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Summary. Designing effective behavioral controllers for mobile robots can be dif-
ficult and tedious; this process can be circumvented by using unsupervised learning
techniques which allow robots to evolve their own controllers online in an automated
fashion. In multi-robot systems, robots learning in parallel can share information to
dramatically increase the evolutionary rate. However, manufacturing variations in
robotic sensors may result in perceptual differences between robots, which could
impact the learning process. In this paper, we explore how varying sensor offsets
and scaling factors affects parallel swarm-robotic learning of obstacle avoidance be-
havior using both Genetic Algorithms and Particle Swarm Optimization. We also
observe the diversity of robotic controllers throughout the learning process using
two different metrics in an attempt to better understand the evolutionary process.

1 Introduction

Designing even simple behaviors for robots that are efficient and robust can
be very difficult for humans; it is often not hard to implement a rudimentary
controller that accomplishes the task, but achieving near-optimal performance
can be very challenging, especially for miniature robotic platforms with severe
hardware and computational limitations. Unsupervised robotic learning allows
for automated design of efficient, robust controllers, which saves much design
time and effort. Unsupervised learning is also useful for allowing robots to
adapt to situations where the task/environment is unknown beforehand or is
constantly changing.

Genetic Algorithms (GAs) are a very common method of accomplishing
machine learning and optimization. Candidate solutions to a problem are
modeled as members of a population, and breeding (selection and crossover)
and mutation are applied to “parents” (high performing solutions) in the pop-
ulation to generate “children” (new candidate solutions). GA can be used to
shape an Artificial Neural Network (ANN) controller by using the parameter
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set as the weights, and the evaluative function as a measure of the performance
of a desired robot behavior.

Particle Swarm Optimization (PSO) is a promising new optimization tech-
nique which models a set of potential problem solutions as a swarm of particles
moving about in a virtual search space. The method was inspired by the move-
ment of flocking birds and their interactions with their neighbors in the group.
PSO achieves optimization using three primary principles: evaluation, where
quantitative fitness can be determined for some particle location; comparison,
where the best performer out of multiple particles can be selected; and im-
itation, where the qualities of better particles are mimicked by others. The
algorithm can also be used to evolve ANN robotic controllers.

In robotic learning, in order to evaluate a candidate controller solution,
a robot must run the controller for some period of time (typically from sev-
eral seconds to several minutes) and observe how well it performs over that
duration according to a pre-established metric (fitness function). The com-
putational and temporal resources needed for this evaluation are drastically
higher than those needed for the processing of the learning algorithm itself in
almost all cases (less than 1% for the case study presented here). Therefore,
robotic learning can be considered to be a very expensive optimization prob-
lem, and speed-up efforts should be focused on decreasing the number/length
of evaluations rather than the internal workings of the learning technique.

Both GA and PSO use groups of interacting virtual agents in order to
achieve their optimization. In collective robotics, groups of robots interact
to accomplish their goals. It is therefore possible to implement these algo-
rithms in a parallel distributed fashion for learning in multi-robot systems.
Each robot is responsible for several virtual agents, which it evaluates at each
iteration. After each set of evaluations, the robots communicate to share the
fitness information needed to progress to the next iteration of the algorithm.
By running the algorithms in this fashion, we need no external supervisor
to oversee the learning process, and the speed of learning is significantly im-
proved, as many robots evaluating in parallel increase the rate of candidate
solution evaluation and therefore decrease the total learning time.

On real robots, sensors and actuators may have slightly different perfor-
mances due to variations in manufacturing. As a result, multiple robots of
the same model may actually perceive and interact with their shared environ-
ment differently, creating a physically heterogeneous swarm. While robotic
controller evaluations are inherently stochastic due to partial, noisy environ-
mental perception by individual robots, this heterogeneity may add a system-
atic bias between agents. This is a crucial difference; partial perception and
noise can be overcome by information exchange between robots (i.e. shared
evaluation measures of a controller between multiple robots will give a better
estimate of its true performance), while sharing information between robots
with different systematic biases may actually hinder the learning process,
since biased results from other robots could cause a robot to incorrectly adapt
its behavior. The result may be increased difficulty in evolving effective be-
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havioral controllers. In order to model swarm heterogeneity, simulations of
swarm-robotic learning can include fixed random variations in, for example,
the sensitivity and offsets of on-board sensors. This should reflect a more
realistic learning scenario, particularly for miniature robots where low-cost
sensors often exhibit higher levels of manufacturer variation (often on the
order of 10% or more).

In this paper, we explore the efficacy of parallel robotic learning using
GA or PSO on swarms of heterogeneous robots with sensor variations. We
observe the diversity of the GA and PSO populations in different instances
to attempt to gain insight into the evolutionary process. Section 2 provides
some background on GA, PSO, unsupervised robotic learning, and multi-robot
learning. Section 3 details our robotic learning case study and gives results in
the case of a homogenous robot swarm. Section 4 explores the impact of sensor
offsets on the learning process, while section 5 studies the impact of different
sensor scaling factors. In section 6, we analyze the diversity of the GA and
PSO populations throughout the learning process in order to determine the
cause of difference between the algorithms with and without sensor variations.
In section 7, we discuss the implications of our results, and section 8 concludes
and provides outlook on future work.

2 Background

Genetic algorithms were originally developed in the 1960s by John Holland.
The algorithms are inspired by evolution, where the fittest members of a pop-
ulation tend to reproduce more often than the less fit members. Candidate
solutions are modeled as a population of “chromosomes”. At each iteration
of the algorithm, a new population is generated from the previous one. Selec-
tion of the parents of the new generation is implemented using one or more
of several schemes, such as elitism (using only the top performing members
of the population), Roulette Wheel sampling (stochastically choosing parents
with weight proportional to performance), and rank selection (ranking chro-
mosomes from best to worst and stochastically choosing parents with weight
proportional to their rank). After parents have been chosen, crossover between
the parents can occur with some probability (each chromosome is split into
multiple pieces, and children use some parts from one parent and some parts
from the other). This allows positive aspects from different chromosomes to
be merged into a single chromosome. Last, mutation is applied, where each
element of the chromosome may have its value randomly changed with some
probability. This provides a random local search, which allows solutions to
continue to improve beyond the genetic diversity that was available in the
original population ([8], [17]).

The original PSO method was developed by James Kennedy and Russel
Eberhart [5], [10]. Every particle in the population begins with a random-
ized position (xi,j) and randomized velocity (vi,j) in the n-dimensional search
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space, where i represents the particle index and j represents the dimension
in the search space. Candidate solutions are optimized by flying the particles
through the virtual space, with attraction to positions in the space that yielded
the best results. Each particle remembers the position at which it achieved
its highest performance (x∗

i,j). Each particle is also a member of some neigh-
borhood of particles, and remembers which particle achieved the best overall
position in that neighborhood (given by the index i′). This neighborhood can
either be a subset of the particles (local neighborhood), or all the particles
(global neighborhood). For local neighborhoods, the standard method is to set
neighbors in a pre-defined way (such as using particles with the closest array
indices modulo the size of the population as neighbors, henceforth known as
a “ring topology”) regardless of the particles’ positions in the search space.
The equations executed by PSO at each step of the algorithm are

vi,j = w · vi,j + pw · rand() · (x∗
i,j − xi,j) + nw · rand() · (x∗

i′,j − xi,j)

xi,j = xi,j + vi,j

where w is the inertia coefficient which slows velocity over time, pw is the
weight given to the attraction to the previous best location of the current
particle and nw is the weight given to the attraction to the previous best lo-
cation of the particle neighborhood. rand() is a uniformly-distributed random
number in [0, 1].

PSO has been shown to perform as well as or better than GA in several
instances. Eberhart and Kennedy found PSO performs on par with GA on
the Schaffer f6 function [5, 10]. In work by Kennedy and Spears [11], a version
of PSO outperforms GA in a factorial time-series experiment. Fourie showed
that PSO appears to outperform GA in optimizing several standard size and
shape design problems [7].

Unsupervised learning describes learning scenarios where there is no exter-
nal entity which decides upon the training set inputs for the learning agent(s).
Rather, inputs are generated dynamically as the agents interact with their en-
vironment. This is as opposed to supervised learning, where the inputs are
generated/collected first and then used repeatedly. In supervised learning,
the accuracy of the system at each iteration is usually decided by an exter-
nal “teacher” evaluating the system output. The pre-defined inputs are split
into two separate sets, one for training the system and the other for testing
the performance. Supervised learning tends to be easier than unsupervised,
as the data does not change between iterations of the algorithm and can be
preselected to avoid using unusual or particularly noisy data points. However,
supervised learning is not possible in situations where the input data to the
system depends on the current state of the learning agent; this is the case for
online robotic learning, since the robot’s movements affect what its sensors
will perceive.

Evolutionary algorithms have been used extensively for unsupervised
learning of robotic behavior. A good survey of the work is given in [14] and
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more recently in [21]. More specifically, standard GA has been shown to be
effective in evolving simple robotic controllers [6], and modified noise-resistant
versions of both GA and PSO were shown to achieve very good performance on
simulated unsupervised robotic learning, outperforming the standard versions
of the algorithms [22].

Multi-robot learning has been used and explored in various ways; a survey
of work (including learning on other multi-agent systems) can be found in
[26]. Matarić studied mechanisms to encourage individual agents in a group
to act in ways to help the group performance [13]. Multi-robot learning using
several methods in a wide variety of scenarios has been explored [2], [25].
Specialization in multi-agent systems using reinforcement learning was studied
in [19]. Techniques for increasing individual learning speed via multi-robot
learning were studied in [9] and [15]. A modified version of a genetic algorithm
has been embedded onto a 2-robot system to allow for distributed parallel
learning [20]. Pugh and Martinoli found that both GA and PSO could be
used for effective distributed parallel multi-robot learning in [23] and applied
to heterogeneous robot groups in [24].

3 Parallel Swarm-Robotic Learning Case Study:

Obstacle Avoidance

Following on the work presented in [23] and [24], we use the case study of
obstacle avoidance for our swarm-robotic learning task.

3.1 Experimental Setup

For the learning techniques, we use the noise-resistant GA and PSO algo-
rithms from [23]. GA uses elitism to select the best half of the population as
the parent set, and then applies Roulette Wheel sampling to replenish the
missing chromosomes. PSO uses a local neighborhood in a ring topology with
one neighbor on each side. At every iteration, these algorithms reevaluate
their previous best locations and parent sets for PSO and GA, respectively,
combining the new fitness value with previous ones to get a more accurate
measure of the actual fitness. Although this requires twice as many fitness
evaluations at each iteration as their standard counterparts, this technique
prevents noisy fitness evaluations from severely disrupting the learning pro-
cess and gives much better results given the same number of evaluations of
candidate solutions. Flowcharts of both algorithms are shown in Fig. 1.

For both PSO and GA, initial population member elements are randomly
generated in the range [−20, 20] but allowed to change to any value during
evolution. Velocity in PSO is also randomly initialized in the range [−20, 20]
but prevented from ever going outside this range.

The parameters for the algorithms are given in Table 1.
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Fig. 1. Flowcharts for noise-resistant GA (left) and PSO (right).

Table 1. GA and PSO Parameters for Unsupervised Learning

GA PSO

Population Size 20 Population Size 20

Mutation Probability 0.15 pw 2.0

Crossover Probability 0.2 nw 2.0

Mutation Range [-20.0, 20.0] w 0.6

We use Webots, a realistic simulator, for our robotic simulations [16], using
20 e-puck1 robots [4] (this is as opposed to the Khepera robot [18] used in
some previous experiments). The robot(s) operate in a 2.0 m x 2.0 m square
arena with no additional obstacles (see Fig. 2 left). The robotic controller
is a single-layer discrete-time artificial neural network of two neurons, one
for each wheel speed, with sigmoidal output functions. The inputs are the

1 http://www.e-puck.org
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Fig. 2. Left: Robot arena with e-puck robots. Right: Depiction of the artificial neural
network used for the robot controller. Curved arrows are recurrent connections and
lateral inhibitions.

eight infrared proximity sensors, as well as a recursive connection from the
previous output of the neuron, lateral inhibitions and bias values (see Fig. 2
right), giving us 22 weights total. Sensors have a maximum range of 5.0 cm,
and sensor output varies linearly from 0 at maximum range to 1 at minimum
range (0.0 cm) with 3% noise. Slip noise of 10% is applied to the wheel speed.
The time step for neural updates is 128 ms. We use the fitness function used
originally in [6] and again in [23]. The fitness function is given by:

F = V · (1 −
√

∆v) · (1 − i)

0 ≤ V ≤ 1, 0 ≤ ∆v ≤ 1, 0 ≤ i ≤ 1

where V is the average absolute wheel speed of both wheels, ∆v is the average
of the difference between the wheel speeds, and i is the average activation
value of the most active proximity sensor over the evaluation period. These
factors reward robots that move quickly, turn as little as possible, and spend
little time near obstacles, respectively. The terms are normalized to give a
maximum fitness of 1. The evaluation period of the fitness tests for these
experiments is 240 steps, or approximately 30 seconds. Between each fitness
test, the position and bearing of the robots are randomly set by the simulator
to ensure the randomness of the next evaluation.

During evolution, each of the 20 robots is responsible for a single member
of the GA/PSO population (i.e. they must evaluate that member at each
iteration and communicate the resulting fitness measure). With 100 iterations
of the learning algorithms, this results in a total simulated learning time of
approximately 1 hour 40 minutes (100 iterations comprised of 2 evaluations
each lasting 30 seconds).
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Fig. 3. Left: Fitness of best evolved controllers in population after evolution av-
eraged over 100 runs for GA and PSO. Error bars represent standard error. Right:

Average fitness of population members throughout evolution averaged over 100 runs
for GA and PSO.

3.2 Results

The average performance over 100 runs of the best evolved controllers in the
population can be seen in Fig. 3 left. As previously found, PSO is able to
achieve superior performance, as GA occasionally produces poorer solutions.
The progress of evolution can be seen in Fig. 3 right. While GA improves
faster in the first few iterations, it quickly changes to a gradually increasing
plateau, while PSO continues improving throughout the entire process.

Two primary types of obstacle avoidance controllers were observed in suc-
cessful evolutionary runs of both GA and PSO. In the absence of obstacles,
both types caused the robot to move ahead at full speed. The first controller
consistently made the robot perform either a right turn or a left turn at the
activation of any of its front sensors, thereby avoiding the obstacle in its path.
The second controller used the recurrent neural connection to achieve a multi-
state behavior; the robot would run forward until the front sensors detected
an obstacle, at which point it would reverse its wheel speed and run backwards
at full speed. When the rear sensors were activated, the robot would again
resume forward movement, resulting in a back-and-forth behavior which some-
what resembles bouncing. Depending upon the environment, either of these
two types of behavior might be preferable to the other.

4 Heterogeneity from Sensor Offsets

One potential variation between sensors is different offset values (i.e. if some
sensor A detects value x, some other sensor B would detect x + a, where a

is the offset value). We can incorporate this variation in our simulation using
sensor values of:
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v′i = vi + ai

where vi is the original sensor value, v′i is the offset sensor value used by the
robot controller, and ai is a Gaussian offset value randomly generated at the
start of the simulation with mean of 0 and standard deviation of s.

4.1 Experimental Setup

We repeat the experiments from section 3 using sensor offsets with standard
deviation of 0, 0.05, 0.1, 0.2, and 0.5 (corresponding to 0%, 5%, 10%, 20%,
and 50% of the maximum sensor value, respectively). In order to accurately
evaluate the performance of the controller, the original sensor values are used
for the proximity term of the fitness calculation. The same parameters are
used for both GA and PSO.

4.2 Results

The average performance over 100 runs of the best evolved controllers in the
population for different levels of sensor offset variation can be seen in Fig. 4
left. While the performance is not highly impacted for a standard deviation
of up to 0.1, a significant decrease can be seen at 0.2, and a standard devia-
tion of 0.5 yields quite poor performance. This suggests that neither GA nor
PSO are affected by minor variations, but major variations could cause some
sensors to be always/never perceived as active, which would cause very poor
performance. The same trend can be seen in both GA and PSO, though it
appears as though GA performs relatively better with large offsets.

While the previous results indicate how well evolved controllers perform
on their heterogeneous robot group, we can evaluate the general performance
of the controllers evolved on a heterogeneous swarm by testing them on a
homogenous set of robots without sensor variations (see Fig. 4 right). We
observe that while performance still decreases as sensor offsets increase, the
effect is noticeably less. This indicates that the previously observed perfor-
mance drop is due to a combination of suboptimal controllers from impaired
learning and degraded performance from operating on a heterogeneous swarm.
The relative performance of GA versus PSO is even higher for large sensor
offsets, suggesting that learning is less impacted when using GA than when
using PSO.

The performance of GA throughout learning with different offset levels can
be seen in Fig. 5 left. We notice that the trend of rapid initial improvement
followed by a gradually increasing plateau is not affected, but rather perfor-
mance seems to be scaled down as the standard deviation of the offset grows.
A similar trend can be observed for the PSO results in Fig. 5 right.
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Fig. 4. Fitness of best evolved controllers in population after evolution averaged
over 100 runs for GA and PSO with different standard deviations (s) of sensor offset.
Results shown for final evaluation with both heterogeneous (left) and homogenous
(right) robots. Error bars represent standard error.
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Fig. 5. Average fitness of population members throughout evolution averaged over
100 runs for GA (left) and PSO (right) with different standard deviations (s) of
sensor offset.

5 Heterogeneity from Sensor Scaling

Another variation that can occur between sensors is sensitivity. One sensor
may be more sensitive to input, which causes its output to vary more quickly
than others. We can model this in our simulation using the equation:

v′i = mivi

where vi is the original sensor value, v′i is the offset sensor value used by the
robot controller, and mi is a Gaussian scaling factor randomly generated at
the start of the simulation with mean of 1 and standard deviation of s.
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5.1 Experimental Setup

We repeat the experiments from section 3 using sensor scaling factors with
standard deviation of 0, 0.05, 0.1, 0.2, and 0.5 (and mean of 1). In order
to accurately evaluate the performance of the controller, the original sensor
values are used for the proximity term of the fitness calculation. The same
parameters are used for both GA and PSO.

5.2 Results

The average performance over 100 runs of the best evolved controllers in the
population for different levels of sensor scaling variation can be seen in Fig. 6
left. The performance here is impacted less than for the case of sensor offsets;
good performance is maintained even for a scaling factor standard deviation
of 0.5, though we do see an observable decrease here. The cause of this may
be that, although the sensitivity is changed, sensors still react is the same
way (i.e. higher for close proximity, lower for far proximity), and therefore the
performance of the controller is not significantly impacted. We again see the
same trend in both GA and PSO, and GA again performs relatively better
with large scaling variations.

Observing the performance on a homogenous set of robots (see Fig. 6
right), we see that the actual quality of the evolved controller has not been
at all affected by sensor scaling variation in almost all cases. The one minor
exception is for controllers evolved using GA with a scaling factor standard
deviation of 0.5, where we see a very slight performance decrease. Following
the theory suggested above, it could be that because sensors respond in a
similar way in spite of scaling, the same obstacle avoidance approaches are
selected by the learning algorithms, which results in unaffected performance
when using a homogenous set of robots.

The performance of GA throughout learning with different scaling levels
can be seen in Fig. 7 left. As a result of the better performance, there is
not such an obvious decrease as the standard deviation of the scaling grows,
with the exception of a standard deviation of 0.5 where there is a marked
performance drop. There is only very minor differences between the curves
for PSO for different sensor scaling variation levels (see Fig. 7 right).

6 Diversity in Evolving Robot Swarms

Although PSO was able to achieve superior performance to GA in evolving
robotic controllers in [22] and [23], the reasons for this were never apparent.
A major drawback to using stochastic multi-agent algorithms such as GA and
PSO is that they lack transparency about what exactly is happening during
the evolutionary process and why they achieve the results that they do. In an
attempt to shed some light on this issue, we analyze the diversity of the GA
and PSO populations through their evolution using two different metrics.



12 Jim Pugh and Alcherio Martinoli

0 0.05 0.1 0.2 0.5
0

0.2

0.4

0.6

0.8

F
itn

es
s

Standard Deviation of Sensor Scaling Factor

GA
PSO

0 0.05 0.1 0.2 0.5
0

0.2

0.4

0.6

0.8

F
itn

es
s

Standard Deviation of Sensor Scaling Factor

GA
PSO

Fig. 6. Fitness of best evolved controllers in population after evolution averaged
over 100 runs for GA and PSO with different standard deviations (s) of sensor
scaling factors. Results shown for final evaluation with both heterogeneous (left)
and homogenous (right) robots. Error bars represent standard error.
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Fig. 7. Average fitness of population members throughout evolution averaged over
100 runs for GA (left) and PSO (right) with different standard deviations (s) of
sensor scaling factors.

6.1 Euclidean Diversity

For our first diversity metric, we choose one of the most simple: Euclidean
distance. We consider each candidate solution as a location in a virtual search
space. The pairwise diversity between two members of a population is therefore
given by:

d(a, b) =

√

∑

i

(ai − bi)2

where d(a, b) is the pairwise diversity between member a and member b, and
xi is element i of member x. The diversity of the entire population is given by
the average pairwise diversity of all pairs of members in the population, or:
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Deu =
1

N(N − 1)

∑

a





∑

b6=a

d(a, b)





where a and b are members of the population, and N is the total size of the
population.

6.2 Entropic Diversity

For our second diversity metric, we make use of a diversity measure dubbed
the “hierarchic social entropy”, first proposed in [3] and later used in [12]. For
this metric, population members are divided into clusters, where clusters are
defined as maximal sets of “connected” population members. Two population
members are considered directly connected if the measure of some distance
metric between them (Euclidean distance in this case) is less than some thresh-
old value h, and two population members are considered connected if there
exists a set of direct connections linking them. Each cluster i can then be
given a “probability” pi which is calculated as follows:

pi =
ni

N

where ni is the number of members in cluster i and N is the total population
size. Because clusters are maximal, an individual population member will
appear in only a single cluster, and therefore:

∑

i

pi = 1

We can therefore calculate the entropy of these probabilities as:

H = −
∑

i

pi log pi

resulting in an entropy of zero for a single cluster and increasing entropy as
the number of clusters increases. To calculate the hierarchic social entropy
(or Entropic diversity), we integrate entropy over all values of the threshold
distance h:

Den =

∫ ∞

0

H(h)dh

where H(h) is the entropy of cluster probabilities as a function of the threshold
distance h. While both Euclidean and Entropic diversities provide a measure of
the distance between population members (high distance implies more clusters
for the same value of h which yields higher entropy), only Entropic diversities
directly reflects whether or not there exist compact groups of members in
the virtual search space (which would suggest similar behaviors among these
members).
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Fig. 8. Diversity of population members throughout evolution averaged over 100
runs for GA and PSO for a homogenous robot swarm for both Euclidean (left) and
Entropic (right) diversity measures.

We measure diversity using both metrics throughout evolution for parallel
learning using GA and PSO for homogenous robotic swarms and for hetero-
geneous robotic swarms with sensor offsets. We keep the same scenario and
parameters as used previously. In order to make valid comparison, we normal-
ize diversity measures to the diversity of the population at the first iteration
(i.e. diversity always begins with value 1).

6.3 Results

The progress of population diversity throughout evolution for GA and PSO
on a homogenous swarm can be seen in Fig. 8. For both metrics, the diver-
sity in GA drops quickly in the initial iterations and maintains a stable lower
value for the rest of the evolution. In contrast, the diversity of PSO actually
increases initially and maintains a higher value. This is evidence for the hy-
pothesis given in [23] that by very quickly converging to a good candidate
solution, GA sacrifices the ability to further explore for better possible solu-
tions, which causes it to occasionally converge to a mediocre final solution.
On the other hand, by maintaining high diversity throughout evolution, PSO
is able to continuously discover new and better solutions and continue im-
proving throughout the entire evolution. This also demonstrates why PSO
is better able to maintain good performance with a smaller population size,
while GA does very poorly with small populations since it requires enough
genetic diversity to already include a good solution.

Comparing Euclidean versus Entropic diversity, we see that while the
trends are the same, the diversity increase in PSO is consistently less than for
Entropic diversity (the difference between diversity measures, Deu −Den, can
be seen in Fig. 9). This suggests that while PSO particles do indeed spread
out in the virtual search space, they simultaneously form clusters, with some
particles maintaining close proximity to some others. This follows as a result
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Fig. 9. Euclidean Diversity minus Entropic Diversity of population members
throughout evolution averaged over 100 runs for GA and PSO for a homogenous
robot swarm.

of the local neighborhood topology used by PSO, as neighboring particles
should often assume similar values and therefore have a small Euclidean dis-
tance between them. For GA, the initial diversity decrease is greater for En-
tropic diversity than Euclidean, indicating that individuals are simultaneously
converging and forming clusters. However, the difference in diversity plateaus
and actually decreases slightly in the latter portion of evolution, suggesting
that all further diversity decreases are the result of convergence rather than
clustering.

We can also compare the progression of diversity for evolution of hetero-
geneous robotic swarms with sensor offsets using GA (see Fig. 10) and PSO
(see Fig. 11). Both diversity metrics yield very similar results here. In the
case of GA, sensor offset variation seems to have little impact on diversity,
with much overlap between diversity measures for different standard devia-
tions throughout the learning process. For PSO, there is no significant change
in diversity for low sensor offset variations; for higher variations, the diversity
grows at the same pace initially but achieves higher values towards the end of
the evolution. This may be caused by less useful information sharing between
robots due to major sensorial differences, promoting individual reliance. This
might prevent convergence of particles, which would increase the diversity in
the latter evolutionary stages.
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Fig. 10. Diversity of population members throughout evolution averaged over 100
runs for GA with different standard deviations (s) of sensor offset for both Euclidean
(left) and Entropic (right) diversity measures.
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Fig. 11. Diversity of population members throughout evolution averaged over 100
runs for PSO with different standard deviations (s) of sensor offset for both Eu-
clidean (left) and Entropic (right) diversity measures.

7 Discussion

For parallel swarm-robotic learning of obstacle avoidance behavior, offset vari-
ation seemed to have a much higher impact on performance than scaling vari-
ation. However, it is highly likely that this result is specific to our case study.
As mentioned previously, because of the linear manner in which proximity
sensors are used (i.e. higher - there is an obstacle, lower - there is no obsta-
cle), scaling does not have much effect, while offset variation could potentially
confuse the sensor as to its current state. One can envision other scenarios
where this is not the case: if a sensor has some intermediate optimum value
(such as would be the case in wall-following or flocking behavior), both offset
and scaling would disrupt its reading; comparing subsequent sensor readings
would remove any offset bias but still be affected by scaling. Therefore, par-
allel learning in heterogeneous robotic swarms needs to be tested on many
other case studies before any such generalizations can be made.
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Although not shown here, we also performed several parallel swarm-robotic
learning tests using PSO without any velocity limit (w was kept at 0.6). While
the performance of the resulting controllers was not significantly different, the
diversity of the population exploded, growing exponentially until the end of
the evolution (it was not uncommon to have a final Euclidean diversity on the
order of 100,000). The plateau previously observed is therefore only caused
by a hard velocity bound. We believe the reason for this explosive behavior
is the same as the reason for the low impact of variations in sensor scaling;
ANNs continue to function nearly the same if every weight is multiplied by a
constant factor. The only change will be the sensitivity of the sigmoid output
function, which will approach a step function as the neural weights increase.

8 Conclusion and Outlook

We have explored some of the effects of robot heterogeneity on parallel swarm-
robotic learning. In the case of evolving obstacle avoidance, both Genetic
Algorithms and Particle Swarm Optimization were able to withstand small
variations in sensor offsets and large variations in sensor scaling factors, while
showing poor performance with high offset variations. By observing popula-
tion diversity throughout evolution, we discovered that PSO maintains much
higher diversity, which could explain its superior ability to GA in avoiding
local optima.

Though not explored here, there could be ways in which heterogeneous
robotic swarms could identify differences between robots by sharing and com-
paring the observed fitness values of common controllers. This information
could be used to help avoid the fitness degradation previously observed and
might even be useful for deliberately pursuing specialization within the swarm
in scenarios not limited to evolving one single controller.

We have shown that tracking population diversity can yield some insight
into the progress of the evolving swarm. One could therefore imagine that
these learning algorithms could be improved if they were to track their own
diversity. A simple example would be allowing GA to scale the values of some
of its population members if the diversity were too low. While calculating
the diversity of the entire population requires a global manager, it might be
feasible for individual robots to acquire a good estimation using local sensing
of nearby teammates, which could allow this change to be implemented in a
distributed fashion.
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14. Matarić M J, Cliff D (1996) Challenges in evolving controllers for physical
robots. Robot. and Autonomous Sys., Vol. 19, No. 1, pp. 6783.
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