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Abstract. We present an adaptive strategy for a group of robots en-
gaged in the localization of multiple targets. The robotic search algorithm
is inspired by chemotaxis behavior in bacteria, and the algorithmic pa-
rameters are updated using a distributed implementation of the Particle
Swarm Optimization technique. We explore the efficacy of the adapta-
tion, the impact of using local fitness measurements to improve global
fitness, and the effect of different particle neighborhood sizes on per-
formance. The robustness of the approach in non-static environments is
tested in a time-varying scenario.

1 Introduction

Designing even simple behaviors for robots that are efficient and robust can
be very difficult for humans; it is often not hard to implement a rudimentary
controller that accomplishes the task, but achieving near-optimal performance
can be very challenging. Unsupervised robotic learning allows for automated
design of efficient, robust controllers, which saves much design time and effort.
Learning is also essential for allowing robots to adapt to situations where the
task/environment is unknown beforehand or is constantly changing.

Particle Swarm Optimization (PSO) is a promising new optimization tech-
nique which models a set of potential problem solutions as a swarm of particles
moving about in a virtual search space. PSO achieves optimization using three
primary principles: evaluation, where quantitative fitness can be determined for
some particle location; comparison, where the best performing location for some
particle can be selected out of multiple possibilities; and imitation, where the
qualities of better particles are mimicked by others. The algorithm can be used
to evolve parameters for robotic controllers.

In the field of robotics, locating targets within an unknown environment is
a task well-suited to mobile robots. Robots can be equipped with sensors to
detect targets and programmed to explore the area in search of their goals. The
automated nature of this approach may save much time and effort as compared
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to other search methods. Performance may be further improved by using multiple
robots in parallel, which will decrease the time needed to complete the search
task and increase robustness to failures of individual robots. Robotic search is
especially preferable when the area is hazardous or inaccessible to humans (for
example, finding victims in a disaster area [10]).

In the PSO algorithm, groups of virtual agents interact in order to achieve
optimization. In collective robotics, groups of robots interact to accomplish their
goals. It is therefore possible to make a one-to-one parallel between particles
and robots and to implement PSO in a distributed fashion for learning in multi-
robot systems. Each robot is responsible for a single particle, which it evaluates
at each iteration. After each evaluation, the robots communicate to share the
fitness information needed to progress to the next iteration of the algorithm.
By running the algorithms in this fashion, we need no external supervisor to
oversee the learning process, and the speed of learning is significantly improved,
as many robots evaluating in parallel decreases the number of required controller
evaluations and therefore decreases the total learning time.

2 Background

The original PSO method was developed by James Kennedy and Russell Eber-
hart [12]. Every particle in the population begins with a randomized position
(xi,j) and randomized velocity (vi,j) in the n-dimensional search space, where i

represents the particle index and j represents the dimension in the search space.
Candidate solutions are optimized by flying the particles through the virtual
space, with attraction to positions in the space that yielded the best results.
Each particle remembers the position at which it achieved its highest perfor-
mance (x∗

i,j). Each particle is also a member of some neighborhood of particles,
and remembers which particle achieved the best overall position in that neigh-
borhood (given by the index i′). This neighborhood can either be a subset of the
particles (local neighborhood), or all the particles (global neighborhood). For
local neighborhoods, the standard method is to set neighbors in a pre-defined
way (such as using particles with the closest array indices as neighbors modulo
the size of the population, henceforth known as a “ring topology”) regardless of
the particles’ positions in the search space. The equations executed by PSO at
each step of the algorithm are

vi,j = w · vi,j + pw · rand() · (x∗

i,j − xi,j) + nw · rand() · (x∗

i′,j − xi,j)

xi,j = xi,j + vi,j

where w is the inertia coefficient which slows velocity over time, pw is the weight
given to the attraction to the previous best location of the current particle
and nw is the weight given to the attraction to the previous best location of
the particle neighborhood. rand() is a uniformly-distributed random number in
[0, 1).



Unsupervised robotic learning has been studied extensively in the past, in-
cluding some focus on multi-robot learning. Several multi-robot learning meth-
ods were shown to work in a wide variety of scenarios [1] [21]. Techniques for
increasing individual learning speed via multi-robot learning were studied in [11]
and [14]. Recently, PSO has been used for unsupervised learning of robotic be-
haviors by evolving weights for Artificial Neural Networks (ANNs), both in the
case of single-robot learning [18] and distributed multi-robot learning [19].

Some exploration has been done in the past on multi-robot search and similar
tasks. This work has been relatively disjoint thus far, with most studies focusing
on a particular scenario which is not explicitly connected to other related work.
The cost of using additional robots in a search task was explored and tested
with simulation [7]. Detailed analysis has been done for swarms following a gra-
dient [16]. In 2001, a contest at the International Joint Conference on Artificial
Intelligence on collective robotic urban search and rescue [17] prompted some
research on the topic [10]. Other publications explore multi-robot search strate-
gies in simulation [6], for infrared tracking with simulation and real robots [7],
and for odor source localization with real robots [8].

In [5], PSO was used to tune the parameters of a PSO-inspired multi-robot
search strategy. Besides this, we are not aware of any previous publications on
synthesis of multi-robot search behavior, and no previous studies have considered
multi-robot search adaptation in changing environments.

3 Bio-Inspired Multi-Robot Search

The algorithm we use on our robot group for localizing targets in an unknown
environment is inspired by the chemotaxis behavior of some types of bacteria,
such as E. coli. By changing the rotation direction of their flagella, these bac-
teria can either swim in a straight line or to tumble in place. When moving,
if the bacterium observes that the chemical gradient is positive, it is likely to
continue to movement in the same direction. If it observes that the chemical gra-
dient is negative, it is more likely to tumble and therefore assume a new random
direction. This behavior results in overall movement in a positive gradient direc-
tion [2]. This type of chemotaxis behavior has inspired several effective robotic
search strategies in the past [4] [9] [13]. However, none of these strategies used
collaboration between robots in the search process.

In our algorithm, robots begin at some random locations within a bounded
environment containing one or more target. We assume that robots are capable
of perceiving the intensity of some emission from targets which fades non-linearly
with increasing distance from the target. The robot will measure the perceived
emission intensity and make a forward movement for a fixed distance. The robot
will then measure the new perceived emission intensity. If the intensity is higher,
the robot will maintain the same direction and make another step. If the intensity
is lower, the robot will assume a new bearing and make a step in that direction.
The process is then repeated. If a robot encounters any obstacles while moving



(i.e. walls or other robots), it will turn to avoid the obstacle using a reactive
obstacle avoidance algorithm.

The collaboration aspect of our algorithm arises when a robot is choosing
a new bearing. Robots are assumed to be capable of relative localization and
communication with other nearby robots within a certain range (this could be
accomplished using an on-board module such as the one described in [20]). In
this scenario, relative localization is not restricted to line-of-sight, though this
assumption may not hold on a real robotic platform. Using relative localiza-
tion, robots continually share their current position and most recent perceived
emission intensity. When choosing a new angle, if a robot detects at least one
other robot in range with higher perceived intensity than its own, it will choose
a bearing directly towards the robot with highest perceived intensity. If it de-
tects no other robots with higher perceived intensity, it will uniformly select a
random bearing within some arc in the approximately opposite direction that it
currently faces.

This algorithm has four free parameters which can be adjusted to optimize
the behavior for different environments: STEP SIZE, RL RANGE, CW LIMIT,
and CCW LIMIT. STEP SIZE is the distance robots move forward at each step
of the algorithm. RL RANGE is the maximum range of the relative localization
and communication system (only robots with distance less than or equal to
RL RANGE will be perceivable by another robot). CW LIMIT is the maximum
angular offset from 180 degrees which the robot will consider when choosing a
random bearing in the clockwise direction, and CCW LIMIT is the maximum
angular offset from 180 degrees which the robot will consider when choosing
a random bearing in the counter-clockwise direction. The bearing is therefore
uniformly randomly selected from an arc of size CW LIMIT+CCW LIMIT.

Algorithm parameters can be seen graphically in Fig. 1a.

Fig. 1. (a) Graphical depiction of multi-robot search algorithm parameters with sim-
ulated e-puck robots. (b) Robot arena with e-puck robots and targets. Targets have
been circled.



4 Distributed PSO for Parameter Adaptation in

Multi-Robot Search

We now apply distributed Particle Swarm Optimization to adapt the free param-
eters of our multi-robot search algorithm in a realistically simulated environment.

4.1 Experimental Setup

For our adaptation technique, we use the noise-resistant PSO algorithm from
[19]. At each iteration, the algorithm reevaluates the previous best locations, av-
eraging the new fitness value with previous ones to get a more accurate measure
of the actual fitness. Although this requires twice as many fitness evaluations
at each iteration as their standard counterparts, this technique prevents noisy
fitness evaluations from severely disrupting the learning process and often gives
better results given the same number of evaluations of candidate solutions.

Initial particle elements are randomly generated in the range [0.0, 1.0]. The
elements are allowed to change to any value during evolution, but are bounded
to this range and scaled appropriately during evaluation (i.e. any negative value
is considered as 0.0 and any value greater than 1.0 is considered as 1.0 and then
scaled during evaluation). Velocity is randomly initialized in the range [−0.5, 0.5]
and prevented from ever going outside this range. We use a swarm size of 50,
with pw = nw = 2.0 and w = 0.6.

To explore the impact of particle neighborhood size in this scenario, we con-
sider three different particle neighborhoods in experimentation: an lbest local
neighborhood in a ring topology with one neighbor on each side (2 neighbors to-
tal), a gbest global neighborhood where all particles are neighbors (49 neighbors
total), and an intermediate neighborhood in a ring topology with five neighbors
on each side (10 neighbors total) which we denote ibest.

We use Webots, a realistic simulator, for our robotic simulations [15], using
50 e-puck1 robots [3]. Every robot is responsible for the evaluation of a single,
unique particle from the PSO swarm. The robot(s) operate in a 4.0 m x 4.0
m square arena with no additional obstacles (see Fig. 1b). Several targets are
randomly placed in the environment. If a robot comes within range r = 0.10 m
of a target, the target is considered to be “found”, and it is randomly moved
to a new location in the arena. The emission intensity perceived by a robot i is
equal to:

Ii = η(.) +
∑

j

Pj

d2

ij

where Pj is the power of target j, dij is the distance between robot i and target
j (in meters), and η(.) is random background noise, given by the absolute value
of a sample taken from a Gaussian probability density function with mean 0 and
standard deviation σ = 10.

1 http://www.e-puck.org



For the robot controller, we use the bio-inspired multi-robot search algorithm
described previously, with parameters STEP SIZE, RL RANGE, CW LIMIT,
and CCW LIMIT determined by the distributed PSO algorithm; these param-
eters are linearly scaled from the [0.0, 1.0] range given by PSO to the ranges
[0.1, 1.0], [0.0, 3.9], [0, π], and [0, π], respectively. To evaluate a candidate solu-
tion, we run the multi-robot search algorithm with the specified parameters for
a span of 120 seconds. During that time, robots average their perceived emis-
sion intensity, sampling every 64 milliseconds, and use this value as their fitness
(normalized to a maximum of 1.0, assuming an upper intensity limit of 255).
This fitness function rewards robots who spend more time in close proximity to
a target (where emission intensity is higher) over those who remain farther away.

For our initial experiments, we use three targets with emission power Pj =
10 for all targets. Each of the 50 robots is responsible for a single member of the
PSO swarm (i.e. they must evaluate that member at each iteration and commu-
nicate the resulting fitness measure). We assume all robots are synchronized in
their evaluation here, something which might not necessarily be possible on real
multi-robot systems. With 100 iterations of the PSO algorithm, the adaptation
requires a total simulated learning time of approximately 6 hours 40 minutes
(100 iterations comprised of 2 evaluations each lasting 2 minutes).

4.2 Results

The average progress of individual robot fitness throughout adaptation for the
three different particle neighborhoods can be seen in Fig. 2a. Clear improvements
in fitness for all neighborhood types can be observed over the course of the
algorithm, although the overall change in fitness is not dramatic (approximately
a 30% increase from the initial average fitness value). There do not appear to
be major differences in performance for different particle neighborhood types;
using an lbest neighborhood seems to cause slower initial improvements, but
final performances are similar for all neighborhood types, with gbest doing only
slightly better than ibest, which does slightly better than lbest.

While individual robot fitness is useful for adaptation, it does not necessarily
provide us with a good indicator of the performance of the robot swarm as a
whole. To measure this, we use the number of targets “found” at every eval-
uation of multi-robot search as a group fitness value. The average progress of
group fitness throughout adaptation can be seen in Fig. 2b. We again see clear
improvements in fitness for all neighborhood types, though with a significantly
larger improvement (more than a 100% increase from the initial average fit-
ness value); this shows that our individual and group fitness measures are very
well-aligned. We also notice more pronounced differences between results for
different particle neighborhoods: lbest improves quite slowly throughout adapta-
tion; gbest improves more quickly initially, but plateaus early in the adaptation
process; ibest offers a compromise between the two, improving more slowly than
gbest but continuing throughout adaptation to eventually achieve a higher fitness
than the other two neighborhood types. This is similar to what was observed in
[19], where an intermediate neighborhood size gave optimal performance.
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Fig. 2. Average individual fitness of particles throughout adaptation averaged over 250
runs for lbest, ibest, and gbest particle neighborhoods for (a) individual fitness, and (b)
group fitness. Error bars represent standard error.

When using PSO for optimization, the standard approach is to run the al-
gorithm for repeated iterations until a termination criterion is reached (e.g., a
certain number of iterations have occurred) and then select the best found solu-
tion. While this is straight-forward for numerical optimization, it can be much
more difficult in robotic learning. Determining which solution is actually best
requires repeated evaluations to obtain low-noise fitness measures, which may re-
quire significantly more running time for robots. In addition, once a final solution
is selected by all robots, the robotic swarm can no longer adapt to changing en-
vironmental parameters which may occur in its surroundings. For these reasons,
there are clear advantages to running distributed PSO optimization without
termination, where robots continue to adapt their parameters indefinitely. The
possible drawback to this method is that the performance of robot swarm may
be significantly lower than if it were to use the best found solution.

In order to assess whether continuing adaptation incurs a performance penalty,
we compare the final average group fitness and the best found solution group
fitness after 100 iterations of adaptation. The final average group fitness was
taken as the average group fitness over the last five adaptation iterations. The
best found controller was selected by evaluating the final personal best solutions
for all particles five times and selecting the one with the highest average indi-
vidual fitness; this solution was run on all robots to determine its group fitness.
The average performance over 250 runs for different neighborhood types can
be seen in Fig. 3. The final average group fitness is as high as the best found
solution group fitness for all neighborhood types. This indicates that continu-
ing adaptation indefinitely will not result in a significant performance decrease.
Oddly, for gbest, the average group fitness is actually higher than the best found
controller fitness. One possible explanation is that the gbest neighborhood may
overfit on individual fitness, causing a slight decrease in the group fitness when
an over-optimized solution is selected. We can also confirm here that the ibest

neighborhood significantly outperforms lbest and gbest using an ANOVA test,
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Fig. 3. Final average group fitness and best found solution group fitness averaged over
250 runs for lbest, ibest, and gbest particle neighborhoods. Error bars represent standard
error.

both for the best found solution (P-value of 0.0084 for lbest and 0.0005 for gbest)
and average group fitness (P-value of 1.6 · 10−8 for lbest and 0.0014 for gbest).

5 Adaptation in Non-Static Environments

A major potential benefit to unending robotic adaptation is that robots could
automatically adjust to changes that might arise in the environment. To test
this possibility, we rerun our experiments in a non-static environment. We use
the same simulated scenario as in the previous experiments. At the start of
adaptation, we use three targets with emission power Pj = 3 for all targets.
After 50 iterations, we switch to using ten targets with emission power Pj = 10
for all targets. We again run 100 iterations total using 50 robots.

The average of individual robot fitness throughout adaptation in the non-
static environment can be seen in Fig. 4a (fitness in the last 50 iterations is
significantly higher due to the increased power and number of targets and is
shown at a reduced scale in the plot, with the scaling factor chosen to best align
the data). We observe the same trend as in the previous experiment for the first
50 iterations. At this point, there is a fitness shift for all neighborhood types as
the simulations switches over to the new environmental parameters and fitness
scaling. In the last 50 iterations, we see a slightly larger increase in individual
fitness compared to what was observed in the static environment, with similar
final fitness for all neighborhood types.

The group fitness throughout adaptation in the non-static environment can
be observed in Fig. 4b (fitness in the last 50 iterations is significantly higher due
to the increased power and number of targets and is shown at a reduced scale,
with the scaling factor chosen to best align the plots). Progress in the first 50
iterations is the same as for the static environment. In the last 50 iterations,
we see continuing fitness improvements for lbest and ibest neighborhoods, with
larger gains than were observed in the last 50 iterations in the static environ-
ment, particularly for lbest. This indicates that robots successfully adapt from
the initial scenario to the new environmental parameters. The fitness for the
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Fig. 4. Average fitness of particles throughout adaptation in a non-static environment
averaged over 250 runs for lbest, ibest, and gbest particle neighborhoods for (a) indi-
vidual fitness, and (b) group fitness. Fitness in the later iterations is scaled to match
fitness in the initial iterations. Error bars represent standard error.

gbest neighborhood remains approximately constant. This could be caused by
premature convergence, which would lead to lower particle diversity and prevent
further adaptation. Higher diversity in the other neighborhoods allow them to
continue to adapt in non-static environments, particularly in the case of lbest,
which achieves final performance as high as ibest in this scenario.

6 Conclusion and Outlook

We have shown that distributed Particle Swarm Optimization can be used for
adaptation in multi-robot systems, illustrated with the case study of multi-robot
search. Best performance is obtained by using an intermediate particle neighbor-
hood between lbest and gbest, which offers fast optimization without premature
particle convergence in this scenario. Adaptation can be continued indefinitely
without a significant performance penalty, making it possible for the robot swarm
to automatically adapt in non-static environments.

In this paper, we have devoted our focus to the multi-robot adaptation pro-
cess using distributed PSO and spent little time studying the multi-robot search
algorithm itself. Observing the final solutions found by the adaptation process
could give us insight into the impact of each of the different algorithmic pa-
rameters and how they influenced the robots’ performance. The bio-inspired
multi-robot search technique should also be compared to other common search
strategies for similar scenarios (such as standard “optimal” search techniques or
PSO-inspired search) to evaluate its overall potential.
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