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Abstract—Amethod to estimate frommultivariatemea-
surements the dependences within a network of coupled
dynamical systems is proposed. The method is non-
parametric and resorts to a statistics of the eigen-spectrums
of the time series partial correlation matrices. The method
is successfully validated on numerically generated data,
demonstrating its capability to distinguish between direct
and indirect dependences.

1. Introduction

In modern experimental setups, with the growing avail-
ability of multiple parallel measurements, multivariate time
series analysis has been raising as a key topic. In partic-
ular, inferring from measured data the functional interac-
tions (dependences) between coupled dynamical systems
has become a crucial step to unravel the principles gov-
erning the observable collective behaviors of concrete net-
works [1]. For instance, in population biology the interest
is focused on interactions between different populations in
a given territory [2], while in neuroscience a key question is
how single neurons process a certain stimulus within func-
tionally coherent neuronal assemblies [3].
Traditionally, this step consists in estimating the strength

of dependences between measured signals (time series)
with estimators such as linear cross-correlation, mutual in-
formation, measures of mutual predictability and phase dy-
namics [4, 5]. Unfortunately, these estimators are usu-
ally not viable in a multivariate context, either because of
their computational complexity or because their inability
to marginalize third knowledge. Indeed, when dealing with
multivariate data, the computational costs might explode
and direct and indirect dependences must be discerned [6].
An effective dependences estimator for multivariate

stochastic processes is already available [6], while for de-
terministic processes contributions have started to appear
only very recently (e.g. [7]).
Here, we present an approach to estimate the strength of

dependences between multivariate time series that, theoret-
ically, can be applied to both deterministic and stochastic
processes. The method is non-parametric and represents an
extension of a recently proposed multivariate dependences

estimator [8].
The method is described in Sec. 2; in Sec. 3 its abil-

ity to correctly estimate dependences within networks of
three dynamical systems is assessed on numerically gener-
ated data; finally, conclusions are given in Sec. 4.

2. Method

We first briefly recall the recently introduced dependence
estimator, called S [8], then we explain how to correctly ap-
ply it on measurements from deterministic dynamical sys-
tems, and, finally, wewill extend it to estimate dependences
between two time series conditionally upon third ones.

2.1. S estimator

This estimator has been recently introduced to quantify
the cooperativeness within a network of dynamical systems
out of measured time series [8].
Given M time series, one from each dynamical system

under study, we denote them by Y = {y i}, i = 1, . . . , L,
where yi ∈ RM is the i − th sample observation vector and
L is the number of available samples. Without loss of gen-
erality, we can consider Y as de-trended to zero mean and
normalized to unitary variance.
Let us consider the M × M estimated correlation matrix

of the time-series

C = 1
L − 1

L∑

i=1
yTi yi , (1)

with elements cii = 1 and ci j = ρi j, i ! j, i.e. the correla-
tion between the i-th and j-th time series. Called λ ′i =

λi
M

the normalized eigenvalues of C, the entropy-like quantity

H = −
M∑

i=1
λ′i log

(
λ′i
)

(2)

is a measure inversely proportional to the amount of depen-
dences between the M time series.
Indeed, it can be interpreted as a deviation from mutual

orthogonality (lack of correlation) between the M signals.
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In the case of M uncorrelated signals, C = I, the normal-
ized eigenvalues are all equals λ′i =

1
M , and H is equal to

logM. In the case of perfectly correlated signals, C has
one unitary normalized eigenvalue and all the others zero,
and H is equal to 0. To have a measure proportional to the
amount of dependences, we can simply rearrange Eq. (2)
as S = 1 − H

logM , which is 0 for uncorrelated signals, 1
for completely correlated ones, is monotonically increasing
with respect to all correlation terms (cf. [8]), i.e. the off-
diagonal elements of C, and has been shown to scale with
coupling strength when considering coupled deterministic
non linear dynamical systems [8].
By reconstructing from the measured scalar time series,

through embedding, the trajectory of the dynamical phe-
nomena under observation, this estimator can explicitly ac-
count for the hypothesis of deterministic dynamical sys-
tems behind the measurements. However, in this case a
normalizing step is necessary.
Given, for the sake of simplicity, two time series (M =

2), for which delay times (τ(1) and τ(2)) and embedding di-
mensions (m(1) and m(2)) have been estimated [5], we can
consider the embedded multivariate trajectory X = {x i},
where xi ∈ R(m(1)+m(2)) and

xi =



y(1)i , · · · , y

(1)
i−(m(1)−1)τ(1)︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
x(1)i

, y(2)i , · · · , y
(2)
i−(m(2)−1)τ(2)︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
x(2)i



.

The corresponding estimated correlation matrix can be
block partitioned to highlight the contribution of the two
systems, i.e.

C =
[
C(1,1) C(1,2)

C(1,2)T C(2,2)

]
, (3)

where them(i)×m(i) matricesC(i,i), i = 1, 2, collect the intra-
system correlation terms, i.e. the correlation between state-
variables of the same system, while the m(1) × m(2) matrix
C(1,2) collects the inter-system correlation terms, which are
the dependences in our interest.
To correctly estimate the inter-dependence between the

two systems, independently of the intra-dependences, we
proceed through a suitable linear transformation of the re-
constructed state space X which reduces the C (i,i) to iden-
tity matrices; in other words, we intra-orthogonalize the
state variables of the two systems. As result of the trans-
formation, the estimated correlation matrix for the trans-
formed trajectory will have nonzero off-diagonal elements
only within the inter-dependence block C (1,2).
The transformation is given by

Z =
[
Z(1) Z(2)

]
=
[
X(1) X(2)

] [ T(1) 0
0 T(2)

]
= XT,

with T(1) = C(1,1)−
1
2 and T(2) = C(2,2)−

1
2 , i.e. the principal

square root matrices of C(1,1)−1 and C(2,2)−1 respectively,

where the inverses are guaranteed to exist if an appropriate
embedding is performed. Clearly, the estimated correlation
matrix for the Z trajectory turns out to be

R =


I T(1)TC(1,2)T(2)

T(2)TC(2,1)T(1) I


 =
[
I R(1,2)

R(1,2)T I

]
, (4)

which can then be used, through Eq. (2), to correctly quan-
tify the dependence between the two systems. If the two
systems are uncorrelated, R(1,2) = 0, R will be diagonal,
and H = log

(
m(1) + m(2)

)
, while if the two systems are

“identical”, it can be verified that R(1,2) will have ones on
the main diagonal and zeros elsewhere. Under this case the
entropy of the normalized eigenvalues will depend on the
embedding dimensions (m(1) and m(2)). We do not have a
closed form formula to compute it; though, it can be easily
computed numerically and we denote with Hmin its value.
Knowing the extremes, we can finally rearrange Eq. (2) as

S =
log
(
m(1) + m(2)

)
− H

log
(
m(1) + m(2)

) − Hmin
, (5)

getting a measure proportional to the amount of depen-
dences and ranging from 0 to 1. Clearly, this procedure can
be trivially extended to estimate the whole cooperativeness
within M interacting dynamical systems.

2.2. Partial S estimator

In the previous section we have derived an estimate for
the cooperativeness strength between coupled deterministic
dynamical systems. However, this derivation is still not sat-
isfactory because cooperativeness between systems may be
merely incidental to the fact that all systems may be com-
monly correlated to another system. This difficulty can be
overcome by considering the partial correlation matrix in-
stead of the correlation one. Indeed, partial correlations are
a well established statistical tool to examine correlations
between signals conditionally upon thirds signals [9].
To illustrate the procedure, let us consider three deter-

ministic systems, assuming that we want to estimate the
dependence between the first two marginalizing the knowl-
edge of the third one.
After a suitable embedding, the M × M (where M =∑3
j=1m( j)) correlation matrix C of the embedded trajectory

is estimated. C can be tri-partitioned similarly as Eq. (3)
and, accounting for the partitioning, the

(
m(1) + m(2)

)
×(

m(1) + m(2)
)
partial correlationmatrix between the first two

systems given the third one is written as [9]

P =
[
P(1,1) P(1,2)

P(1,2)T P(2,2)

]
=

=

[
C(1,1) C(1,2)

C(1,2)T C(2,2)

]
−
[
C(1,3)
C(2,3)

]
C(3,3)−1

[
C(1,3)T C(3,2)

]
.

From this point, we can proceed as in the previous sec-
tion. Firstly, through a linear transformation of the state
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Figure 1: Networks of coupled Rössler (R), Lorenz (L) and
Colpitt’s (C) dynamical systems considered for the valida-
tion of the method. Cases of triangular dependences: (a) –
common source; (b) – common child.

space1, P is conveniently transformed in a form similar to
Eq. (4); then, the dependence between the first two sys-
tems marginalized upon the third one is quantified through
Eq. (5). From here on, we shall denote as pS the estimates
of partial dependences. Once again, this procedure can be
trivially extended to account of more than three systems.

3. Numerical Validation

The S and pS estimators have been validated on numer-
ically generated data. We considered the two heterogenous
networks of Fig. 1, which are composed of three struc-
turally different dynamical systems; namely, a Rössler (R),
Lorenz (L) and Colpitts (C) oscillator. These two coupling
schemes are exemplary of the difficulties arising when esti-
mating interactions among multivariate data. In scheme (a)
a non existent (indirect) connection between L and C may
be inferred because of the common source R, also called a
confounder. In scheme (b), a non-existent interaction be-
tween R and L may be inferred because of their common
destination C, or child.
The equations governing the dynamics of the two

considered networks are given by



θ̇(1)1 =T
[
θ(1)2 + θ

(1)
3 + η

(1)
1

]
,

θ̇(1)2 =T
[
θ(1)1 + aθ

(1)
2 + η

(1)
2

]
,

θ̇(1)3 =T
[
b + θ(1)3

(
θ(1)1 − c

)
+ η(1)3

]
,

θ̇(2)1 =σ
(
θ(2)2 − θ

(2)
1

)
+K (2,1)

(
θ(1)1 − θ

(2)
1

)
+ η(2)1 ,

θ̇(2)2 =rθ
(2)
1 − θ

(2)
2 − θ

(2)
1 θ

(2)
3 + η

(2)
2 ,

θ̇(2)3 =θ
(2)
1 θ

(2)
2 − βθ

(2)
3 + η

(2)
3 ,

θ̇(3)1 =T
[

g
Q (1− k)

(
α

(
1− e−θ

(3)
2

)
+ θ(3)3

)
+K (3,1)

(
θ(1)2 − θ

(3)
2

)
+K (3,2)

(
θ(2)2 − θ

(3)
2

)
+ η(3)1

]
,

θ̇(3)2 =T
[
g
Qk

(
(1− α)

(
1− e−θ

(3)
2

)
+ θ(3)3

)
+ η(3)2

]
,

θ̇(3)3 =−T
[
Qk (1− k)

g
(
θ(3)1 + θ

(3)
2

)
+
1
Q
θ(3)3 + η

(3)
3

]
,

(6)

where θ(1)j , θ
(2)
j , θ

(3)
j j = 1, 2, 3 are the state variables of

the Rössler, Lorenz and Colpitts oscillators, respectively;
1In reality the similarity transformation P′ = TTPT, with T =


P(1,1)−

1
2 0

0 P(2,2)−
1
2


 can be applied directly to the matrix P.
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Figure 2: Estimated C – L dependence in the case of com-
mon source connection (cf. Fig. 1(a)): dependences of (a) –
pS (2,3) and (b) – S (2,3) upon the coupling strengths K (2,1)

and K (3,1).

0

7.5

15

0

2.5

5
0

0.4

K
(2,

1)

(a)

K (3,1)

pS
(1

,2
)

0

7.5

15

0

2.5

5
0

0.4

K
(2,

1)

(b)

K (3,1)

pS
(1

,3
)

Figure 3: Estimated R – C and R – L dependences in the
case of common source connection (cf. Fig. 1(a)): depen-
dences of (a) – pS (1,2) and (b) – pS (1,3) upon the coupling
strengths K (2,1) and K (3,1).

a = 0.4, b = 0.4, c = 5.7, σ = 10, β = 8/3, r = 28,
g = 100.625, Q = 100.15, α = 0.996, k = 0.5 are standard
valued parameters; the time scale T = 6 adapts the rela-
tive speed differences between the three sub-systems; η (i)j ,
i, j = 1, 2, 3, are zero mean uncorrelated Gaussian random
noises (set to at a strength of 1% of the energy of the right
hand side along the uncoupled attractors); and the K (2,1),
K (3,1), and K (3,2) are the diffusive coupling strengths cor-
responding to the situations of Fig. 1, which in the sim-
ulations have been varied within the intervals [0, 15] (the
former) and [0, 5] (the latter two).
For every considered value of the couplings the network

was simulated starting from random initial conditions. The
transients were discarded, and time series of length L =
5000 were collected by sampling (δT = 0.02) the cou-
pled variables θ(1)1 , θ

(2)
1 and θ(3)1 corrupted by zero-mean

white Gaussian observational noise leading to 40 dB SNR.
From these measurements, we reconstructed 4-dimensional
state spaces by delay embedding the time series with τ (i) =
0.18, i = 1, 2, 3.
The results for the case of common source (Fig. 1 (a))

are shown in Figs. 2 and 3. Figure 2 reports the depen-
dence of pS (2,3) (= pS (3,2)) and S (2,3) upon the coupling
strengths K (2,1) and K (3,1) evaluated at 100 evenly spaced
points. Correctly, pS (2,3) stays close to zero and do not
scale with neither of the coupling strengths, whilst the S (2,3)
does scale, showing that the marginalization upon the mea-
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Figure 4: Estimated R – C and L – C dependences in the
case of common child connection (cf. Fig. 1(b)): depen-
dences of (a) – pS (1,3) and (b) – pS (2,3) upon the coupling
strengths K (3,1) and K (3,2).
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Figure 5: Estimated R – L dependence in the case of com-
mon child connection (cf. Fig. 1(b)): dependences of (a) –
pS (1,2) and (b) – S (1,2) upon the coupling strengths K (3,1)

and K (3,2).

surements from third system does improve the dependence
estimation. Moreover, pS (2,3) is always inferior to pS (1,2)
and pS (1,3), which, as shown in Fig. 3, scale correctly with
the coupling strengths. Also, we remark that they decrease
slowly with the increase of both coupling strengths. This
phenomenon can be explained by the fact that the three sys-
tems influence each other and, consequently, become more
and more similar, jeopardizing the reconstruction.
As a consequence of these results, one could think to

consider only partial S for estimating dependences, dispos-
ing of S . However, this is not the case because of the so-
called “marrying-parents” effect, commonly observable in
the case, illustrated in Fig. 1(b), of a common child. For
this case, as shown in Fig. 4, pS (1,3) and pS (2,3) scale cor-
rectly with the coupling strengths K (3,1) and K (3,2). How-
ever, as shown in Fig. 5(a), pS (1,2) does scale with the cou-
plings, leading to the incorrect inference of a non-existent
dependence betweenR and L. Though, the voidance of this
coupling can be easily tested by means of the S (1,2) estima-
tor which, as shown in Fig. 5(b), correctly stays close to
zero.
From these two numerical experiments we can conclude

that, by combining both S and pS estimators, we can cor-
rectly estimate the dependences within a network of cou-
pled dynamical systems.

4. Conclusions

A new method to infer from measured time series the
strength of interactions within a network of coupled dy-
namical systems has been proposed, and its ability to
discriminating direct from indirect dependences has been
demonstrated on numerical data.
Themethod proved eligible for the application on experi-

mental data. However, toward a significant and appropriate
experimental application, deeper and extensive simulation
studies are needed. This is matter of ongoing research and
will be presented in a later work.
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