
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Master of Philosophy, University of Cambridge 
et de nationalité italienne

acceptée sur proposition du jury:

Suisse
2008

Prof. K. Scrivener, présidente du jury
Prof. N. Setter, Dr A. Tagantsev, directeurs de thèse

Prof. J. Junquera, rapporteur 
Prof. A. Pasquarello, rapporteur 

Prof. J. Petzelt, rapporteur 

Surface-Stimulated Phenomena in the Polarization 
Response of Ferroelectrics

Guido GERRA

THÈSE NO 4082 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 30 MAI 2008

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE DE CÉRAMIQUE

PROGRAMME DOCTORAL EN SCIENCE ET GÉNIE DES MATÉRIAUX 





Abstract

The integration of ferroelectrics in electronic devices requires that they be
used in the form of thin films, which implies that for such systems finite-size
effects related to the presence of a ferroelectric-electrode interface become
important. In this thesis, a number of theoretical studies are presented on
the properties of metal-ferroelectric-metal structures, focusing on the impact
of the metal-ferroelectric interface on the polarization response of the system.

First, a model for reverse domain nucleation in ferroelectrics is intro-
duced, which takes into account the ferroelectric-electrode coupling in both
the homogeneous and random cases. The model provides a solution to the
coercivity paradox—i.e., the large discrepancy between the observed and pre-
dicted coercive fields. The possibility of non-thermally activated nucleation
of reverse domains is demonstrated. It is found that small inhomogeneities
in the ferroelectric-electrode interface may lead to an exponentially wide
spectrum of waiting times for switching. The model predicts that switching
is facilitated near morphotropic phase boundaries in perovskite-type ferro-
electrics.

In order to quantitatively analyze the size-effect problem in metal-ferro-
electric-metal systems, an approach is developed which combines first-princi-
ples calculations and phenomenological theory. The parameters of the model
can be extracted from calculations on ultrathin films, while experimentally
verifiable predictions can be made on thick films.

Using the developed approach, it is demonstrated how the size effect can
be separated into two distinct contributions: a long-range electrostatic and
a short-range “chemical” one. By considering symmetric SrRuO3/BaTiO3/
SrRuO3 heterostructures with different types of termination (TiO2–TiO2 or
RuO2–RuO2), it is shown that the balance between the long-range and the
short-range contribution to the size effect can be essentially affected by the
type of termination of the ferroelectric and by the polarization hardness of
the electrode. The leading role of the long-range contribution to the size
effect in SrRuO3/BaTiO3/SrRuO3 heterostructures is demonstrated.

Application of the approach to the case of SrRuO3/BaTiO3/SrRuO3 het-
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erostructures with asymmetric interfaces enables to provide a quantitative
description of a number of manifestations of such asymmetry in films of
technologically meaningful thickness. In particular, it is found that the asym-
metry exerts a poling effect on the films, leading to a smearing of the phase
transition, to an induced piezoelectric response above the transition temper-
ature, and to the reversal of the polarization asymmetry by application of
biaxial strain.

Another important result of such calculations is the observation that the
ionic relaxations in the metal-oxide electrode play a crucial role in stabi-
lizing the ferroelectric phase of the films. Comparison with frozen-phonon
calculations shows that the degree of softness of the SrRuO3 lattice has an
essential impact on the screening of ferroelectric polarization, reducing the
critical thickness for ferroelectricity of the system. These results provide a
possible explanation for the observed beneficial impact of oxide electrodes on
the switching and dielectric properties of ferroelectric capacitors.

Keywords: ferroelectricity, thin films, theory, ab initio, domain nucle-
ation, size effect, screening
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Resumé

L’intégration des matériaux ferroélectriques dans des dispositifs électroniques
exige qu’ils soient employés sous forme de couches minces, ce qui implique
que pour de tels systèmes des effets de taille finie, reliés à la présence d’une
interface entre le ferroélectrique et l’électrode, deviennent importants. Dans
ce travail de thèse, on présente un certain nombre d’études théoriques sur
les propriétés des structures métal-ferroélectrique-métal, se concentrant sur
l’impact de l’interface entre le métal et le ferroélectrique sur la réponse de
polarisation du système.

D’abord, on présente un modèle pour la nucléation de domaines inversés
dans le ferroélectrique, qui tient compte du couplage entre le ferroélectrique et
l’électrode, dans les cas homogène et aléatoire. Le modèle fournit une solution
au paradoxe de la coercivité, c.à.d. la grande différence entre les champs
coercitifs observés et prévus. On démontre la possibilité de la nucléation non
thermiquement activée des domaines inversés. On constate que des petites
inhomogénéités dans l’interface ferroélectrique-électrode peuvent mener à une
gamme exponentiellement étendue de temps d’attente pour le basculement
de la polarisation. Le modèle prévoit que le basculement est facilitée près
des frontières de phase morphotropique dans les ferroélectriques de la famille
des pérovskites.

Afin d’analyser quantitativement le problème de l’effet de taille finie
dans des systèmes métal-ferroélectrique-métal, on développe une approche
qui combine des calculs « ab-initio » et la théorie phénoménologique. Les
paramètres du modèle peuvent être extraits à partir de calculs sur des couches
ultra-minces, alors que des prévisions expérimentalement vérifiables peuvent
être faites sur des films épais.

En utilisant l’approche développée, on démontre comment l’effet de taille
finie peut être séparé dans deux contributions distinctes : une électrosta-
tique à longue portée et une chimique à courte portée. En considérant
des hétérostructures symétriques de SrRuO3/BaTiO3/SrRuO3 avec différents
types de terminaison (TiO2–TiO2 ou RuO2–RuO2), on montre que l’équilibre
entre la contribution à longue portée et à courte portée peut être essentielle-
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ment affecté par le type de terminaison du ferroélectrique et par la « dureté
» de polarisation de l’électrode. On démontre le rôle prépondérant de la
contribution à longue portée à l’effet de taille finie dans des hétérostructures
de SrRuO3/BaTiO3/SrRuO3.

L’application de l’approche au cas d’hétérostructures de SrRuO3/BaTiO3

/SrRuO3 avec interfaces asymétriques, nous permet de fournir une descrip-
tion quantitative d’un certain nombre de manifestations d’une telle asymétrie,
en films d’épaisseur technologiquement importante. En particulier, on con-
state que l’asymétrie exerce un effet polarisant sur les films, menant à un
élargissement de la transition de phase, à une réponse piézoélectrique induite
au-dessus de la température de transition, et à l’inversion de l’asymétrie de
polarisation par application d’une contrainte biaxiale.

Un autre résultat important de nos calculs est l’observation que les re-
laxations ioniques dans l’électrode d’oxyde métallique jouent un rôle crucial
en stabilisant la phase ferroélectrique des films. La comparaison avec des
calculs de type « frozen-phonon » prouve que le degré de « mollesse » du
réseau cristallin de SrRuO3 a un impact essentiel sur l’écrantage de la polari-
sation ferroélectrique, réduisant l’épaisseur critique pour la ferroélectricité du
système. Ces résultats fournissent une explication possible pour l’impact fa-
vorable, observé expérimentalement, des électrodes d’oxyde sur les propriétés
diélectriques et sur le basculement de la polarisation des condensateurs fer-
roélectriques.

Mots-clés: ferroélectricité, couches minces, théorie, ab initio, nucléation
de domaines, effet de taille finie, écrantage
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“Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza”

(Consider your sowing:
you were not made to live like brutes,
but to follow virtue and knowledge)

Dante Alighieri, Inferno, Canto XXVI, 118-120





Chapter 1

Introduction

The history of ferroelectricity began in 1920 when Joseph Valasek discerned
electric hysteresis in the dielectric response of Rochelle salt [1, 2]. Some 90
years later, while the employment of ferroelectrics in bulk commercial de-
vices is widespread, their application within the microelectronics industry is
still quite limited. One of the main problems that curb the integration of
ferroelectric memories in electronic circuitry and computers is that when the
size of the single component approaches the nanoscale, the behavior of the
ferroelectric deviates from that of the bulk, often degrading its performance.
In the case of thin films, the main difference is of course the presence of a
surface or an interface with a second material and the fact that the surface-
to-volume ratio is much larger than in the bulk. The termination of the
crystal has a number of important consequences. First, the finite sponta-
neous ferroelectric polarization at the surface implies a finite space charge,
which is very expensive in terms of electrostatic energy and therefore must
be somehow screened. Second, the inversion symmetry of the normal com-
ponent of the polarization is broken, and there thus appears a preferable
polarization direction—in other words, the surface exerts a poling effect on
the film. Moreover, the symmetry breaking introduces a two-dimensional
critical system, whose order parameter, the surface polarization, requires en-
ergy to be sustained. Third, we must consider the mechanical boundary
conditions of the system, which have a significant impact on the properties
of the ferroelectric. Finally, whenever the film surface is in contact with
a second crystal or a fluid, short-range electronic interactions between the
different atomic species bring about a change in the chemical environment
and thus in the local structure of the lattice. All these phenomena affect the
polarization response of the film and must be fully understood in order to
control the behavior of ferroelectric thin-film devices.

This thesis is devoted mostly to these four issues. In the following sec-
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2 Chapter 1

tions, we will introduce the fundamental concepts lying behind the physics of
ferroelectrics and the theoretical tools available nowadays to tackle problems
in ferroelectricity. In Chapter 2, the state of the art in the field of interest of
this thesis will be reviewed, with particular emphasis laid upon the problem
of domain nucleation, of passive layers, and of the critical thickness for ferro-
electricity. A solution to the first of these problems, the Landauer paradox,
or the apparent contradiction between the theory of domain nucleation and
experimental observations, will be discussed in Chapter 3. Chapter 4 in-
troduces a combined first-principles–phenomenological approach to studying
the interface properties of ferroelectric-electrode thin-film heterostructures,
an approach which is then used in Chapters 5 and 6 to describe the interface
between a BaTiO3 and a SrRuO3 plate. An important result of these studies
is discussed in Chapter 7: the relative softness of the oxide-electrode lattice
with respect to ionic polarization and the impact of such a phenomenon on
the critical thickness for ferroelectricity of the system. Finally, the conclu-
sions will be drawn in Chapter 8.

1.1 A Few Definitions

1.1.1 Ferroelectric, pyroelectric, and piezoelectric ma-
terials

We call ferroelectric a material possessing an electric polarization which is
stable in the absence of external electric fields and whose direction can be
reversed by the application of an electric field. Since ferroelectricity implies
polarity in a crystal, ferroelectric materials must belong to one of the ten
polar point groups. It follows that a ferroelectric crystal is also pyroelectric—
i.e., a change in the temperature of the crystal results in a change of the value
of its polarization due to thermal expansion. Moreover, as a polar crystal is
non-centrosymmetric, the application of mechanical stress induces a variation
in the value of its polarization. Conversely, the application of an electric field
results in a mechanical deformation of the crystal proportional to the applied
field. In other words, a ferroelectric crystal is piezoelectric.

1.1.2 The Curie-Weiss law

The polar symmetry of a ferroelectric crystal can always be related to a
higher-symmetry structure, known as the prototype phase, from which it is
obtained by small structural perturbations. For most materials, such proto-
type phase is non-polar and stable at high temperatures. At a certain critical
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temperature, known as the Curie temperature, Tc, the crystal undergoes a
phase transition from the paraelectric prototype phase to the ferroelectric
phase, accompanied by the appearance of a spontaneous polarization. The
onset of polarization can either be a continuous function of temperature—in
which case we speak of a second-order phase transition—or a discontinuous
one—in which case we speak of a first-order phase transition. The difference
between a first- and a second-order phase transition is most notably seen
in the behavior of the dielectric susceptibility, χ, at Tc. According to the
Curie-Weiss law, the susceptibility above the Curie temperature behaves as
χ = C/(T − T0), where T0 is the Curie-Weiss temperature and C the Curie-
Weiss constant. In the case of second-order phase transitions, Tc = T0 and
the susceptibility has a singularity at the transition temperature, while in
the case of first-order transitions, Tc > T0 and χ remains finite at Tc. A more
detailed account of ferroelectric phase transitions will be given in Section 1.2.

From a microscopic point of view, ferroelectricity is due to the relative dis-
placement of the cations and anions in the crystal. Ferroelectricity can thus
be described by a long-wavelength (i.e., Brillouin-zone center), low-frequency
transverse optic phonon mode1, known as the soft mode, whose frequency is
a monotonically increasing function of temperature: ω2

s ∼ (T − T0). On ap-
proaching the Curie-Weiss temperature T0, the soft-mode frequency tends to
zero, and so does the force constant associated to it (hence the term soft).
Below the Curie temperature Tc, the non-polar prototype ionic structure is
deformed into a polar one.

1.1.3 Perovskite ferroelectrics and barium titanate

A large number of ferroelectric crystals possess the perovskite structure. A
typical example of this family of crystals is BaTiO3. The prototype phase
of BaTiO3 has a simple-cubic Bravais lattice, with a barium ion occupying
each corner of the cube, a titanium ion at the body center, and an oxygen
ion at each face center [cf. Figure 1.1]. Such a structure falls into the point
group m3̄m. Below the Curie temperature, the titanium and barium ions are
displaced in one direction along one of the crystallographic axes, while the
three oxygen ions are displaced in the opposite direction. The new symmetry
of the crystal is 4mm. The oxygen octahedron surrounding the titanium ion
[cf. Figure 1.1] gets slightly distorted, with the apical oxygen ion—i.e., the

1The representation of ferroelectricity as a soft optic phonon mode is meaningful only
in the case of displacive phase transitions. For so-called order-disorder ferroelectrics, the
transition is not associated to a phonon mode, but rather to a change in the statistical
average of a thermal hopping motion between different potential wells, each representing
a polar state.
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Figure 1.1: The perovskite structure of barium titanate in the prototype cubic
phase. The oxygen ions, which form an octahedron surrounding the titanium ion,
are equivalent by symmetry in the cubic phase, while in the tetragonal ferroelectric
phase we can distinguish between the apical oxygens—i.e., those in the same plane
as the barium ions and usually labeled OI—and the equatorial oxygens—i.e., those
in the same plane as the titanium ion and usually labeled OII.

one lying in the same plane as the barium ion and usually labeled OI—being
displaced by a larger distance than the equatorial ions—i.e., those in the same
plane as the titanium ion and usually labeled OII. If we denote by δα the
displacement of the ionic species α along the polar axis and relative to the
barium ion, at room temperature we will have: δOI

≈ −0.1Å, δOII
≈ −0.06Å,

and δTi ≈ 0.05Å [3].
Concomitant to the appearance of polar ionic displacements inside the

unit cell is a change of the Bravais lattice of BaTiO3 from cubic to tetragonal.
The lattice expands along the polar axis and contracts in the perpendicular
directions, although the tetragonality ratio is quite small (c/a ∼ 1.01 at room
temperature, where c is the lattice constant along the polar axis and a the
lattice constant along the other two crystallographic directions).

The cubic-to-tetragonal phase transition in BaTiO3 occurs at 120◦C. At
5◦C BaTiO3 undergoes a second phase transition from tetragonal to or-
thorhombic (point group mm), and at −90◦C a third one from orthorhombic
to rhombohedral (point group 3m). All three transitions are of the first order.

1.1.4 Electrostriction

A fundamental phenomenon that must be considered when describing the
properties of ferroelectrics is electrostriction, which is defined as the coupling
between mechanical stress and the square of polarization. It is a property
of all dielectric materials, not just of ferroelectrics, and it differs from the
piezoelectric effect, which is linear in both the polarization and stress.

In ferroelectric materials, the electrostrictive effect is usually expressed in
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terms of the polarization vector, Pi. The strain uij induced in a mechanically
free dielectric by electrostriction can be written as:

uij = QijklPkPl, (1.1)

where Qijkl is the fourth-rank tensor describing electrostriction in anisotropic
media. If the material is mechanically clamped, the electrostrictive effect is
described by a relation between the polarization and the mechanical stress
σij induced in the material:

σij = qijklPkPl. (1.2)

The two electrostrictive tensors, Qijkl and qijkl, are related by the following
expression:

qijmn = cijklQklmn, (1.3)

where cijkl is the elastic tensor.

1.1.5 Ferroelectric domains and hysteresis

If we take a close look at a ferroelectric crystal below the Curie temperature
and in the absence of electric fields, we will observe a complicated pattern
of ferroelectric domains—i.e., regions of uniform polarization, each with a
polarization vector oriented along one of the polar axes of the crystal. When
an electric field is applied to the material, some domains realign so as to
maximize the macroscopic polarization component parallel to the field, with
the effect of minimizing the electrostatic energy. The realignment actually
occurs by the displacement of the domain boundaries (known as domain
walls), so that those domains that are oriented along the field grow, and the
others shrink. The domain wall motion implies the dissipation of free energy
via lattice distortions, and it is therefore a thermodynamically irreversible
process with an associated activation barrier. Such activation barrier is a
function of the applied electric field, but can of course be overcome through
thermal fluctuations as well. If the applied field is not too large, domains
polarized against it can continue to exist; however, such domains become
thermodynamically unstable when the field exceeds some critical value, and
the crystal is then globally polarized in one direction. The alignment of the
ferroelectric domains under application of an external electric field is a typical
example of hysteretic behavior [cf. Figure 1.2].

For small applied fields, the driving force is not large enough to displace
the domain walls or nucleate new domains, and the ferroelectric behaves
simply as a nonlinear dielectric. At higher fields, new domains nucleate and
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Figure 1.2: The first ferroelectric hysteresis loop to have ever appeared in the
literature, measured by Valasek on Rochelle salt at room temperature [2]. The
data points represent the charge at the surface (i.e., the polarization multiplied by
the surface area) as a function of the applied field.

the existing domain walls move, until most of the volume of the crystal is
polarized in the direction of the field, after which the polarization is said
to be saturated. If we then remove the field, the crystal will retain a large
macroscopic polarization referred to as spontaneous.

Reversal of the direction of the applied field will produce new reverse
domains and enlarge the existing ones, decreasing the macroscopic value of
polarization, until at what is called the coercive field, the polarization goes
through zero and reverses its sign. The result is a hysteresis loop, such as the
one depicted in Figure 1.2.

1.1.6 Industrial applications of ferroelectrics

The coupling between the mechanical and electrical and between the thermal
and electrical response of a ferroelectric crystal has lead to a broad range of
industrial applications of such materials as transducers. Their pyroelectric
character is utilized in thermal detectors, while their piezoelectric properties
have found extensive usage in, among many others, acoustic detectors, pres-
sure sensors, actuators, and time-measuring devices. Several other families of
ferroelectric-based commercial devices stem from the electrical properties of
ferroelectrics. The binary state of the ferroelectric polarization along a given
crystallographic axis is exploited to make non-volatile ferroelectric random
access memories (FeRAM). The extremely high values of their permittivity
results in their implementation as supercapacitors. Last but not least, the
nonlinearity of their dielectric response, and thus their dielectric tunability,
has lead to intense research recently in the telecommunications industry to
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employ ferroelectrics as varactors for microwave phase shifters and for tun-
able frequency filters.

1.2 Landau Theory
The description of the properties of ferroelectric materials can be carried out
from the macroscopic point of view of phenomenological theory, treating the
material as a continuum and applying the laws of thermodynamics, elastic-
ity theory and electromagnetism. Such description relies on the evaluation
of the relevant thermodynamic potential of the system as a function of three
independent variables, the state functions: temperature (T ) or entropy (S)
for the thermal properties, stress (σij) or strain (uij) for the elastic proper-
ties, and electric field (Ei) or polarization (Pi) for the dielectric properties.
In the present context, it is convenient to work with the following thermo-
dynamic potential (often referred to as the electric Helmholtz free energy of
the system):

F = U − TS − 1

2
ε0E

2, (1.4)

which in differential form reads:

dF = −SdT + σijduij + EidPi. (1.5)

To describe the behavior of critical systems near the phase transition,
Landau developed a phenomenological theory in which the phase transition
is described by a physical quantity known as the order parameter. In the case
of a ferroelectric transition, we can use as the order parameter the polariza-
tion vector. The properties of the critical system can be treated mathemat-
ically by performing a Maclaurin expansion of the relevant thermodynamic
potential in terms of the order parameter. Conceptually, this corresponds
to considering small deviations from the prototype phase, where we assume
that Pi = 0 and uij = 0. In the most general case:

F = F0 + aijPiPj + aijklPiPjPkPl + aijklmnPiPjPkPlPmPn + · · ·
+

1

2
cijkluijukl − 1

2
qijkluijPkPl,

(1.6)

where F0 is the electric Helmholtz free energy of the prototype phase and
where we have included explicitly the strain-polarization coupling, or elec-
trostriction, introduced in Subsection 1.1.4. Only even powers of the polar-
ization are present in the series, as required by symmetry in the case of a
centrosymmetric paraelectric phase. The application of the Landau theory
to the case of ferroelectrics is due to Devonshire [4].
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Figure 1.3: The second order phase transition: (a) shape of the electric Helmholtz
free energy as a function of polarization, above and below the Curie temperature Tc;
(b) the temperature dependence of polarization; (c) the temperature dependence
of the dielectric susceptibility.

In order to understand the nature of the phase transition, let us con-
sider the simplest case, that of a uniaxial ferroelectric2 under mechanically
clamped (uij = 0) and short-circuit (Ei = 0) boundary conditions. The
thermodynamic potential can then be written as:

F = F0 +
α

2
P 2 +

β

4
P 4 +

γ

6
P 6 + · · · , (1.7)

where the coefficient α is assumed to be temperature-dependent. In partic-
ular, to reproduce the Curie-Weiss law, we must have:

α =
T − T0

ε0C
, (1.8)

where T0 and C are the Curie-Weiss temperature and constant defined in
Subsection 1.1.2.

1.2.1 Second order phase transitions

When the Landau coefficient β > 0 (and also γ > 0), the phase transition
is said to be of the second order. For temperatures greater than the Curie-
Weiss temperature T0, the free energy has only one stationary point, the
global minimum P = 0, and the ferroelectric crystal is in a paraelectric state
[cf. Figure 1.3(a)]. Below T0, the state P = 0 becomes a local maximum,
while there appear two degenerate stable states with polarization P 6= 0. At
exactly T0, the three stationary points coincide, so that the transition from
the zero-polarization to the finite-polarization state is smooth [cf. Figure

2A ferroelectric is said to be uniaxial when the order parameter has only one component,
e.g. P = (P, 0, 0).
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Figure 1.4: The first order phase transition: (a) shape of the electric Helmholtz
free energy as a function of polarization, above and below the Curie temperature Tc;
(b) the temperature dependence of polarization; (c) the temperature dependence
of the dielectric susceptibility.

1.3(b)]. In this case, the phase transition occurs at T0, so that Tc = T0, i.e.,
the Curie temperature and the Curie-Weiss temperature coincide.

The spontaneous value of the polarization, Ps, is obtained by solving the
equation ∂F/∂P = 0, in the absence of external fields. Since Ps is a small
quantity on the atomic scale3, in the free energy expansion (1.7) we can safely
neglect powers of Ps greater than fourth. We can thus write:

P 2
s =

−α

β
. (1.9)

The dielectric susceptibility is defined as: χ = (∂2G/∂P 2)−1 = (α+3βP 2)−1.
Since Ps = 0 above Tc and Ps =

√
−α/β below it, we have:

χ =





ε0C

T − Tc

if T > Tc

ε0C

2(Tc − T )
if T < Tc

. (1.10)

The susceptibility therefore diverges at Tc [cf. Figure 1.3(c)].

1.2.2 First order phase transitions

When the Landau coefficient β < 0 and γ > 0, the phase transition is said to
be of the first order. In this case, the sign of β implies the possible coexistence

3From a microscopic point of view, the magnitude of the polarization can be written
as Ps = eZsv/Ω, where e is the electronic charge, Zs the Born effective charge associated
with the ferroelectric soft mode, and v is the amplitude of the soft-mode displacement
vector. An atomic estimate of the polarization would involve considering a dipole with
the same effective charge but with a displacement of the order of the interatomic distance
a/2: Pat = eZsa/2Ω. We therefore have: Ps/Pat = 2v/a. Since v is typically a fraction of
an angstrom, it follows that Ps ¿ Pat.
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of two nonzero stationary polarization states [cf. Figure 1.4(a)]. These two
states become local (metastable) minima well above the Curie-Weiss tem-
perature T0. At a temperature Tc > T0, the free energy of the two nonzero
stationary states is equal to the free energy of the zero polarization state:
this is where the transition between the paraelectric and ferroelectric phase
occurs. We see then that unlike the case of second order phase transitions,
for first order transitions the Curie temperature does not coincide with the
Curie-Weiss temperature. The two are related by the following expression:

Tc = T0 + C
3ε0β

2

16γ
. (1.11)

At Tc, the value of the spontaneous polarization on the ferroelectric side of
the transition is finite [cf. Figure 1.4(b)]:

P 2
s =

−3β

4γ
, T = Tc. (1.12)

As a consequence, the dielectric susceptibility χ = (α+3βP 2 +5γP 4)−1 does
not diverge at Tc, but has a finite discontinuity [cf. Figure 1.4(c)]:

χ =





16γ

3β2
T → T+

c

4γ

3β2
T → T−

c

. (1.13)

1.3 First-Principles Calculations

The phenomenological Landau theory offers a very powerful tool to describe
the macroscopic behavior of critical systems around the phase transition,
once its set of coefficients is known. The determination of such coefficients
must proceed from detailed experimental investigations. Quite often, how-
ever, information on the microscopic properties of the system is required,
and it is convenient or sometimes even necessary to supplement the experi-
mental investigations with first-principles calculations. In first-principles (or
ab-initio) calculations, microscopic information is extracted from the atomic
structure of the system, without need for any macroscopic input or phe-
nomenological assumption. Nowadays, most first-principles calculations are
performed within Density Functional Theory (DFT).

The starting point of DFT is the Hohenberg-Kohn theorem [5]. The
theorem states that the total energy of any atomic system is a unique func-
tional of the electron density, and it has its minimum value for the correct
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ground-state electron density function n(r). In other words, if we possess
information about the ground-state electron distribution for given positions
of the nuclei, we can derive all the ground-state properties of the system
through the fundamental laws of quantum mechanics.

Let us denote by |Ψ〉 the wavefunction of an N -electron system, by v(r)
the potential due to the nuclei, and by Ĥ = T̂ + V̂ + Û the Hamiltonian,
where T̂ , V̂ , and Û are the kinetic, potential, and pair-interaction energy
operators, respectively. According to the Hohenberg-Kohn theorem then, the
total energy of the electron system, Ev[n] = 〈Ψ|Ĥ|Ψ〉, is a unique functional
of the electron density n(r), for a given nuclear potential v(r). If we group
together the kinetic and pair-interaction energies into a single functional
F [n] ≡ 〈Ψ|(T̂ + Û)|Ψ〉, the energy functional in atomic units4 takes the
simple form:

Ev[n] =

∫
v(r)n(r)dr + F [n]. (1.14)

The functional F [n] is universal—i.e., it is valid for any external potential
and any number of electrons. Its exact analytical form is unknown, since the
exact form of the many-particle wavefunction |Ψ〉 is unknown. However, by
using approximations for F [n], the ground state of the system can be eval-
uated by variational minimization of the energy with respect to the density,
δEv[n]/δn = 0, subject to the constraint

∫
n(r)dr = N . It is convenient to

divide F [n] in three terms, the kinetic, the electron-electron Coulomb, and
the exchange-correlation energies:

F [n] = Ts[n] +
1

2

∫∫
n(r)n(r′)
|r− r′| drdr′ + Exc[n], (1.15)

where Ts[n] = 1
2

∫ ∇2n(r)dr is the kinetic energy of a gas of non-interacting
electrons. The simplest approximation of F [n] occurs when we assume that
the exchange-correlation energy can be written as

Exc[n] =

∫
n(r)εxc(n(r))dr, (1.16)

where εxc(n(r)) is the exchange-correlation energy per electron of a homo-
geneous electron gas of density n = n(r). This is called the Local Density
Approximation (LDA). The exact analytical form of the exchange energy of
a homogenous electron gas is known: εx(n) = −(3/4)(3/π)1/3n1/3 [6]. The
correlation energy, εc(n), can be calculated for a given homogeneous electron

4In atomic units (a.u.), the electron charge and mass and Planck’s constant are all
equal to unity: e = me = ~ = 1 a.u.
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density n through a Monte Carlo method [7], and its function form, εc(n(r)),
obtained by parameterizing the calculated εc(n) for a number of densities [8].

If we now define the effective electrostatic potential,

ϕ(r) ≡ v(r) +

∫
n(r′)
|r− r′|dr

′, (1.17)

and the exchange-correlation contribution to the chemical potential of the
homogeneous electron gas,

µxc(n) ≡ d

dn
[nεxc(n)] , (1.18)

variational minimization of Ev[n] (subject to the constraint
∫

n(r)dr = N)
yields the following system of N one-particle Schrödinger equations:

[
−1

2
∇2 + ϕ(r) + µxc (n(r))

]
φi(r) = εiφi(r), (1.19)

which are known as the Kohn-Sham equations [9]. The electron density is
related to the Kohn-Sham orbitals φi by:

n(r) =
N∑

i=1

|φi(r)|2. (1.20)

Equations (1.19) can be solved self-consistently, by arbitrarily choosing a
trial function ñ(r), diagonalizing the one-particle Hamiltonian ĥ = −1

2
∇2 +

[ϕ(r) + µxc(ñ(r))], with ϕ(r) from (1.17) and µxc(ñ(r)) from (1.18), then
calculating the new n(r) from the eigenvectors of (1.19) and from (1.20),
and finally evaluating the total energy. This procedure is repeated until the
total energy converges to within the required accuracy.

In spite of being a very crude approximation, the LDA works remark-
ably well for many solid-state and chemical systems. However, as it neglects
long-range exchange-correlation interactions, the LDA often leads to large
errors or even unphysical situations5. To improve the accuracy of DFT cal-
culations, the exchange-correlation energy per electron can be expressed not
only as a function of the local density, but also of the local density gradi-
ent6: εxc(n(r),∇n(r)). This is called the Generalized Gradient Approxima-
tion (GGA) [12]. There exist several GGA functionals, which differ from

5For example, the band gaps of semiconductors and insulators are systematically un-
derestimated [10], while the chemical reaction H + H2 → H2 + H is predicted to have a
negative activation barrier [11].

6Provided that the density is only a slowly varying function—i.e., |∇n|/n4/3 ¿ 1.
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each other in their parameterization of εxc as a function of ∇n. Throughout
this thesis, we will use the so-called Perdew-Wang 91 functional [13, 14] for
GGA calculations.

The diagonalization of the one-particle Hamiltonian in (1.19) is more con-
veniently carried out by expressing the wavefunctions φi as series expansions.
In solid-state systems, the nuclear potential v(r) possesses the periodicity of
the lattice. By using Bloch’s theorem, we can then expand the Kohn-Sham
orbitals in terms of a plane-wave basis set spanning the discrete space of
reciprocal lattice vectors {G}:

φk(r) =
∑
G

ak+G ei(k+G)·r. (1.21)

Furthermore, as the probability |ak+G|2 of finding an electron in the plane-
wave state |k + G〉 decays rapidly with its kinetic energy 1

2
|k + G|2, we can

assume that wave vectors with amplitude beyond some cutoff value |Gcut|
will contribute negligibly towards the expansion (1.21), thereby reducing the
basis set to a finite dimension—albeit at the expense of accuracy. With this
in mind, we can rewrite the energy functional Ev[n] in the finite plane-wave
expansion (1.21) and make it stationary, to find the Fourier form of the
Kohn-Sham equations:

|k+G′| ≤ |Gcut|∑

G′

[
1

2
|k + G|2δGG′ + ϕ(G−G′) + µxc(G−G′)

]
ak+G′

= εk ak+G,

(1.22)

where ϕ(G−G′) and µxc(G−G′) are the Fourier transforms of ϕ(r) and
µxc(n(r)). The Hamiltonian in (1.22) is a matrix of finite but large dimen-
sions. Since we are only interested in the N lowest-lying eigenstates, we
can consider a tractable submatrix of such a Hamiltonian; the diagonaliza-
tion of this submatrix yields the lowest-lying energy eigenvalues εk and the
expansion coefficients for Equation (1.21).

Once we have diagonalized the Hamiltonian in Equation (1.22), however,
we still need to integrate the εk and the |φk|2 over the occupied portion of
k-space to get the total energy and the electron density—an intractable task
for any physically interesting system. Fortunately, for periodic functions
of the wave vector (with periodicity G), such integration can be reduced
to a sum over a finite number of special k-points, with an accuracy that
increases with such number [15]. This set of points is usually referred to as
the Monkhorst-Pack k-point grid.

To further reduce the time required to perform the self-consistent energy
minimization algorithm, we can modify the nuclear potential v(r) to account
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for the nodal behavior of the wavefunctions near the nuclei. Since on the
one hand core electrons are only marginally affected by valence orbitals, and
on the other hand the wavefunction of a valence electron oscillates rapidly
near the nucleus, we can replace the strong nuclear potential with an effec-
tive pseudo-potential that also includes the core electrons, and the valence
wavefunctions with pseudo-wavefunctions that have no radial nodes inside a
“core” region but that maintain the same overlap integrals. In other words,
we replace the nuclei and the core electrons with ions of finite radius, and
modify the valence orbitals accordingly. We thus reduce the effective num-
ber of electrons in the system and the dimensions of the plane-wave basis
set needed to expand the tightly bound core orbitals and the rapidly oscil-
lating valence orbitals. A number of pseudo-potential schemes exist. In the
work presented in this report, we have used the Projector Augmented-Wave
(PAW) method.

In what has been said so far, the nuclei have been considered fixed at
some given position. We have thus made use of the Born-Oppenheimer ap-
proximation, decoupling the motion of the nuclei from that of the electrons.
If we now wish to compute the equilibrium position of the nuclei (or of the
core ions in the pseudo-potential approximation), we need to calculate the
forces acting on each ion, using the Hellmann-Feynman theorem, displace
the ions accordingly, and then recalculate the total energy functional and
the ensuing Hellmann-Feynman forces. This relaxation procedure continues
until such forces fall below an arbitrary convergence value.
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State of the Art

The broad topic of interest of the present thesis is the effect of surfaces on
the polarization response of ferroelectric materials. The motivation of the
work presented herein is the lack of a complete theoretical understanding of
switching in ferroelectric capacitors. To date, many aspects of the switching
dynamics remain unclear, and among those, first and foremost stands the
question of how reverse domains nucleate in a polarized material to which
an electric field has been applied opposite to the polarization direction. We
will devote the first Section of this Chapter to the state of understanding
of the nucleation problem at the time when our research began. Since the
nucleation of reverse domains in ferroelectric crystals is observed to originate
at the surface of the material, or at the interface with the electrode in the case
of capacitors, we will consider in Section 2.2 the correlation between various
properties of the surface and the polarization response of the material as
discussed in the literature. Closely related to the impact of the surface on
the properties of the ferroelectric device is the so-called size effect and the
problem of critical thickness for ferroelectricity. A review of work made on
these two issues is presented in Section 2.3.

2.1 Domain nucleation in ferroelectrics

The first systematic studies of ferroelectric domains appeared in the late
1940’s and early 1950’s thanks to the pioneering work of Matthias and Von
Hippel [16], Forsbergh [17], and Merz [18, 19] on BaTiO3 single crystals. It
was found that there exist three types of charge-neutral domain boundaries
(or domain walls). If we denote by “c domain” a domain in which the polar
axis—which we will take to be in the (001) direction—is perpendicular to
the crystal plate surface and by “a domain” a domain polarized parallel to

15
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Figure 2.1: The complicated pattern of a and c domains in an unpolarized BaTiO3

single crystal. Taken from Merz [19].

the plate surface, we can have one of the following:

• c–a domain walls, in which the polar axes for the two domains make
a 90◦ angle between each other, and the domain wall is parallel to a
(101) crystallographic plane, thus crossing the crystal at an angle of
45◦ to the surface;

• a–a domain walls, which are also 90◦ walls, but parallel to a (110) plane
and thus perpendicular to the plate surfaces;

• 180◦ domain walls, in which the domains are polarized antiparallel to
each other.

When there is no applied electric field, the crystal is split into a large number
of a and c domains, resulting in a complicated zig-zag pattern of both 90◦ and
180◦ domain walls [cf. Figure 2.1]. The a–a and c–a domain arrangements
are energetically favorable from the point of view of the total elastic energy
of the crystal if the latter is mechanically clamped, whereas the antiparallel
arrangement of a or c domains minimizes the total surface charges and there-
fore the electrostatic energy of the plate. If an electric field is applied to the
crystal, say in the +c direction, the 180◦ domain walls move so as to align
the c domains in the direction of the field. If such field is strong enough, the
90◦ walls also move until the a domains disappear and the whole crystal is
polarized in the +c direction.

Another fundamental outcome of the early experimental investigations
on ferroelectric domains in BaTiO3 crystals is the discovery that in the early
stages of switching—i.e., in what Merz calls the “low field corner” of the hys-
teresis loop—it is the nucleation of a large number of new domains, rather
than the growth of existing ones, which contributes most to the macroscopic
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polarization of the crystal. In other words, it is energetically easier to nucle-
ate new domains within a region of opposite polarization than to enlarge the
existing ones—or rather those of them that are polarized in the direction of
the field—by a sidewise motion of the domain walls. The new domains nu-
cleate at the surface and at defects in the shape of needles and then grow in
the forward direction until they reach the opposite surface. It is therefore the
surface nucleation and forward growth of such reverse domains that controls
the switching in BaTiO3 single crystals.

We are then faced with a very common problem in materials science,
that of heterogeneous nucleation at a surface. However, if we consider such
a problem for an ideal crystal and neglect interactions between the surface
and polarization, we arrive at a paradox, in that the probability of ther-
mal activation of the reverse domains at experimentally meaningful values
of the applied field is unrealistically small1. This was shown by Landauer in
1957 [20]. Landauer considered the electrostatic problem of a needle-shaped
domain of reversed polarization in a matrix of oppositely polarized material
subject to an external electric field [cf. Figure 2.2]. He identified three con-
tributions to the energy of formation of the reverse domain: the work done
by the external field source on the crystal, the domain wall energy—i.e., the
elastic energy associated with the lattice distortions at the domain bound-
ary, and the electrostatic energy arising from the divergence of polarization
at such a boundary. To reproduce the observed needle-like shape of ferro-
electric domain nuclei, Landauer assumed that the latter possess the form of
half of a prolate spheroid, whose semi-major axis, `, lies along the polar axis
of the crystal, and whose base, a circle or radius r, lies on the interface; ex-
perimental evidence suggests that ` À r. The formation energy for a nucleus
of reverse polarization can then be written as:

U(r, `) = −4

3
πEextPs r2` +

π2

2
σw r` +

16π2

3εa

P 2
s

[
ln

(
2`

r

√
εa

εc

)
− 1

]
r4

`
, (2.1)

where Eext is the applied electric field, Ps the spontaneous polarization of
the ferroelectric, σw the domain wall energy per unit surface, and εc and
εa the components of the dielectric permittivity along the polar axis and
perpendicular to it, respectively. The energy (2.1) has a saddle point beyond
which the nucleus will grow spontaneously. If we rewrite the formation energy
in the simple form:

U(r, `) = −ar2` + br` + c
r4

`
, (2.2)

1We will show in Chapter 3 that such a paradox can be avoided by considering the
coupling between the polarization and the surface.
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Figure 2.2: A needle-shaped domain of reversed polarization (occupying volume
1) nucleating at the ferroelectric-electrode interface within a matrix of oppositely
polarized material (occupying volume 2). The direction of the spontaneous polar-
ization is shown by the arrows. The external electric field is assumed to be applied
in the negative z direction. Taken from Landauer [20].

the activation energy for domain growth is then given by

UL =
5

5
2 b3c

1
2

108 a
5
2

. (2.3)

For a BaTiO3 plate2 at room temperature and under electric fields as high
as 100 kV/cm, the Landauer nucleation barrier is virtually insurmountable:
UL & 103 kBT , which entails a Boltzmann factor e−UL/kBT . 10−434. In other
words, the probability of thermal activation of reverse domains is practi-
cally zero, contrary to experimental evidence. This is known as Landauer’s
paradox.

Little progress has been made on the resolution of Landauer’s paradox
in the following decades. A number of authors, notably Kay and Dunn [21],
have suggested that the aid of defects or remanent domains might bring
the nucleation barrier down to thermally accessible values, but have not pro-
vided any quantitative model whose predictions can be tested experimentally.
Janovec [22] has shown that in BaTiO3 single crystals the presence of space
charges within a surface layer 0.01 to 1µm thick favors the formation of
needle-shaped anti-parallel domains in an otherwise single-domain structure.
Such remanent domains constitute the seeds of domain growth in the switch-
ing process. The model of Janovec, which seems to have regrettably fallen
into oblivion since, represents, to the best of our knowledge, the most suc-
cessful attempt to provide an explanation to the puzzle of domain nucleation
in BaTiO3, though its validity requires that a considerable amount of space
charge be available in the surface layer3.

2Typical values for BaTiO3 crystals under mechanically free boundary conditions are:
εa = 2000 ε0, εc = 120 ε0, Ps = 0.26m/C2, and σw = 7× 10−3 J/m2.

3The semiconductor nature of BaTiO3 might explain the presence of space charge
within a surface layer. We will return to this point in Section 2.3 when we discuss the
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More recently, Cao et al. [23] have performed computer simulations to
show that domain nucleation is favored at surfaces. No new qualitative
predictions have been offered there, however; in addition, the considered
two-dimensional model completely ignores the depolarization energy, which
plays a crucial role in the electrostatics of ferroelectric domains and by no
means should be neglected. Nucleation scenarios related to additional elec-
tron tunneling [24] or surface dead layers [25] have also been discussed in the
literature. Yet, as estimates for the nucleation barriers are therein missing,
the relevance of those scenarios to any practical situation remains unclear.
We will extensively discuss in Chapter 3 a nucleation scenario of general
validity which does not encounter any such paradox.

2.2 Interface-related phenomena
The scientific investigations reviewed in the previous Section clearly demon-
strate the importance of the surface of the ferroelectric crystal in the nu-
cleation of reverse domains. In the context of electronic applications of
ferroelectrics, it is actually the interface between the ferroelectric and the
electrode, rather than a free surface, that is usually of interest. As it will
become apparent in Chapter 3, the coupling between the interface and the
polarization vector has a fundamental impact on the switching properties of
the ferroelectric. The main idea is that an interface, or any surface for that
matter, breaks all those symmetry elements that change the direction of the
normal to the interface. So if the polarization vector has a component perpen-
dicular to the interface, the ferroelectric state with polarization pointing into
the interface is in general not equivalent to the state with polarization point-
ing away from it. In other words, there will be a surface energy term which
will depend on the direction of the polarization vector [26, 27], favoring one
direction over the other. The coupling of the interface and the polarization
thus exerts a poling effect on the ferroelectric. In the lowest approximation,
this surface energy term is linear in the polarization, ζP per unit surface,
where ζ is something of a “local surface field”—i.e., the surface analogue of
the electric field in the bulk. Before we can evaluate the effect of ζ on the
properties of a ferroelectric plate though, let us see how the presence of a
surface can be treated within the framework of the Landau-Ginzburg theory.

The impact of the surface on the ferroelectric properties of a film was first
theoretically addressed by Kretschmer and Binder [28]. The starting point of
their discussion is the assumption that the surface value of the polarization
in a ferroelectric is not affected by the applied electric field as strongly as

issue of critical thickness for ferroelectricity.
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that in the bulk. This is consistent with the microscopic argument that the
ferroelectric softness of the lattice is somehow suppressed near to the surface.
The simplest modeling of this scenario can be performed by assuming that the
polarization at the two surfaces of the film is completely blocked. Under such
conditions, for a parallel-plate capacitor made of a thin film of ferroelectric
sandwiched between two ideal conductors—the polar axis of the ferroelectric
lying normal to the plane of the capacitor—the linear polarization response
can be described by using the following equation of state:

E = αP − κ
∂2P

∂x2
, (2.4)

with boundary conditions:

P (0) = 0, P (h) = 0, (2.5)

where P is the polarization associated with the soft mode, and the surfaces
of the films are at x = 0 and x = h. Here, we restrict ourselves for simplicity
to the paraelectric phase of the material so that the ferroelectric response is
field-induced. Moreover, in what follows we will bear in mind that the relative
dielectric permittivity of the material is always large—i.e., ε = α−1 À ε0.

The electric field E appearing in the equation of state (2.4) is the total
electric field seen by the ferroelectric. This is the sum of the external applied
field, Eext = −V/h, and the depolarizing field due to the gradient of polar-
ization at the interface. The relation between E and Eext can be obtained
from the Poisson equation. Taking into account the background contribution
to the displacement field (εbE, where εb is the contribution to the dielectric
permittivity from the non-ferroelectric lattice modes of the crystal and from
the electronic polarizability [29], εb ¿ ε), the Poisson equation is in our case
d(εbE + P )/dx = 0, leading to the relationship:

E = Eext − 1

εb

(P − P̄ ). (2.6)

This expression for the total field E can be inserted in Equation (2.4) to
obtain a differential equation in P . The solution to such equation, satisfying
the boundary conditions (2.5), reads:

P (x) =
Eext

α

(
1−

cosh x−h/2
ξ1

cosh h
2ξ1

)
1

1 + 2 ε
εb

ξ1
h

tanh h
2ξ1

, (2.7)

where ξ1 = ξ/
√

1 + ε/εb has the meaning of the scale on which, in this
geometry, the polarization changes appreciably near the film surfaces, ξ =
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−δ

Figure 2.3: Variation of the local polarization P (z) near the vicinity of a surface,
located at z = 0. δ is the extrapolation length, P1 = P (0), while P∞ denotes the
bulk value of polarization. Taken from Kretschmer and Binder [28].

√
κ/α being the so-called correlation length of the material evaluated in the

paraelectric phase. Typically, ξ rarely exceeds a few nm. Since εb ¿ ε,
ξ1 ≈ ξ/

√
ε/εb < ξ, so that, in any situation of practical interest, ξ1/h ¿ 1.

This consideration can be used to simplify Equation (2.7). By averaging
the polarization over the thickness of the film, P̄ = (1/h)

∫ h

0
P (x)dx, and

by considering the definition of the effective dielectric constant of the film,
εeff = ∂P̄ /∂Eext, we get the following approximate expression:

ε−1
eff = ε−1 + ε−1

b

2ξ1

h
. (2.8)

This relation corresponds to the in-series connection of the ferroelectric film
with two dielectric layers of thickness ξ1 and dielectric permittivity εb. In
other words, the surface region with partially suppressed dielectric response
behaves as a passive layer. This effect is thickness dependent, and due to the
smallness of ξ1 is only felt by thin films.

The discussion above is valid when the polarization at the surface is com-
pletely blocked [cf. Equation (2.5)]. The more general situation, where the
blocking is not complete, can be simulated by using the following mixed
boundary conditions:

δ−1P (0)− ∂P

∂x

∣∣∣∣
x=0

= 0, δ−1P (h) +
∂P

∂x

∣∣∣∣
x=h

= 0, (2.9)

where δ is the so-called extrapolation length of the interface [cf. Figure 2.3].
These conditions interpolate the situation between blocked (δ → 0) and free
(δ →∞) polarization at the surface. After this modification, the result (2.8)
still holds, provided we make the following substitution:

ξ1 −→ ξ1

1 + δ/ξ1

. (2.10)
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Thus, as one might expect, the weakening of the surface blocking leads to
a reduction of the effective passive layer thickness, the passive-layer effect
vanishing in the limit of free polarization at the film surface (δ →∞).

A very important phenomenon hidden in Equation (2.8) is the shift of
the Curie-Weiss temperature of the phase transition. The anomaly of the
permittivity, ε = α−1, observed in bulk crystals when approaching the Curie
temperature, in thin films occurs at a different temperature. This is because
the presence of the passive layers affects the parameter α = ε−1, which is
renormalized to [cf. Equations (2.8) and (2.10)]:

α̃ = α +
2ξ1

εbh(1 + δ/ξ1)
, (2.11)

where of course α = (T − T0)/ε0C. Therefore, the Curie-Weiss temperature
T0 is shifted down4 by the quantity:

∆T = ε0C
2ξ1

εbh(1 + δ/ξ1)
. (2.12)

Bratkovsky and Levanyuk [30] extended the theory of Kretschmer and
Binder to include the poling effect of the interface in the ferroelectric phase
of the material. These authors found that the main impact of the surface field
ζ on the relevant properties of the film is a smearing of the ferroelectric phase
transition5. To prove this, they included the ferroelectric-electrode coupling
energy per unit surface, ζP , into the Landau-Ginzburg free energy expression
given by Kretschmer and Binder [28]. The inclusion of this coupling term,
in the general case of asymmetric interfaces, leads to the following boundary
conditions:

δ−1P (0)− ∂P

∂x

∣∣∣∣
x=0

=
ζ1

κ
, δ−1P (h) +

∂P

∂x

∣∣∣∣
x=h

=
ζ2

κ
. (2.13)

We see from Equation (2.13) that the effect of the ferroelectric-electrode
interface is to pole the film at the surface. The sign of such a poling depends

4Incidentally, if the film is thin enough the effective transition temperature can be
shifted down to absolute zero, suppressing ferroelectricity in the film. We will return to
this point in the following section, where we discuss the critical thickness for ferroelectricity.

5A similar result was previously found by Glinchuk and Morozovska [31], who consid-
ered the poling effect of the lattice mismatch between the ferroelectric and the substrate.
In this case, the smearing of the phase transition is less pronounced, as the effect is pro-
portional to the square of the misfit strain (typically less than 1%). Moreover, the relation
between misfit strain and surface polarization in Equations (5) and (7) of Reference [31] is
incorrect: it is the latter quantity that is induced by the former via the piezoelectric effect,
and not the other way around, so that strain should be multiplied—and not divided—by
the piezoelectric coefficient to get the induced polarization!
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on the sign of ζi. The equation of state of the system in the ferroelectric
phase and in the case of a second-order phase transition is:

αP + βP 3 − κ
∂2P

∂x2
= Eext − 1

εb

(
P − P̄

)
. (2.14)

Since the boundary conditions are now asymmetric, then the solution of
Equation (2.14) will not be a symmetric function—unlike Equation (2.7).
However, the polarization will reach its “bulk value” exponentially fast and
over the same distance ξ1 as before.

Assuming that ξ1 ¿ δ, the dielectric constant of the ferroelectric film is
found to be:

εeff =
1

α̃ + 3βP̄ 2
. (2.15)

Not too close to the phase transition, the average polarization in the film can
be roughly estimated to be:

P̄ ≈ 1

α̃

(
ζ1 + ζ2

h

)
, (2.16)

whereby the effective inverse permittivity of the film has the form:

ε−1
eff ≈ α̃ +

3β

α̃2

(
ζ1 + ζ2

h

)2

, (2.17)

which, in the case of symmetric ferroelectric-electrode coupling (ζ1 = −ζ2),
reduces to the result of Kretschmer and Binder—Equations (2.8) and (2.10)
in the approximation ξ1 ¿ δ.

Note that the term 3βP̄ 2 in the denominator of eq. (2.15) is temperature
dependent, through the temperature dependence of α̃ [cf. Equation (2.11)].
If it were not so, its effect would be to further renormalize the Curie-Weiss
temperature of the phase transition, which is exactly the effect of the presence
of passive layers. But through its temperature dependence, surface poling has
the effect of smearing out the phase transition—i.e., of drastically flattening
the peak of the dielectric constant as a function of temperature. Using the
estimate ζ ∼ Eatlat, we may expect to observe smearing by values as high as
∼ 100K in, e.g., 100 nm-thick films of Ba(Sr,Ti)O3.

One important remark is in order here. We have seen that in the Landau-
Ginzburg theory the properties of ferroelectric thin films with a polarization
component normal to the surface rely on the length ξ1 ≈ ξ/

√
ε/εb =

√
κεb.

Now, in the case of BaTiO3, κ = 5.1 × 10−10 Jm3/C2 and εb = 7.35 ε0 [32].
This implies that ξ1 ≈ 2Å. In other words, the spatial scale of variation of
the polarization near the surface is less than the lattice spacing. Under such
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conditions, a continuum theory such as the Landau-Ginzburg is clearly inap-
plicable! Hence, while the main qualitative conclusions found by Kretschmer
and Binder and by Bratkovsky and Levanyuk are very instructive, their quan-
titative results should be taken cum grano salis.

Moreover, in their treatment of the depolarizing field, the aforesaid au-
thors have treated the electrodes as ideal conductors. However, we know
that in real metals the screening of the bound polarization charge is never
perfect. The reason for this is the fact that the free charge carriers in the
electrode form a layer of finite thickness. The center of mass of the charges
in the electrode is then separated by some distance from the bound charge
due to polarization in the ferroelectric. In other words, the free charges in
the electrode behave as a capacitor connected in-series with the ferroelectric
film [33, 34]. Treatment of the electron gas in the electrode in the Thomas-
Fermi approximation [35] shows that this capacitor has a capacitance per
unit area equal to ε0/`TF, where `TF is the Thomas-Fermi effective screen-
ing length. This leads to the following expression for the apparent dielectric
constant of the film:

ε−1
eff = ε−1 +

2`TF

h
. (2.18)

This expression is reminiscent of the result (2.8) found in the case of surface
suppression of the polarization. The two phenomena have thus the same
effect, as they behave as passive layers that are connected in series with
the ferroelectric film and therefore reduce the film’s permittivity. It is clear
then that Thomas-Fermi screening will induce a further downshift of the
Curie-Weiss temperature. However, the two effects cannot be simply super-
imposed, for the extent of Thomas-Fermi screening is sensitive to the state of
polarization at the surface, which in turn depends on the Kretschmer-Binder
properties of the system. We will return to this point in Chapter 4.

2.3 Critical thickness for ferroelectricity

We have seen how the size effect due to the surface blocking of polarization
on the one hand and to Thomas-Fermi screening on the other leads to a re-
duction of the effective Curie-Weiss temperature of a ferroelectric thin film.
This effect is the larger the smaller the thickness of the film [cf. Equations
(2.8) and (2.18)]. Thus, at a given temperature, there exists a value of the
film thickness below which the ferroelectric phase becomes thermodynami-
cally unstable. We call this value the critical thickness for ferroelectricity of
the system. As the size of ferroelectric films in electronic devices is rapidly
approaching the limit of a few nanometers, this issue has acquired enormous
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technological importance in recent years.
If we consider a ferroelectric crystal with completely uncompensated sur-

face charges ±P , the depolarizing field is equal to −P/εb, and the shift in the
Curie-Weiss temperature is then −ε0C/εb ∼ 104 K (for normal ferroelectrics)
[cf. Equation (2.4) with E = Eext − P/εb]. In other words, ferroelectricity is
completely suppressed if the depolarizing field is not, at least partially, com-
pensated. Such a compensation can occur by a number of mechanisms, such
as the formation of an appropriate domain pattern, the presence of metal-
lic or semiconductor electrodes, the existence of surface conduction states
within the ferroelectric, or the interaction with atmospheric ions. All these
mechanisms, however, can only achieve partial compensation in the case of
a single-domain state, and some bound charge persists on the surfaces which
gives rise to a depolarizing field and to the existence of a critical thickness
for ferroelectricity.

In 1961, Ivanchik [36] considered the problem of an in vacuo BaTiO3 plate,
which he assumed—because of its semiconductor properties—to be partially
conducting. He showed that this scenario leads to a thickness dependence
of the transition temperature and spontaneous polarization, and to the ex-
istence of a critical thickness for ferroelectricity. He estimated this critical
thickness to be ∼ 20 nm at room temperature. Ivanchik later showed [37]
that the difference in workfunction between the two faces of a single-domain
ferroelectric plate is larger than the energy gap of the material (∼ 3 eV), so
that some charge carriers are indeed excited into surface conduction states
and partial compensation of the surface polarization is achieved within the
ferroelectric. Similarly, surface conduction states can arise at the interface
with a semiconductor or an insulator because of the different band structures
of the two materials. This scenario was considered by Reiner et al. [38], who
found that in the case of a Ge/BaTiO3 system the interface states, as they
increase the screening charge available, enhance the stability of the ferroelec-
tric phase. They quantified the effect of the interface states on the critical
thickness, which drops from 39 nm when they are neglected to 7 nm when
they are included in the picture.

Ten years after the first work of Ivanchik, Batra and Silverman [33] con-
sidered the case of a perfectly insulating ferroelectric plate between realistic
electrodes, and showed that Thomas-Fermi screening leads to a depression of
the Curie-Weiss temperature by the amount −2`TFC/h [cf. Equation (2.18)].
This yields the following expression for the critical thickness of the plate:

hc =
2`TFC

T0 − T
. (2.19)

For a stress-free BaTiO3 film between metallic electrodes, hc ∼ 50 nm at
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room temperature.
However, as the Curie-Weiss temperature is shifted down further because

of the surface blocking of polarization [cf. Equation (2.12)], the theoretical
critical thickness of a ferroelectric capacitor expected from the Thomas-Fermi
and Kretschmer-Binder theories has a value larger than (2.19), i.e.:6

hc =
2C

T0 − T

(
`TF +

ε0ξ1

εb(1 + δ/ξ1)

)
. (2.20)

In the case of a BaTiO3 film between metallic electrodes, `TF and ξ1ε0/εb

are of the same order of magnitude, and the contribution to hc from sur-
face blocking of polarization depends on the extrapolation length δ. Since
δ can vary from zero to infinity, hc will be in the range 50–100 nm at room
temperature and under mechanically free boundary conditions. Similar val-
ues are to be expected for other typical ferroelectric perovskites, such as
PbTiO3. However, this prediction is in stark contrast with experimental ev-
idence: a stable ferroelectric phase has been observed at room temperature
in Pb(Zr0.2Ti0.8)O3 films as thin as 4 nm [39], in PbTiO3 films as thin as
1.2 nm [40], and in BaTiO3 films as thin as 5 nm [41].7 Even if we allow for
the mechanical action of the substrate, which corresponds in many cases to a
shift of the Curie-Weiss temperature by several hundred degrees [43], the dis-
agreement is still quite remarkable. For example, in the case of Reference [41]
(BaTiO3 films grown on thick SrTiO3 substrates), the renormalization of T0

leads to a decrease of the critical thickness by a factor of four, but the pre-
dicted value is still more than twice the observed one—and the situation is
even worse in the case of PbTiO3 and PZT.

It should be remarked that, despite the aforementioned shortcomings of
the Landau-Ginzburg theory, the estimated order of magnitude of the criti-
cal thickness from the work of Batra and Silverman and of Kretschmer and
Binder is physically sound for the given scenario—i.e., ferroelectric films be-
tween metallic electrodes and with a variable degree of surface blocking of
polarization. What is really happening then at the interface that leads to a
reduction of the predicted impact of Thomas-Fermi screening and of surface
blocking of polarization on the Curie-Weiss temperature? This question has
motivated a number of first-principles investigations on the critical thickness

6This result is valid only to first approximation, for the surface reduction of polarization
affects the extent of Thomas-Fermi screening in the electrode, which in turn affects the
downshift of the Curie-Weiss temperature.

7It should be mentioned that Li et al. [42] have used mean-field theory to evaluate the
critical thickness of BaTiO3 (16 nm at room temperature), PbTiO3 (2 nm at room tem-
perature), and Pb(Zr0.5Ti0.5)O3 (6 nm at room temperature). However, as they neglected
the effect of the depolarizing field, their model is irrelevant to any practical situation.
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of various ferroelectric perovskites between a number of metallic, metal-oxide,
and semiconducting electrodes.

Ghosez and Rabe [44] have studied the ground state of mechanically free
PbTiO3 films using an effective Hamiltonian parameterized through first-
principles calculations. The films were screened by perfectly conducting
sheets placed at a distance of a quarter of a lattice constant from the sur-
faces. The yield of the calculations for films polarized normal to the surface
is a critical thickness of three unit cells (1.2 nm) at 0K8. However, the choice
of the terms in an effective Hamiltonian is phenomenological at best if not
arbitrary, so that the accuracy of the results is questionable. Moreover, the
perfectly conducting sheets used to simulate short-circuit boundary condi-
tions are an artifact which raises questions as to the effective validity of the
model for practical situations.

To avoid unphysical assumptions a full first-principles treatment is there-
fore needed. Junquera and Ghosez [45] have considered the problem of
BaTiO3 films sandwiched between SrRuO3 electrodes and constrained to
the in-plane lattice constant of SrTiO3. The calculations were performed
within density functional theory, using the local density approximation to
the Kohn-Sham functional. The ground state of the capacitors was probed
using the so-called frozen-phonon method, which consists in assuming per-
fectly rigid electrodes and a polarization state in the ferroelectric given by
uniform soft-mode displacements identical to those observed in the bulk ma-
terial. The authors found that the ground state of the BaTiO3 films changed
from paraelectric to ferroelectric at a thickness of six unit cells (2.4 nm).
They also calculated the electrostatic potential across the capacitors, which
allowed them to quantify the depolarizing field across the ferroelectric and
thus to confirm that it is indeed such field that is responsible for the suppres-
sion of ferroelectricity in ultrathin films. Although the pioneering work of
Junquera and Ghosez does not suffer from the kind of arbitrary assumptions
needed in constructing an effective Hamiltonian, their model is quite a crude
representation of a real capacitor, as the ionic displacements are artificially
imposed to be uniform in the ferroelectric and zero in the electrode. Such
restriction ignores the exact arrangement of the ionic displacements across
the capacitor, arising from the surface blocking of polarization on the one

8Note that one should be careful when comparing experimental and first-principles
values of the critical thickness. While the former are usually obtained at room temperature,
the latter are always calculated at absolute zero. As the critical thickness is a temperature-
dependent quantity, its value changes by a factor of 1 − 300/T0 when calculated at 0K
instead of at room temperature, if we neglect quantum fluctuations. For BaTiO3, for
example, this means a reduction of roughly 4 times. Thus, a critical thickness of 1.2 nm
at 0K should correspond to a measured value of ∼ 5 nm at room temperature.
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hand, and from the screening of the bound polarization charge on the other.
We will see in Chapter 7 how the ionic displacements induced in the oxide
electrodes by the so-called proximity effect have a profound impact on the
film properties, leading to enhanced polarization screening and therefore to
a reduction of the critical thickness for ferroelectricity.



Chapter 3

Surface-Stimulated Domain
Nucleation in Ferroelectrics1

In Chapter 2, we have discussed the Landauer paradox [20], which concerns
the appearance and growth of reverse polarization domains within a matrix
of oppositely polarized ferroelectric. Like in other ordered systems, such as
ferromagnets (cf. Brown’s paradox in [46]) or superfluids and type-II super-
conductors (cf. the problem of vortex nucleation [47]), the nucleation of such
domains in a homogeneous, defect-free material is associated with impracti-
cably high energy barriers [20,25,48]. This difficulty is often neglected, by the
mere assumption that the nucleation rate is high enough, thanks to defects or
to the effect of the surfaces [46]. However, this is not a satisfactory solution
of the problem, especially in situations where the evolution of the nucleation
process significantly influences some properties of the system. An example of
this is the degradation of the switching ability of ferroelectric materials (e.g.
so-called polarization fatigue [49, 50]), which is thought to be related to the
dynamics of nucleation. The demonstration of a realistic nucleation model
is of definite importance for the understanding of switching in ferroelectrics.
At the same time such a demonstration may be also instructive for under-
standing analogous phenomena in other ordered systems. In this Chapter,
we offer a model of this kind.

We recall from Chapter 2 that Landauer developed a traditional nucle-
ation model dealing with a competition of the bulk and surface contributions
to the activation barrier, which is complicated however by an additional elec-
trostatic contribution due to the bound charges at the nucleus boundary. The
domains are assumed to nucleate at the ferroelectric-electrode interface, and
to grow in the shape of elongated spheroids. The nucleation barrier is found

1G. Gerra, A. K. Tagantsev, and N. Setter, Phys. Rev. Lett. 94, 107602 (2005).

29
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to be implausibly large (& 103kBT), even in the presence of very high elec-
tric fields (∼ 100kV/cm) [25,48]. Thus, Landauer’s model reduces essentially
to the statement of a paradox: the large discrepancy between the observed
and the predicted nucleation rates of reverse domains. Currently growing
experimental activity and applications in the field of ferroelectric thin films
have motivated interest from theoreticians in this unsolved problem. How-
ever, as we have seen, apart from the work of Janovec on the formation
of anti-parallel domains within surface space-charge layers in BaTiO3 single
crystals [22], little progress has been made on this issue in the fifty years to
follow.

In this Chapter, we consider the classical Landauer model, appended
with a ferroelectric-electrode coupling. The cases of homogeneous and ran-
dom coupling are considered. We quantify the expected reduction of the
nucleation barrier to find that it can be essential. We show that the modified
model offers the possibility of “cold field switching”—i.e., the existence of a
critical applied electric field above which no thermal activation is necessary
for nucleation. This phenomenon was not contemplated by previous models,
although the clearly non-exponential temperature dependence of the switch-
ing dynamics observed experimentally [51–53] strongly suggests a significant
non-thermally activated component in ferroelectric switching. Finally, in the
case of perovskite-type ferroelectrics with competing tetragonal and rhom-
bohedral ferroelectric phases (the case of primary practical importance) we
find that the nucleation is favored near morphotropic phase boundaries.

Our model bears a close resemblance to the one developed by Janovec to
explain the presence of anti-parallel domains in an otherwise single-domain
single crystal of BaTiO3 [22]. In Janovec’s model, space charge is assumed
to be present in a surface layer with thickness ranging from 0.01 to 1µm.
The field produced by such a space charge is assumed to be large enough
to induce the formation of needle-shaped domains polarized in the opposite
direction than in the rest of the crystal (the potential difference between the
surface and the interior of the crystal was taken by Janovec to be of the order
of 1V, which yields values of the space-charge induced field in the range of
10 to 1000 kV/cm). The electrostatic work done by the space-charge field is
the driving force for the appearance of the anti-parallel domains, which are
shown to be stable within a given range of dimensions and geometrical aspect
ratios. Mathematically speaking, the model we will presently describe coin-
cides with Janovec’s when the thickness of the surface space-charge layer is
negligible compared to the height of the anti-parallel domain. However, ap-
plication of the space-charge model of Janovec in the case of thin films would
require numerical values that are much different from those assumed by him.
Moreover, our argument is quite general and does not assume the presence of
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space charge inside the ferroelectric. Finally, Janovec concerns himself with
the stability of the anti-parallel domains, whereas we are interested in their
instability—which leads to their spontaneous growth and accordingly to the
switching of the polarization in the ferroelectric. We therefore believe that
the two models offer quite distinct and complementary information on the
physics of domain nucleation and growth.

We start our discussion from the obvious notion that nucleation phenom-
ena can be stimulated at interfaces and defects. For instance, an asymme-
try in the polarization dependence of the surface energy of a ferroelectric-
electrode interface can lead to a preferred direction of polarization at the
interface. This asymmetry is due to the inversion symmetry breaking intro-
duced by the interface. Microscopically, it may originate from the electronic
or mechanical properties of the interface and/or the presence of impurities
or dislocations. This ferroelectric-electrode coupling can be related to an
interface energy density γ that changes its sign according to the polariza-
tion direction. In the simplest case, it will be linear in the polarization Ps:
γ = ζPs, where ζ plays the role of a surface field conjugate to the order
parameter Ps, and can be treated as a local surface field in the 2-dimensional
space of the interface [26,27].

To evaluate the domain nucleation in the presence of this coupling we
incorporate it into the Landauer model. Though the nucleus shape is not
optimized in this model, we believe that the qualitative features of domain
nucleation obtained below are reasonable. Specifically, we consider the for-
mation energy of ferroelectric domains in the shape of prolate semi-spheroids
(base radius r, height `) with an external electric field Eext normal to the
electrodes, which has the form:

U(r, `) = −ar2` + br` + c
r4

`
− dr2, (3.1)

where:

a ≡ 4

3
πEextPs, b ≡ π2

2
σ, d ≡ πζPs = πγ,

c ≡ 16π2

3εa

P 2
s

(
ln

[2`

r
(εa/εc)

1
2

]
− 1

)
∼= 16π2

3εa

P 2
s . (3.2)

The first term in (3.1) is the energy gained by the domain upon reversal of
the spontaneous polarization Ps (which is assumed to be normal to the elec-
trodes), the second is the energy associated with the creation of the domain
boundary (σ is the domain wall energy density), the third term is the depo-
larizing energy due to the divergence of polarization at the domain boundary
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(εa and εc are the components of permittivity perpendicular and parallel to
Ps respectively), and the fourth term is the ferroelectric-electrode interface
energy. The parameter c in (3.2), which is accurate in the limit ` À r, has
only a very weak dependence on ` and r; it will be considered as constant
when taking derivatives.

Analysis of the stationary points of U needed for further discussion is
straightforward. It is easy to see that the energy (3.1) has a global minimum
with respect to ` at:

` =

√
cr3

b− ar
. (3.3)

Substituting (3.3) into (3.1) we get for the radius dependence of the nucleus
energy:

U(x)

UL

=
√

6x2

[√
x

(
1− 5

6
x

)
−

√
6

5
θ

]
, (3.4)

where

θ ≡ d

2b

√
a

c
, x ≡ r

rL

=
6a

5b
r. (3.5)

UL and rL are the activation energy [cf. Equation (2.3)] and critical radius
for nucleation from Landauer’s model:

UL =
5

5
2 b3c

1
2

108 a
5
2

, rL =
5b

6a
. (3.6)

Figure 3.1 shows a plot of U(x) for different values of the parameter θ. In the
Landauer model, where θ = 0, we have a local minimum at r = ` = 0 and a
saddle point at rL. For non-zero values of θ, the point x=0 becomes unstable,
the local minimum Umin is shifted to the right and the local maximum Umax

to the left, while the activation energy, ∆U = Umax − Umin, is decreased
[Figure 3.1(b)]. Here, Umin =U(xmin) and Umax =U(xmax), where xmin and
xmax are the positive roots of equation:

5
√

5x(1− x)

4
√

6− 5x
= θ. (3.7)

When the parameter θ exceeds its critical value:

θc =

√
14
√

21− 46

8
∼= 0.533, (3.8)

Equation (3.7) has no positive roots and the activation barrier disappears
[Figures 3.1(c) and (d)]. Unlike the classical Landauer model, we arrive at
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Figure 3.1: The effect of parameter θ on the domain energy (normalized to the
Landauer activation energy UL). The nucleation barrier and critical size xmax both
decrease with increasing θ values.

the situation where at applied fields corresponding to the condition θ > θc

the nucleation barrier is completely suppressed.
It is instructive to express θ in terms of the anisotropy factor η ≡ εa/εc

and the thermodynamic coercive field Etrm
c ≡ Ps/3

√
3 εc, the field at which

the anti-parallel orientation of the polarization relative to the field becomes
absolutely unstable2 [54]:

θ = k
γ

σ

√
η

Eext

Etrm
c

, (3.9)

where k ≡
(
2
√

3
√

3π3
)−1 ∼= 0.0394.

Figure 3.2 is a plot of the activation energy ∆U = Umax −Umin (normal-
ized to the Landauer value) as a function of the physical quantities appearing
in (3.9)—we do not present the corresponding cumbersome expression. It is
evident that as well as by the external electric field, nucleation is favored by
high values of the ferroelectric-electrode interface to domain wall energy den-
sity ratio, γ/σ, and of the anisotropy factor η. The latter, less evident effect

2Here, for simplicity, we use the expression for the case of a second order phase transi-
tion.
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Figure 3.2: Nucleation barrier ∆U (normalized to the Landauer value UL) as a
function of the anisotropy factor η, the external field Eext and the ratio γ/σ.

is related to a reduction of the electrostatic energy which is inversely pro-
portional to the transverse permittivity εa—cf. Equation (3.2). From (3.8)
and (3.9) we can obtain the applied field needed for total suppression of the
nucleation barrier, which we will call zero-temperature critical field ET=0

c :

ET=0
c

Etrm
c

∼= 183

η

(
σ

γ

)2

. (3.10)

The thick line in Figure 3.3 shows the dependence of ET=0
c on the anisotropy

factor η and energy density ratio γ/σ.
In Figure 3.2, we note that the nucleation barrier drops to zero abruptly

as the applied field approaches ET=0
c . For fields less than 70% of the critical

value, ∆U & 0.1UL, implying, for typical values of the relevant parameters,
unrealistically low nucleation rates. It follows that, in our model, the finite-
temperature critical field is within 30% of ET=0

c . Moreover, if nucleation is
the limiting factor of switching, then the coercive field measured in hysteresis
loops is close to this finite-temperature critical field and does not diverge
when the temperature is decreased—in agreement with experimental findings
[51–53].

So far, we have considered a situation where the surface field ζ is homoge-
neous, which may not be realistic. While small variations in the magnitude
of ζ do not alter the qualitative features of our model, fluctuations in the
sign of ζ might have important consequences. Let us consider the latter type
of inhomogeneities. If the typical radius of the regions where ζ is homo-
geneous, r0, is less than or of the order of the Landauer critical radius rL,
than the above theory is clearly inapplicable. The situation where r0 ' rL

requires numerical treatment. However, the case r0¿rL is readily trackable
on the lines of the Imry-Ma statistical approach [55]. Fluctuations in the
sign of ζ will result in opposite contributions to the energy—i.e., different
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parts of the ferroelectric-electrode interface support different orientations of
the polarization. If we take an area of radius r À r0, there will on average
be an equal number of regions with positive and negative interface energy
(±γπr2

0, depending on the favored direction of polarization). This number is
of the order N'πr2/πr2

0. Now, from a statistical point of view, it is always
possible to find an area where the concentration of, say, positive γ regions is
higher, thus favoring nucleation of positive polarization domains. The root-
mean-square interface energy of such an area of radius r will be proportional
to
√

N (i.e., Uint =
√

N γπr2
0 =γπr0r), and linear in r. Therefore:

U(r, `) = −ar2` + br` + c
r4

`
− dr0r. (3.11)

From an analytical point of view, this situation is not qualitatively different
from the homogeneous-ζ case. Again, we can rewrite the normalized en-
ergy as a function of the dimensionless quantity x, by introducing the same
parameters (3.5) and (3.6) as before:

U(x)

UL

=
√

6 x

[√
x3

(
1− 5

6
x

)
−Θ

]
, (3.12)

where Θ= q
√

η (γ r0/σ tw)(Eext/E
trm
c )

3
2 , q =(8/5

√
3 π

5
3 )

3
2 ∼= 0.0508, and tw =

6 εc σ/P 2
s is the domain wall thickness from Landau theory [56]. It can be

shown that the nucleus energy will have the same characteristics as before,
with an unstable stationary point at r = ` = 0, a non-zero local minimum and
a saddle point, the latter two converging at Θc =

√
12

√
2/5− 57/8 ∼= 0.682.

The zero-temperature critical field ET=0
c is now modified, and includes a

dependence on the typical radius of the homogeneous-ζ regions:

ET=0
c

Etrm
c

∼= 5.65
3
√

η

(
σ

γ

tw
r0

)2
3

. (3.13)

Figure 3.3 shows the impact of r0/tw on the zero-temperature critical field
ET=0

c . We can distinguish two regimes. When rL ¿ r0, nucleation is not
affected by the inhomogeneity of ζ and the zero-temperature critical field
is that given by (3.10) and plotted as a thick line in Figure 3.3. If, on the
other hand, rL À r0, the switching cannot originate from homogeneous-ζ
regions and ET=0

c is increased (for the same values of η and γ/σ), as given by
(3.13)—dashed lines in Figure 3.3. Clearly, the crossover region between the
homogeneous and the statistical regime is out of the range of applicability of
the present theory, so that in this region the curves should be considered as
a guide for the eye.
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Figure 3.3: Zero-temperature critical (ET=0
c ) over thermodynamic coercive field

(Etrm
c ), as a function of the anisotropy factor η and of the interface to domain

wall energy ratio γ/σ, for increasing values of r0/tw (dashed lines). The thick line
represents the homogeneous-ζ case, i.e., r0/tw→∞.

Two issues following from our analysis are worth mentioning. First, nu-
cleation has been found to be favored by a high value of the anisotropy
factor η. This implies that the switching can be facilitated in perovskite-
type ferroelectrics near morphotropic phase boundaries3, where this factor
is anomalously high [58]. This prediction corroborates the coercive field re-
duction in PbZrxTi1−xO3 at the tetragonal side of the morphotropic phase
boundary [cf. Reference [59] and Figure 3.4].

Second, our model readily provides an exponentially wide spectrum of
waiting times for nucleation. It is clear from Figure 3.2 that, in the steep
part of the curve (corresponding to a realistic thermoactivation regime), small
variations of the system parameters readily lead to orders-of-magnitude vari-
ations of the activation barrier, on which the waiting time is exponentially
dependent. This result may be relevant to the recent experimental findings
on the switching kinetics in ferroelectric thin films, which have been inter-
preted in terms of this kind of spectrum [60].

Let us now evaluate the strength of the effect predicted by the model. For
a rough estimate we use the Landau theory result for the wall energy: σ =
twPsE

trm
c

√
3/2. For the surface field ζ, we use the so-called “atomic” estimate

ζ ' Eatlat (where Eat ' 100 MV/cm is a typical atomic electric field [61] and
lat the lattice constant). This gives us σ/γ = σ/(Psζ)' (Etrm

c /Eat)(tw/lat).
Bearing in mind parameters of perovskite ferroelectrics like BaTiO3 (Etrm

c ∼
500 kV/cm, tw ∼ 2 nm, lat ∼ 4Å) we find that the ratio σ/γ may be as small
as 10−2. Thus, according to Equation (3.10), the model can yield a coercive

3This result should not be confused with the predicted reduction of the thermodynamic
coercive field near the morphotropic phase boundary demonstrated by M. Iwata and Y.
Ishibashi [57].
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Figure 3.4: Compositional dependence of the remanent polarization, Pr

(µC/cm2), and of the coercive, Ec (V/mm). The coercive field drops abruptly
when approaching the morphotropic phase boundary from the tetragonal (PT-rich)
side. After Yamamoto [59].

field two orders of magnitude smaller than Etrm
c . For a numerical estimate we

take room temperature parameters of BaTiO3 (Ps =26 µC/cm2, εa =2000 ε0,
εc = 120 ε0, σ = 7 × 10−7J/cm2 [20]) to get ET=0

c ≈ 2 kV/cm, according to
Equation (3.10) with γ/σ = 50. This estimate holds if r0 > rL ≈ 125 nm.
If r0 < rL, say 6 nm, then according to Equation (3.13): ET=0

c ≈ 18 kV/cm.
These estimates show that the model can provide reduction of the coercive
field down to typical values for BaTiO3 single crystals (∼ 1kV/cm [62]).





Chapter 4

Combined First-Principles–
Phenomenological Approach to
the Size Effect1

The recent developments in deposition techniques have sparked a surge of
interest in thin-film heterostructures. The possibility of miniaturizing lay-
ered composites to sub-micron scales offers a plethora of novel applications,
but at the same time poses a number of new physical problems that are of-
ten difficult to solve. The most obvious of such problems is the size effect:
the simple, long-established phenomenological theories that describe the be-
havior of bulk materials sometimes fail to provide a complete description of
low-dimensional systems [63]. The main difficulty lies in the applicability
of continuum theories to systems where variations of the relevant physical
quantities occur over a length scale comparable to the interatomic distance.
In ordered systems such as magnetics, superconductors, or ferroelectrics, con-
tinuum theories of the Ginzburg-Landau (GL) type can be safely used when
working on a spatial scale controlled by the correlation length, since the lat-
ter quantity is typically larger than the interatomic distance. There exists,
however, a number of situations where long-range couplings harden the sys-
tem and the relevant length scale may be considerably reduced to less than
the lattice constant of the material. A perfect example of this situation, and
one of great practical significance, is the variation of the normal component
of the ferroelectric polarization near the interface with an electrode [cf. Sec-
tion 2.2 and References [28, 64]]. Formally, the GL theory combined with
appropriate boundary conditions provides a mathematical description of the

1G. Gerra, A. K. Tagantsev, and N. Setter, Phys. Rev. Lett. 98, 207601 (2007); A. K.
Tagantsev, G. Gerra, and N. Setter, Phys. Rev. B, submitted.
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size effect in such systems [28, 30, 31]. According to such a theory, in the
case of ferroelectrics with a polar axis normal to the interface, the shape of
the polarization profile is a result of the interplay between the surface en-
ergy (which tends to reduce the surface value of polarization), the gradient
energy (which tends to smoothen the variation of polarization over as wide
an area as possible), and the depolarizing energy (which tends to maintain
the polarization constant). The strength of the depolarizing effect for normal
ferroelectrics implies that the polarization profile is very flat and the surface
variation of the polarization is confined to a surface region of thickness less
than the lattice spacing [29,65]. Under such a condition a continuum theory
such as the GL is not applicable.

In order to avoid such complications, one could in principle treat the prob-
lem microscopically—that is, by employing ab-initio calculations [45,66–69].
However, the cost in CPU power and time is a limitation to the maximum
size the simulated systems can attain, so that first-principles calculations on
experimentally meaningful devices are rarely feasible. Hence, there exists a
gap between the microscopic world of ab-initio calculations and the macro-
scopic one of phenomenological theories. It is our purpose in this Chapter to
introduce a combined first-principles–phenomenological approach to solving
the size effect problem in ferroelectric-electrode systems, an approach which
is aimed at bridging such a gap in the theoretical description. The idea is
to develop a framework applicable to ultrathin films—so that its parameters
can be calculated from first principles—but also to thick films—so that it
can be used to describe realistic systems.

4.1 Framework

Let us consider a ferroelectric film of thickness h sandwiched between two
short-circuited metallic electrodes. For simplicity, let the film be grown on
a substrate that imposes on it a large enough isotropic compressive in-plane
strain so that the out-of-plane direction of spontaneous polarization becomes
favorable and the ferroelectric phase transition changes its order from first
to second2. Let P be a spatially uniform quantity, denoting the macroscopic
average of the polarization across the ferroelectric film. The free energy of
such a system comprises several terms:

(i) The bulk Helmholtz free energy of the ferroelectric, with order param-
eters P (the average polarization) and ui (the strain in Voigt notation);

2This situation can be shown to be realized, for example, in (001) BaTiO3 films de-
posited on SrTiO3 [43, 70], which implies an in-plane misfit strain of about −2%.
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(ii) The depolarizing energy arising from the incomplete screening of the
bound polarization charge by the electrodes’ free charge carriers;

(iii) The electrostatic interaction between the polarization and the built-in
field arising from the difference in workfunction step between the two
interfaces;

(iv) The surface energy, which can be written as a Taylor expansion in
terms of P . (As the interface breaks the inversion symmetry of the
ferroelectric, odd-power terms must be taken into account.)3

Since explicit inclusion of the polarization gradient leads to an unphysical
result, we implicitly ascribe its effect to the surface terms. The free energy
per unit surface of our system therefore reads:

ΦS =

(
F − 1

2
Edep ·P− Ebi ·P

)
h + (ζ1 − ζ2)n ·P +

1

2
(η1 + η2)P

2, (4.1)

where F is the Helmholtz free energy of the ferroelectric,

F =
α

2
P 2 +

β

4
P 4 + (c11 + c12)u

2
m +

1

2
c11u

2
3 + 2c12umu3− q11u3P

2− 2q12umP 2,

(4.2)
and Edep, Ebi are the depolarizing and built-in field, respectively. The latter
quantity is defined as:

Ebi = −∆w2 + ∆w1

h
n. (4.3)

In the above, α = (T − Tc)/ε0C and β are the Landau double-well-potential
coefficients (C being the Curie-Weiss constant), the cij and qij the elastic
stiffness and electrostrictive tensor components in Voigt notation, ∆wi the
workfunction step of interface i, ζi and ηi the coefficients of the surface en-
ergy expansion for interface i, and n a unit vector pointing from interface
1 to interface 2. Under the present assumptions, the only nonzero strain
components are u3 along the polar axis and u1 = u2 = um (the misfit strain
due to the substrate) in the plane perpendicular to it. Note that the last
term in (4.1) represents the surface tension for the polarized state.

The depolarizing field Edep is a result of the potential drops, ∆ϕi, that
appear at each surface because of the unscreened space charge. Under short-
circuited boundary conditions, these potential drops must be compensated

3We neglect the surface piezoelectric effect [31], since for realistic values of the misfit
strain in the film, its contribution is expected to be only a higher-order correction to the
linear contribution of P to the surface energy.
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by an equal and opposite potential drop across the ferroelectric:

−hEdep · n + ∆ϕ1 −∆ϕ2 = 0. (4.4)

The potential drops ∆ϕi are taken to be proportional to the surface charge
density on the electrodes, σ = D · n, and to the inverse capacitance per unit
area of the double electric layers associated with the incomplete polarization
screening, λi/ε0:

∆ϕ1 = −λ1

ε0

D · n,

∆ϕ2 =
λ2

ε0

D · n.

(4.5)

The displacement field is defined as:

D = εbEdep + P, (4.6)

εb being the background permittivity of the ferroelectric—i.e., the dielectric
response of the nonferroelectric modes of the lattice and of the electronic
polarizability.

The phenomenological parameters λi would indicate the thickness of the
double electric layers if their relative permittivities were equal to unity. Here-
after, we will use the term effective screening length as a shorthand to refer
to them. Such quantities are a property of the particular interface as well as
of the electrode, but in general they are also dependent on the polarization
direction [cf. Chapter 6], since the sign of the space charge formed at the
interface will have an impact on the chemical environment at that interface,
and thus on the carriers’ surface states which determine the screening proper-
ties of the interface. So when we speak of the effective screening length of an
interface we mean the average screening length for the two possible polariza-
tion directions. Moreover, since the potential drop across the ferroelectric is
a combined result of Thomas-Fermi screening and of the sub-lattice-constant
surface reduction of polarization, the λi implicitly contain both contributions.

Combining Equations (4.4), (4.5) and (4.6) we present the depolarizing
field in the form:

Edep = − λ1 + λ2

ε0h + (λ1 + λ2)εb

P. (4.7)

Since the λi are typically a fraction of an angstrom [cf. Chapter 5] and εb ∼
10ε0, we can safely make the following approximation for the depolarizing
field:

Edep = −λ1 + λ2

ε0h
P. (4.8)
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Now, when the two interfaces are identical4 (λ1 = λ2 = λ, ∆w1 = −∆w2,
ζ1 = ζ2, η1 = η2 = η), the free energy simplifies significantly. The equation
of state for the system (∂ΦS/∂P = 0) in this case gives:

(
αP + βP 3 − 2q11u3P − 4q12umP +

2λ

ε0h
P

)
h + 2ηP = 0. (4.9)

All the terms linear in P in the equation of state (4.9) have the effect of
renormalizing α, and thus the transition temperature Tc. We need to iden-
tify such terms if we want to express the effective transition temperature
(T ∗

c ) and critical thickness (hc) of the ferroelectric as a function of the in-
terface properties. Now, unlike the misfit strain um, the out-of-plane strain
component u3 is not fixed by the action of the substrate, but is determined
from the out-of-plane mechanical boundary conditions; in general, it is a
function of polarization. With hindsight and for the sake of convenience, we
separate the purely mechanical component of u3 (due to the Poisson ratio of
the material) from the component that arises at the phase transition (due to
electrostriction). So we write:

u3 = −2
c12

c11

um + ∆u3. (4.10)

The first term in Equation (4.10) is constant and therefore affects the tran-
sition temperature, while the second term, ∆u3, depends on the polarization
explicitly and must be treated separately. By defining the quantity

α′ ≡ α + 4q11
c12

c11

um − 4q12um, (4.11)

we can express the thickness dependence of polarization in the following,
simple way:

P 2 − 2q11

β
∆u3 = − 1

β

(
α′ +

2λ/ε0 + 2η

h

)
. (4.12)

If the ferroelectric film is fully clamped, ∆u3 is zero for all values of P . If
the film is free standing, ∆u3 is proportional to P 2 and leads to a trivial
renormalization of β. In the case of first-principles calculations, it is more
convenient to fix the dimensions of the whole heterostructure, meaning that
the mechanical boundary conditions are mixed, and the explicit dependence
of ∆u3 on P is not known a priori. However, in the absence of a ferroelectric
polarization ∆u3 disappears with P .

A full description of the size effect in ferroelectric thin films with sym-
metric terminations therefore relies on the knowledge of only two parameters,

4The case of asymmetric interfaces will be considered in Chapter 6.
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λ and η. These two parameters can be calculated from first principles. If
we rewrite Equation (4.12) so as to highlight the thickness dependence of
polarization, we can see that the slope of the resulting straight line is just
λ/ε0 + η:

∂

∂(1/h)

(
P 2 − 2q11

β
∆u3

)
= −2λ/ε0 + 2η

β
. (4.13)

The coefficients q11 and β can be obtained from experiment or computed from
first-principles. Since the value of P , ∆u3 and λ can be extracted from the
output of the calculations, as we shall see in Chapters 5 and 6, the evaluation
of η follows trivially.

We can see from Equation (4.12) that the shift in Tc for the ferroelectric is
the sum of two contributions: the thickness-independent mechanical action of
the thick substrate, and the thickness-dependent size effect due to imperfect
screening and to surface tension. The latter contribution is just

∆T λ,η
c (h) = −2C

λ + ε0η

h
. (4.14)

As the thickness h gets smaller, ∆T λ,η
c (h) becomes more negative, T ∗

c de-
creases and so does the polarization. For a given temperature, when the
thickness reaches the value

hc =
2λ/ε0 + 2η

−α′
, (4.15)

the spontaneous polarization of the ferroelectric film becomes zero. This is
the critical thickness for ferroelectricity discussed in Chapter 2, below which
no stable ferroelectric state can exist.

We can see from these equations that there are two contributions to the
size effect in our systems: one due to the long-range electrostatic forces that
give rise to the depolarization field—controlled by the effective screening
length λ—and another due to the short-range coupling between the soft-
mode displacements and the electrode—controlled by the parameter η. The
separation of the long-range and short-range contributions to the size effect
in metal-ferroelectric-metal heterostructures allows to simplify the analysis
of the problem and to arrive at a more transparent description of the physics
of thin-film ferroelectric capacitors. The next Chapter will be devoted to the
evaluation of the two parameters λ and η through ab-initio calculations.

4.2 Applicability
The main feature of our approach is the spatial uniformity of the polarization
vector. Such a choice for the shape of the polarization vector was imposed
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by the fact that for normal ferroelectrics the polarization varies near the
interface over a distance smaller than the lattice spacing, and therefore all
effects of such microscopic variation can be included in the surface energy.
The spatial scale of variation of the polarization near the interface is given
by the quantity [28,64]

ξ0 =

√
κεb

(1 + εb/εf)
, (4.16)

where κ is the coefficient of the gradient term in the GL free energy expansion
and εf is the permittivity associated with the ferroelectric soft mode. In the
case of BaTiO3, κ = 5.1 × 1010 Jm3/C2 [cf. Reference [32]] and εf À εb.
This implies that ξ0 ≈ √

κεb ≈ 2Å, and a continuum theory such as the
GL becomes clearly inapplicable for the description of the spatial variation
of the polarization. This justifies our approach where the variation of the
polarization at the metal-ferroelectric interface is described by the effective
surface energy.

There might exist situations, however, where ξ0 is indeed larger than
the lattice spacing. Let us consider, for example, the case of weak ferro-
electrics [71]. These are materials which are characterized by a very weak
soft-mode polarity. The link between the soft-mode polarity and the dimen-
sions of ξ0 can be elucidated from the following simple model arguments. Let
us present the total polarization of the ferroelectric Ptot as the sum of the
ferroelectric (soft-mode) contribution and of the additional one associated
with the background permittivity εb. The latter contribution we model as
that of an optical polar mode (we call it a hard mode) whose parameters are
those typical for normal dielectrics5. Thus we present Ptot as:

Ptot =
e

Ω
(Zsvs + Zhvh) , (4.17)

where vs and vh are the soft and hard normal mode amplitudes, and Zs and
Zh are the Born effective charges associated with each mode. For normal
ferroelectrics, 1 . Zs ∼ Zh, whereas for weak ferroelectrics, Zs ∼ 10−2 or
10−3 [cf. Reference [71]], so that Zs ¿ Zh. It can be readily shown that
the ferroelectric permittivity and the gradient term depend on the effective
charge of the soft mode (εf ∝ Z2

s and κ ∝ 1/Z2
s ), while the background

permittivity depends on the effective charge of the hard modes (εb ∝ Z2
h).

Now, it is seen from Equation (4.16) that a reduction of Zs from values of
order unity to 10−2 or 10−3 will lead to an increase of ξ0 up to

√
κεf , which is

5Here, we consider for simplicity only one (out-of-plane) component of the polarization
and we model the background permittivity with a single hard mode (instead of several
polar lattice modes and the electronic contribution).
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just the correlation length of the material, ξ. This result can be qualitatively
interpreted as follows: with the reduction of the soft-mode effective charge,
the additional “electrostatic hardness” of the order parameter vanishes and
the spatial scale of the polarization variation tends to the correlation length.
The latter quantity may be appreciable on the atomic scale (typically a few
nanometers). In this case, the GL theory is applicable to the description of
the spatial variation of the polarization. Then, the combined first-principles–
phenomenological approach should include the gradient term in the free en-
ergy expansion, which implies a solution of the variational problem and the
need to extract information about the polarization gradient directly from
the output of the calculations. Examples of weak ferroelectric materials are
TSCC and Li2Ge7O15. [71, 72]

A more rigorous treatment of the applicability of our approach can be
performed by considering the stability of the spatially varying polarization
state against a spatially uniform state, and then by evaluating the range of
values of the effective charge associated with the soft mode for which the
quantity ξ0 is appreciably larger than the lattice spacing. This problem does
not necessarily imply the solution of the Euler-Lagrange equation for the GL
free energy, but can be tackled by solving the associated eigenvalue problem
on a small perturbation to the initial polarization state P , as shown by Wang
and Woo [73]. This is however beyond the purpose of the present report.
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Separation of Short- and
Long-Range Contributions to the
Size Effect in Ferroelectrics

The presence of reduced-permittivity interfacial layers in ferroelectric thin-
film devices is a longstanding technological problem. Such dead or passive
layers reduce the performance of the device, and increasingly so as the thick-
ness of the film gets smaller (hence the expression size effect). Though much
effort has been put into investigating the dead-layer problem, a thorough
understanding of its microscopic details and most of all a solution to such a
problem remain an elusive goal. We will now attempt to address this issue.

As it has emerged in the previous Chapters, two known phenomena lie at
the origin of the dead-layer effect. The first is the incomplete screening of the
bound polarization charge by the electrode’s free charge carriers [34]. This
effect, which is due to long-range electrostatic forces, can be successfully
described once cast within the framework of the Thomas-Fermi theory of
screening. The second phenomenon is the reduction of polarization at the
surface [28], due to the relative “polarization” hardness of an electrode’s or
substrate’s lattice or to atomic relaxations at a free surface. This effect is
related to the short-range chemical coupling of the atoms at the surface with
the electrode or substrate (or to the effect of dangling bonds at free surfaces),
and is usually described as the cost in surface energy that must be paid to
sustain a finite value of the polarization at the surface. A direct consequence
of the surface reduction of polarization is the depolarizing field induced by
the divergence of polarization; this provides an additional electrostatic term
that does not depend on the screening properties of the electrode.

In Chapter 4, we showed that the size-effect problem in ferroelectric films
can be described by using only two physical quantities: the effective screening

47
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Figure 5.1: An example of the SrRuO3/BaTiO3 heterostructures used in the
calculations. Two types of terminations can be distinguished: (a) Ti terminations,
with an interfacial sequence of atomic planes of the form SrO/TiO2/BaO, and (b)
Ru terminations, with an interfacial sequence of the form SrO/RuO2/BaO.

length λ—accounting for the long-range electrostatic forces that arise both
from Thomas-Fermi screening in the electrode and from the surface varia-
tion of polarization—and the surface energy parameter η—accounting for the
short-range chemical forces that tend to clamp the polarization at the sur-
face. Although it is believed that for several ferroelectric-electrode systems
the most important contribution to the size effect stems from Thomas-Fermi
screening [74], the short-range contribution cannot be neglected a priori. The
work presented in this Chapter provides a quantitative analysis of the two
contributions to the size effect, and of their relative importance.
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5.1 Calculations

Let us consider the approach developed in Chapter 4. We recall that such an
approach involves writing the free energy for the system as a function of the
average polarization in the ferroelectric and implicitly including the effect of
the polarization gradient into the surface energy terms [cf. Equation (4.1)].
We now apply this scheme to the case of SrRuO3/BaTiO3 heterostructures
with symmetric terminations—the two possible types of termination being
Ti [i.e., an interfacial sequence of atomic planes of the type: SrO/TiO2/BaO,
cf. Figure 5.1(a)] or Ru [i.e., SrO/RuO2/BaO, cf. Figure 5.1(b)]. We perform
a series of Density Functional Theory (DFT) calculations on films of different
BaTiO3 thickness (ranging from 3 to 10 unit cells), while the thickness of the
SrRuO3 electrode is fixed at 5 unit cells.

In order to fully understand the properties of the interface, we perform
two sets of calculations for each studied system. In the first, we employ the
so-called “frozen-phonon” technique [45]. This technique consists in evaluat-
ing the equilibrium lattice constants and internal ionic positions of the bulk
materials; this will give a centrosymmetric structure for the electrode and a
polar one for the ferroelectric, the polarity being characterized by an optic
soft phonon mode, to whose amplitude the polarization is directly propor-
tional. A stack of electrode and ferroelectric unit cells of the required height
is then constructed, with the electrode ions being fixed to their bulk equi-
librium (thus centrosymmetric) positions. The ferroelectric ions are instead
displaced by a fraction x of the bulk soft-mode vectors vi (where the label
i denotes the atomic species), which corresponds to choosing a fraction x of
the polarization. The stable polarization state is finally obtained by plotting
the total energy of the stack as a function of x, and then by looking for the
minima of the energy. This scenario is equivalent to assuming infinitely hard
electrodes.

In the second set of calculations, all the ions in the system—including
those of the electrode—are fully relaxed until equilibrium is reached [cf. Fig-
ure 5.2]. The polarization is then averaged across the ferroelectric. In this
second scenario, which implies significantly more time-consuming calcula-
tions, the electrode is somewhat “soft”.

The calculations are performed within the generalized-gradient approxi-
mation [13, 14] as implemented in the Vienna Ab-initio Simulation Package
(VASP) [75,76], using the projector augmented-wave method for the electron-
ion interactions [77]. We employ a 6x6x1 Monkhorst-Pack grid for k -point
sampling [15], and a plane-wave energy cut-off of 400 eV. In order to stabilize
the tetragonal phase of BaTiO3 with the polar axis normal to the interface,
we impose on the heterostructures a −2% in-plane misfit strain [43], which is
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Figure 5.2: The rumplings (i.e., the cation-anion relative displacements within
each (001) crystal plane) for SrRuO3/BaTiO3 heterostructures of four different
thicknesses of the ferroelectric (n is the number of BaTiO3 unit cells). Both types of
symmetric terminations are considered (Ti–Ti and Ru–Ru), under the assumption
of a soft electrode. The “A site” of the perovskite structure is occupied either by
Sr or by Ba, the “B site” either by Ru or by Ti.

equivalent to the presence of a thick SrTiO3 substrate. The out-of-plane lat-
tice constant of the SrRuO3/BaTiO3 supercell is fixed to its centrosymmetric
equilibrium value. The equilibrium ionic positions of the systems with soft
electrodes are found by letting all the ions relax until the Hellman-Feynman
forces acting on each of them are less than 1meV/Å.

The calculation of the polarization relies on its microscopic definition as
the dipole moment per unit volume of a unit cell: P = (e/Ω)

∑
i Zi vi (e being

the electronic charge, Ω the unit-cell volume, Zi and vi the Born effective
charge and soft-mode displacement of ion i, respectively.). Within DFT,
the values of the vi are obtained by computing the equilibrium positions of
the ions, those of the Zi by using the Berry’s phase approach [78, 79]. The
macroscopic polarization of the film is found by averaging over all unit cells.

The coefficients of the GL free energy and the electrostrictive tensor com-
ponents can be found by varying the polarization or strain and calculating
the variation in the energy or polarization of the bulk material. So if we vary
the polarization (e.g., by multiplying the equilibrium displacements vi by an
arbitrary constant), a fit of the change in energy will give us a polynomial
whose coefficients are just α, β, etc. [cf. Figure 5.3]. If we vary the strain
component u3 (um) and compute the change in the square of the spontaneous
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Figure 5.3: The computed Landau double-well potential of fully clamped BaTiO3.
Fitting the data points with an even polynomial yields the Landau coefficients α,
β, etc. [cf. Table 5.1].

polarization, a linear fit will yield the tensor component q11 (q12). The re-
sults of the calculations of the Born effective charges and parameters of the
bulk free energy are summarized in Table 5.1. Using Equation (4.13), we can
evaluate the sum λ/ε0 + η.

The evaluation of λ requires the calculation of the polarization and the
depolarizing field across the ferroelectric for a given thickness. From Equa-
tion (4.8), with λ1 = λ2 = λ, we have:

P

Edep

= −ε0h

2λ
. (5.1)

The slope of the straight line yields λ. Extracting the value of the depo-
larizing field from the output of the calculations is straightforward. If we
consider the total electrostatic potential felt by an electron in our system,
we will observe oscillations due to the periodic structure of the lattice. If,
however, we average the potential over, say, a lattice constant, the period-
icity will disappear and the macroscopic variations will emerge [80]. We do
not expect any variation of the potential within the metal, of course—except
in a very thin interfacial layer. The potential drop across such layer must
be compensated by an equal and opposite drop across the ferroelectric, since
the calculations are performed under short-circuit electrical boundary con-
ditions. The potential drop across the ferroelectric divided by its thickness
is just the depolarizing field. Figure 5.5 shows an example of the macro-
scopically averaged electronic potential across the metal-ferroelectric-metal
system.
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Table 5.1: The different parameters used in the calculation of λ and η. The
coefficient α′ ≡ α + 4q11c12 um/c11 − 4q12um, while ZOI

and ZOII
are the Born

effective charges of the oxygens in the BaO and TiO2 planes, respectively.
Parameter Value SI Units

α′ −2× 109 JmC−2

β 3× 1010 Jm5 C−4

q11 5× 1010 JmC−2

ZBa 2.7 −
ZTi 7.2 −
ZOI

-5.7 −
ZOII

-2.1 −

5.2 Results

The results of the calculations for the case of soft electrodes are shown in Fig-
ure 5.2, where the rumpling profiles—i.e., the cation-anion relative displace-
ments within each (001) crystal plane—are plotted for four SrRuO3/BaTiO3

heterostructures of different thickness (2, 3, 4 and 10 unit cells of BaTiO3)
and for both types of symmetric terminations (Ti–Ti and Ru–Ru). We can
see that the zero-temperature critical thickness for ferroelectricity of our sys-
tem is smaller in the case of Ti–Ti terminations: 3 unit cells of BaTiO3 as
opposed to 4 in the case of Ru–Ru terminations. This is probably related
to the remarkably strong poling effect of the Ru interface: the interfacial
Ru–O2 dipole is always directed away from the electrode, even for thicker
films, so that when the BaTiO3 layer is less than 4-unit-cells thick, any long-
range ordering is destabilized. What is most striking is that even when the
ferroelectric phase is stable, we observe an inversion of the direction of the
rumplings in crossing the one interface towards which the polarization vector
is pointing (i.e., the right-hand-side interfaces in Figure 5.2). Although such
a head-to-head dipole configuration must be evidently chemically more fa-
vorable, it is very costly in terms of electrostatic energy, as the two charged
layers of the same sign that appear at the two sides of the interface must
be screened. In this case, as it emerges from the rumpling profile at the
second electrode in the Ru-Ru n = 4 plate in Figure 5.2, here we are dealing
with a kind of polarization overshoot at the electrode—i.e., the polarization
variation at the ferroelectric-electrode interface is larger than the value of
the spontaneous polarization in the bulk of the film. This implies an ele-
vated value of the effective screening length associated with this interface [cf.
Equation (4.5)]. We will return to this point when we discuss the effective
screening lengths of our systems.
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Figure 5.4: The size effect for (a) Ti–Ti and (b) Ru–Ru-terminated heterostruc-
tures.

Figure 5.4 shows plots of Equation (4.12) for the SrRuO3/BaTiO3 het-
erostructures with (a) Ti–Ti and (b) Ru–Ru terminations, in the frozen-
phonon (hard electrode) and full-relaxation (soft electrode) methods. In the
case of Ti–Ti terminations, the x-intercept tells us that the critical thick-
ness of the heterostructures with hard electrodes is roughly twice the critical
thickness of those with soft electrodes [cf. Chapter 7]. The negative slope in
the case of hard electrodes is accordingly larger in magnitude, signifying a
significantly more pronounced size effect than in the case of soft electrodes.
For Ru–Ru terminations, the difference between the two scenarios is smaller,
but the size effect is again clearly stronger when the electrode is hard.

Figure 5.5 shows the macroscopically averaged electrostatic potential for
a SrRuO3/BaTiO3 system with a 10-unit-cell thick BaTiO3 layer and Ti–Ti
terminations. From the slope of the potential within the BaTiO3 layer we
can estimate the depolarizing field. Then, a plot of |P/Edep| as a function
of thickness [Figure 5.6] yields λ [cf. Equation (5.1)]. Note that in the case
of Ti–Ti terminations the slope of |P/Edep| for the hard electrode is smaller
than that for the soft electrode by a factor of two, implying a twice-as-large
screening length. In the case of Ru–Ru terminations, the situation is reversed,
with a slightly larger screening length for the soft-electrode heterostructures.
We can relate such a surprising result to the aforementioned polarization
overshoot at the RuO2 termination for soft electrodes, which should result
in an elevated value of the effective screening length at this ferroelectric-
electrode interface. In the case of hard electrodes, no such overshoot exists.
For this reason, in the stack with Ru–Ru terminations, one would indeed
expect [in spite of any “in-situ screening” argument—cf. Chapter 7] the hard
electrode to exhibit a smaller effective screening length than the soft one.
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Table 5.2: The electrostatic (λ) and nonelectrostatic (η) contributions to the size
effect in ferroelectric films, for each type of termination and calculation method.
Parameter Soft electrode Hard electrode

Ti–Ti Ru–Ru Ti–Ti Ru–Ru
λ 0.12± 0.01Å 0.13± 0.01Å 0.20± 0.01Å 0.10± 0.01Å

ε0η ±0.01Å 0.01± 0.01Å 0.02± 0.01Å 0.08± 0.01Å

The results of the calculations are summarized in Table 5.2. First, we
notice that the values of ε0η are much smaller than the atomic order-of-
magnitude estimate: ε0ηat should be roughly of the order of the typical
interatomic distance [30] (∼ 2Å in our case). In the realistic case of soft
electrodes, the difference is two orders of magnitude. Another interesting
feature is that the short-range term, ε0η, is always smaller than the long-
range one, λ, and significantly so in all cases but one (Ru–Ru terminations
with hard electrodes). This justifies the common assumption that the size
effect can be identified with the issue of incomplete polarization screening
only [45, 74]. Moreover, the value of η in the case of soft electrodes is lower
than in the case of hard electrodes, and in one case (Ti–Ti terminations) it is,
to within the accuracy of our calculations, close to zero. This result confirms
the idea that the beneficial impact of oxide electrodes in reducing the size
effect in ferroelectric films can be attributed to the very small opposition to
the surface polarization that such class of electrodes offer [81]. The physical
reason behind the smallness of ε0η, however, lies beyond our understanding.

Now that we possess quantitative information on the effective screening
length λ, we can justify the approximation (4.8) to Equation (4.7), which was
based on the assumption that 2λεb/ε0 is small compared to h. For normal
ferroelectrics, the background permittivity εb is typically of the order of 10 ε0

[cf. the value 7 ε0 in the case of BaTiO3, Ref. [32]]. Since λ ∼ 0.1Å, we have
that λεb/ε0 ∼ 1Å. The relative error involved in our approximation (4.8) is
thus: 2λεb/ε0h . 10%.





Chapter 6

Asymmetric
Ferroelectric-Electrode Interfaces
and Interface Poling1

The combined phenomenological–first-principles approach introduced in Chap-
ter 4 allows the quantification of the physical parameters underlying the size-
effect problem in metal-ferroelectric-metal heterostructures, as we have seen
in Chapter 5. The approach was applied to symmetric heterostructures—
that is to say, heterostructures with the same termination of the ferroelectric
at both interface with the electrode. Now, we wish to treat the case of
asymmetric terminations and investigate the effect of the asymmetry on the
ferroelectric and piezoelectric properties of the system. We will find that the
main effect of the asymmetry, in the absence of external electric fields, is to
“pole” the ferroelectric in one particular direction.

6.1 The free energy of asymmetric heterostruc-
tures

We consider an electroded and short-circuited single-domain ferroelectric
plate of thickness h, whose polar axis lies normal to the ferroelectric-electrode
interfaces, the two interfaces being different. The free energy of the system
is again given by Equations (4.1), (4.2), (4.3) and (4.8). For the sake of
simplicity, we neglect elastic terms2 and introduce the quantities δζ ≡ ζ2−ζ1

1G. Gerra, A. K. Tagantsev, and N. Setter, Phys. Rev. Lett. 98, 207601 (2007).
2The effect of the elastic terms in the Landau free energy expansion is a trivial renor-

malization of the Landau coefficients α and β, as we have amply witnessed in Chapters 4
and 5.
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and δw ≡ ∆w1 + ∆w2. We can thus rewrite Equations (4.1), (4.2) and (4.3)
as

ΦS =

(
α

2
P 2 +

β

4
P 4 − 1

2
Edep ·P− Ebi ·P

)
h− δζn ·P +

1

2
(η1 + η2) P 2,

(6.1)
and

Ebi = −δw

h
n, (6.2)

while the depolarizing field has still the form (4.8):

Edep = −λ1 + λ2

ε0h
P. (6.3)

Now, if we look at Equations (6.1), (6.2) and (6.3), we can see that there are
three terms that depend on the direction of the polarization vector. There
are, of course, the electrostatic interaction between Ebi and P and the surface
energy term−δζ n·P. And because of the asymmetric interfaces, the effective
screening length λ will also be sensitive to the direction of P. So we have
λ+ = 1

2
(λ1 + λ2)

+ for the positive polarization state, and λ− = 1
2
(λ1 + λ2)

−

for the negative state. In terms of the new parameters and for the two
polarization states (P+ ‖ n and P− ‖ −n), the free energy can be rewritten
as:

ΦS(P+) =

(
α̃

2
P 2

+ +
β

4
P 4

+

)
h + (δw − δζ)P+ +

P 2
+

ε0

δλ,

ΦS(P−) =

(
α̃

2
P 2
− +

β

4
P 4
−

)
h + (δw − δζ)P− −

P 2
−

ε0

δλ,

(6.4)

where α̃ = α + 1
h
(η1 + η2 + 2λ0/ε0), λ0 = 1

2
(λ+ + λ−), and δλ = 1

2
(λ+ − λ−).

A full description of asymmetric metal-ferroelectric-metal systems re-
quires knowledge of the asymmetry parameters δw, δζ and δλ. We shall see
that such parameters provide very small corrections to the total energy of the
system, so that perturbation theory can be employed to treat the problem.
For the sake of convenience, we will introduce the average magnitude of polar-
ization, P0 = 1

2
(|P+|+ |P−|), which is—to first order in the perturbation—the

solution to the symmetric equation of state α̃P0 + βP 3
0 = 0. The difference

in energy between the two polarization states, δΦS = ΦS(P+)− ΦS(P−), can
then be related (to first order) to the asymmetry parameters and the average
polarization in a simple form:

δΦS

2P0

= δw − δζ +
P0

ε0

δλ. (6.5)
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Equation (6.5) can be used to extract quantitative information on the
asymmetry parameters from the output of first-principles calculations—in
particular, from the evaluation of δΦS and P0 for different thicknesses. In
order to single out the contributions of δw and δζ to the offset in δΦS/2P0,
however, we need further information. Now, the total electrostatic field act-
ing on the ferroelectric film, E, which will be a function of the polarization
state, is given by the sum of the depolarizing field and the built-in field Ebi:

E+ = E+
dep −

δw

h
,

E− = E−
dep −

δw

h
,

(6.6)

By performing a macroscopic average of the local electrostatic potential [80]
across the ferroelectric—another end product of ab initio calculations—we
obtain the value of E+ and of E−. The difference in workfunction step is
then given by

δw =
|E+| − |E−|

2
h− 2P0δλ + 2λ0δP

ε0

, (6.7)

where δP = 1
2
(|P+|−|P−|). Using the value of δλ/ε0 obtained from Equation

(6.5), we can evaluate δw and, consequently, δζ.
For a quantification of the problem, we apply our approach to a set of

SrRuO3/BaTiO3 heterostructures with asymmetric terminations (RuO2 and
TiO2), having four different thicknesses of the BaTiO3 film (8.5, 9.5, 10.5
and 12.5 unit cells) and 4.5 unit cells of the SrRuO3 electrode. We perform
our calculations within the generalized-gradient approximation [13, 14] as
implemented in the Vienna Ab-initio Simulation Package (VASP) [75, 76],
using the projector augmented-wave method for the electron-ion interactions
[77]. We use a 6x6x1 Monkhorst-Pack grid for k -point sampling [15], and
a plane-wave energy cut-off of 400 eV. In order to stabilize the tetragonal
phase of BaTiO3 with the polar axis normal to the interface, we impose on it
a−2% in-plane misfit strain [43], which is equivalent to the presence of a thick
SrTiO3 substrate. The out-of-plane lattice constant of the SrRuO3/BaTiO3

supercell is fixed to its centrosymmetric equilibrium value. The true ground-
state ionic configuration of the systems with four different thicknesses is
found by letting all the ions relax until the Hellman-Feynman forces acting
on each of them are less than 1meV/Å. The output of the calculations yield
the quantities δΦS, P+, P−, E+, and E−.
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Figure 6.1: Rumpling (i.e., cation-oxygen relative displacement within each
atomic layer) profiles along the polar axis for the 4.5SrRuO3/8.5BaTiO3 capacitor.
The A site (circles) is occupied by the divalent cation (Sr2+ or Ba2+), while the B
site (triangles) by the tetravalent cation (Ru4+ or Ti4+). The solid lines represent
the rumpling profile for the polarization state of lower energy (P+), the dashed
lines that for the state of higher energy (P−), while the shaded areas indicate the
two interfaces.
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6.2 Results

Figure 6.1 shows the rumpling within each atomic layer for the two possible
polarization states, for the 4.5SrRuO3/8.5BaTiO3 system. The difference
in termination breaks the inversion symmetry of the ferroelectric film and
lifts the degeneracy for the two states: the state with a polarization vector
pointing from the RuO2 to the TiO2 termination (P+) is lower in energy and
larger in magnitude. Moreover, the two rumpling profiles are qualitatively
different, in that the rumpling for the state of higher energy (P−) reverses
its sign in crossing the RuO2–terminated interface.

The asymmetry in termination therefore introduces an energy difference
δΦS for the two polarization states3, as predicted by Equation (6.5). Figure
6.2 shows a plot of δΦS/2P0 as a function of P0. According to Equation (6.5),
the data points can be fitted by a straight line of slope δλ/ε0 = 0.29m2/F
and y−intercept δw − δζ = −0.14V. By using Equation (6.7), we can then
extract the value of δw, and hence that of δζ. We report the three terms that
contribute to the energy asymmetry in Table 6.1. Note that δw is thickness
independent [inset of Figure 6.2]. This justifies our implicit assumption of
weak interface-interface coupling.

We have seen that the two asymmetry parameters δw and δζ have the
effect of poling the ferroelectric film (so-called internal-bias effect). In other

3The calculations yield: δΦS/ΦS ∼ 5×10−5, a result which justifies our perturbational
approach.
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Table 6.1: The three asymmetry parameters of the model.
Parameter Value

δλ (0.026± 0.002) Å
δw (−0.26± 0.03) V
δζ (−0.12± 0.04) V

words, their action is equivalent to that of an electric field −(δw − δζ)/h.
This poling effect—which extends beyond the extreme case of ultrathin films
treated in our calculations and applies to thick, realistic capacitors as well—
has two obvious consequences: (i) a smearing of the phase transition [30],
and (ii) an internal-bias-induced piezoelectric response above the transi-
tion temperature Tc. Using the results of our calculations, the two effects
can be quantified. So if we denote by Γκ the full width at half maxi-
mum of the permittivity vs. temperature curve, we can plot the evolution
of smearing with film thickness for the experimentally meaningful situation
of an asymmetrically terminated BaTiO3 film epitaxially grown between
SrRuO3 electrodes on a thick SrTiO3 substrate [Figure 6.3(a)]. The ex-
tent of smearing can be fitted with reasonable accuracy by a simple power
law. Since the maximum of permittivity occurs at Tc, for which α = 0,
the half maximum above Tc will occur roughly when α = 3βP 2. This im-
plies that Γκ ∝ P 2. The value of the polarization is given by the equa-
tion of state αP + βP 3 = −(δw − δζ)/h, with α = 3βP 2. It follows that
P = [−(δw − δζ)/4βh]1/3, so that Γκ ∝ [−(δw − δζ)/h]2/3. We use this re-
sult to approximate the thickness dependence of smearing via the following
analytical expression:

Γκ = A

(
−δw − δζ

h

)2/3

. (6.8)

By fitting the points obtained from exact numerical calculations, we get:
A ≈ 4.5× 10−3 K (m/V)2/3. The accuracy of the fit is found to be good.

As to the induced piezoelectric response, we can plot [Figure 6.3(b)], for
the same BaTiO3 system at T = Tc +50K, the thickness dependence of the
piezoelectric tensor component d33 = 2κ33Q11P3, where P3 is the asymmetry-
induced polarization component along the polar axis, κ33 the dielectric per-
mittivity along the polar axis, and Q11 the appropriate electrostrictive tensor
component.

An important conclusion can be drawn from our model. The two equa-
tions of state of the system (∂ΦS/∂P = 0 for each polarization state), to first
order in the perturbation, yield the following expression for the polarization



Asymmetric Ferroelectric-Electrode Interfaces 63

200 400 600 800 1000
h @nmD

50

100

150

200

G
Κ
@KD

HaL

200 400 600 800 1000
h @nmD

50

100

150

200

250

300

d33 @pC�ND

HbL

0.2 0.4 0.6 0.8 1
Du @%D

-0.003

-0.002

-0.001

0.001

0.002

0.003

∆P @C�m
2
D

HcL

Figure 6.3: (a) Smearing as a function of thickness (Γκ is the full width at
half maximum of the permittivity vs. temperature curve); (b) asymmetry-induced
piezoelectric coefficient d33 (calculated at T = Tc + 50K) as a function of thickness;
(c) reversal of the sign of δP by application of additional in-plane biaxial strain
∆u to a 10-nm film at room temperature. In each case, the effect was evaluated for
the case of an asymmetrically terminated BaTiO3 film epitaxially grown between
SrRuO3 electrodes under 2% compressive in-plane strain. The Landau theory
parameters for BaTiO3 were taken from Reference [82].
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asymmetry, δP = 1
2
(|P+| − |P−|):

δP = −κ33

h

(
δw − δζ +

2P0

ε0

δλ

)
. (6.9)

Now, δw − δζ and 2P0δλ/ε0 are of opposite sign [cf. Table 6.1], and so is
their contribution to the polarization asymmetry. If we can play with the
value of P0, we can then reverse the sign of δP . This could be accomplished
for example by applying strain to the film, since through electrostriction
this would vary the absolute value of polarization considerably. For the
same BaTiO3 system (subject to a −2% in-plane misfit strain) considered
in Figures 6.3(a) and (b), the reversal of the sign of δP by application of
additional in-plane biaxial strain through substrate bending is shown for
illustration in Figure 6.3(c). Note that here we speak of reversal of the sign
of δP , and not of switching, for it would take a reversal of the sign of δΦS

to observe the latter phenomenon. For the system under consideration, the
term P0 δλ/ε0 in Equation (6.5) is too small for switching to occur, while the
factor of 2 in Equation (6.9) makes such term large enough to reverse δP .
Switching might become possible, however, if this term were larger due to
a larger value of P0. Such is the case for, e.g., PbTiO3-based compounds.
Incidentally, the stress-induced switching in Pt/PZT/IrO2 capacitors that
was reported in Reference [83] might be related to the asymmetry effect
described in this Chapter.



Chapter 7

In-Situ Polarization Screening in
Ferroelectric Capacitors with
Oxide Electrodes1

Ferroelectric oxides are essential components in a large number of applica-
tions, from ultrasound medical imaging [84] to non-volatile random access
memories [85] and Micro-Electro-Mechanical Systems (MEMS) [86]. Follow-
ing a general tendency towards miniaturization, ferroelectric-based devices
are being shrunk to nanometer scale by growing thin-film capacitor struc-
tures. This procedure allows achieving high electric fields from low-voltage
sources, but it entails a size effect and ensuing degradation phenomena that
limit the performance of the device [50]. As discussed in Chapters 2, 4 and
5, the cause of this size effect is generally believed to be the depolarizing
field produced by incomplete screening of the bound polarization charge at
the ferroelectric-electrode interface. The presence of such interface is thus
equivalent to adding an extra capacitor in series to the ferroelectric, thereby
reducing the ability to vary the permittivity and hence the efficiency of the
device. In memory applications, such a “surface capacitor” effect is believed
to lead to electrical over-stress near the electrodes when cyclically switching
the polarization, eventually degrading the switching ability of the film (a phe-
nomenon known as fatigue [50]) and impairing the memory’s performance.

Surface effects become the more pronounced the thinner the film. The in-
troduction of an extra capacitor between the metal and the ferroelectric pro-
duces a depolarizing field that suppresses the polarization and the permittiv-
ity of the film—an effect that grows stronger with decreasing film thickness.

1G. Gerra, A. K. Tagantsev, N. Setter, and K. Parlinski, Phys. Rev. Lett. 96, 107603
(2006).
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Figure 7.1: The surface-capacitor effect. (a) Thomas-Fermi screening and
Kretschmer-Binder effect, each being equivalent to the introduction of a capaci-
tance (CTF and CKB) in series with the ferroelectric. (b) Compensation of the
bound charge by the presence of free charge carriers in the ferroelectric, for ex-
ample as a result of doping or contact phenomena. (c) Penetration of the ionic
polarization into the metal, for example as a result of the mechanical relaxation of
the electrode ions in response to the ferroelectric distortion of the adjacent lattice.
The gradient in shading represents the concentration of free charge carriers, while
the solid line represents the absolute value of polarization.

Such phenomenon has provoked speculation in recent years as to whether
ferroelectrics have a critical thickness below which ferroelectricity disappears
altogether, and whether this limit is intrinsic to the finite size of the system
or whether it is imposed by the specific properties of the interface [cf. Chap-
ter 2 and References [39, 40, 45, 66, 67, 87–89]]. In light of the fundamental
role played by the surface-capacitor effect in the physics of ferroelectrics and
in the performance of coming applications, identifying its origin assumes a
significance that goes beyond mere scientific curiosity.

We have seen in Chapters 2 and 4 that there are two distinct possi-
ble explanations for the appearance of an additional capacitance at the
ferroelectric-metal interface. The first possibility is related to the fact that
when free charges in the electrode approach the ferroelectric-electrode inter-
face to screen the bound charge of the ferroelectric, they form a layer of finite
thickness (known as the Thomas-Fermi screening length) [34]. Therefore, the
center of gravity of the free charges is displaced with respect to the inter-
face, creating a capacitor. On the other hand, the polarization cannot drop
abruptly in going from the ferroelectric to the metal (so-called Kretschmer-
Binder effect) [28]. For this reason, the center of gravity of the bound charge
is shifted away from the metal, creating another capacitor. These two mech-
anisms, shown schematically in Figure 7.1(a), may act simultaneously as two
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back-to-back in-series capacitors.
In an effort to improve the performance of ferroelectric thin-film devices,

it was found that the surface-capacitor effect is much weaker when the elec-
trodes are conductive metal-oxides, such as RuO2, IrO2, or SrRuO3. Unlike
the case of simple Pt electrodes, for such materials no additional surface ca-
pacitor has been revealed by dielectric measurements [90]. This feature is in
strong correlation with the essential suppression of degradation effects that
is observed when oxide electrodes are used [50, 85]. While the paramount
importance of this phenomenon in view of the applications of ferroelectrics is
universally recognized, the origin of the beneficial effects of conductive metal-
oxide electrodes is still a matter of dispute [cf. reviews in References [29,50]].
A reasonable approach to the problem is to look for a charge-compensation
mechanism that makes the screening more efficient. One possibility is an
enhanced concentration of free charge carriers in the first few layers of the
ferroelectric [Figure 7.1(b)], for example as a result of doping [50] or of con-
tact phenomena [91]. We can say that in this case the free charges move to
where the bound charges are situated, so as to screen them “in situ”. The
second possibility is the penetration of the bound polarization charges into
the electrode. In the case of oxide electrodes, this is made feasible by their
ionic structure. We can imagine that the ionic displacements that produce
the polarization in the ferroelectric might continue for some distance into the
metal-oxide structure, leading again to in-situ screening [Figure 7.1(c)]. In
this scenario, one can additionally profit from a weaker blocking of polariza-
tion at the interface [81]. It is worthy of note that whichever the mechanism
behind it, in-situ screening can essentially cancel out the destructive effect of
the additional surface capacitor, thus explaining the enhanced performance
of oxide electrodes.

In this Chapter, we will use the wealth of information derived in Chapter 5
to analyze the second in-situ screening scenario. We will show that the latter
does indeed take place in BaTiO3 thin films, hence significantly controlling
the size effect.

In the context of density functional theory calculations, we can compare
the behavior of a ferroelectric-electrode system in which the electrode ions
are blocked (the hard-electrode approximation of Chapter 5) with a system in
which they are free to move (the soft-electrode approximation of Chapter 5),
thereby isolating the pure electrostatic effect due to Thomas-Fermi screening
from the more complicated problem involving the mechanical relaxation of
all the ions. As we saw in Chapter 2, Junquera and Ghosez [45] have focused
on the former aspect, modeling the impact of the Thomas-Fermi capacitor
on ferroelectricity. Their work is based on the implicit assumption that the
ions of the electrode do not react at all to the ionic displacements in the
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ferroelectric, and that the latter displacements are homogeneous throughout
the material. However, in order to verify whether at a realistic interface the
Thomas-Fermi capacitor fully exerts its effect, one can lift the aforementioned
assumptions and let the ionic displacements penetrate into the electrode. In-
cidentally, the importance of allowing the atomic coordinates of the electrode
to relax was recognized, but not further investigated, in Reference [67]. If
this penetration is important for polarization screening, one expects to find
(i) significant ionic displacements within the electrode and (ii) an apprecia-
ble reduction of the critical thickness for ferroelectricity in the system. The
latter effect arises because better polarization screening implies a reduction
of the depolarizing field, which in turn is believed to kill ferroelectricity on
decreasing the film thickness. Both predictions have been shown to be cor-
rect in Chapter 5. We now wish to further analyze the previous results and
attempt to fully understand their implications.

To have a clear comparison with previous results, we have modeled the
ferroelectric state of a system identical to that treated by Junquera and
Ghosez, and begun by calculating the total energy of the system as a func-
tion of the soft-mode distortion amplitude, in the so-called “frozen-phonon”
approximation [92] (with the additional assumption that the electrode lat-
tice is perfectly rigid with respect to ionic displacement). Specifically, we
have considered SrRuO3/BaTiO3/SrRuO3 sandwich structures with symmet-
ric TiO2–TiO2 terminations, where the perovskite ferroelectric is intercalated
between two slabs of the perovskite conductor, and assigned the BaTiO3 ions
a given fraction of the computed bulk soft-mode displacement of the relevant
atomic species. The total-energy calculations were performed within the
generalized-gradient approximation [13,14], using the Vienna Ab-initio Sim-
ulation Package (VASP) [75, 76] and the projector augmented-wave method
for the electron-ion interactions [77]. We have used a 6x6x1 Monkhorst-
Pack grid for k -point sampling [15], and a plane-wave energy cut-off of 400
eV. The SrRuO3 and BaTiO3 in-plane lattice constants were constrained to
3.94 Å (the bulk lattice constant—calculated from first principles for self-
consistency—of the fictitious SrTiO3 substrate [45] that is used to stabilize
the tetragonal phase, with the polar axis normal to the interface [43]), while
their equilibrium out-of-plane lattice constants were subsequently calculated
by minimizing the total energy. The resulting structures were used as the
building blocks of the supercell, which consisted of five unit cells of SrRuO3

2

and a variable number of BaTiO3 unit cells. We have considered the simplest

2Calculations performed on the same BaTiO3 films with six-unit-cell thick SrRuO3

electrodes showed a negligible effect of the electrode thickness on the relevant properties
of the system.
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Figure 7.2: The energy change (per unit cell of BaTiO3) due to a given frac-
tion of the computed bulk ferroelectric soft-mode distortion (in the frozen-phonon
approach), for six different thicknesses of the ferroelectric layer (n is the num-
ber of unit cells of BaTiO3). The total energy of the structure in the paraelec-
tric phase is taken as a reference. Inset, average polarization of the ferroelectric
layer as a function of thickness, for the frozen-phonon and the full-relaxation data.
The polarization was calculated using the computed Born effective charges of bulk
BaTiO3 [78, 79].

computational situation, where the supercell volume is fixed to its centrosym-
metric equilibrium value. Such constraint should affect neither the qualitative
considerations presented herein nor the obtained value of the critical thick-
ness for ferroelectricity. The extent of the out-of-plane clamping imposed
on the structure will somehow modify the absolute value of the spontaneous
polarization, which was not, however, the subject of investigation here. The
justification of our approach follows from the treatment of clamping effects
reported in Reference [43].

Figure 7.2 shows the change in energy effected by a given fraction of bulk
soft-mode distortion, for six different thicknesses of the BaTiO3 layer. The
presence of side minima on a particular curve indicates the existence of a fer-
roelectric instability at such thickness. The minima disappear at a thickness
of four unit cells, meaning that the critical thickness for ferroelectricity in
this system is 2 nm, in good agreement with the result of Reference [45].

As the next step, we have calculated the true ground-state ionic con-
figuration of the six systems with different thickness by letting all the ions
(including those of the electrode) fully relax, until the Hellman-Feynman
forces acting on each of them were less than 1 meV/Å. The profiles of the
rumplings (i.e., the cation-oxygen relative displacements within each atomic
layer) thus obtained are shown in Figure 7.3.
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Figure 7.3: The rumpling (i.e., the cation-oxygen relative displacement within
each atomic layer) profiles obtained by full minimization of the total energy of the
system, for six different thicknesses of the BaTiO3 layer. The rumplings occur
along the polar axis only. The A-site ions are Sr and Ba, while the B-site ions are
Ru and Ti.

The foremost result of the calculations is the fact that the ionic displace-
ments penetrate into the metal over a distance of two or three unit cells.
Furthermore, the ferroelectric distortions are hardly suppressed as we ap-
proach the interfaces, implying little or no surface reduction of polarization.
In the case of the thinnest film (two unit cells of BaTiO3), the rumpling
pattern has a mirror-symmetry plane lying in the middle of the ferroelectric
layer, and shows a clear antisymmetric poling effect of the two interfaces,
which excludes the possibility of a ferroelectric bistability. Such poling effect
of the interface is a consequence of its centrosymmetry-breaking action [cf.
Chapter 6]. For thicknesses of three unit cells and greater, the mirror sym-
metry is broken: the rumplings are rather uniform within the ferroelectric
film and yield a finite average polarization. This is clearly seen from the inset
of Figure 7.2, where, as an illustration, we have plotted the polarization as
a function of thickness, using the computed Born effective charges [78, 79]
of bulk BaTiO3. It follows that the critical thickness for ferroelectricity in
BaTiO3 is three unit cells (∼1.2 nm), roughly half the value (∼2 nm) found
within the frozen-phonon approximation.

The striking observation of the “softness” of the oxide electrode sheds
some light on a fundamental issue concerning ferroelectric thin films. If the
ionic displacements associated with the polarization continue into the metal,
then those long-range electrostatic effects associated with a nearby-electrode
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Figure 7.4: The macroscopically-averaged electrostatic potential along the polar
axis z, for the system with 8 unit cells of BaTiO3 under (a) the frozen-phonon and
(b) the full-relaxation approximations.

suppression of polarization are heavily reduced for this type of system. In
other words, surface-capacitance effects are weaker in this case thanks to the
partial screening of the bound polarization charge carried out in situ by the
electrode’s free charge carriers. That such screening is enhanced when the
SrRuO3 interfacial layers are allowed to relax is confirmed by an inspection
of the macroscopically-averaged [80] electrostatic potential of the system [cf.
Figure 7.4]. By determining the potential drop across the ferroelectric film,
we evaluated the depolarizing field [cf. Equation (4.8)],

Edep = −2λP

ε0h
, (7.1)

and from the calculated average ferroelectric polarization P , we obtained the
quantity λ. We found a value of λ ≈ 0.2 for the frozen-phonon data, as
opposed to λ ≈ 0.1 for the full-relaxation data [cf. Table 5.2]. Therefore,
the lattice softness of SrRuO3 is responsible for a twofold increase in the
screening ability of the electrode, which seems to explain the roughly twofold
reduction in the critical thickness for ferroelectricity compared to the frozen-
phonon case. The correlation between enhanced screening and stability of
the ferroelectric phase suggests that the latter is sensitive to the ionic re-
laxations because of the more favorable electrostatic state of the resulting
relaxed structure, rather than because of the purely mechanical or chemical
properties of the interface [cf. Chapter 5].

We have seen that the ionic polarizability of the nearby-interfacial layers
of the electrode are essential in stabilizing the ferroelectric phase in BaTiO3.
However, this may not be a universal property of perovskite ferroelectrics. In
a recent first-principles work [67], Sai et al. have found that PbTiO3, while
it retains its ferroelectric character at all thicknesses considered for both
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Pt and SrRuO3 electrodes, shows polarization enhancement in the case of
Pt electrodes and polarization reduction in the case of SrRuO3 electrodes.
This suggests that the role of ionic displacements in the electrode is not of
primary importance in screening the polarization bound charge for the case of
PbTiO3. The case of SrRuO3/BaTiO3/SrRuO3 structures was also treated by
Sai and co-workers, who report absence of ferroelectricity below a thickness
of 2 nm. However, the contradiction with our result is only apparent. The
point is that in Reference [67] the in-plane lattice constant of the stack is
set equal to that of bulk BaTiO3 at 0 K (3.991 Å). Under such mechanical
boundary conditions, BaTiO3 should have a rhombohedral ground state, as
opposed to the artificially stabilized tetragonal state chosen in Reference [45]
and in our work. The fact that the atomic relaxation with respect to the
out-of-plane coordinates, which was performed in Reference [67], does not
reveal ferroelectric minima along the polar tetragonal axis is therefore not
evidence of the absence of ferroelectricity.
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Conclusions and Perspectives

We have shown that the coupling between the polarization and the surface
of a ferroelectric film has a profound impact on the nucleation process of
reverse domains, and therefore on the switching properties of the ferroelec-
tric. The nucleation barrier is reduced when such a coupling is considered,
and can even be suppressed altogether when an external field, much smaller
than the thermodynamic coercive field, is applied. Our model for reverse
domain nucleation enables predictions compatible with several features of
switching kinetics in ferroelectrics, such as: (i) the significantly smaller value
of the real coercive field compared to the thermodynamic coercive field—thus
solving the long-standing coercivity paradox, (ii) the non-diverging temper-
ature dependence of the coercive field upon cooling, (iii) the existence of
favorable conditions for nucleation (given by small inhomogeneities in the
ferroelectric-electrode interface), with formation of an exponentially wide
spectrum of waiting times, and (iv) easier switching close to morphotropic
phase boundaries in perovskite-type ferroelectrics.

In order to describe the size effect in ferroelectric thin-film systems, we
have developed an approach which combines phenomenological theory and
first-principles calculations. Our approach is based on the observation that
in the Ginzburg-Landau theory the interfacial variation of the polarization
occurs over a distance that is smaller than the lattice spacing; therefore, we
take the polarization to be spatially uniform throughout the ferroelectric,
and ascribe the effect of the surface variation of polarization to the surface
energy terms. Extracting the material parameters of the model from ab initio
calculations on ultrathin films allows the description of thicker, technolog-
ically meaningful systems. From physical arguments we conclude that our
approach is fully justified in the case of normal ferroelectrics, for which the
soft-mode polarity is strong, whereas for weak ferroelectrics, for which the
polarity is much weaker, treatment of the problem should include the gradi-
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ent energy, and a solution to the Euler-Lagrange equation for the free energy
functional is required.

Our approach shows that the size effect can be described by only two
quantities: the effective screening length λ (embodying the long-range elec-
trostatic response of the interface) and the quadratic surface energy coeffi-
cient η (embodying the short-range chemical interactions at the interface). In
the case of SrRuO3/BaTiO3/SrRuO3 heterostructures with symmetric (i.e.,
TiO2–TiO2 or RuO2–RuO2) terminations, the short-range contribution to
the size effect is revealed to be less important than the long-range one, as it
is often assumed to be the case. The type of termination has a significant
impact on the properties of the interface.

In the case of SrRuO3/BaTiO3/SrRuO3 structures with asymmetric (i.e.,
RuO2–TiO2) terminations, we demonstrate and evaluate the poling effect
resulting from the interface asymmetry. The observable effects that such an
asymmetry induces—namely, smearing of the phase transition, an induced
piezoelectric response above Tc, and reversal of the polarization asymmetry
by application of biaxial strain—are all found to be appreciable even for
realistic film thicknesses, and can in principle be verified experimentally.

Finally, we have demonstrated that perovskite metal-oxides like SrRuO3

can essentially share the ionic displacements that are responsible for the po-
larization in ferroelectrics. The effect provides a very efficient mechanism of
polarization screening, where the bound charges are screened in situ within
the electrodes. Such a screening mechanism is shown to lead to an essential
reduction of the critical thickness for ferroelectricity in BaTiO3 (three unit
cells). It also offers an explanation for the beneficial impact of oxide elec-
trodes on the switching and dielectric properties of ferroelectric capacitors,
which has been extensively documented in experimental reports—cf. the use
of IrO2 electrodes in FeRAM chips to avoid fatigue.

The work presented in this thesis poses a number of questions about the
physics of ferroelectric-electrode systems, which in turn suggest potential di-
rections for future research on the topic. First of all, the coupling between the
interface and the polarization—which we saw plays a crucial role in stimulat-
ing domain nucleation—has not been quantified; only the difference between
the coupling energy parameters for the two interfaces, δζ, was calculated.
The evaluation of ζ for one interface is not, however, a simple task, for the
surface energy comprises contributions from both interfaces. From the point
of view of density functional theory, such a task involves the integration of
the total-energy functional over half the supercell in real space, a non-trivial
effort indeed.

Second, our finding of the predominance of the electrostatic over the
chemical contribution to the size effect was only relevant to the case of oxide
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electrodes, where the structural affinity with the perovskite ferroelectric is
something of a peculiar case. It would be interesting to evaluate the param-
eters λ and η in the case of metallic electrodes as well, and verify the relative
strengths of the two contributions for such type of interface.

Finally, our calculations were performed in the case of an out-of-plane
polarization vector, which we know implies depolarizing effects that greatly
influence the polarization response. The investigation of the properties of
systems with an in-plane polarization vector—which implies the absence of
depolarizing fields, and therefore the presence of a single, chemical contribu-
tion to the size effect—would be very instructive, especially as far as concerns
the interface energy parameter η and the penetration length of the ionic dis-
placements into the electrode.
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