,h,t) - 5 1
pg(n,h,t) PO} - ‘z—o (\/(fn(h) + gn(h) - 1) + 4gn(h) -fn(h) -

2.4, Egquation of motion

Equating the results for pG(n,h,t) and pm(n,h,t> one obtains the
equation of motion of the disturbance.

t
(24) e(n,h,t) {X(n,h) + A(n,h) cos 2 wt} +\ R(n,h,t-t') &(t')dt' = 0

0
with the definitions
plane cylinder
p H cosh HD )po P,
(25) X<n9h) = sinh HD - Dn X(n’h) = po(fn(h) + g (h> - l) - —)—I_"
pOH cosh HD \/f’ 5 7
Aln,h) = —es A(n,h) = pN(£ (h)+g (h)-1)"+ 4g (h)
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D, b and a are chosen such that

(26)  X(n,h) 3 X >0

This implies the following restrictions
)po < E% , BpO : EQ.(iaz—bg )

T RIS

We are now ready to discuss the problem of the stability of the

equation of motion.

IIT Stability criteria

5.1. Generalization of the equation

Equation (24) can be slightly generalized so as to cover cases of
interest which may occur in other problems, such as those considered

by Weibel (6) and Miles (8). This gives

+N . ¥
(28) (x + > akelk‘“t) e(t) +5 R(t-t') &(t') dt' = 0
k=-N b

with the restrictions

(29) X > o0, a¥ =a_,, a =0

A~

R(s) satisfies the conditions (9) and the property (10).

3.2, Average stability

Using the symbol t(s) to denote the Laplace transform of £(t) and
choosing €(0)= 1, the Laplace transform of equation (28) can be

written
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~ ~ N
(30) e(s) = eo(s) + g(s) Z%;ake(s+ikw)

with
(51) € (s) - Blel
X+s R(S)
ok
g(s) = —————51———— = e e (1) at
X + SR(s) ©

[#]

The conditions (9) and the restriction (29) are sufficient to
guarantee that g(s) is analytic in the half plane and continuous
on the imaginary axis. 2;(3) has the same property with the pos-
sible exception of a pole at the origin. This implies that ao(t)
the inverse transform of ?g(s), is bounded. This is what we shall
call "average stability". To Justify this name, we shall show

later that the solution of (50) tends toward ?;(s) when w-—» o< .

2.3. JTterated equations.

Equation (30) can be iterated any number of times,

The equation when iterated k times becomes

~ ~ N+kN ~
(32)  e(s) = e (s) + 5(s) X ¢ K(s) F(s+inw)
n=-N-kN

~ k . .
ek(s) and Gn (s) are defined by the recursion relations

kN

F(s) = S 6) + () > e B M) T (s4inu)
n=-kN
kN
(33) Gnk(s) = a Gmk_l(s) g(s+imw)
n=-kN
with
(34) 6 %(s) = a
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Except where otherwise stated s will be limited to the half-plane
Re s 2 0. To simplify discussion the following definition will be
used : a function is called a.c., if it is analytic in the half-plane

and continuous on the imaginary axis.
The recurrence relation (33%) shows that Gnk(s) is a.c. since g(s)

i1s a.C.; 2&(8) is also a.c. with the additional possibility of its

having poles in s = + inw,|nl £kN

3,4, Simple stability criteria,

Equation (32) can be regarded as a Fredholm equation, the integra-
tion being replaced by a sum over the discrete get of points s+inw.
This becomes obvious if we rewrite equation (52) in the following
way

~
€

(35) Eks+inw) = k(s+inw) + g(s+inw) EZ: Gi_n(s+inw) st+imw)
m

The variables are n and m; s is only a parameter.

A sufficient condition for the uniform and absolute convergence of

the iterated expansion of the solution of (35) is
(36) ;;:.lGi_n(S+inw) g (s+inw) )& Ml

with M independent of n. If this condition is satisfied for all s
(s being always in the half-plane), which means that M is indepen-
dent of s, the iterated expansion is an uniformly convergent expan-
sion of a.c. functions and is thus also a.c. Again there is the
possibility of having the string of poles at s = + inw. e(t) is
therefore bounded and there is stability. The criterion (36) is

thus a sufficient condition for stability of the solution of  (30)

Let us take as an example k = 1. Condition (36) may be written :

31)  Jele)] 2 !;é: aa g(s+ikw)I£gM.< 1
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The following simpler condition

(38) (Z[akf) Max {’g(s) g(s+inw)‘ }_L_M 41

k
n%O

is also sufficient since it implies (37). It is obvious from (38)

and (9b) that M=» 0 as w—soo, and E\;(s+iw)~—->0 as W —> ao.

One deduces that

(A)-)/N
(39)  Es)——> & (s)

which justifies the expression "average stability" used earlier,
since ao(t) appears as the average motion of the surface for very

large frequency.

As far as the practical use of criteria (36) and (37) is concerned,
note that if they are satisfied on the imaginary axis, they are
satisfied everywhere since g(s) Gk(s+iw) is a.c. and is gzero at
infinity. The criterion (3%8) is the one used in (6), where it

is derived in a different manner.

Conditions (37) and (38) are simple but very restrictive. They
overestimate the frequency necessary to obtain a stable solution.
For example when the system has sharp resonances at low freguency,
the stabilizing frequency given by (37) is much too high. It is
thus necessary to investigate the possibility of deriving a general
stability criterion, necessary and sufficient. This is the goal of

the next section.

53.5. Method of the determinant

This method is just the original induction method used by
Fredholm to solve his equation (lg). It is simpler than the ori-
ginal because of the integration on a discrete set but is compli-

cated by the convergence problem due to the infinite range.,
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Let us replace equation (35) by an infinite system of linear

equations for ?(s+inw) and solve i1t by Cramer's formula

q;<s) _ Als

(40) s

where D(s) is the infinite determinant

(41 o(s) = || - a  gls+imw) |

m-n m-n

and A(s) is the determinant obtained by substituting in D(s) the
column m = O by the column ?;(s+inw). Hadamard's formula shows
that the determinants A(s) and D(s) converge 1if

N=-+0

(12) > Jeterinan)[" < o
n=- o0

This condition is satisfied as a consequence of (9b) which shows
that for large n the series (42) is majorized by the convergent

series.

(4%3)  constant :E: lE < + P
n

From its definition (41) and from the symmetry (10) one obtains

(44) D(s+iw) = D(s)

D(s*) = D*(s)

Introducing the usual notation for Fredholm determinants

a4
O hyemt, - ~ -~ ng-m,
n N_oeeoll cl i
(45) x |t ° £ = e 0 j
m Moseal ~
1 2 g ! ~ i
f ~ ‘
(| ~ '
1 'y
o _ - —_
My=n,
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D(s) can be expanded

4 n. n n
-1 E . : .
(46) D(s) = 1 + Lz7l K(;% ﬂi"ng) g(s+1nlw)..g(s+1new)

This is an expansion in terms of a.c. functions. A direct examination
of (46) shows that the expansion converges uniformly and D(s) is thus
a.c. The same is true for A(s). F(s) is a.c. if D(s) has no zero;

then the solution is stable. This gives as the stability condition

(47) D(s) £ 0

Note that it is sufficient for stability to verify (47) tfor

04 jm&é%

as a consequence of the relations (44).

The condition (47) is sufficient but a priori not necessary since

the zeros of D(s) could coincide with zeros of A(s). One knows that
the resolvent kernel has the same poles as D(s) (12), but it
cannot be excluded that the summation over the resolvent kernel,
weighted by z;(s+inw), makes the pole disappear. This is unl}kely
but not impossible, especially as gg(s) and g(s) are closely related.
We have not been able to show the contrary, except in the limit of
high w. The condition (47) is thus necessary if the zeros of A(s)

do not coincide with the zeros of D(s).

The criterion (47) is in general unwieldy because of the slow conver-
gence of the expansion. Nevertheless it can be useful when one is
looking for a value of the frequency as low as possible while still
having stability, and also in some special cases where there is no

other applicable criterion.

It is possible to improve the rate of convergence of the expansions
by applying the same method of solution to the iterated equation (32).
Letting Dk(s) be the denominator corresponding to the equation

iterated k-times, we have (12)

(48) 0" [a(=)] = 2ee)] D[ae(s)] ... p[«"F &(5)]
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where & is a root of z¥k: 1. The square brackets indicate that

Dk(s) is to be considered as a functional of g(s).

The expanded form is more useful,

(49) D (s)=1 *2__( l) 7:.’:\::;:0( ?{5*“"“’) ?ﬁ*‘”eu/)

£=j

f\, A ) n&’—‘f

where

K *
G"l-m(ISfLm,w) -— - = = G (b“*‘tmew)

ny-m
|

(<Y /Mina-ng G - (5+Ctmiw) !
(50) }< ( )“‘ neT t

mymz..mgf
i
I

! i
J |

(s+imuw; G" (sni
5“””‘“4}) - - = — *‘¢-m¢($+"m¢'w)

Re=m,

K

The convergence is faster in (49) than in (46) since the following

condition is sufficient for the convergence of (49)

n=+¢f

(51) g(s+inw) k+l
> lsteeina)]

N=-p

We obtain the new A(s), say Ak(s), by multiplying the old A(s)

by the same factofi%mltiplies D(s) in (48). This shows that Dk(s)
may contain zeros coming from the factors D [dng(s)] which are
not poles of the solution. Thus in this case 1t is necessary to
verify if the zeros found for Dk(s) are also geros of Ak(s).

However the condition

(52)  D5(s) £ 0O

still remains sufficient for stability. We shall not need this

condition.
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Finally note that the criterion (37) can be deduced from criterion
(43). Indeed D(s) can be reexpressed in terms of the traces of the

kernel (lg)

o0 4 a0 .
(53) D(s):exp{-j;— —é— ; anq-n, ang_HB..ane_nl g(s+inlw)..g(s+ingw?}

£-2 nn"’z""ez""o

if the expansion converges. The condition (37) insures this conver-

gence and D(s) has therefore no zeros and (47) is satisfied.

3.6. Other forms of stability criteria

One can write

(54)  D(s) = D (s) + g(s) D,(s)

where
’.‘..."i(_”[i il nin,..ng
Dl(s) = 1+ — ; K g(s+inlw)...g(s+iﬁew)
e! n.n_...n
(=2 N = - 12
l'\i/f-lo
(55)
S 4 = on,..n
; (-1) > 1°°"e . .
Dg(s) = - — K(o n n@) g(s+1nlw)...g(s+1n8w)
by =
e:[ nlr)z..ﬂe=-go

The condition (47) can be rewritten as

L D(s)

(56) X + sR(s) - m % 0

W

s will be restricted to the domain O s‘Imssg 5
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This form is particularly useful when g(s) has poles close to the
imaginary axis (weakly damped resonances) and the frequency is high
enough so that Dl(s) and DZ(S) may be represented by only a few
terms of their expansions. It also shows that when w-> ce the zeros
of D(s) ceincide with those of X+s§ks), namely the poles of g(s).
For w large one can follow the displacement of these zeros as a
function of w by replacing Dl(s) and DQ(S) by their approximate

values.
(57)  Dpy(s)~1

D,(s)~ — 5 Jaf e(s+ike)
K

The condition (56) and the relations (57) show that the position of
the zeros of D(s) depend as much on the asymptotic behaviour of g(s)
for large s as on its behaviour near the pole. This shows that Miles's
method (8), which approximates g(s) by the contribution of the pole

and its conjugate is not applicable for large frequencies.

The Nygquist diagram method is the best way of making practical use
of this criterion (56). If w.is large enough for Dg(s)/Dl(s) to be
a.c., then the function G(s) defined by

~  D(s)
(58)  G(s) = X + sR(s) - BITET
is also a.c. Consider the contour f?: +e, O, +l%, +£§ + 22 shown in
fig. 1. A necessary and sufficient condition for (56) to be true is
that the curve representing G(s), where s describes %f, does not
encircle the origin or that if it passes through the origin, the
origin corresponds to a purely imaginary value of s. If, for very
large w, there are no roots of D(s), then, because of (44) and (9c¢),

roots can onlv appear, as w decreases, by moving through the imaginary

axis.

All the criteria which will be used in this paper and which do not
demand additional assumptions on the behaviour Of’§(s) have now been

derived.
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A useful application of the results of this section will now be

presented,

3.7. Case where g(s) has a pair of poles on the imaginary axis.

An important special case is the one where g(s) has a pair of

simple poles on the imaginary axis, say at + 1.
We have
(59)  R(i) = iX

From (9c) which is assumed to be still valid everywhere else, we

obtain

(60) T (1) s Tn D] g

Let us use the method presented in the preceding section to follow
the behaviour of the zero of D(s) which goes to +i as w —»eo. We
assume that w 1s sufficiently large so that the forms (57) can be

used. Let s be the root of D(s). Then to first order, one has

D,y(1)
o) . ENE) . 12 [ )” e(i+ike)
TonRo() x +Re(1)

from (60) and (61)
N

(62) Re(s-i)y —— Z iaklg{ffm g(i+ike) - Tm g(ikw—i)}
X+R' (1) k>0
Inequality (9c) implies that Jm g(i+ikw)» 0 and (9b) that Jm g(iy)—0
as y—»0o. This means that if JIm g(iy) decreases monotonically as
¥ —» 0o then Re(s~i)'70 and there 1s always instability. In other
words there exists a frequency & such that for all w3 & there is

instability.
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This is certainly a surprising result. If Jm g(iy) decreases while
oscillating,jle(s—i) changes sign and the system is alternatively
stable and unstable. This shows that it is impossible to find a @
such that there is stability for all w > €, except ifJm g(iy) = O.
This exception is precisely what happens with the Mathieu eguation
for which

(63) ls) = ==

s +1

In this case it can be seen directly from their definitions that
Dl(iy) and Dz(iy) are real and thus that the zero of D(s) stays on
the imaginary axis. There is stability for large w-a well known

result indeed!

3.8, Stability criterion for a special case.

There is a particular form of the impedance for which one can esta-

blish another criterion of stability. This is for
(64) R(t) = 8(v) + a(t)
where Q(t) is a function of bounded variation.

We shall use the notation‘fﬂ&] for the total variation of Q for
04 t<pr . To simplify the formulas we define

(65) £(t) = 2 aet
k

Equation (28) now reads

t
(66) {X + f(t)} e(t) + e(t) = - Sﬁ Qlt-tt) &(tt) dt!

0

Defining the auxiliary function E(t) by
t
(67) B(t) = eXp<{~Xt - S’ f(tr) dat' - Qo) t }

0
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and denoting the period of f(t) by T, we obtain
(68)  E(t+7) - e'<X+Q(O>>T B(t)

On applying the method of variation of constants to equation (66)
we obtain the following equation
t
4
(69) e(t) = eo(t) + ) S(t,t') e(t') dt!
0

where
(70) e (t) = B(t) {1 + f a(tr) B M (er) dt'}

© 0
1

S(t,t') = —E(t)—S é(t"_t') E‘l(t") atn
t 1

We shall assume that

(711)  x +q(o)>» o

Introducing the positive function @ (t)
t

(72)  §(t) = B(t) J/ BT (1) at
0

and using the relation (68) we obtain

g T
(73) §(+en1) - f g o nGa) § o o (o) an

| =~ exp{-(x+Q)T|

from which one deduces the inequality

T

(s
f(t+nT)£§O(t> _ o] E(t+t!

(74)
! 1= exp %-—(X#-Q(q)"'l“}
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This shows that §(t) is bounded by the periodic function ig(t>- It

follows that ao(t) is also bounded since

(15) e (8) & B(s) + F_(+) Max { ()}

We have also that

t £,
(76) Sls(t,ml at £y (+) Jmm} at' =V [alf ()

o}

If the condition

(77) VI[eIMax {Qo(t)}/; 1

is satisfied the iterated expansion of equation (69) converges uni-
formly and since eo(t> is bounded, e(t) is also bounded. The condition
(77) is thus a sufficient criterion for stability. Its main advantage

is its simplicity.

Ir

(78) X + Q(0) + f£(t)» -P P>0

then

P
m~«YF—+aTeﬁ

| — exp{— (%+&()) T}

where « is the fraction of a period during which the exponent of

(79)  §.(t) g

E(t) is positive. Using this upper bound, the condition (77) becomes
A P
(s0) TV[] LXE2& < |
[ = expf= (X+R()HT'}

This condition can be satisfied only if

(81) VIQ]<x + Q(0)
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If this inequality is satisfied then (80) is satisfied for T<me

where Tm igs the solution of the eguation

ey n e (ra(o)) 1
T VIR (1-dexe?fTm)

In particular if V[Q)«X+Q(0) and P «V[Q) it gives

1

(83) T %Fa

The criterion (81) will subsequently be shown to be very useful

in the problem of the stabilization of short wavelengths.

5.9. Problem of the stabilization of all the modes.

Let us return to the original equation (24) with its explicit depen-
dence on n and h (or H). We have a, = 0 for k % + 1 and a;= a_l=A(n,h)/2
and 2w 1s the applied frequency2 .

For a given n,h the stability criterion (38) is always satisfied for
a high enough frequency. An estimation of the frequency needed to
achieve stability can be obtained in the following manner. Let us
determine Y such that A(n,n) | g(iy)|< 1 for [y|2Y. Introducing the

definitions
(84) & (n,n) = A(n,nh) Max {[g(iy)[%

R(n,h) = Min %ﬂa g(n,h,iy)},[y[ >

2) We could choose a,= a_,= A(n,h)/2 with a = O, k # + 2 and keep

as the applied friqueniy. We should obta?n the same result. This

is not obvious in the expansion of D(s) but, if we look back at its
definition (41), we see that D2(8>: Dl(s) Dl(s+iw) where Dz(s) is
D(s) used in this footnote and Dl(s) is the D(s) used in the text.
Dl(s+iw) appears also as a factor in A(s), giving us finally the

same result as above,
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the criterion (38) is satisfied if

2
A%(n,n) g (n,h)

(85)  w »a(n,h) = =g

It should be kept in mind that the frequency so determined is not
necessary the best one (the lowest one). For better determinations
of ¢(n,h) the other criteria, in particular (40), (56) and (80) may
give better estimates. Nevertheless the value given in (£85) is
adequate for the discussion of the dependence on n,h and also for

a presentation of the problems which arise.

Stability for all modes can only be realized if Q(n,h) is bounded.
For any given n,h Q(n,h) ig finite. Thus there are only two possi-
bilities for obtaining an unbounded %(n,h). Firstly the case when
ny,h—s» .3 this 1s what we shall call the short wavelengths problem.

Secondly the case when n,h—>» 0; this 1s the long wavelengths problemn.

Consider first the case of the short wavelengths. From (25) it follows
that A(n,h)—oe0 as n,h = oo. %(n,h) as given by (85) will thus be
bounded only if

2

A(n,n) g (n,h)

R(n’h)

(86) + P as N, h— o0

This is a very restrictive condition which is not always satisfied.
Furthermore condition (86) is not necessary, since the criterion
(%38) is not. It may happen that (86) is violated and yet &(n,h) be
bounded. This happens for instance with the collisionless model.

In conclusion the short wavelengths problem cannot be solved without
looking in detail at the model and eventually by using some other

stability criteria.

The long wavelengths problem is not obvious and it does not even
exist for all models. If it does exist 1t arises from a non uni-

formity in the convergence of R(n,h,s) when n,h—>0 around s = O.
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~
This is obvious in the case of a finite plasma where R(o,0,s)

o~
has a pole at the origin while R(n,h,s) with n,h % 0 does not.
This lack of uniformity can have as counterpart a corresponding
lack of uniformity of gmax(n,ﬁ). Here 1s a simple example to help

visualize the problem. Take

~ S
(87) R(H,s) = R + R> O
2,42
s +H
~
This R(H,s) satisfies all the conditions (9) and develops a pole
at the origin for H = 0. Choosing X = 1 in order to simplify the
notation, we have
2 .2
-(s7+H7)

(88) g(HaS) =
232+H2+RS(S2+H2)

we can assume H«l. g(s) has a pair of poles located at

(89) s+ %— B%?-

This gives

(50) g (K) - 22

This i1s not bounded as H-» O while gmax(o> = %. Fig. 2 represents

gualitatively the behaviour of g(H,S). This 1s an example where
Q(n,h) is not bounded. It is not always so. It should also be re-
marked that an unbounded gmax(n’h) does not automatically mean

that Q(n,h) is unbounded, but as in the case for short wavelengths,
that the criterion (3%8) is not adequate to solve the problem. The
criterion (56) is the one to be used here. As is the case for the
short wavelengths the answer to the stability problem cannot be
given without knowing more about the model than the very general

restrictions (9).
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IV. Simple models

The conclusion of the last section was that the stability problem
could not be solved without having more information regarding the
acoustic impedance of the plasma than just the very general res-
trictions (9). As a first step we shall examine some simple models
in detail in order to gain some feeling for the long and short
wavelengths problems and furthermore to glean some information on

what frequency is necessary to stabilize all the modes.

We shall consider essentially only two classes of models : fluid
models and collisionless models. Since they represent the two limits
between which the correct representation of the plasma should be
found, it is hoped that the results are relevant and that reality

may be approached by interpolation.

4.1, Half space geometry

Consider an isothermal plasma filling a half space. There may be an
acceleration field normal to the surface. Let the plasma be confined
by a rotating magnetic field given by (ll). We shall look into the

stability of this confinement for various models of the plasma.

a) One fluid model without dissipation

We describe the plasma by the usual one fluid model with no accelera-
tion field. P, and f, are respectively the pressure and density of the

uniform gas. If Vv is the sound speed, an acoustic wave can be described

by

(91) p = P(H,S) ek‘Z'f‘lHX‘f‘St

where p is the pressure increment, z the coordinate in the direction

normal to the surface and x a direction parallel to the surface.
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k, is given by the dispersion relation

2
2 2 s
(92)  k, H+L-§

i

The equation of motion at the surface gives immediately the impe-

dance

s) = —P{H,s} :.lgﬁi
(93) R{H,s) L[ €®) I,

The branch of the square root for k. 1s determined by the condition
that k>0 for s real positive. g(H,s) is analytic in the full plane
except for a cut attached to the two singular points 5= + 1vH. The
cut can be chosen in such a way that the conditions (9) are satisfied

for Re s> 0. The condition (9b) is satisfied for all directions since

~ S -» 00

(94)  E(1,9)I2F Z,=peu

~
Along the imaginary axis R(H,s) is analytic for s % S .. Choosing

s = 1y, y real, we have
~
0 «jyj<« He R(H,iy) = i _\/_}{__2__321:? 7,
vo-y
(95)
fyj >Hv R(H,iy) = =t 7

Jyz—quz

We see that the impedance is purely reactive (inductive) for [y]<Hv
and purely resistive for |yl > Hv. The region|yj<Hy is the inertial
region where the plasma acts only as a mass. The second region lyi> Hu
is the acoustic region where acoustic waves carry into the plasma the
motion of the surface. This explains the relations (95). These rela-

tions replace (9c) on the imaginary axis.

g(s) has a pair of poles on the imaginary axis at st
1

r 4quzz 21
(96) Si:iiﬁ.@_ \/l+——2—'——o—"—l
'z X (H)
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These poles are located between the origin and + iHv . When H-> O

these poles move towards the origin where they cancel each other

-1 .
X7, For H=»o?, s _~ + 1\L’1+4r2 -1 uH/¥Y2y

since for H = 0, g(s) =
Let us consider now the stability problem. The impedance (93) has
all the properties of the example considered in (3.7) with a
monotonic behaviour for|[g(iy)| for large y. It has been shown in
(3.7) that for high enough frequency there is always instability.
High enough implies that

(97)  w>> Max (vH,

dic

For HD«{1l, that is in the limit of long wavelengths, the formula
(62) gives for the rate of growth of the instability

(98) 1o gHuP (HD)

8w2r

For HUS)% , the growth rate becomes

303
(99) 1~ TY f\/1+4r§-l- 2 }

6w215 lﬂl)"2

This is a completely different type of instability from that discussed
by Berkowitz (l) since it occurs for a frequency larger than the re-
sonance frequency (ls+i) of the system, while in the incompressible
model considered by Berkowitz it is stable for a frequency much larger
than the resonance frequency. For a freguency less than the rescnance
fregquency, the criteria derived do not give an immediate answer, but
from the results obtained with the incompressible model it is almost

certain that there will also be instabilities.

Berkowitz has considered the problem of a superposed constant accele-
ration field g>» O, normal to the surface. This can also be done with

our model.

The acoustic impedance becomes in this case

~ w+kL
(100)  R(H,s) = s > %
s +H v
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with the dispersion relation

1

2 2 2 2.2
-1% 2 22 ¥ Hou QR
ky = 37 0 VWeTHHTYT ¢ S r-1) ——gg——

(101)
Q= £
v

For any y- we will have R(h,s)n—»zo as s—»e0 . Y= 2 1s a singular

case for which the expression (IOO) simplifies to

(102) E(H ) = 7 .S_zigf__
8/ % 5N T2 20
s +H v

’E(H,s) has two pairs of branch points in + i%, + iHv, which can be
connected by two cuts located in the left half plane.'E(H,s) is thus
analytic in the right half-plane. Note that g(%;s) - z_. Along the
imaginary axis,lg(H,iy) is purely resistive for Jvl> Max (Hu,®Q) and
iy’{ Min (HU,Q) and purely imaginary for Min (HU,Q)< )y} < Ma; (Hu,w).
In the domain where it is purely imaginary, it is inductive (of the
same sign as y) for W< HV and capacitive for Hug &. This means that
'g(s) possesses a palr of poles on the imaginary axis located between
+ (i%,1Hv) for Hu > only.

For y¢ 2 which is the interesting case, R(H,s) still has two branch

points along the imaginary axis given by

3

2

> ,
eyt L Vf 22 p? Hy2 2 2.2
(103) $2_ “vH -yt (v H +p 7 )T - 4(pr-1) @TVH

- 2

and a pair of poles in + 1Hv. The poles are located between the branch
points on the same side of the origin. The branch points never coincide.
Ir + iyl are the branch points nearest to the origin and + iy2 the others,
ﬁ(H,iy) is purely imaginary for y < lvl< Y, inductive if |yl¢<Hu and
capacitive for |y|>Hv. Forly!).y2 or |yl Yy the impedance has a

resistive component. In particular for ly1>y2
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(104) Re %’(H,iy)>———,1'——— Z Yy 7

0 0
-H2u2

If

2.
(105) H2U2> (r-1) o2 g—r Q{XéH) N ,Q(g-)‘) _Q %E%I% Zo}

then g(s) has a pair of poles on the imaginary axis at S given by

NN
(106) s A - \[A+ UX i

2 .
where A = S (g) + WX (H) (2-p) + (1-y) =

27 27
@)

O

This formula, as well as (105) remains true for Yy = 2. Let us return

to the stability problem. The condition for having average stability

can be written

V]
10 0 & e
(107) 7D

If itissatisfied the quantity in brackets in (105) is always positive
and g(s) has always poles on the imaginary axis for H2U2;>Q*—l) Qz.
If w satisfies the restrictions (97), the results (3.7) show that
the modes given by (105) are unstable. Applying the formula (61) to

the case where <<*5;]‘>' and HD ¢«¢ 1 gives for the growth rate

(108) tx Huz{sz (2;3‘) Hy + %? (HQUQ-—QZ)}
Bw

It may easily be verified that T > O in the range defined by (105)

and T < O outside.
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For HOU® 3 Max{ffﬁ%%Zlel , 92} t is still given by (98) or (99).

Summarising, the addition of an acceleration field has not changed
the conclusions as far as instabilities and growth rates are con-
cerned. However at long wavelengths (of the order of the depth of
the plasma) and depending on the value of y‘there may be stability.

This model is described in detail in (é). Here are the essential
points. The plasma is considered to behave as an ensemble of non-
colliding particles (electrons and ions) having a Maxwellian distri-
bution for both species, at the same temperature T; the electron

)

contribution to the impedance 1is neglected3; ions are reflected
specularly at the surface. These three assumptions constitute the
very essence of this model which is at the opposite extreme to the

one fluid model used previously.

The equilibrium ion distribution function fo(v) is

LA
- m \3/2  T2kT
- 0l ©

(109)  fo(v)
where m is the ion mass and n the ion density. A deformation of the
surface £(t) causes a perturbation in the distribution Sf(vz,vx,t)
at the surface. The assumptions of specular reflection and no colli-

sions gives

(110) 58 (v, v,t) = 0 Va> 0

3)This point will be discussed later. In (6) for the mode n=h=0 the
contribution of the electrons for t =eo is kept. In our case it is
zero because of the infinite depth of the plasma. The assumption of
identical temperature for the ions and electrons does not play any

role here, but it does in the justifications of the model.
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(110)  8£(v_sv,»t) = - 2 2. () Vs <0

dVy

The acoustic impedance is thus simply

N 2 [ 2k
(111) =R(H,s) = ooy, V= iﬁ”

or introducing Zo = feV
fad

(112)  R(H,s) = —5ﬁ5 z,

The impedance is a resistance, independent of H and s. The stability

problem is immediately solved, since the solution to equation (28) is

(113)  e(t) = exp g - I (x(H)t - AR oip Zwt)}

This solution is decaying and there is always stability. The inclu-
sion of a congtant scceleration field g» 0, modifies the calculation
in the following way. If x is a coordinate in the surface plane, the
boundary condition and the fact that the distribution ig constant

along a trajectory give the relations

. 21 . N
éf(vyv‘fzatsx> = Sf(\VX—VZ,JE,X> + E% v fO(V) €<t> =

.

™3

(114)
2V JVXVW om
— > < + L - + — ) _ v 50T &
= Si<VX’VZ,t g X o ) * LT oz f(<J> g(t)

After Laplace transformation and a mcde deccmposition we obtain

P . " kT 7
éf(vxavzassi )

il
r~
Me
PN
ot
el

(115)
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where JT(VX,VZ,g,H) is the Laplace transform of Jf(VX,VZ,t,H)

4)

The impedance becomes

~ ‘{3 3

- 5 ;o > o o AY 3
(116)  R(H,s) = — \d"v fo(v) v,” coth E
1T Z
Expanding coth B and fTransforming back to t, we obtain

o
SHTUT

- - 2 . ’ | 28 4 . gt
(ll/\l R(h,t/ = ,w): b(t) + ‘Gg‘ e t Ql(ig—>]

'S

N

with

2 -

) -

n=)

t
-z
e n

—~
ot
fort
(@8]
St
O
P
t
R
i
“+
Pty A

ol

Q. (t) is represented in tir. 3. Note that Ql<t> 1s positive. Also

By numerical computation we find,ror any <§>O

o
i
<
A
l

ndition ( the stability criterion (80)

of applic

@]

=
o
{D
(@]

C

[~ may be written

=
<
[
3
i

ectrons has been omitted becsuse

ability analysis but merely

equations. It contributes only to the

H = O whicn presgents no problem in any case. The same omission

s carried out for all cases without further mention.
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Jalg o U
(122) o <.‘D

If this is satisfied (82) will give a frequency “m such that for

z
w» % all the modes are stable by virtue of (120). If gé(i%; one
finds

(123) wom 2,5 0 b

A value of Qm sufficient for stability, for any D satisfying (121),

is

(124) Q@ = 35

<Im

We shall prove this as follows. Consider the case where Dé;é%—

We have
2,2
-h"1t
VIg(t)e 1.
(125) () £.515
«< ,093
UL '
By substitution one verifies that (80) is satisfied. For = > D> ég,

we subdivide the range of values of H into two. Consider the case
where vH coth DH %‘5 The inequalities (125) are still true and (80)
is thus satisfied. There remains the range vH coth DHZ %?.

We use the Nyquist diagram method explained in (3.5). For a frequency
larger than or equal to { the approximations (57) are very good
(within a couple of percents at worst). The following properties of
the impedance can be established by a combination of analytical

and numerical calculations.

v I R(H,iy) < 0 for |yl « v.(H)

y.(H) > y (o) > 1.15 g/u

e g(H,iyr(H)) >Re g{H,l.lS%) = .06 Jy?zo
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Im yﬁ(H,iy) >0 for lyt;p@m
(126)
V'
2 %

Re ﬁ(H,iy) >z for tyl Z,SZm

where yr(H) is the value of Isl for which Tm ﬁ(H,s) =0

It follows that

D
| T 53l < -43 Vo dyleg.3 1077 iz lyl
(127) L n
Do 40
Re =2 ¢ 2% x(u) v .141 x(H)
Dl 9n5

Note that the last inequality does not involvegabsolute values.
The left hand side becomes negative when D—a'g—. Fig. 4 shows
Nyquist diagrams for a given H. Two curves are shown which repre-
sent the image of £ for w - oo (for which G(s) = X + sR(s)) and the
image of é with DZ/DI replaced by the bounds (127). A and A' are
the images of the point, namely iyr(H), where the impedance passes
from capacitive to inductive. From the diagram 1t is clear that
there is stability if X’stays on the positive real axis, if A'
stays in the first quadrant and if the entire curve between these
two points remains in the right half plane. All these conditions

are satisfied by virtue of (126) and (127) and thus there is indeed

stability.

Summarizing, we have shown that for a frequency higher than or egual
to Qm, as given in (124), there is stability for any D so long as
there is average stability (121). This result is in sharp contrast
with the result obtained with the fluid model without transport
terms where there are always instabilities for any frequency. Weibel
(6) (for a cylindrical geometry, but the physics remains the same)

has suggested that this difference is due to the neglect of all
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dissipative terms in the fluid model. To examine this idea we shall
add the dissipative terms due to viscosity to the one fluid model
equations. Thermal conductivity is certainly as important but it
complicates the algebra without changing the results. It only adds
dissipatien and therefore should help stabilisation. Its effect may

be estimated by putting ¥ = 1 in the results, which corresponds to
infinite thermal conductivity. In order to keep the algebra manageable

only the case without acceleration field is examined.

c) Viscous one fluid model

We expect viscosity to provide two stabilizing influences. Firstly,

for long wavelengths, the dissipation should suppress the instabilities
found in (4.1) since for small H the growthrates are only proportional
to H4, while dissipation should give a damping of order H2. Secondly,
for short wavelengths, the particulate nature of the plasma should
start playing a role by, hopefully, providing already strongdissipa-

tion in the inertia region.

The linearized equations for the model are

9o _ -Yadiv v

(128) 9F
5 >
3 = div v
93. u2 e v o= > 2
R ET grad p + 3 grad div v + Vg v

where p and p are the relative values of the pressure and density of

the perturbation and v the velocity. v is the kinematic viscosity.

The dispersion equation for plane waves decouples into two modes,
corresponding respectively to a longitudinal acoustic mode kL and

an incompressible mode kT.
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L l+§ﬁ§
3u
(129) v
o = u
2 2 S
kT = H +c;(-1-,1_

where & is a length of the order of the mean free path,

As an additional boundary condition at the surface we take that the

tangential component of the stress vanishes at the surface, that is

Py = 0. With this condition *the acoustic impedance is
~ 4“2H2(kT2“kaL) s
(130)  R(H,s) = Z u +
0 sk 2
L u kL

R(H,S) is still analytic in a suitably cut s plane. There are two

branch points in S and S,

(131) 8= AESU s = -

and a palr of branch points s wherevR(H,s) is infinite

L’
2 2.2
. 2dHTu J 4o H
(132) sy = - S a vy 1S

For A H<< 1, this becomes

2
(133)  spx+ iHu - %§5—3
As a4 —» 0 these singularities become identical with those of (95).

Since s s, are located in the left half plane, the condition

o 1 L
(9a) is satisfied. (9b) is also satisfied because of

z =~ S—» As
(124) R(H,s) =—/—> 2 /Bu Z,

Condition (9c) is satisfied by each of the two terms in the square

brackets in (150).
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We may thus apply the method of section (5.9) for any mode. Let us
investigate first the long wavelengths problem, using the criterion

(56). For olH4< 1 we have on the imaginary axis

Re /I;:(H,iy) > 2(lH) Z, Jy] £Hu
(135) B
Re R(H,iy) » 2 Jy |2 Hu

0]

We again assume that w is large, that is,
(136) w »> Max (Hu,%)

in order that we may use the asymptotic forms of (57). We shall assume

also for now that £<4<D,

We have
D001, a%(m)
™D (iy) - 2
1 Hw ZO

3

Iy

(137)

D, (iy) 2
Re 57y £ A5 < xm)

1\ 6w 2
0
We again use the Nyquist diagram method. Let us draw first the image
of g’for w =¢ , that is with Dg(s) = 0 (fig. 5). This curve is in
the upper half planeDb%g?use of (90). For w<e” the curve is displaced
horizontally by “Re —gz—— which is much smaller than X(H) (137) and

Dl 5) rj D2(S§ .

downward by -Jm 5_(€7 The new curve is represented
qualitatively in fig. 5. It is seen that the stability problem re-
duces to a comparison of the respective sizes of 0OA and AB. The
example illustrated corresponds to a stable case. The value of s, say
s.» at point A is still given by (96), neglecting terms of higher order
in H. We deduce that

Z 5 2
or

s 3"
\/H2u2+sr2+ 4 P

(138) oA s |2(«H) 2 +Tm

The second term is always positive or zero. From equation (137)

2
(139) ABé—i—z—g S s,
w7z
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There is stability if OA 2 AB. Using (138) and (139) we will find

sufficient conditions for stability.

A sufficient condition is

u2H 1
44 1+5H2202/X2(H)

(140) w2‘>

For HD »>»1, this condition becomes

(141)  o° > 5
12574

For HD &1 it becomes

>~ uH

(142)  w°> 4

N

y
This last formula shows that the very long wavelengths (H<5§) are

always stable if w)ig. We have also shown that, when H)é% there is
stability if wg' uigD within a numerical factor which changes from
1/2 when HD<X1 to l/yjf§1 for HD >>1. This frequency remains in
the range of validity of the model. The reason for the stability of
the long wavelengths may be found by comparing (98) and (135). The
growthrate of the instabilities for « = O goes as H4 while the

damping goes as Hz, thus dominating for sufficiently small H.

For HD>»1 the condition (136) and (140) show that any given mode can
be made stable. However these conditions give us an unbounded value

as H—9'00(~'%) thus bringing us to the short wavelengths problem. In
the strict frame of validity of the model the prohlem of the stability
cannot be answered for the following reason. Let us choose a w such

that %4<w4<3 ; there exists a H such that

(143)  uHe& w «uH(3)

The condition (1%6) is satisfied but (141) is not. Since the condition
(141) is not necessary but only sufficient this does not imply instability
Nevertheless, the estimates of OA and AB, (138) and (139), which were

used to derive these conditions are certainly correct in their dependence on
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H and &, even though the coefficients may not be the best ones. This
means that when (143) is satisfied, ABMO0A and there will be insta-
bility. The only solution is to raise the frequency until wrx%; this
assures stability for all modes up tood HAv1l, For £ H > 1 we may expect
dissipation to be sufficiently strong to provide stability. In order
to verify this the criterion (%38) will be used. We need two properties

of the impedance, namely

(144) Re K(H,1y) » 32 2 ror e11 u
fhlgg%illéO for dH > 1, Jyl€Hu

They imply that for £H 22, g(iy) reaches its maximum value at the
origin, namely g _ = 1. The criterion (38) is thus satisfied for

any w and these modes are always stable. A more careful analysis

shows that 1f ¥<£?2 gmale when olH > .70. It is of interest to locate
approximately the value of H for which the minimum frequency required

by the criterion (28) is a maximum. Numerically one finds that {H= A
for Y= 1 which corresponds to a sufficient frequency w of about wﬁj.Zzﬁ

For »>1 this frequency is found to be even lower.

In conclusion, for the case where D> & , we have shown that all the
modes are stable for a frequency w2 .25§u No attempt has been made
to improve on this value. Such an attempt could be tried, using the

general criterion (47).

For DL o the situation is not so clear. Naturally for w9’% all the

modes are stable, but is it really necessary to go to such a high
frequency or would indeed a lower value of the order of ﬁrsuffice ?
This gquestion cannot really be answered, since, of necessity, we
are forced to choose such a high frequency in order to use the
asymptotic forms (57). Without the use of (57) the long wavelengths
problem could not be solved by the criterion (56) for which there

is no known substitute.
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4.2, Slab geometry

In order to study the influence of the finite thickness of the plasma

on the results obtained in the preceding section, we choose the following
geometry : a slab of plasma of thickness 2a confined by the same rota-
ting field on both sides. The problem of the stability of this geometry
can be reduced to the simpler one of a slab of thickness a having the
field applied on one surface only, the other being fixed. Two different
sets of boundary conditions have to be imposed at the fixed surface
corresponding respectively to symmetric and antisymmetric deformations

of the slab.

a) Viscous one fiuid model.

Keeping the same notation as before, the boundary conditions at the

fixed surface are

v

(s) v =0 ———)Zi = 0
(145) v,
(&) v, =0 55 = 0

(S) designates the symmetric case and (A) the antisymmetric one. The

acoustic impedances are given by

2
kT (ch kLa ch kTa ) . s c¢h kLa }

s kLshkLa kTshkTa uszshkLa

(s) ?(H,g): Zou{ﬁ,o(sz

(146)

2
2 k sh k_a sh k_a s sh k.a =~
~ 2.2 L T L
(A) R(H,s) = Zu{MH ( - >+————— }
o s kLchkLa chhkTa u2kLchkLa

These impedances reduce to the half-plane impedance (50) when

(147) Re kpa D1 and Re kpa 1
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The only singularities of the impedance are poles given by the

equations
*2 2
_ -2duH * \/40( *2
Sy, = 3 + Hu 9 H -1
(148)
.
Sp = - o ul
where
2 2
*
<S> H2=H2+ng
a
(149) (nid)2,2
*2 2 "
(a) H® = H + 5
a
- ‘ Aty
The poles sy are located either on a circle centered at s = =~ ¢

and tangent to the imaginary axis or on the part of the real
negative axis defined by s& -~ %%. For H 2»3/2 there are no more

poles on the circle. The poles s, are distributed along the negative

T
*
imaginary axis. For ~«H "« 1

(150) s A2 i u - %o(H*zu

A1l the singularities are in the left half-plane and therefore (9a)

is satisfied. For s sufficiently large the inequalities (147) are
satisfied and the asymptotic behaviour of the impedance is thus the
same as for the half-plane (134). Condition (9b) is therefore also
satisfied. Because of the dissipation due to viscosity, statement (9c)
is also true. The stability criteria derived can then be applied

to this problem.

In the following considerations we shall assume that asyo. For

AH <<« 1, we have along the imaginary axis

(151) Re kg > {2(«(H) H
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The inequalities (147) are therefore satisfied if H})—-l—— and

Ny

impedance (13%0). More precisely, for H = L , we find

Joia

the impedances (146) then reduce to the half-plane

(152)  [cotn kLa-1} <.07, |Jth kLa-1}< .07

This shows that for H = ﬁ%ﬁi the half plane impedance is already

a reasonably good approximation to the slab impedances (146). We
shall take this value as the dividing line between short and long

wavelengths.

The stability problem at short wavelengths 1s thus covered by the

results of section (4.1c).

The problem of the long wavelengths 1s now considered using the

stablility criterion (56). Along the imaginary axis the inequalities

(152) are satisfied for ]s(z\j;;ﬂ . This implies

(153) We RlE) > 92, vlz Fs

Let us consider a definite wavelength. In order that we may use the

asymptotic forms (57) we assume that

(154)  w > Max{% : 23——}
O

VA 8

Henceforth we shall drop the index H in X(H) and we shall assume that

DO>A. It follows that

/')'m D, (1y)/ 2

D (13/)
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Consider now the equation

(156) X + sR(s) - 575 - O

For w = &‘ail the roots of this equation lie in the left half-plane.
As w decreases some of these roots move towards the imaginary axis

and the limit of instability will be reached when one of these rocots
reaches the imaginary axis. We shall determine a necessary condition
for (156) to have roots on the imaginary axis part of the contour Qf.

To simplify the writing we introduce the following notation

coth k. a )
(157)  (8) 1 Jm ——L , g _Re LKA . g ooty k a
m Kk m k T T
L L
th k_a
- th kpa _ R I -
(&) R = Re ek Im_“Jm e i Zp= kp th kpa

From 1ts definition ImAL 0. Taking the real and imaginary part of

(156) and after an obvious substitution we obtain

§X = X* te o - 4dyH2{Rm— ots 8}« dE W Tn 2,

(158)
Rm(y2—4d2H4u2) = uX* - ¢AH2yuIm - 4d2H2u%Re -
where
D, (iy) D, (iy)
2 X 2 X
- . * o 2 EC
(159) SX“3mZD<iy)’ X z +ReZD iy > 33
o1 0 o1 o}
For y{,i the last term of the second equation (158) is negligible.
From the second equation, we find that y2>'442H4u2 since Rm> 0 for

o< 4 H . This implies that tg 6 £ 0. We have to consider the two

cases separately.
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We consider first the symmetric case which exhibits precisely the
non uniform behaviour mentioned in 3.9 when H-%»0. The range of y is
divided into two sections : the inertial range O£y =<uH and the

acoustic range uH £ y £ w.

We shall first prove that there cannot be any roots of (158) in the

acoustic range if w satisfies the condition (154). Consider two cases

(n+%) nu
Case 1) «+ —<£JIm kL.¢ —— 3 n = 0,1, 2, ...

In this case the second equation of (158) gives

ChlkL

(160) &% < el
L
(n+%) nu (n+%) nu
Case 2) _"—ET‘_—”éJﬁ'kL €

Using both equations (158), we obtain the condition

, 2

(161) 8% £ - Mi { = XZ 2

STl 1zt
Collecting the two results (160) and (161) and using the inequality
(155) we obtain the following necessary condition for (158) to have

roots in the acoustic range

(162) w < Max i 2%— ,.1213 '}
5 o] Ja a

This condition is incompatible with (154). Therefore there cannot be
any roots of (158) in the acoustic range, thus proving our assertion.

In the inertial region y «Hu Re kL 23m kL)we again consider two cases

Case 1) : Re kL{:

o [

The following inequalities hold

Im k
(163)  tg 0 & - L RS
e k m— 2
Re xq aRe e
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Using these relations in the system (158) we find

2
(164) Sx< - dak

87 2u2
o}

This implies the necessary condition

(165) w<J—§f \fj%‘aﬂ

which is again incompatible with the assumption (154). Therefore no
root can cross this section of the imaginary axis. For aH«£1l, we can
thus say that a freguency satisfying (154> is sufficient to stabilize
these modes in the symmetric case.

For aH> 1 we have to consider the second case namely

case 2) : Re kL>_al:

The inequalities (163) are replaced by

Tm k
L 1.3
166 tg 8 < . ; R <
( ) & 7 ?QRL m - Re kL

Proceeding in the same manner as above we obtain the necessary

condition
(167) w< Jé? U.Jéj

keeping in mind that the necessary condition for a root to cross the
imaginary axis is the cpposite of a sufficent condition for stability,
we can compare this last result with the results for the half-plane
(141 or 142). We see that they have the same dependence on H and o
but the numerical coefficients differ. The similarity is comprehensibl
since, for Re kLZ,i, the slab impedance is already quite close to

the half-plane impedance. The difference in the coefficient is not
important and could have been reduced to a large extent by more

careful bounds in (155) and a better use of (166).
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We now turn to the antisymmetric case. This case is regular when H—0"

For H = 0 and y‘g.ﬁ the impedance reduces to
(168)  R(0,y) = (foa) ¥y

which is the impedance of a rigid slab of density f; and thickness a.

This shows that at low frequencies the slab moves as a rigid body.

We shall treat the antisymmetric case in a manner analogous to that
already applied to the symmetric case. In the acoustic region and

when Jm kLP’i, everything is identical to the symmetric case except
that the two regions are interchanged. The final result is the fol-

lowing necessary condition for a root to cross the imaginary axis.

(169) w22
\{a,a

which is incompatible with (154).
1 .
For jm kL 4 - we find that
(170) tg & £ - .60 (Xe kL) (Tm kL)

Rm l 1.55

a

giving the necessary condition

(171)  w(

which is incompatible with (154).

5)

In the inertial region we consider again two cases

1
case 1) : RXRe k. £ S
5) The distinction between inertial and acoustic regions is arbitrary

in this case since the impedance has no singularity at the transi-

tion point.
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We have
(172)  tg 0 £ -.44 (Re kL) (Im kL)

R <
m

© {

This leads again to the condition (171). If ali«l, the final result
is that for a frequency which =atisfies (l54> there is stability.
This is the same result as for the symmetric case.
For aH>1 we have the additional possibility
case 2) ¢ Re k. > L

L a

In this case

(173)  te 64 -.447Tn k /Re kg

These imply the condition

(72) w< 2B

This last condition has the same form as (167) with a different

numerical coefficient. The same remarks made in the symmetric case

after (161) apply here.

We can summarize the preceeding results as follows. In assuming that

D = we have found the following sufficient conditions for stability

2

u)}ZJ;E;

(175) w 'z 22\15 forg—é al <

a / a
ford>>aH§ o

for aH< 9/16

9.|m

U

e

0P

Sy
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This last condition is the condition (141) which remains valid for

the short wavelengths.

If D >»Jaafconditions (175) still hold. If D <:\kga}but HD S 1
there remains just the last condition in (175). For D {Jxa,and
HD é:% only the condition (154) remains, namely w 3> % and finally

for %@éHD-S 1 there remains the second condition in (175) and the

condition (142) which replaces the third one in (175).

The introduction of a finite depth into the semi-infinite problem
(4.2) has only affected the results at long wavelcngths, aH<1 and
changed the numerical factor in the conditions (141) and (142). The
dependence on H and & is not affected. Furthermore the difference in
the numerical coefficient is probably meaningless, the bounds used
in (141) and (142) being better determined than those used in (175)
All this justifies the use of the semi-infinite problem as a test

of any improved plasma model which one chooses to investigate.

For D £ « the remarks made in the semi-infinite problem are still
valid. We have also assumed a>x . This seems like a reasonable
restriction if the model is to be correct. For g «<4£X the collision-
less model gives a more realistic ildea of the solution. For a~ &

we would require an intermediate model in order to follow the transi-

tion from the fluid model to the collisionless model.

This is the same model as that used in the half-space case (4.1v).
We shall keep the same notation as in (4.lb).

If f(v
X

the fixed surface, the boundary conditions corresponding respectively

,vz,t) is the perturbation of the distribution function at

to the symmetric and antisymmetric cases are
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(S> f<VX7V27t) = f (VXa’stt>

(176)

<A> f(VX9VZ’t> = ‘f<VX"VZ9t>
Let us call 5f(vX,vZ,t,X) the perturbation of the distribution functic
at the free surface. From the specular reflection hypothesis and by

integration along a trajectory we obtain the relations

g 2 .
bf(vx’vz’t’x> = éf<VXa'Vz9t7X> + E% VZ fo<v>5(t> =

= 5f(v ,v ,t + 28 .y " ) o+ Moy p (v) E(t)
(177) > g? VZ’ v, kT Zz T 0
(v ,v_,t,x) = SF(v ,—vz,t,x) + E% v, fo(v) t(t) =
(1)
- 2a “av om
= -bf(vx,vz,t + ;;, x -+ - ) + o, fo(v) t(t)

After a normal mode expansion in x and a Laplace transformaticn in
t we obtaln

~ e (ndlen)

(S> Sf<VX7VZ7S7H> =

t

1 - eE
(178)
2m .
= e (nd [e(n)]
<A> f<VX’V ’SaH> = =
1 + e
where
2 v
(179) B = <22 1 2iHa =
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The two impedances are given by

~ 2 -E
(8) Rq(H,s) = %f v vz £ (v) ire

(180)

~ e -E
(A) RA(H,S> = %ﬁ S'dsv VZ5 fo(v) l—e_E
1+e

Transforming back to 1T, R(H,t) can be conveniently split in two

parts
2

~ 2 e 2u —E—EEEE ut

(181) RS(H,S> :\[?T" 20{5(” + e 4 Qg Qj;)
A A
where
< n4 'nz

(192)  ag(e) = 3 %5 exs(-E5 )

2

P
— 2
4y (1) = 2 0wt e (25

o
i
—t

Qs(t) and QA(t) are represented in fig. 6.

Note that lim Q.(t) = i
PPESV IS 8

and, for any ,§>O

2
v [ ag(t) e 2 1.70

(183) .
V[QA(t) e~ 3tJ < 1.92

Returning to the stability problem, we can employ the same methods
as in (4.1b). Note the similarity between Qs(t) and Ql<t>' This
shows that the acceleration field acts essentially as a velocity
dependent specularly reflecting wall. If the following inequalities

are satisfied
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() a >3D
(184)
() a » 3.4D

Then the g¢riterion (80) is applicable for all modes and there exists
a frequency w_ given by (82) such that for w z @  there is stability.
If a > 3D, Qm is given by (8%), namely

(s) Q 3.4 n

o[

(185)
(A) @ a 3.9 1

o e

Proceeding in the same manner as for the half-plane problem we shall

show that for any frequency higher than Qm given by
u
(186) w = 5n

there is stability. In the range D £ .15a criterion (80) is satisfied.
For D » .lba we again divide the problem into two : firstly for .l15aH
coth HD3» 1 criterion (80) is still satisfied ; for .l5aH coth HD « 1
we have to use criterion (56). The two cases (3) and (A) have to

be considered separately since the impedances behave guite differently
at low frequencies. The symmetric case 1s essentially identical to

the half-plane problem (4.1b). We examine it first. The following

properties are the analogous of (126)

v (H) » ¥

(187) y In R(E,iy) g 0 for Iylgy (H)

Xejﬁ(H,iyr)z Ke %(H,i 5.8%)7 L095 /7

0

Re R(H,iy)» .45\/7?20 for lyl z @
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These properties have been found by a combination of analytical
and numerical calculations. Of the properties enumerated in (126)
only one is missing here, namely the impedance does not remain
inductive above yr(H>, but this is irrelevant. The relations (187)
guarantee the validity of the asymptotic formulas (57) in using
(56). We have, in analogy to (127)

- Dggy) L

D (iy) 2

(188)

| In Dz(?w <021 N2 |y

For the given H the Nyquist diagrams corresponding respectively to
w =00 and w = Qm are represented schematically in fig. 7. We see
that they are essentially identical to the diagrams for the half-
plane case (fig. 4). There is stability, since by virtue of (187)
and (188) the point A', image of yr(H), is in the first gquadrant

and X', image of the origin, remains to the right to the origin.

For the antisymmetric case the impedance is not capacitive at low

frequencies. We have indeed

(189)  R(H,iy) ~ i (am) y

This 1s the same result as with the fluid model, since am is the
mass of the half slab per unit area. The behaviour of the resistive
component of the impedance at low frequency is crucial for the sta-

bility. The following inequalities hold

» Y
Re R(H,iy) » .20 fﬁﬂzoy4 %¥ for |yl<

1= ®le

2

Im R(H,iy) y ¢ 2, =y for Iyl<<

(190)
Re R(H,iy) > .20 @z, for lyly=

Ke ﬁ(H,iy) > .45 J??Zo for Iyl ;Qm
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We have that, as before, the asymptotic representation (57) is
valid to a very good accuracy. Furthermore

D,(iy)
2 X
X 5774

rof

(191)
1’\3 D2(1y>/2 22 42 ij

m ”
D, {iy) 9On5/220u2

Fig. 8 represents very schematically the Nyquist diagrams correspon-
ding to w =7 and to the worst case obtained by replacing D2/Dl by
the bounds (191 ). There is stability since the point X' is on the
positive real axis and A' is above the origin. Let us verify this

last point. The value of y, say Yo, corresponding to A satisfies

) el 2]

by virtue of (191). This means that

‘ 4 a . 12,2

(193) 0A>]y|Min %.QOJE‘ZOyr A .QOJE‘ZO} - v
u 90n Zou

By substituting we obtain

/ A2 2

(194) oa'>|y] min % L0496 22— 5 184 2, ”§)o

2 u
O

We have thus completed the proof. In conclusion if w> 5ﬂ§, there

is stability for all modes and any D. Note that as far the half-
plane problem it is the case of small D which fixes the frequency.
From (194) it is clear that a much smaller frequency suffices to

stabilize in the cases of large D or small H.
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4.%. Cylindrical geometry

Collisionless model.

The cylindrical geometry, as defined in 2.3b, is the most interesting
configuration from the point of view of experimentation. We do not
expect results very different from the slab problem except for
numerical coefficients. Since the algebra for the viscous fluid

model is almost intractable we shall only consider the collisionless
model used previously. The impedance has been already calculated in
(é) and we shall therefore use this result with the same notation as

in 2.3b and 4.2b, we have
2 2U ut 4
(195) R(n,h,t) = 72, {S(t) v = q (5 e %

where

A

Azcosgx
_——2————'

(196) Q (t) = L z E (-1)“ A7 dk cos™ cos(2niaA) e
n ‘qu?t
A=1

f
A

N

This can also be written as

ol at = e 2, .2
(197) @ (t) = = 1, 07/280)
n A n

1 d(l/t2)4

A=1

Qn(t) for 0< n<3 are shown in fig. 9. These curves are quite
similar to the curves in fig. 3, 6. From these curves we find that

for any g}O
¥
v o (t) et ] 20,00
2
v o (%) " ] <180
0
v a,() e ¥ J £ 1.00
-5t2J ya
v [’Qa(t) e < .50

(198)
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We see that the variation of Qn(t) decreases monotonically as n

increases.

Following the procedure used in the slab problem, we first use
criterion {80) in the limit b-»a, that is when X(n,h)—=» 4 and
A=>» 0. Using the formula (8%) we thus find that all modes are
stable 1if

u

(199) w2 4,5 n 7
Tt is the mode n = 0, h~0O which gives the worst problem. By analogy
with the slab case we expect that, for any a£b £ (3a, all modes will

be stable if

(200) w3z 5,5 7 =

This frequency is not very different from the value found for the
slab. In both cases the frequency is essentially determined by the
case when b~ a. The freguency appears to be unnecessarily high if
one considers only the long wavelengths. Numerical calculations may
shed some light on whether or mot the value of the freguency given
in (83) is really necessary since the analytical problem 1s very

difficult.

5. Discussion

This study of various plasma models leaves many guestions unanswered.
The difficulties in the stability analysis are localized in two
regions. Namely in the limit of long wavelengths and in the limit

of short wavelengths. In all the models studied these difficulties

are solved. Nevertheless, the reasons behind the succegssful solu-

tion of the difficulties vary from model to model. For example, in

the long wavelengths 1imit, it may be because the plasma is capacitive
when dissipation is insufficient or because the resistive component is

large enoughj; in the limit of short wavelengths, because the impedance
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reduces to a constant resistive component at high frequency or be-
cause the impedance grows as fast as the magnetic pressure response,
This variety of underlying reasons leaves the feeling that the choice
of another model may give a negative answer. The hypothesis that the
long wavelengths are always stable for any plasma model would be
physically satisfying, but has not been proved. The problem of the
1imit of short wavelengths will always constitute the real difficulty
and this is quite comprehensible mathematically. In this 1imit A(h,n)
and X(n,n) become infinite. Dividing through the equation (24) by

X(n,h) it can be written in the form

{1 + A/X cos thi}e + % R(t-t') &(t') dt' = 0O
0

We see that we cannot go to the limit X-%eoe. This is analogous to the
problem of a differential equation with a very small coefficient for
the highest derivative. (This is more than an analogy since the case
of the incompressible fluid leads precisely to such an equation since
R(t) :S}(t), see also (4.1b)). We therefore cannot hope for a definitive

answer to this problem.

Another guestion is how much confidence can we place on the free
particle model. In this model the electron contribution has been
neglected except for its adiabatic contribution. This approximation
which is based on an argument of mass ratio is reasonable, but it
would be satisfying to have definite answers on this problem. The
half-plane problem would provide an adequate testing ground. Such

an attempt is already under way. The hypothesis of specular reflection
is yet another approximation used. A relaxation of this condition
should in fact help stability by giving an additional phase mixing

at the boundary (diffuse reflection) and therefore an enhanced dis-

sipation.

Turning to the fluid models, the case where € < A is of great practical
interest. It is not known if the impedance determined with the implicit
assumption e3» A still represents correctly this case. Physically it
appears that the impedance used 1is correct at frequencies lower than

the collision frequency. At higher frequencies the impedance is probably
Just equal to ZO, the impedance of a semi-infinite collisionless plasma.
Only a calculation with an intermediate model could give a definitive

answer to this problem.
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Two extreme models, the fluid model and the free particle model have
been studied. Because of the wide differences in the results which
were obtained it would be of interest to have at our disposal an in-
termediate model which would provide a link. This model would have

to be more than a simple interpolation between the two extreme ones,
The Bhatnagar-Gross-Krook (lé) model does not appear to be the answer,
according to the results of the careful analysis of L. Sirovich (13).

As usual the present stability analysis is limited to small amplitude
deformations. The non-linear regime 1is probably beyond reach. 1t may
be that non linear limitation of the growth of the instabilities 1is
effective. This would imply that a frequency just sufficient to
stabilize the long wavelengths may be used in experiments, the
unstable short wavelengths being limited before they reach the

wall. This is not an unreasonable hypothesis.
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FIGURE CAPTIONS

Fig. 1 The contour C'used in the Nyquist diagram method.

Fig. 2 Example of non uniform behaviour in gmaX(H) along the imaginary
axis. The values of H correspond to the ordering H1>'H2‘;H5 > O,

Pig. Behaviour of Ql(t) in the semi-infinite problem with an accele-

ration field.

Fig. Nygquist diagrams for the semi-infinite problem with an accele-
ration field : free particle model. The curve 1 is the image
of € for w = o . The curve 2 is the image of € with DZ(S>/D1(S)
replaced by the bounds (127). These curves are not drawn to

scale.

Fig. Nyquist diagrams for the semi-infinite problem with no accele-
ration field : viscous compressible fluid model and oH e 1.
The curve 1 is the image of € for w = o2 . The curve 2 is the
image of E’for a finite frequency for which there is still

stability. These curves are not drawn to scale.

Fig. 6 Curves representing Qs(t) and QA(t) in the slab problem.

Fig. Nyquist diagrams for the slab problem : free particle model,
symmetric case. The curve 1 is the image of € for w = 5O .

The curve 2 is the image of 6 for w = Qm. (Not drawn to scale).

Fig. 8 Nyquist diagrams for the slab problem : free particle model,
antisymmetric case. The curve 1 is the image of ¥ for w =00,

The curve 2 is the image of € for w = Qm. (Not drawn to scale).

Fig. Curves reépresenting Qn(t) in the cylindrical problem for

n=20,1, 2, 3. The values of n are shown on each curve.
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