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Abstract— Recently the decay of correlations between bits of
low density generator matrix (LDGM) codes have been inves-
tigated by using high temperature expansions from statistical
physics [8]. In this work we apply these ideas to a special
class of low density parity check codes (LDPC) on the binary
input gaussian white noise channel (BIAWGNC). We give a
rigorous derivation of the MAP GEXIT curve (the derivative w ith
respect to the noise parameter of the input-output conditional
entropy) for high values of the noise. Our result agrees withthe
formal expressions obtainable from replica calculations,and is
the first result that fully justifies the replica formulas beyond
the binary erasure channel (BEC). It also shows that the MAP
and BP-GEXIT curves are equal in the high noise regime. The
ensemble of LDPC codes considered here is constructed by
adding randomly a sufficient fraction p of degree one variable
nodes to a standard irregular LDPC(Λ, P ) Tanner graphs.

I. I NTRODUCTION

Recent connections between statistical physics and commu-
nication science have provided us with various conjectures
concerning exact expressions of relevant quantities in theanal-
ysis of low-density parity check codes (LDPC). Although the
replica method has been applied successfully to the maximum
a posterior (MAP) analysis of communication over binary
memoryless symmetric (BMS) channels using sparse graph
codes, rigorous results are scarce. Tight lower bounds on the
conditional input-output entropy have been proven [2][4],and
these match the replica expression giving strong support tothe
conjectured equality. In [6] the authors provide a combinatorial
proof of the exactness of the replica formulas for the case of
transmission over binary erasure channel (BEC) using regular
LDPC codes and in [7] the authors provide such a proof for
Poisson LDPC codes, still on the BEC, using an interpolation
method developed in spin glass theory.

More recently a new method based on correlation decay
techniques was put forward in [8] for the analysis of low
density generator matrix codes (LDGM) and enabled to prove
the correctness of the replica formulas in the high noise regime
for a class of BMS channels. However it is still unclear how
to apply techniques of correlation decay to standard LDPC
ensembles. In this work, we show that results of [8] can be
applied to a special class of LDPC codes.

Our application concerns a special class of LDPC ensembles
which contain a sufficient fraction of degree one variable
nodes. This code construction is equivalent to a mixture
of LDGM and LDPC check nodes which eventually allows
us to control the decay of correlations. Although this code

construction is not a good code (in particular the bit MAP
probability of error is always non-zero) there is a non-trivial
phase transition (a jump in the MAP-GEXIT curve) and our
analysis constitutes a step towards proving the correctness of
the replica formulas in the most general case. In this paper
we illustrate our methods for the BIAWGN channel for which
the combinatorial methods do not extend. We also provide
a numerical illustration of the phase transition on the BEC
channel.

II. CORRELATION DECAY FOR A GENERAL MODEL ON A

GRAPH

In this paragraph we reformulate the main results of [8] in a
suitable way for the present analysis. It is convenient to define
a general model on a bi-partite Tanner graph consisting as
usual of variable nodes and check nodes. The main difference
with the usual LDPC case is that the check nodes do not
necessarily enforce hard constraints on the variable nodes, but
they enforce a more general “soft” type of constraint.

We use the usual mapping of bits to spinsσi = (−1)xi .
We denote the check nodes byc and ∂c denotes the set of
variable nodes attached to the check nodec. We also setσ∂c =
∏

i∈∂c σi. Our general model is a spin system with a Gibbs
measure

µ(σ) =
1

Z

∏

c

1

2
(1 + σ∂c tanhJc)

∏

i

eliσi

For the momentli and Jc are fixed real numbers (possibly
infinite), and

Z =
∑

σ

∏

c

1

2
(1 + σ∂c tanhJc)

∏

i

eliσi

Note in particular that ifJc = ∞ then the check node function
is a hard constraint enforcing the usual parity check constraint.
Check nodes withJc finite are called “soft”. The average of
σX =

∏

i∈X σi with respect toµ(σ) is denoted as〈σX〉.
For later use, we explain a correlation decay lemma adapted

from [8].
Definition 1: A walk w between two variable nodes

vα, vβ , is a sequencev1, c1, v2, c2, . . . , cl, vl+1 of variable
nodes (denoted byv1, v2, . . . , vl+1) and checks (denoted by
c1, c2, . . . , cl) such thatv1 = vα, vl+1 = vβ and{vi, vi+1} ∈
ci. We say that the walk isself-avoidingif vi 6= vj , ci 6= cj

for i 6= j. We also say that two variable nodesvα, vβ are
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connected if and only if there exists a self-avoiding walk from
vα to vβ .

The length of the walk is the number of clauses in it. If
vα = vβ then a self-avoiding walk fromvα to vβ is the trivial
walk vα: we define its length as zero.

Let Wαβ denote the set of all self-avoiding walks between
variable nodesvα, vβ , and WAB = ∪vα∈A,vβ∈BWab where
A, B ⊂ {1, ..., n}.

Now fix some numberH > 0. Denote byB the set of all
check nodesc, such that|Jc| > H . ThusB = {c | |Jc| > H}.

Lemma 1: (Correlation bound) Consider the spin system
defined above and two fixed non intersecting setsA, B ⊂
{1, ..., n}. We have

∣

∣〈σAσB〉 − 〈σA〉〈σB〉
∣

∣ ≤ 2
∑

w∈WAB

∏

c∈w

ρc

whereρc = 1, if c ∈ B andρc = e4|Jc| − 1, if c /∈ B.

The right hand side of this bound involves a sum over all
self-avoiding walks connecting the two setsA and B where
each walk carries a weight depending on the softness of the
check it meets. The proof proceeds by an expansion of the
Gibbs weight around the pointJc = 0 for all c. This expansion
can be organized as a sum over walks connecting nodes inA
with nodes inB. It turns out that only selfavoiding walks
survive, the other ones giving a zero contribution. A walk
can traverse the setB in which case the expansion terms are
not small, hence the weightρc = 1; and it can traverse the
complement ofB in which case the expansion terms are small,
hence the weightρc = e4Jc − 1.

III. E XACT EXPRESSION OF THEMAP-GEXIT FUNCTION

FOR A CLASS OFLDPC CODES

The class of codes that we use is defined as follows. Con-
sider a code from the standard ensemble LDPC(n, Λ(x), P (x))
with design rater = 1 − Λ′(1)

P ′(1) . We denote the set of variable
nodes of this code byV . To every check node attach a degree
one variable node with probabilityp. Call the set of new degree
one variable nodesV1. The set of check nodes which contain
a new degree one variable node isC1 and the remaining ones
are denoted byC0. On an average the resulting Tanner graph
has n + mp variable nodes, so that the design rate of the
code is given byR = 1−(1−r)(1−p)

1+p(1−r) . We denote a code from
this resultant ensemble byG (see figure1). We also denote
averages w.r.t to a code from this ensemble byEG.

We assume communication over a binary input additive
white gaussian noise (BIAWGN) channel with transition
probability given bypY |X(y|x) and half loglikelihoodl =
1
2 ln p(y|0)

p(y|1) with distribution assuming all zero codeword trans-

mission given by 1√
2πǫ

e−(l−ǫ)2/2ǫ. Hereǫ denotes the inverse
square noise.

Under MAP decoding the posteriori probability distribution
of the input to the channelXN given the outputY N (where
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Fig. 1. A code from our ensemble is constructed from a standard LDPC
graph, with7 variable nodes and4 check nodes denoted byv1, v2, . . . , v7

and c1, c2, c3, c4 respectively, to which we attach a fraction of degree one
variable nodesw1, w2, w3.

N = |V ∪ V1|) is

p(XN |Y N ) =

1

Z

∏

c∈C0

1

2
(1 + σ∂c)

∏

c∈C1

1

2
(1 + σ∂c)

∏

i∈V
eliσi

∏

i∈V1

eliσi

with

Z =
∑

σ

∏

c∈C0

1

2
(1 + σ∂c)

∏

c∈C1

1

2
(1 + σ∂c)

∏

i∈V
eliσi

∏

i∈V1

eliσi

Let hN = 1
N H(XN | Y N ). We know from [3][5] that the

MAP-GEXIT is given by

dhN

dǫ
=

1

2N

∑

i∈V

(

El〈σi〉 − 1
)

+
1

2N

∑

i∈V1

(

El〈σi〉 − 1
)

Taking the average w.r.t the code ensemble we get

d

dǫ
EG[hN ] =

1

2(1 + (1 − r)p)

(

EG,l〈σ0〉 − 1
)

+
(1 − r)p

2(1 + (1 − r)p)

(

EG,l〈σ1〉 − 1
)

(1)

whereσ0 denotes a spin attached to a variable node inV and
σ1 denotes a spin attached to a variable node inV1.

Our main theorem expresses the fact that both soft bit MAP
estimates in equation (1) can be computed by the density
evolution equations adapted to the present code ensemble. It
also justifies the replica formulas in a regime of high noise.
Let η(d)(v) be the density of messages from a variable node in
V to a check node and let̄η(d)(u) be the density of messages
from a check node to a variable node inV . These satisfy the



following iterative equations:

η̄(d)(u) =
∑

k

ρk

{

p

∫

dlc(l)

k−1
∏

i=1

dviη
(d−1)(vi)

× δ
(

u − tanh−1
(

tanh l
k−1
∏

i=1

tanh vi

))

+ (1 − p)

×

∫ k−1
∏

i=1

η(d−1)(vi)δ
(

u − tanh−1
(

tanh l

k−1
∏

i=1

tanh vi

))

}

(2)

η(d)(v) =
∑

ℓ

λℓ

∫

dlc(l)
ℓ−1
∏

c=1

ducη̄
(d)(uc)δ(v − l −

l−1
∑

c=1

uc)

(3)

The initial condition isη(0)(v) = c(v). We will denote by the
short handEd the average w.r.t the density evolution densities
given in (2), (3).

Let lmax, rmax be the maximum variable and check node
degrees respectively, and letK = (rmax − 1)(lmax − 1)

Theorem 1 (Main Result):There existǫ0 andp0 depending
only onK such that forǫ < ǫ0 (high noise) andp > p0 (high
density of extra degree one nodes) the two soft bit estimates
of equation (1) are given by

lim
N→∞

EG,l〈σ0〉 = lim
d→∞

∑

ℓ

ΛℓEd[tanh
(

l +
ℓ

∑

i=1

u
(d)
i

)

]

lim
N→∞

EG,l〈σ1〉 = lim
d→∞

∑

k

PkEd

[

tanh
(

l+

tanh−1(
k

∏

i=1

tanh v
(d)
i )

)]

As will be seen later on, our proof provides explicit expres-
sions for the constantsǫ0 and p0 but we do not attempt to
make theses sharp.

To prove our main theorem we utilize the following lemma.
It is stated for a variable node belonging toV but is also valid
for a variable node belonging toV1. We denote a neighborhood
of depthD (variousD’s will be needed) around the spinσ0 by
ND(0) and the check node boundary of such a neighborhood
by ∂ND(0). Also defineα = ln (K−1)K−1

(1−p)pK−1KK .

Lemma 2 (Existence of Soft Boundary):Pick a node inV
and a code in the ensembleG. Take an integerL > ln K

α ,
a depth d and consider the two neighborhoodsNd(0) ⊂
N(L+1)d(0). The integerL is to be considered large enough
but fixed while we will letd go infinity when needed. With
high probability1−on,d(1) these two neighborhoods are trees
and there exists a check node boundaryB between∂Nd(0) and
∂N(L+1)d(0) such that all the check nodes inB belong to the
setC1 (are soft).

The fact that the neighborhoods are tree like with high

probability is well known for sparse graphs (see for example
[1]). The existence of a boundaryB of soft checks follows
from the standard analysis of a birth- death process and is
presented in the appendix for completeness. Let us now prove
theorem1.

Proof: We prove only the first equation in the theorem,
since for the other one all arguments are similar. Note that the
randomness inG is two fold. One randomness comes from
the choice of a codeC from the LDPC(n, Λ(x), P (x)) and the
other one comes from the attachment of degree one variable
nodes with probabilityp. Let us denote byS = {S1, . . . , Sm}
the vector of Bernoulli(p) random variables. We associateSc

to each check nodec where the valueSc = 1 indicates that
c ∈ C1 andSc = 0 indicates thatc ∈ C0. We will view EG as
EC,S .

Consider a spin σ0 ∈ V and the neighborhoods
Nd(0), N(L+1)d(0) around it. Let us denoteΘ the event that
N(L+1)d(0) is a tree. Since this is a high probability event for
bounded degree distributions,

EC,S,l〈σ0〉 = EC,S,l[〈σ0〉|Θ] + on(1)

Let S denote the set of allS such that there exists a boundary
B between∂Nd(0) and∂N(L+1)d(0) such that all the check
nodes inB belong toC1. From the previous lemma we know
that P(S) ≥ 1 − od(1). Thus we have

EC,S,l〈σ0〉 = EC,S,l[〈σ0〉|Θ,S] + od,n(1)

where od,n(1) is a function ofd, n which goes to zero as
n, d → ∞. From now on we considerEC,S,l[〈σ0〉|Θ,S]. For
a S ∈ S, let us denote the boundary which contains only
check nodes belonging toC1 by BS . Consider any check node
c in the boundaryBS for S ∈ S and look at the contribution
1
2 (1 + σ1σ∂c\1)e

l1σ1 due to this check node and the degree
one spinσ1 ∈ C1 (with channel loglikelihood output given
by l1). The constraint12 (1 + σ1σ∂c\1) enforcesσ1 = σ∂c\1.
Thus the effective contribution of12 (1 + σ1σ∂c\1)e

l1σ1 to
the Gibbs measure is given byel1σ∂c\1 . Now assume for a
moment that each variable nodei ∈ V1 is transmitted through
an independent channel with inverse square noiseǫi. Thus if
ǫi = 0 then the check nodec connected toi ∈ V1 is erased
from the Gibbs measure. One can interpolate betweenǫi = 0
to ǫi = ǫ by using the fundamental theorem of calculus. This
procedure is performed for all checks along the boundaryBS
according to a specified order. The details can be found in [8]
and lead to

EC,S,l[〈σ0〉|Θ,S] = EC,S,l[〈σ0〉BS
|Θ,S] + EC,S

[

∑

b∈BS

∫ ǫ

0

dνEl

(

〈σ0σ∂b〉lb∼ν − 〈σ0〉lb∼ν〈σ∂b〉lb∼ν

)2
∣

∣

∣
Θ,S

]

(4)

where 〈·〉BS
denotes the average w.r.t the Gibbs measure

restricted to the neighborhood ofσ0 inside the boundary by
BS and the sum is over check nodes in the boundaryBS that
are successively erased. In the average〈·〉lb∼ν has the inverse



square noise of the channel loglikelihoodlb given byν and the
checks occurring beforeb (in the previously specified order)
are erased.

The integral terms will be shown to be small thanks to the
correlation bound lemma. To utilize this lemma 1 we setJc =
∞ for c ∈ C0. For a check nodec ∈ C1, again from the fact
that the effective contribution of12 (1 + σ1σ∂c\1)e

l1σ1 to the
Gibbs measure is given byel1σ∂c\1 , we setJc = l1 for c ∈ C1.
Recall from section II thatB = {c||Jc| > H}. Clearly all
check nodesc ∈ C0 belong to the setB. With this mapping
we get thatρc = e|4l1| − 1 ≤ e4H − 1 for c /∈ B andρc = 1
for c ∈ B. Applying the correlation decay lemma we get

El

(

〈σ0σ∂b〉lb∼ν − 〈σ0〉lb∼ν〈σ∂b〉lb∼ν

)2

≤ 4El

∑

w∈W0b

∏

c∈w

(

(e4H − 1)11c/∈B(c) + 11c∈B(c)
)

where11·(·) is the indicator function. We have

11c∈B(c) = 11c∈C1,|Jc|>H(c)11c/∈C0
(c) + 11c∈C0(c)

Since all the walks are self-avoiding all the check nodes in a
given path are independent and we can take the expectation
w.r.t the noise inside the product yielding

El

(

〈σ0σ∂b〉lb∼ν − 〈σ0〉lb∼ν〈σ∂b〉lb∼ν

)2

≤ 4
∑

w∈W0b

∏

c∈w

(

(e4H − 1)11c/∈C0
(c) + P(|l1| > H)11c/∈C0

(c)

+ 11c∈C0(c)
)

≤ 4
∑

w∈W0b

∏

c∈w

(

δH11c/∈C0
(c) + 11c∈C0(c)

)

where we denoteδH , e4H−1+P(|l1| > H) (note that finally
δH will be some very small number). In the first inequality
we used the fact thatC0 ⊆ B, thus11c/∈B(c) ≤ 11c/∈C0

(c).

Now we consider the average w.r.t the randomness inS.
Since we restrict the random vectorS to lie in S we lose
randomness in the region between∂Nd(0) and∂N(L+1)d(0).
Thus for check nodes belonging to this intermediate region we
can only say that11c∈B(c) ≤ 1. But fortunately the number of
such check nodes on any self-avoiding path of any lengthl is
upper bounded byLd. As a result for any self-avoiding path
w we have

∏

c∈w

(

δH11c/∈C0
(c) + 11c∈C0(c)

)

≤

∏

c∈w
c/∈N(L+1)d(0)\Nd(0)

(

δH11c/∈C0
(c) + 11c∈C0(c)

)

Thus taking expectation w.r.t the randomness inS ∈ S we get

4ES

(

∑

w∈W0b

∏

c∈w

(

δH11c/∈C0
(c) + 11c∈C0(c)

)

)

≤

4ES

(

∑

w∈W0b

∏

c∈w
c/∈N(L+1)d(0)\Nd(0)

(

δH11c/∈C0
(c) + 11c∈C0(c)

)

) (a)

≤

4ES

(

∑

w∈W0b

∏

c∈w
c/∈N(L+1)d(0)\Nd(0)

(

δH + 11c∈C0(c)
)

) (b)

≤

4
(

∑

w∈W0b

∏

c∈w
c/∈N(L+1)d(0)\Nd(0)

(

δH + ES [11c∈C0(c)]
)

)

=

4
(

∑

w∈W0b

∏

c∈w
c/∈N(L+1)d(0)\Nd(0)

(

δH + 1 − p
)

)

≤ 4rmax×

(

∑

l≥(L+1)d

K l
(

δH + 1 − p
)l−Ld

+
Ld
∑

l=d

K l
(

δH + 1 − p
)d

)

where in(a) we used11c/∈C0
(c) ≤ 1, in (b) we used the fact

that all check nodes belong toC0 independent of each other
with the same probability1 − p and along any selfavoiding
walk w we have distinct check nodes. In the last inequality
we did several things. Firstly we upper bound the total number
of paths of lengthl by K l. Secondly, for paths with length
l ≥ (L + 1)d we do not consider the check nodes belonging
to N(L+1)d(0) \ Nd(0) which gives (δH + 1 − p)l−Ld as
a contribution of such paths. Finally, for paths with length
l ≤ Ld we do not consider check nodes outsideNd(0) which
results in a contribution of(δH + 1− p)d by such paths. The
factor of rmax takes into account the fact thatb is a check
node with maximum degreermax, hence the total correlation
gets multiplied by a factor ofrmax.

We choosep > 1 − 1
(2K2)L+1 and ǫ such thatǫ(1 +

2(ln 2
1−p )1/2) < 1

4 ln(3−p
2 ). With this choice ofǫ, p we choose

H such thatǫ(1 + 2(ln 2
1−p )1/2) < H < 1

4 ln(3−p
2 ) which

implies δH < (1 − p). Thus the correlation is upper bounded
by

4
(2K)(L+1)d(1 − p)d

1 − (2K(1 − p))(L+1)d
+ 4Ld(KL2(1 − p))d < ζd

for someζ < 1. In the chosen regime ofǫ, p we finally bound
the second term in equation (4) byγd for someγ < 1 (here
γ = ζKL+1).

We now evaluate the first term in equation (4). To eval-
uate EC,S,l[〈σ0〉BS

|Θ,S] we will consider the evaluation of
EC,S,l[〈σ0〉BS

|Θ] becauseP(Sc) = od(1). For S /∈ S we
defineBS = ∂N(L+1)d(0). From [3], by using the Griffiths-
Kelly-Sherman inequalities for random spin systems, we have

EC,S,l[〈σ0〉Nd(0)|Θ] ≤ EC,S,l[〈σ0〉BS
|Θ]

≤ EC,S,l[〈σ0〉N(L+1)d(0)|Θ] (5)

On ND(0), the Gibbs averages can be computed exactly by



σ0

N(L+1)d(0)

BS

∂N(L+1)d(0)

Nd(0) (L + 1)d

d

∂Nd(0)B0

Fig. 2. On this figure we illustrate the twotree neighborhoods
Nd(0), N(L+1)d(0) as well as their boundaries∂Nd(0), ∂N(L+1)d(0).
Check nodes belonging toC1 are shaded black and those belonging toC0

are white. We also show the irregular boundaryBS consisting of only “soft”
check nodes belonging toC1 and lying between the two neighborhoods. This
figure is used throughout all the proofs.

the belief propagation equations,

lim
D→∞

EC,S,l[〈σ0〉ND(0)|Θ] =

lim
D→∞

∑

ℓ

ΛℓED

[

tanh
(

l +

ℓ
∑

i=1

u
(D)
i

)]

whereED is the average w.r.t to the density evolution densities
given by equations (2), (3). SinceL is a constant which
depends only on code parameters, from (5) we have

lim
d→∞

EC,S,l[〈σ0〉BS
|Θ] = lim

d→∞

∑

ℓ

ΛℓEd[tanh
(

l +

ℓ
∑

i=1

u
(d)
i

)

]

Putting everything together we get the theorem.

IV. D ISCUSSION ANDOPEN QUESTIONS

In this paper we have provided one example of LDPC
code ensemble for which one can rigorously derive the MAP-
GEXIT function for a very noisy BIAWGNC. This is the only
example known to us for which such a derivation is made
beyond the BEC with non-combinatorial methods. The main
insight in deriving this result is the proof that correlations
between distant codebits decays exponentially with their graph
distance. We are not yet able to prove this for standard
irregular LDPC ensembles, but hope that this work provides
a step towards this goal. We have limited ourselves to the
BIAWGNC, because the MAP-GEXIT formula is given by
a simple expression involving the soft bit estimates (mag-
netizations). However, the whole analysis of this paper can
be extended to other channels, notably the binary symmetric
channel (BSC).

V. A PPENDIX A

In this appendix we prove lemma 1. Proof: From stan-
dard arguments [1] the two neighborhoodsNd(0), N(L+1)d(0)
are trees with high probability. Consider the check nodes
belonging to ∂Nd(0). We define the following process of
finding the required boundaryB. Initially we set boundary
B = B0 , {c|c ∈ ∂Nd(0) and c ∈ C1}. Pick a check node
c ∈ ∂Nd(0) \ B0 we traverse down along all possible paths
emanating fromc till we hit a check node belonging toC1

on all the possible paths. We include all these check nodes
belonging toC1 in our boundaryB and continue with the next
check nodec ∈ ∂Nd(0) \ B0.

Consider the following birth-death process. We call a check
node “alive” if it has no degree one variable node belonging
to V1 attached to it and “dead” otherwise. Clearly a check
node is alive with probability1− p and dead with probability
p. Initially we have a population of∂Nd(0) \ B0 alive check
nodes. From each check node generatelmax variable nodes
which further give rise tormax check nodes, some of which
are dead and some of which are alive. Continue with this
process till at timeT all the generated check nodes are dead.
The maximum depth achieved by this boundaryB can be upper
bounded by the extinction timeT .

Let Yt−1 denote the number of alive check nodes at time
t−1. Let Zt denote the number of alive check nodes generated
at timet by one alive check node at timet−1. Thus the number
of alive check nodes at timet is given byYt = Yt−1 +Zt−1.
HereZt is a Binomial(K, 1−p). For simplicity the parameter
K of the Binomial has been set to its worst possible value.
Thus from standard arguments [9] we have

P(T > t) ≤ P(Yt > 0) = P(Z1 + Z2 + · · · + Zt ≥ t)

From the Markov inequality and the independence of{Zi},
we have

P(Z1 + Z2 + · · · + Zt ≥ t) ≤ E[es(Z1+Z2+···+Zt)]e−st

= (E[esZ1 ])te−st

(a)
= (p + es(1 − p))tKe−st

≤ e−tα

where in(a) we used the fact thatZ1 is Binomial(K, 1− p).
For p > 1− 1

K (condition for extinction in finite time for the
birth-death process) we haveα > 0.

Since the|∂Nd(0) \ B0| ≤ Kd, and since each check node
c ∈ ∂Nd(0) \ B0 gives rise to an independent birth-death
process, because of the tree assumption, the probability that
all the birth-death processes extinct within timeLd is lower
bounded by

P(all birth-death processes are extinct within depthLd)

= (1 − P(T > Ld))Kd

≥ (1 − e−αLd)Kd

Note that sinceL > ln K
α , the probability that all birth-death

processes are extinct within depthLd is lower bounded by
1 − od(1).
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