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Abstract 

A truly meshless method based on the Weighted Least Squares (WLS) 

approximation and the method of point collocation is proposed to solve heat 

conduction problems in heterogeneous media. It is shown that, in case of strong 

heterogeneity, accurate and smooth solutions for temperature and heat flux can be 

obtained by applying the WLS approximation in each homogeneous domain and 

using a double stage WLS approximation technique together with a proper neighbor 

selection criterion at each interface. 
 
 

NOMENCLATURE 

a  vector of unknowns p  vector of monomials 

A  matrix of computation q  normal heat flux 

b  vector of function differences ,x yQ Q  components of heat flux vector 

C  matrix of computation s  heat source 

e  vector of truncation errors T  Temperature 

f  scalar field x  position vector 

G  matrix of final algebra equations ,x y  Cartesian coordinates 

h  searching radius w  weight function 

m  number of neighbor points κ  thermal conductivity 

M  matrix of computation Subscripts 

n  normal coordinate , , ,i j k n point index 

N  number of total points ,α β  component index 

2 



1. Introduction 

In recent years, a large family of meshless methods with the aim of getting rid of 

mesh constraints has been developed for solving partial differential equations. The 

basic idea of meshless methods is to provide numerical solutions on a set of arbitrarily 

distributed points without using any mesh to connect them. Compared to mesh 

generation, it is relatively simple to establish a point distribution and adapt it locally. 

The points are grouped together in “clouds” where a local approximation for the 

problem variables is written. Depending on the methodology used to discretize the 

equations, meshless methods can be classified into two major categories: meshless 

strong-form methods and Meshless weak-form methods. Most of meshless weak-form 

methods such as the element free Galerkin method [1] are “meshless” only in terms of 

the numerical approximation of field variables and they have to use a background 

mesh to do numerical integration of a weak form over the problem domain, which is 

computationally expensive. Meshless strong-form methods such as the generalized 

finite difference method [2] often use the point collocation method to satisfy 

governing partial differential equations and boundary conditions. They are simple to 

implement and computationally efficient. Since they do not need any background 

mesh, they are truly meshless methods. 

Finite point method (FPM) is a truly meshless method proposed by Oñate et al. 

[3]. FPM uses the weighted least squares (WLS) approximation within each point 

cloud, which can be easily constructed to have consistency of a desired order, and 

adopts the point collocation method to obtain discrete equations directly from partial 

differential equations. Therefore, it is easy for numerical implementation and 

boundary conditions can be implemented in a natural way by just prescribing 

boundary conditions on points placed on boundaries. We noted that the finite point 

method is similar to the weighted least squares collocation method proposed by Sadat 

and Prax [4] for solving fluid flow and heat transfer problems. FPM has been applied 

and extended successfully to solve a range of problems including convective-diffusive 

transport [5], compressible flow [6], incompressible flow [7, 8], potential flow [9], 
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metal solidification [10], elasticity problems in structural mechanics [11], two-phase 

flows [12], and fluid-structure interactions [13]. Although quite successful in many 

applications, the extension and validation of FPM for problems involving 

heterogeneous media remains a big challenge [11]. Sadat et al. [14] attempted to solve 

a heterogeneous heat conduction problem in a two-layer wall by using the weighted 

least squares collocation method and found that one has to use a double stage WLS 

approximation technique in which a second order numerical derivation is obtained 

from a sequence of two first order numerical derivations by WLS and take into 

account the neighbors of each neighbor of the calculation node in order to achieve 

sufficient accuracy in the case of strong heterogeneity.  

The authors revisited the method of Sadat et al. [14] for heterogeneous heat 

conduction problems and found that fluctuations existed in the predicted results of 

temperature and heat flux in the case of strong heterogeneity. In this paper we will 

report this finding and show that accurate and smooth solutions for temperature and 

heat flux can be obtained by applying the usual WLS approximation technique in each 

homogeneous domain and using the double stage WLS approximation technique 

together with a proper neighbor selection criterion at each interface. 

The paper is organized as follows. In section 2 the weighted least squares 

approximation method is briefly described. Then, the double stage WLS 

approximation technique and the proposed method for solving heat conduction 

problems in heterogeneous media are presented. There numerical examples are 

considered in section 4 for the purpose of evaluating accuracy of different methods. 

The paper ends up with concluding remarks in section 5. 

2. The weighted least squares method 

The weighted least squares (WLS) method gives an approximation of a function 

( )f x  and its derivatives at a given point  by using only the discrete function 

values at the neighbor points being in the support domain of  (usually a ball in 3D 

or a disk in 2D). An advantage of this method is that it does not require regular 

x

x

4 



distribution of points. In the following, we briefly explain the method in 2D 

(extension to 3D is straightforward). 

Consider a Taylor's expansion of  around  ( )if x x

( ) ( ) ( )( ) ( )( )( )
2 2

1 , 1

1 ,
2i i i i if f f x x f x x x x e (1)α α α αβ α α β β

α α β= =

= + − + − − +∑ ∑x x x x   

where  is the truncation error in the Taylor's series expansion (here only to 

second-order, higher order expansions are, of course, possible), 

ie

fα  is the derivative 

with respect to xα  (the α -th component of the position vector ) and x fαβ  the 

derivative with respect to xα  and xβ . The symbols ixα  and ix β  denote the α -th 

and β -th components of the position vector  respectively. From the given 

function values 

ix

( )xf  and  ( )ixf ( 1,2, ,i )m= L , the unknowns fα  and fαβ  for 

, 1,2α β =  (note that f fαβ βα= ) are computed by minimizing the error  for 

. Here  is the number of neighbor points inside the support domain of 

. 

ie

1,i m=

x

2, ,L m

Using the Taylor's expansion (1) repeatedly for 1, 2, ,i m= L , the system of 

equations for the five unknowns can be written as 

= −e Ma b                                (2  )

With 

[ ]T1 2, , , ,me e e= Le  

[ ]T1 2 11 12 22, , , ,f f f f f=a ,

,

 

( ) ( ) ( ) ( ) ( ) ( ) T
1 2, , , mf f f f f f= − − −⎡ ⎤⎣ ⎦Lb x x x x x x  

[ ]T1 2, , , m= LM p p p  

where  is the vector containing the five unknowns and  is a matrix in which 

the vector  is defined as 

a M

ip
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( ) ( )( ) ( )
T2 2

1 1 2 2
1 1 2 2 1 1 2 2, , , ,

2 2
i i

i i i i i

x x x x
x x x x x x x x
⎡ ⎤− −

= − − − −⎢ ⎥
⎢ ⎥⎣ ⎦

p       (3  )

For , this system is over-determined with respect to the five unknowns in 

. This problem can be simply overcome by determining the unknown vector  by 

minimizing the quadratic form 

5m >

a a

2

1

m

i i
i

J w
=

=∑ e

p

                          (4  )

where  is the value of a weight function  at point . Standard 

minimization of  with respect to  gives 

( )i iw w= −x x

J

w ix

a

1−=a C Ab                            (  5)

Where 

T

1

,
m

i i i
i

w
=

=∑C p                         (6  )

[ ]1 1 2 2, , , m mw w w= LA p p p .                    (  7)

In this paper, we use a Gaussian weight function of the following form 

( )2 2exp , if  ;
( , )

0, else,

r h r h
w r h

ε⎧ − ≤⎪= ⎨
⎪⎩

                (8  )

where ir = −x x  and ε  is a positive constant chosen to be equal to  in our 

computations. The size of the searching radius  determines ，the number of 

neighboring points around  to be used for WLS approximation. 

6.3

h m

x

3. Steady heat conduction in a heterogeneous medium and numerical methods 

Two-dimensional steady heat conduction in a heterogeneous medium is 

governed by the Laplace equation as follows: 

T T s
x x y y
κ κ

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
                      (  9)

where  is the temperature,  is the thermal conductivity of the medium, and  

is the source term. On the boundaries, Dirichlet boundary condition 

T κ s
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0bT T− =  on dΓ                           (1  0)

and Neumann boundary condition 

0T q
n

κ ∂
− =

∂
 on nΓ                         (  11)

are to be satisfied with the prescribed values of the temperature  and the normal 

heat flux . 

bT

q

To obtain the discretized equations, the point collocation method is applied, i.e., 

the Laplace equation (9) and the boundary conditions (10)-(11) are forced to be 

satisfied at each internal and boundary point respectively. This gives the set of 

equations 

[ ] 0ii
i i

T TL s
x x y y
κ κ

⎡ ⎤⎛ ⎞⎡ ∂ ∂ ⎤ ∂ ∂⎛ ⎞= + − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦
 in Ω          (  12)

0j
j bT T− =  on dΓ                         (  13)

0k
k

T q
n

κ ∂⎡ ⎤ − =⎢ ⎥∂⎣ ⎦
 on nΓ                      (1  4)

Expressing spatial derivatives occurred in the above set of equations in terms of the 

unknown temperatures at points by the WLS method leads to the final discretized 

system of equations 

,= %%Gh f                            (  15)

where  is the coefficient matrix, vector  contains the unknown temperatures 

and  is a vector containing the contributions from the prescribed values ,  

and . 

G

k

%h

%f

q

is j
bT

How to express the two derivative terms in [ ]iL  in terms of the unknown 

temperatures is an important issue. Take the first term as example, it can be expanded 

as 

2

2
i ii i

T T T
x x x x

κκ κ
⎡ ⎤⎡ ∂ ∂ ⎤ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤ ⎡= +⎜ ⎟ ⎢ ⎥⎢ ⎥ x

⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦ ⎦

                (  16)
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Therefore, a natural way is to calculate the first derivative of κ  by WLS and express 

the other derivatives in terms of the unknown temperatures by WLS again. However, 

it was shown [14] that this formulation implies important errors that increase with the 

degree of heterogeneity. Hence, it will be excluded from our consideration. Sadat et al. 

[14] proposed another way by first representing the heat flux at each point in terms of 

temperatures using WLS and then, based on these heat flux expressions, using the 

WLS approximation again for the first derivatives of the heat flux. Because this 

approximation procedure uses WLS twice in a sequence, we denominate it as the 

double stage WLS approximation. The detailed implementation of the method is 

described below. 

Take again the first term in [ ]iL  as example, it can be expressed as 

  
1

N
x

ij j
ji

T a Q
x x

κ
=

⎡ ∂ ∂ ⎤⎛ ⎞ =⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∑                     (1  7)

where 

x
j

j

TQ
x

κ ∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦
                            (  18)

and  are the coefficients in the WLS approximation of the first derivative with 

respect to 

ija

x  at point i . Here  is the total number of points. Note that only the 

coefficients corresponding to the neighboring points of  are nonzero. The term 

N

i x
jQ  

is determined by 

1

N
x
j j jn

n
Q aκ

=

= ∑ nT                            (1  9)

where  corresponds to the thermal conductivity at point jκ j  and  are the 

coefficients in the WLS approximation of the first derivative with respect to 

jna

x  at 

point j . The discretization of the first term in [ ]iL  is finally written as 

1 1

N N

j ij jn n
j n

a a Tκ
= =
∑∑                            (  20)

This expression takes into account the neighbors of the neighbors of the point 
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considered. For a point on the interface separating two domains of different thermal 

conductivities, Sadat et al. [14] suggested that its thermal conductivity can be taken 

from one of the two domains. However, in the next section, we will show that 

different choice of thermal conductivity gives different results. 

From our numerical tests, we found that the method of Sadat et al. using the 

double stage WLS approximation described above yields much improved results. 

However, the simulated results exhibited prominent fluctuations in both temperature 

and heat flux. One reason is that, in heterogeneous heat conduction problems, the first 

derivatives of the temperature are discontinuous at the interface separating two 

domains of different thermal conductivities, so the WLS approximation of the first 

derivatives of the temperature for the points near the interface introduces large errors 

when the neighboring points are chosen as usual from both domains. A proper 

neighbor selection criterion was proposed to solve the problem. That is, for a given 

point, it only selects its neighboring points from those who have the same thermal 

conductivity and those who locate on the interface. This criterion is only applied at 

the first stage where the first derivatives of the temperature are approximated by WLS. 

Although introducing the criterion into the method of Sadat et al. improved the results 

in one-dimensional problems, it still produced fluctuations in the results of 

two-dimensional problems. To remove the fluctuations completely, we propose a new 

method as follows. For a point belongs to a homogeneous domain, Eq. (12) can be 

simplified as 

[ ]
2 2

2 2 0ii
i

T TL
x y

κ
⎡ ⎤∂ ∂

= + −⎢ ⎥∂ ∂⎣ ⎦
s = .                   (  21)

The second-order derivatives in Eq. (21) are approximated by WLS together with the 

proper neighbor selection criterion introduced above. For a point on the interface, the 

double stage WLS approximation is used to discretize Eq. (12). Again, to calculate 

heat fluxes at the first stage, the proper neighbor selection criterion is applied. Heat 

flux calculated on an interface point can have different value corresponding to 

different choice of the thermal conductivity value for that point. In order to obtain 

unique solution, the averaged heat flux is adopted in the proposed method. 
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Hereafter, we will call the meshless point collocation method proposed by Sadat 

et al. [14] as MPCM1 and the new method proposed in this paper as MPCM2. 

4. Numerical tests 

To evaluate the two methods MPCM1 and MPCM2, a steady state heat 

conduction problem in a two-layered composite wall, as depicted in Figure 1, is first 

solved in this section. This test problem was proposed by Sadat et al. [14] to validate 

their method, i.e., MPCM1 here. The two layers have the same thickness but different 

conductivities as  and  respectively. The ratio of conductivity 1κ 2κ 1 2κ κ  

accounts for the degree of heterogeneity of the wall. Prescribed temperatures are 

imposed on the two vertical surfaces, whereas the horizontal boundaries are assumed 

to be adiabatic. The computational domain was considered to be a square with the 

dimensionless length of 1. A total of 441 (21 21)×  points were first evenly placed in 

equal distance  over the problem domain with 80 of them located 

right on the four sides of the square (21 on each side), which are so called boundary 

points, and 21 of them located right on the interface between the two layers, which are 

so called interface points. Then, the positions of boundary and interface points were 

fixed, while the positions of other points were shifted randomly to give an irregular 

point distribution, as shown in Figure 2. The searching radius  was set to 

( 0x yΔ = .05)Δ =

h 2.1 xΔ . 

Both the case with a source term ( 0)s ≠  and the one without it  are 

considered. The stationary temperature and heat flux profiles along the x-direction 

obtained by MPCM1 and MPCM2 are compared to the exact analytical solutions. The 

parameter values and the results are given in dimensionless form. 

(s = 0)

[Insert Fig. 1 here] 

[Insert Fig. 2 here] 

Figure 3 and Figure 4 show the results of temperature and heat flux for 

1 2 0.01κ κ =  with  and  fixed to 1. It can be seen that MPCM1 provides 

acceptable results for the heat conduction problem in case of strong heterogeneity. 

0s = 2κ
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Nevertheless, the results predicted by MPCM1, especially the heat flux results, exhibit 

prominent fluctuations, as evidenced in Figure 4. Moreover, the results of MPCM1 

are sensitive to the choice of the thermal conductivities on the interface points. These 

problems are solved perfectly by MPCM2 and the results obtained by MPCM2 match 

the exact solutions accurately. In Figure 5 and Figure 6, we show the results obtained 

by MPCM1 using the same parameters but a finer and regular grid of 1681  

points. Oscillations are still observed, but become smaller. 

(41 41)×

[Insert Fig. 3 here] 

[Insert Fig. 4 here] 

[Insert Fig. 5 here] 

[Insert Fig. 6 here] 

For the case of , the results with 10s = − 1 2 0.01κ κ =  are shown in Figure 7 

and Figure 8 for temperature and heat flux respectively. Again, MPCM1 yields 

fluctuated results for both temperature and heat flux, while the results of MPCM2 are 

fluctuation free and are very close to the analytical solutions. 

[Insert Fig. 7 here] 

[Insert Fig. 8 here] 

The test problem solved above is actually one-dimensional. To further test 

MPCM1 and MPCM2, we here consider a two-dimensional problem, as shown in 

Figure 9. The whole domain is a square with the dimensionless length of 1. The center 

part of the domain is a square with the dimensionless length of 0.5 and is made of a 

material ( ) different from that of the outer part (1 0.01κ = 2 1κ = ). A regular grid with a 

total of 1681 (41 41)×  points is used in the simulation. Shown in Figure 10 and 

Figure 11 are the temperature profiles along a horizontal line and a vertical line 

respectively. Results from a finite element method are used for comparison. Again, 

MPCM2 outperforms MPCM1 in terms of accuracy and smoothness. 

[Insert Fig. 9 here] 

[Insert Fig. 10 here] 
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[Insert Fig. 11 here] 

5. Conclusions 

A truly meshless method based on the WLS approximation and the point 

collocation approach is presented for the numerical simulation of heat conduction 

problems in heterogeneous media. The proposed method employs the WLS 

approximation for points inside homogeneous domains and the double stage WLS 

approximation for points at interfaces. Besides these, the proper neighbor selection 

criterion is introduced for the double stage WLS approximation. It is shown that the 

proposed method is able to obtain accurate and smooth solutions in case of strong 

heterogeneity. The proposed method can be easily extended to transient problems. 
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Figure captions 

Fig. 1. Two-dimensional heat conduction in a two-layered composite wall. 

Fig. 2. The point distribution used for space discretization. 

Fig. 3. The temperature profile for 1 2 0.01κ κ =  and 0s = . Here MPCM1 (k1) and 

MPCM1 (k2) mean the thermal conductivities on the interface points are set to k1 and 

k2 respectively. The small figure inside is an enlarged plot for the region 0.5 1x≤ ≤ . 

Fig. 4. The heat flux profile for 1 2 0.01κ κ =  and 0s = . Here MPCM1 (k1) and 

MPCM1 (k2) mean the thermal conductivities on the interface points are set to k1 and 

k2 respectively. 

Fig. 5. The temperature profile for 1 2 0.01κ κ =  and 0s = , predicted by MPCM1 

using two different grids. 

Fig. 6. The heat flux profile for 1 2 0.01κ κ =  and 0s = , predicted by MPCM1 using 

two different grids. 

Fig. 7. The temperature profile for 1 2 0.01κ κ =  and 10s = − . 

Fig. 8. The heat flux profile for 1 2 0.01κ κ =  and 10s = − . 

Fig. 9. Two-dimensional heat conduction in a square domain with the center square 

made of a material different from that of the outer part. 

Fig. 10. The temperature profile along the horizontal line at 0.5y =  for 1 2 0.01κ κ =  

and . 0s =

Fig. 11. The temperature profile along the vertical line at 0.875x =  for 1 2 0.01κ κ =  

and . 0s =
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Figure 6 (J. Fang) 
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