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Coupling BEM and GFPE
for complex outdoor sound propagation

E. Premat, J. Defrance, M. Priour and F. Aballea

Centre Scientifique et Technique du Bdtiment, 24 rue Joseph Fourier, 38400 Saint Martin d’Heres,
France
e.premat(@cstb.fr

In complex outdoor sound propagation meteorological effects as well as various absorbing properties and shapes
of the boundaries need to be accounted for. This paper presents a hybrid GFPE-BEM method relying on the
power of the BEM near obstacles and uneven topographies in order to compute the starting field which is then
propagated thanks to the GFPE. The approach is firstly described. Then some numerical results are given for
typical road traffic noise configurations with and without meteorological effects. The results show that this
hybrid GFPE-BEM model can predict accurately the sound pressure levels in complex outdoor configurations.

1. INTRODUCTION

Due to the more and more demanding traffic noise regulations the sound pressure levels at
receivers must be lower and lower. This implies that traffic noise has to be predicted at long
ranges from the roads [1]. Consequently complex phenomena during sound propagation in an
inhomogeneous atmosphere above uneven terrains with impedance discontinuities must be
accounted for. Today there is a lack of models in order to meet this need. This paper aims at
presenting a hybrid approach coupling two powerful numerical methods: the Boundary
Element Method (BEM) [2] and the Green’s Function Parabolic Equation (GFPE) [3]. The
acoustic field next to obstacles like sound barriers, hills etc... is firstly computed with the
BEM in a homogeneous atmosphere. Then this calculated field is used as the starter for the
GFPE applied to the case of long range sound propagation above a flat ground with range-
dependent meteorological profiles [4]. Numerical results are given for some typical road
traffic noise configurations which show that this approach seems to be promising.

2. THEORETICAL APPROACH

2.1 The Boundary Element Method

This method that relies on the Integral Equation theory has been developed in the 60s and has
been since extensively used [5]. Its main advantage is that it allows any kind of shape and
absorption of the surfaces to be accounted for in a homogeneous atmosphere.

Here the BEM is based on a variational approach [2]. The geometry of the problem is bi-
dimensional : the source is an infinite linear source and all the considered configurations
remain unchanged and infinite along a direction perpendicular to the vertical section plane.
The ground as well as any obstacle surface are reflective or can be characterized by their own
acoustical admittance . The theoretical formalism relies on an integral representation of the
pressure field at any point as a function of the pressure on the boundaries, of the admittances
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as well as of the Green’s solution G (elementary solution for a point source M and for a
receiver N above an absorbing ground) which can be written as the sum of three different
terms

G(M,N)z—%Ho(kr)—%Ho(kr’ﬁPB(M,N) (1)

where 7 is the distance between source and receiver, »’ the distance between the image-source
and the receiver and Hy the Hankel function of first kind and zero order. The second term in
equation (1) represents the contribution of the reflection of the cylindrical wave on a perfectly
rigid ground and the last term Pg is a corrective factor taking into account the ground
admittance [6].

Although this method can be time consuming, it has proved to be very accurate for computing
sound propagation in a homogeneous atmosphere above complex boundaries. The challenge
is to adapt it to the case of sound propagation with meteorological effects. One way can be to
include these meteorological effects in the Green’s function [7]. In this paper an alternative
approach is presented where the initial sound field is computed in a homogeneous atmosphere
using the BEM and then propagated with the GFPE in a range-dependent inhomogeneous
atmosphere.

2.2 The Green’s Function Parabolic Equation

The parabolic approximation has been first introduced at the beginning of the 40s in order to
solve electromagnetism problems. Later this theory has been applied to ocean acoustics and
then to atmospheric sound propagation [8].

A known starting field is propagated step by step up to the receiver. Using the e~
convention the Helmholtz equation can be rewritten as follows :

2 2
o3 25 s

iot

wherek(r, z) = is the wavenumber and ¢(r,z) the sound speed.

ofr.2)

Assuming that k» >> [ and that there is a cylindrical symmetry, one can write for the solution

of (2), with P(, Z)=%u(r, Z)edeor
T

u(r + Ar)= ejAr‘/au(r) 3)

2
Here the backscattered field is neglected and the operator Q is defined by Q ~ aa—2+ k*.
zZ

After some developments [9], the acoustic pressure field can be finally given by :

ulr + Ar,z)= %! [:(U(r, k')+ R(K)U(r - k) x ej“(m’k‘)ejk'zak']
jA‘(‘/w‘k')e—jﬁz

+2jBx U(r,B)xe 4)
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where U(r, k)= I ¢ ™ u(r,z)dz' is the Fourier transform of u(r,z) andp = ;f :
0 g

The Parabolic Equation is a powerful method for describing sound propagation above a flat

absorbing ground in an inhomogeneous medium. Impedance discontinuities can be included

and range-dependent sound speed profiles due to temperature and wind profiles can be

accounted for. Using the BEM around obstacles for computing the starting field allows an

uneven topography to be described.

3. RESULTS

3.1. Studied configurations

Two typical traffic noise configurations have been studied, including meteorological effects
and an uneven topography.

The first case is a rigid T shape sound barrier [10] (Figurel) the upper part of wich is covered
by a 5 cm thick layer of glasswool. The acoustic impedance of glasswool is characterized
using Delany and Bazley’s semi-empirical model [11] considering a flow resistivity Ggiusswoor
= 30 cgs. The ground is rigid.

Receiver

3m

2m

15 to 300 m
Figure 1. Geometry of the T shape noise barrier

The second studied case is a trench road in a countryside site. The surrounding ground is a
grass-like surface of flow resistivity Oyround = 300 cgs (Figure 2). A 5 cm thick layer of
glasswool covers the upper part of the trench on both sides. The bottom of the trench is rigid.

Receiver

10 m
Source

15 to 300 m

Figure 2. Geometry of the trench
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For both studied configurations a point source is located at 5 cm above the ground. A set
of receivers has been settled from 15 m up to 300 m far from the source at a height of 2 m
above the ground.

3.2. Numerical results

Figures 4 and 5 display at a frequency of 1000 Hz the sound pressure levels relative to the
free field as a function of the separation between source and receiver, respectively for the case
of the T shape noise barrier (cf Figure 1) and for the case of the trench (cf Figure 2). The
results are given for a homogeneous atmosphere and for an atmosphere with a logarithmic
sound speed profile.

The acoustic pressure has been calculated in a homogeneous atmosphere with the BEM at 10
m far from the source. Then this sound field is used as the starter for the GFPE and
propagated with this latter model in an inhomogeneous atmosphere up to the receiver (cf
Figure 3). The meteorological effects are described by the following logarithmic sound speed
profile :

c(z) = co + In(1 + z/zp) where ¢y = 340 m.s” and Zo=0.1 m.

Before computing the complex cases Figures 1 and 2 in a refracting atmosphere, the model
has been validated in a homogeneous atmosphere. The results of this hybrid approach have
been compared to reference results with the BEM.

10 m 5t0290 m

Figure 3. Sketch of the coupling
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Figure 4. Sound pressure levels relative to the Figure 5. Sound pressure levels relative to the
free field versus source-receiver distance. free field versus source-receiver distance.
Frequency of 1000 Hz. Case of the T shape Frequency of 1000 Hz. Case of the trench
noise barrier (Figure 1). (Figure 2).

A very good agreement between both numerical results has been found for both studied
configurations (see figures 4 and 5). Then the cases of the T shape noise barrier and of the
trench have been studied in the presence of a logarithmic sound speed profile. Figures 4 and 5
point out that the farther the receiver are located, the more important are the meteorological
effects. Figures 4 and 5 show that the difference between the cases without and with
meteorological effects can go up to 20 dB at around 200 m far from the source.

4. CONCLUSIONS

In this paper a hybrid BEM-GFPE method has been presented. In a homogeneous
atmosphere the results have been compared satisfactorily to BEM calculations. This approach
allows to describe complex sound propagation problems above uneven terrains in the
presence of meteorological effects. Two typical traffic noise configurations have been studied
poiting out the importance of meteorological effects.
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