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Abstract— Recently the decay of correlations between bits of construction is not a good code (in particular the bit MAP
low density generator matrix (LDGM) codes have been inves- probability of error is always non-zero) there is a noni#iv
tigated by using high temperature expansions from statistial phase transition (a jump in the MAP-GEXIT curve) and our

physics [8]. In this work we apply these ideas to a special . . .
class of low density parity check codes (LDPC) on the binary analysis constitutes a step towards proving the correstoks

input gaussian white noise channel (BIAWGNC). We give a the replica formulas in the most general case. In this paper
rigorous derivation of the MAP GEXIT curve (the derivative with ~ we illustrate our methods for the BIAWGN channel for which
respect to the noise parameter of the input-output conditioal the combinatorial methods do not extend. We also provide

entropy) for high values of the noise. Our result agrees witlthe 5 merical illustration of the phase transition on the BEC
formal expressions obtainable from replica calculations,and is

the first result that fully justifies the replica formulas beyond channel.

the binary erasure channel (BEC). It also shows that the MAP

and BP-GEXIT curves are equal in the high noise regime. The |l. CORRELATION DECAY FOR A GENERAL MODEL ON A

ensemble of LDPC codes considered here is constructed by GRAPH

adding randomly a sufficient fraction p of degree one variable . . .

nodes to a standard irregular LDPC(A, P) Tanner graphs. In this paragraph we reformulate the main results of [8] in a
suitable way for the present analysis. It is convenient finde

. INTRODUCTION a general model on a bi-partite Tanner graph consisting as

usual of variable nodes and check nodes. The main difference

Recent connections between statistical physics and COMM the usual LDPC case is that the check nodes do not

nication.science have prpvided us with vario_u§ C_OnjeCturﬁécessarily enforce hard constraints on the variable nddés
concerning exact expressions of relevant quantities iratiad- they enforce a more general “soft” type of constraint

ysis of low-density parity check codes (LDPC). Although the We use the usual mapping of bits to spims= (—1)®

replica method has been applied successfully to the maximwé denote the check nodes byand dc denotes the set of
a posterior (MAP) analysis of communication over binar,

X . Yariable nodes attached to the check nadéle also seby. =
memoryless symmetric (BMS) channels using sparse grapp o:. Our general model is a spin system with a Gibbs
codes, rigorous results are scarce. Tight lower bounds @n é%\ascurza
conditional input-output entropy have been proven [2]p]d
these match the replica expression giving strong suppainieto wlo) = = H l(l + 09 tanh J,) H elioi
conjectured equality. In [6] the authors provide a comlzriat Z 2 P
proof of the exactness of the replica formulas for the case of . .
transmission over binary erasure channel (BEC) using wgufo.r .the moment; and J. are fixed real numbers (possibly
LDPC codes and in [7] the authors provide such a proof fg?flmte), and
Poisson LDPC codes, still on the BEC, using an interpolation 7 zg: 1:[ %(1 + e tanh J.) Helm

C

method developed in spin glass theory.
More recently a new method based on correlation decay
techniques was put forward in [8] for the analysis of lowNote in particular that if/. = oo then the check node function
density generator matrix codes (LDGM) and enabled to proiga hard constraint enforcing the usual parity check cairstr
the correctness of the replica formulas in the high noisemmeg Check nodes withJ. finite are called “soft”. The average of
for a class of BMS channels. However it is still unclear howx = [,y o; with respect tou(c) is denoted agox).
to apply techniques of correlation decay to standard LDPCFor later use, we explain a correlation decay lemma adapted
ensembles. In this work, we show that results of [8] can beom [8].
applied to a special class of LDPC codes. Definition 1: A walk w between two variable nodes
Our application concerns a special class of LDPC ensembles vg, is a sequence,ci, v, ¢, ..., ¢, vi+1 Of variable
which contain a sufficient fraction of degree one variableodes (denoted by, vs,...,v;41) and checks (denoted by
nodes. This code construction is equivalent to a mixtueg, cs, ..., ¢) such thatvy = v,, vi11 = vg and {v;, vi41} €
of LDGM and LDPC check nodes which eventually allows;. We say that the walk iself-avoidingif v; # v;,c; # ¢;
us to control the decay of correlations. Although this coder i # j. We also say that two variable nodes, vz are
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connected if and only if there exists a self-avoiding watnfir
Vo 10 vg.

The length of the walk is the number of clauses in it. If
vo = vg then a self-avoiding walk from,, to vg is the trivial
walk v,,: we define its length as zero.

Let W, denote the set of all self-avoiding walks between
variable nodes,,vg, and Wap = Uy, cav,e8War Where
A,BcC{l,..,n}

Now fix some numberd > 0. Denote byB the set of all
check nodes, such thatJ.| > H. ThusB = {c| |J.| > H}.

Ifemma 1:(Correlation _bound) CanIder t.he spin SySter‘Eig. 1. A code from our ensemble is constructed from a stahd&PC
defined above and two fixed non intersecting sétsSB C  graph, with7 variable nodes and check nodes denoted by, vo, . .., v7

{1 n} We have and ¢y, ¢, c3, ¢4 respectively, to which we attach a fraction of degree one
AR variable nodesv;, wa, ws.
[(wa0m) —(oadom)| <2 > [ re
WEWap CEW N = |V U V1|) is

wherep, = 1, if c € B andp, = e*l’el — 1, if ¢ ¢ B.
p(XNYY) =

The right hand side of this bound involves a sum over all 1 1 1 o o
self-avoiding walks connecting the two setsand B where 7 H 5(1 +0ac) H 5(1 +0ac) H el H el
each walk carries a weight depending on the softness of the — ¢€Co ce€Cr ey eV
check it meets. The proof proceeds by an expansion of the
Gibbs weight around the poinf, = 0 for all c. This expansion \yith
can be organized as a sum over walks connecting nodds in
with nodes inB. It turns out that only selfavoiding walks 1 1
survive, the other ones giving a zero contribution. A walkz = Z H ~(1+0ac) H ~(1+40a.) H elivi H elioi
can traverse the sé@ in which case the expansion terms are o ceCo 2 ceCy 2 ey ieVy
not small, hence the weight. = 1; and it can traverse the

complement of8 in which case the expansion terms are small,
hence the weight, — %/ — 1. Let hy = +H(XN | YV). We know from [3][5] that the

MAP-GEXIT is given by
IIl. EXACT EXPRESSION OF THEMAP-GEXIT FUNCTION
FOR A CLASS OFLDPC cODES dhy

1 1
The class of codes that we use is defined as follows. Con- de 2N Z (EL<%> B 1) TN . (EL<0i> B 1)
sider a code from the standard ensemble LDRG(z), P(z)) v o
with design rater =1 — 2—(? We denote the set of variable
nodes of this code by. To every check node attach a degreéaking the average w.r.t the code ensemble we get

one variable node with probabilify Call the set of new degree

one variable node¥;. The set of check nodes which contain d 1

a new degree one variable nodeCisand the remaining ones EEG[}LN] = T+ =np) (]Ec,dao) — 1)

are denoted by,. On an average the resulting Tanner graph 1

hasn + mp variable nodes, so that the design rate of the 4 w(EMW _ 1) 1)
code is given byR = 1’1(%1)(_15”). We denote a code from 2(1+ (1 =7)p) )

this resultant ensemble bé (see figurel). We also denote

averages w.r.t to a code from this ensembleily. whereo, denotes a spin attached to a variable nod¥ iand

We assume communication over a binary input additive denotes a spin attached to a variable nod#;in

white gaussian noise (BIAWGN) channel_ W'_th transition Our main theorem expresses the fact that both soft bit MAP
probability given bypy|x(y|z) and half loglikelihoodl =

1 IO et _ estimates in equation (1) can be computed by the density
3 In 7ty with distribution assuming all zero codeword transg,o|ution equations adapted to the present code enserble. |
mission given byﬁe*l*) /2¢. Heree denotes the inverse also justifies the replica formulas in a regime of high noise.
square noise. Let (9 (v) be the density of messages from a variable node in

Under MAP decoding the posteriori probability distributio V to a check node and letf® (u) be the density of messages
of the input to the channeX™ given the output’™ (where from a check node to a variable nodelin These satisfy the




following iterative equations: probability is well known for sparse graphs (see for example

b1 [1]). The existence of a boundaty of soft checks follows
7D (u) = Zpk{p/dk(l) H dvin @ (v;) from the standard analysis of a birth- death process and is
. =1 presented in the appendix for completeness. Let us now prove
k—1 theoreml.
x §(u —tanh™" (tanh! H tanhv;)) + (1 — p)
i=1 Proof: We prove only the first equation in the theorem,
k-1 k-1 since for the other one all arguments are similar. Note tinat t
X / I 7V @)s(u—tanh™ (tanhi [ tanh”i))} randomness irG is two fold. One randomness comes from
i=1 =1 @) the choice of a codé' from the LDPCf, A(z), P(x)) and the

o . other one comes from the attachment of degree one variable
— B — nodes with probability. Let us denote by = {S1,...,Sm
() = Z Ae /dlc(l) H duci)® (ue)d(v — 1 — Z ue)  the vector of Bernoul(ip) random variables. V{Ve associa‘i’]é
¢ e=1 e=1 3) to each check node where the valueS. = 1 indicates that
c e Cy andS,. = 0 indicates that: € Cy. We will view Eqs as
The initial condition isp®) (v) = ¢(v). We will denote by the E¢ g.
short handE, the average w.r.t the density evolution densities Consider a spincy, € V and the neighborhoods

given in (2), (3). Ng(0), N¢14+1)4(0) around it. Let us denot® the event that
Let 14z, Tmae D€ the maximum variable and check nodev; . 1)4(0) is a tree. Since this is a high probability event for
degrees respectively, and 18t = (ra: — 1)(Limazr — 1) bounded degree distributions,

E =E G) (1
Theorem 1 (Main Result)There exisky andpy depending c.s.1(70) ¢.s.1l{0)®] + on(1)
only on K such that fore < €, (high noise) ang > p, (high LetS denote the set of alf such that there exists a boundary
density of extra degree one nodes) the two soft bit estimatdetweendN,(0) and dN(y,1)4(0) such that all the check

of equation (1) are given by nodes inB belong toC,. From the previous lemma we know
, thatP(S) > 1 — 04(1). Thus we have
Jim Eg y(oo) = lim 3 AEftanh (143 u®))] Ec,s.1(00) = Ec,5.1[(00)[0, 8] + 04 (1)
14 i=1
) ) where o4,(1) is a function ofd,n which goes to zero as
ngnoo Egi(o1) = dILH;oZPkEd[tanh (H' n,d — oco. From now on we consideEc g ;[(00)|O, S]. For
’Z asS € S, let us denote the boundary which contains only
1 (d) check nodes belonging @& by Bs. Consider any check node
tanh (1:[1 tanhv; ))} ¢ in the boundary3s for S € S and look at the contribution

%(1 + aloac\l)ellal due to this check node and the degree

As will be seen later on, our proof provides explicit expre2N€ Spina1 & Ci (‘{Vitlh channel loglikelihood output given
sions for the constants, and p, but we do not attempt to PY 1) The constraing (1 + 0109.\1) enforcess; = a1
make theses sharp. Thus the effective contribution of(1 + o10p0\1)e"?" to

To prove our main theorem we utilize the following lemmathe Gibbs measure is given by'?>-\1. Now assume for a
It is stated for a variable node belongingidbut is also valid Moment that each variable node V, is transmitted through
for a variable node belonging . We denote a neighborhood@n independent channel with inverse square neis&hus if
of depthD (variousD’s will be needed) around the spin by € = 0 then the check node connected ta € V1 is erased
Np(0) and the check node boundary of such a neighborho@Mm the Gibbs measure. One can interpolate between0

by ON _Also defi - (Kfl)K]’l . toe; =¢ by_ using the fundamental theorem of calculus. This
y ONp(0). Also definea = In (1-p)pF KK procedure is performed for all checks along the bound&ry
according to a specified order. The details can be found in [8]

Lemma 2 (Existence of Soft Boundarpick a node inY
and a code in the ensembig. Take an integetl, > ‘“aK,
a depthd and consider the two neighborhood;(0) ¢  Ec.s.:((00)|0,S] = Ec,s.[(00)55]0;S] +EC,§{

N(z4+1)4(0). The integerL is to be considered large enough E )

but fixed while we will letd go infinity when needed. With Z / dvE; ((0000b) ty~v — (00) 1,0 (Tob) 1y~r) ’@,5}

high probabilityl —o,, 4(1) these two neighborhoods are trees beBs ”°

and there exists a check node boundatyetweerd N, (0) and (4)

ON(1+1)4(0) such that all the check nodes fhbelong to the \here ()5, denotes the average w.r.t the Gibbs measure

setC; (are soft). restricted to the neighborhood ef, inside the boundary by

Bs and the sum is over check nodes in the boundayythat

The fact that the neighborhoods are tree like with higare successively erased. In the avera@e.., has the inverse

and lead to




square noise of the channel loglikeliholgdyiven byr and the Thus taking expectation w.r.t the randomness'ia S we get
checks occurring beforg (in the previously specified order)

are erased. 41E§( Z H (6mLege, () + 1ceco(0))) <
The integral terms will be shown to be small thanks to the =~ w&Wo» c€w w
correlation bound lemma. To utilize this lemma 1 we $et= 4
, 4E ogl, + 1. <
oo for ¢ € Cy. For a check node € Cy, again from the fact 5( Z H ( ilegey (€) €co (C)))

weWoy

(S
that the effective contribution 0%(1 + alaac\l)ell"l to the c¢N<L+1C)d7(%)\Nd(0)

Gibbs measure is given by 7o\t we setJ, = I, for c € C;. (b)
Recall from section Il thaBB = {c||J.|] > H}. Clearly all 4]E§( Z H (5H+]1ceco(0))) =
check nodes: € Cy belong to the seB. With this mapping wEWop C¢N(L+;§E‘6)\Nd(o)
we get thatp, = el*tl =1 < e*® —1forc¢ B andp. = 1
for ¢ € B. Applying the correlation decay lemma we get 4( Z H (5H + Es[Leec, (C)])) =
w cew
et N (L+1)a(0)\Na(0)
2
E; ({00000 )1,~0 = (00) 1,0 (T00) 1, ~0) 4( > 11 (O +1 —p)) < AT mae X
weW, cew
<4B Y [T (" = Diegs(c) + Leer(c)) S N 12 (0)\Na(0)
weton eew m1d d
> K'(u+1-p) “+> K'(0m+1-p) )
wherel.(-) is the indicator function. We have 12(L+1)d l=d

where in(a) we usedl.gc,(c) < 1, in (b) we used the fact
that all check nodes belong t§ independent of each other
with the same probability — p and along any selfavoiding
walk w we have distinct check nodes. In the last inequality
Since all the walks are self-avoiding all the check nodes invée did several things. Firstly we upper bound the total numbe
given path are independent and we can take the expectatirpaths of lengthl by K'!. Secondly, for paths with length
w.r.t the noise inside the product yielding I > (L + 1)d we do not consider the check nodes belonging

to Nir+1a(0) \ Nq(0) which gives (65 + 1 — p)'~ =4 as

a contribution of such paths. Finally, for paths with length

Leer(c) = Loce, . > H(C)Lege, (¢) + Lece, ()

2
By ({0000 )1~ = (00) 1,1 (000 )1, ~0) I < Ld we do not consider check nodes outsitig(0) which
<4 Z H ((€4H — Dogey (¢) + P(1li] > H)Loge, (¢) results in a contribution of§y + 1 — p)? by such paths. The
WEWoy cCw factor of r,,., takes into account the fact thatis a check

1 node with maximum degree,, ..., hence the total correlation
+ Leeco (C)) gets multiplied by a factor of ...

<4 Z H (6rLogc, (c) + Leec, (c)) We choosep > 1 — W and ¢ such thate(l +
weWop cEw 2(In $25)/2) < +In(352). With this choice of, p we choose
H such thate(1 + 2(In %)"/?) < H < }In(*32) which

where we denotéy £ ¢* —1+P(|11| > H) (note that finally impliesdy < (1 — p). Thus the correlation is upper bounded

oy will be some very small number). In the first inequalinpy
we used the fact thaly C B, thusll.¢g(c) < Lo¢c, (c). (2K)T+DA(1 — p)d

Now we consider the average w.r.t the randomness.in 1— (2K (1 —p))Z+Dd
Since we restrict the random vectsr to lie in S we lose ) ]
randomness in the region betwe,(0) and Ny 4 1a(0). for some¢ < 1. In.the chogen regime af p we finally bound
Thus for check nodes belonging to this intermediate regien 1€ second term in equation (4) by for somey < 1 (here
can only say thall.cz(c) < 1. But fortunately the number of 7 = CKH).
such check nodes on any self-avoiding path of any lehggh ~ We now evaluate the first term in equation (4). To eval-
upper bounded by.d. As a result for any self-avoiding pathuate Ec.s,i[(00)55|©, S] we will consider the evaluation of
w we have Ec,s.i[{00)Bs|©] becauseP(S¢) = o4(1). For S ¢ S we

define Bs = ON(141)4(0). From [3], by using the Giriffiths-
Kelly-Sherman inequalities for random spin systems, weshav

+4Ld(K"2(1 —p))* < ¢?

H (5H]]'C¢C0 (¢) + Leec, (C)) <
- Ec,5,1[(00) 4(0)|©] < Ec,5.4[(00) 55 6]

H (6H:]]-CQC0 (C) + :H'CECO (C)) < EC7§,l[<UO>N(L+1)d(O) |®] (5)

cew
¢EN(L41)a(0)\Na(0) On Np(0), the Gibbs averages can be computed exactly by



V. APPENDIXA

In this appendix we prove lemma 1. Proof: From stan-
dard arguments [1] the two neighborhoddg(0), N1, 11)4(0)
are trees with high probability. Consider the check nodes
belonging to ON,4(0). We define the following process of
finding the required boundar. Initially we set boundary
B = By £ {c|c € ON4(0) andc € C;}. Pick a check node
¢ € ONg(0) \ By we traverse down along all possible paths
emanating frome till we hit a check node belonging t6;
on all the possible paths. We include all these check nodes
belonging toC; in our boundarys and continue with the next
check node: € 9N4(0) \ Bo.
! Consider the following birth-death process. We call a check
Nz+1)a(0) ‘ node “alive” if it has no degree one variable node belonging
to V; attached to it and “dead” otherwise. Clearly a check
node is alive with probability — p and dead with probability
p. Initially we have a population 0dN;(0) \ By alive check
Fig. 2. On this figure we illustrate the twdree neighborhoods nodes. From each check node genefaig, variable nodes
Ng(0), N(1,1+1)4(0) as well as their boundarie®Ny(0), dN111)4(0). which further give rise ta,,q, check nodes, some of which
Check nodes belonging 16, are shaded black and those belongingCto  gre dead and some of which are alive. Continue with this

are white. We also show the irregular bound#ty consisting of only “soft” . .
check nodes belonging @ and lying between the two neighborhoods. Thi?fOCESS till at timeZ” all the generated check nodes are dead.

" OO " OO " OO @ O@® ®B O
ON(141)a(0)

figure is used throughout all the proofs. The maximum depth achieved by this bound&rgan be upper
bounded by the extinction timé.
the belief propagation equations, Let Y;_; denote the number of alive check nodes at time
] t—1. Let Z, denote the number of alive check nodes generated
[}EHOO Ecs,1[{70) np(0) O] = at timet by one alive check node at tinde-1. Thus the number

) of alive check nodes at timeis given byY; =Y, 1+ 7, —1.
lim Z AED [tanh (l + Z UED))} Here Z, is a Binomial K, 1 —p). For simplicity the parameter
by i=1 K of the Binomial has been set to its worst possible value.

. ) _ ... Thus from standard arguments [9] we have
whereE p is the average w.r.t to the density evolution densities

given by equations (2), (3). Sincé is a constant which PT>t)<PY;>0)=P(Z1+Zo+ -+ Zy > 1)

depends only on code parameters, from (5) we have ) ) .
From the Markov inequality and the independence{ 4t },

¢ @ we have
dlLIEO Ec7§7l[<00>55 |®] = dlLI& ; AgEd[tanh (l + Z u,; )]

i=1

]P)(Zl 4 22 R Zt 2 t) S E[es(21+Z2+-..+Zt)]e—st
— (E[ele])tefst

(g) ( + 68(1 _p))tKe—st
IV. DiscussiON ANDOPEN QUESTIONS < et

Putting everything together we get the theorem. [ |

In this paper we have provided one example of LDP{here in(a) we used the fact thaZ; is Binomial K, 1 — p).
code ensemble for which one can rigorously derive the MARor ), > 1 — L (condition for extinction in finite time for the

GEXIT function for a very noisy BIAWGNC. This is the only pjrth-death process) we have> 0.

example known to us for which such a derivation is made since the|dN,(0) \ By| < K¢, and since each check node
beyond the BEC with non-combinatorial methods. The majn ¢ gn,(0) \ B, gives rise to an independent birth-death
insight in deriving this result is the proof that correla$o process, because of the tree assumption, the probabiity th
between distant codebits decays exponentially with th@iply g the birth-death processes extinct within tinie is lower
distance. We are not yet able to prove this for standaggunded by

irregular LDPC ensembles, but hope that this work provides

a step towards this goal. We have limited ourselves to thB(all birth-death processes are extinct within deptl)
BIAWGNC, because the MAP-GEXIT formula is given by —(1-P(T> Ld))Kd > (1 efaLd)Kd

a simple expression involving the soft bit estimates (mag- B

netizations). However, the whole analysis of this paper c&ote that sincel, > % the probability that all birth-death
be extended to other channels, notably the binary symmetpiocesses are extinct within depthi is lower bounded by
channel (BSC). 1 —o0q(1). [ |
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