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Dendritic crystal growth patterns have fascinated

scientists for several centuries. Much of the aesthetic

appeal of these patterns stems from the hierarchical

structure of primary-, secondary-, and higher-order

branches, which typically grow along principal

crystallographic axes. Atypical growth directions have

also been observed. Here, we demonstrate both

computationally and experimentally that the range

of possible dendrite growth directions, and hence

the morphological diversity of the resulting dendritic

structures, is much richer than previously anticipated. In

particular, we show that primary dendrite growth directions

can vary continuously between different crystallographic

directions as a function of the composition-dependent

anisotropy parameters. The study combines phase-field

simulations of equiaxed dendritic growth and directional

freezing of Al–Zn alloys. Both simulations and experiments

exhibit continuous changes of direction from 〈100〉 to 〈110〉
for an underlying cubic symmetry. These results have

important implications for controlling the microstructure

of a wide range of cast alloys that solidify dendritically.

Dendritic alloy microstructures are formed during a wide
range of solidification processes from casting to welding.
These microstructures result from a morphological

instability of the solid–liquid interface that produces dendrites,
which are highly hierarchical branched patterns with primary-,
secondary- and higher-order branches. As alloy impurities
segregate in the interdendritic liquid during solidification,
the spatially inhomogeneous distribution of impurities in the
completely solidified alloy is a direct footprint of the dendritic
network that formed and coarsened during the solidification
process. It also determines the formation and distribution
of secondary phases, and thus has a profound influence on
the properties of a wide range of technologically important
structural materials, from light-weight aluminium alloys used
in the automotive industry to nickel-based superalloys used for
turbine blades. The study of dendritic growth1,2 has also been
of long-standing fundamental interest because of the ubiquity
of branched structures exhibited by diverse interfacial pattern
formation systems3–5.

Major theoretical and computational advances over the past
two decades have improved our fundamental understanding of
dendrite growth, as well as new capabilities to simulate and predict
dendritic microstructures on experimentally relevant length and
timescales6 and to elucidate new pattern formation mechanisms7,8

that enlarge the scope of our understanding of these structures.
The commonly accepted microscopic solvability theory of steady-
state dendrite growth9–12, which builds on the earlier diffusive
transport theory of Ivantsov13, has led to the understanding
that crystalline anisotropy is a crucial parameter that uniquely
determines the growth rate and tip radius of dendrites, which is the
basic scaling length for the entire dendritic network. Predictions of
this theory have been largely validated by phase-field simulations
of dendritic evolution over the past few years for both small14–19

and large20 growth rate. Moreover, molecular dynamics (MD)
simulation methods21–30 as well as experimental techniques31,32

have recently been developed to accurately compute anisotropic
interfacial properties that control dendritic evolution.

Despite this progress, dendrite growth theory remains limited
to predicting the steady-state characteristics of dendrites growing
along simple crystallographic directions, such as the 〈100〉
directions that correspond to the main crystal axes for materials
with cubic symmetry, or the six directions in the basal plane of
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Figure 1 Orientation selection map fromminimum interfacial stiffness. The
axes ε1 and ε2 are the coefficients of the first two cubic harmonics that characterize
the anisotropy of the interfacial free energy γ . The interfacial stiffness S has minima
that correspond to 〈100〉 and 〈110〉 above and below the red dashed line
(ε1 = −20ε2/3), respectively. There is a continuous degeneracy of orientation on
this line where all directions contained in {100} planes have equal stiffness minima.
Illustrative spherical plots of 1/S are also shown for: A, 〈100〉 (ε2 = 0, ε1 = 0.11),
B, degenerate minima (ε2 = −0.02, ε1 = 0.13), and C, 〈110〉
(ε2 = −0.02, ε1 = 0). The lower-case letters (a–e) correspond to the parameters of
the phase-field simulations shown in Fig. 2.

hexagonal symmetry crystals. This theory falls short of predicting
a host of other directions that have been observed experimentally,
ranging from early observations of 〈2245〉 directions off the
basal plane and the c axis in Mg alloys with hexagonal crystal
symmetry33,34 as well as 〈110〉 and 〈111〉 directions for ammonium
chloride in aqueous solutions35, to more recent observations of
〈110〉, 〈320〉, 〈211〉, and even unsteady curvilinear dendrite paths
in face-centred cubic (f.c.c.) Al-based alloys36–41.

These observations raise the question of what the fundamental
relationship between dendrite growth directions and the
underlying crystal symmetry is. In this paper, the question of
orientation selection is explored using both phase-field simulations
of three-dimensional equiaxed growth for cubic anisotropy and
electron back-scattered diffraction (EBSD) analysis of dendrite
growth directions in f.c.c. Al–Zn alloys as a function of Zn
composition. The simulations exploit new knowledge of the
anisotropy of the interfacial energy recently obtained from MD
simulations21. Our main finding is that dendrite growth directions
are not limited to a discrete set of crystallographic directions, as
would be expected from the anisotropy of the interfacial free-
energy. Instead, the growth directions can vary continuously over
some range of anisotropy parameters. Moreover, values of these
parameters computed from molecular dynamics simulations for
pure f.c.c. metals (such as Al, Ni, Cu, etc) fall close to this range,
which has important consequences for the control of dendritic
microstructures in alloys of technological relevance.

When the attachment kinetics of atoms at the interface is
rapid, which is the case for most metal systems21, the solid–
liquid interface can be assumed to be locally in thermodynamic
equilibrium for small to moderate dendrite growth rates that
prevail in most processing conditions. Dendrite growth directions
must then be determined primarily by the anisotropy of the solid–
liquid interfacial energy, γ(n̂), where n̂ is the direction normal to
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Figure 2 Equiaxed dendrites and growth directions from phase-field
simulations. Phase-field simulations showing the different equiaxed growth
morphologies obtained for different values of ε1 at fixed ε2 = −0.02, following the
blue arrow (a–e) that crosses the degenerate 〈100〉–〈110〉 boundary. Instead of
making an abrupt change from 〈100〉 to 〈110〉 as this boundary is crossed, the
misorientation ϕ increases continuously from ϕ = 0 (〈100〉 dendrites) to 45◦

(〈110〉 dendrites) over a large range of ε1 between the two dashed lines. The error
bars reflect the uncertainty associated with the change of growth orientation during
the slow relaxation to steady-state growth. The image in the upper right-hand side
shows two-dimensional cross-sections of the solid–liquid boundary at equal
intervals of time in a (001) plane for parameters corresponding to point b. It
illustrates the divergent growth of misoriented dendrites.

the interface. For crystals with an underlying cubic symmetry, γ(n̂)
can be expanded in the form:

γ(θ,ϕ) = γ0[1+ ε1K1(θ,ϕ)+ ε2K2(θ,ϕ)+···], (1)

where γ0 is the mean value of γ, θ and ϕ are the spherical
angular coordinates of the interface normal, ε1 and ε2 are the
anisotropy parameters and K1 and K2 are cubic harmonics that
are combinations of standard spherical harmonics Ylm(θ,ϕ) with
cubic symmetry21,35,42,43. Historically, dendrite growth has been
modelled primarily using the first cubic harmonic for positive
ε1, which favours the commonly observed 〈100〉 dendrite growth
directions. However, recent MD simulation21 studies have revealed
that it is also necessary to retain the second term in this expansion
to accurately describe the entire γ-plot, that is, γ(n̂), for all
orientations. Moreover, they have shown that, for a wide range of
f.c.c. metals, ε2 is negative whereas ε1 is positive. As a positively
weighted first cubic harmonics favours 〈100〉 directions, whereas
a negatively weighted second cubic harmonics favours 〈110〉
directions35, it is not a priori obvious whether 〈100〉, 〈110〉 or some
other direction will be favoured under the combined effect of both
cubic harmonics.

A first approximate answer to this question, which sets the stage
for the phase-field simulations, can be obtained by assuming that
dendrites will pick easy growth directions where capillary forces
are weakest, and hence least effective at smoothing out protrusions
of the solid–liquid interface. Capillary forces enter the dendrite
growth problem through the classic Gibbs–Thomson condition,
which relates the local equilibrium temperature or composition of
a curved interface to the interface stiffness and curvature. In two
dimensions, the stiffness is a scalar quantity γ+d2γ/dθ2, where θ is
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the angle between n̂ and a fixed reference axis. For the simple form
γ =γ0(1+ε4cos4θ+···), commonly assumed in theoretical studies
of dendrite growth, and positive ε4, stiffness minima correspond to
〈10〉 dendrite growth directions. In three dimensions, the interface
stiffness becomes a tensor, γδij + ∂2γ/∂ϕi∂ϕj , where ϕ1 and ϕ2

measure the local deviation of n̂ along two orthogonal directions
in a plane perpendicular to n̂, and δij is the standard Kronecker
delta defined such that δij = 1 for i = j and δij = 0 for i different
from j. Easy growth directions can then be identified by minima
of the trace of this stiffness tensor referred to hereafter simply as
the stiffness

S = 2γ + ∂2γ

∂θ2
+ 1

sin2 θ

∂2γ

∂ϕ2
+cotθ

∂γ

∂θ
, (2)

which is expressed above in terms of the spherical
angular coordinates.

We have used equations (1) and (2) together with the known
analytical forms of the cubic harmonics21,42,43 to make spherical
plots of the inverse of the stiffness 1/S as a function of orientation
n̂ for different anisotropy parameters. Stiffness minima, which
correspond to maxima of 1/S, are clearly seen as bumps on these
plots. Results are shown in Fig. 1 together with an orientation
selection map in the anisotropy parameter space relevant for f.c.c.
metals, that is, the (ε2, ε1) plane for positive ε1 and negative ε2.
This map shows the existence of two distinct regions with stiffness
minima corresponding to 〈100〉 and 〈110〉 respectively, separated
by a boundary, which can be shown analytically to be a straight
line ε1 = −20ε2/3. Away from this boundary towards the positive
ε1 axis, there are well-developed 〈100〉 stiffness minima (1/S
maxima), which are expected to favour 〈100〉 dendrite growth
directions. Similarly, away from this boundary towards the negative
ε2 axis, well-developed 〈110〉 stiffness minima should favour
〈110〉 growth directions. However, exactly on the 〈100〉–〈110〉
boundary, all directions comprised in any of the {100} planes
correspond to stiffness minima. This degeneracy is best illustrated
by viewing the 1/S plot from the [001] direction for an (ε2, ε1)
pair on this boundary, as shown in Fig. 1. The outer perimeter
of this plot, which spans the orientations n̂ = cosϕ x̂ + sinϕ ŷ for
ϕ ∈ [0,2π] is perfectly circular, such that all ϕ have equal stiffness
minima. This degeneracy suggests that dendrite growth directions
are not strongly determined by stiffness minima near the 〈100〉–
〈110〉 boundary in the (ε2, ε1) plane. Therefore, although the
minimum stiffness criterion predicts a discontinuous change from
〈100〉 to 〈110〉 directions as this boundary is crossed, it is unclear
whether this criterion will hold true when stiffness minima are
not pronounced.

To test these predictions, we carried out three-dimensional
phase-field simulations of equiaxed dendritic growth in a pure
undercooled melt. We used a well-established methodology14–18 to
carry out quantitative simulations at low undercooling, which was
previously used to study 〈100〉 dendrites with a single anisotropy
parameter ε1 > 0 and ε2 = 0. The present simulations only differ
by the incorporation of two anisotropy parameters with γ defined
by equation (1). Although we focus on the solidification of a pure
melt, we also expect the results to apply to the equiaxed isothermal
solidification of binary alloys given the well-known mathematical
isomorphism between the two problems. The simulations were
carried out for a fixed undercooling that is 10% of the ratio of the
latent heat of melting to the specific heat. The simulations used
a small spherical crystal seed as the initial condition and tracked
its evolution into a well-developed equiaxed structure with well-
defined dendrite growth directions that were constant at large time.

Figure 2 shows the equiaxed dendrites obtained when crossing
the 〈100〉–〈110〉 boundary vertically, that is, by fixing ε2 and
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Figure 3 Orientation selection map from phase-field simulations. Map of the
different regions corresponding to 〈100〉 and 〈110〉 dendrites above and below the
two solid lines, respectively, and hyperbranched dendrites with a continuous change
of misorientation from 0 to 45◦ in between these two lines. The anisotropy
parameters for different f.c.c. metals and one f.c.c. metallic alloy obtained from
molecular dynamics simulations with the corresponding error bars21 are
superimposed. The blue arrow is a putative guess of the change of anisotropy
parameters induced by Zn addition to Al.

lowering ε1 from a sufficiently large value where 〈100〉 dendrites
are selected to ε1 = 0. Each pair of (ε2, ε1) values corresponds
to a different simulation starting from a spherical seed. The
results reveal that the transition between 〈100〉 and 〈110〉 is not
discontinuous, as predicted by the minimum stiffness criterion. In
contrast, the growth direction changes continuously from 〈100〉
to 〈110〉 as a function of ε1. The directions are contained in the
{100} planes and the misorientation, that is, the angle ϕ between
growth directions in these planes and the principal crystal axes,
varies from 0 to π/4. By symmetry, structures for 0 < ϕ < π/4 are
‘hyperbranched’, exhibiting 24 branches growing simultaneously, as
opposed to 6 and 12 branches for 〈100〉 (ϕ=0) and 〈110〉 (ϕ=π/4)
dendrites, respectively. The robustness of the results was checked by
carrying out a few lengthy simulations without enforcing the crystal
symmetry. These simulations yielded identical results as those
that enforce the crystal symmetry to make computations more
efficient. The continuous change of orientation was also found to
be independent of undercooling in a low-undercooling regime.

Figure 3 shows the results of an exhaustive numerical survey
of the anisotropy parameter space that distinguishes the three
domains of 〈100〉, hyperbranched, and 〈110〉 dendrites in the
(ε2, ε1) plane, together with anisotropy parameters for f.c.c. and
body-centred cubic metals determined from MD simulations. Two
main features stand out. First, hyperbranched dendrites whose
primary branches are misoriented with respect to crystal axes
occupy a large fraction of this plane, whereas the 〈110〉 dendrites
are constrained to a narrow wedge above the negative ε2 axis.
Second, the MD data for several pure f.c.c. metals (Table III
from ref. 21) fall strikingly close to the 〈100〉-hyperbranched
boundary. Therefore, it is natural to hypothesize that the change
of anisotropy parameters resulting from solute addition is the
underlying mechanism for atypical dendrite growth directions
observed in some f.c.c. metallic alloys36–41. This seems likely because
only small changes are necessary to shift the anisotropy parameters
either above or below this boundary.
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To test this hypothesis experimentally, we have analysed
dendrite growth directions in solidified Al–Zn alloys. This alloy
was chosen because a previous study40,41 of Al–45 wt% Zn coatings
deposited on steel sheets revealed atypical 〈320〉 dendrite growth
directions in grains with various orientations with respect to the
coating surface. Therefore, a systematic study of growth directions
as a function of increasing Zn composition would be expected
to reveal the change of growth direction from 〈100〉 for dilute
Zn composition to atypical directions for larger Zn composition.
Several Al–Zn alloys were prepared, from 99.995% purity Al and
99.995% purity Zn, with 5, 10, 25, 30, 35, 45, 50, 55, 65, 75
and 90 wt% Zn. These alloys were solidified in a Brigdman
furnace at 67 μm s−1 and in a directional solidification (DS) setup
at a velocity varying between 0.5 and 3 mm s−1, depending on
the height of the specimen. The dendritic microstructure of
chemically etched and electropolished longitudinal sections of
solidified alloys was analysed using a combination of standard
optical or scanning electron microscopy and EBSD orientation
measurements. For each specimen, several grains in which dendrite
primary trunks were perfectly aligned with the metallographic
section were identified. The steady-state dendrites in these grains
showed well-defined primary trunks and side arms, the orientation
of which was measured by EBSD (error estimation of 2◦ for the
angle ϕ between the trunks and the 〈100〉 reference direction).

The experimental results are summarized in Fig. 4. The key
finding is that the change of dendrite growth direction as a
function of Zn composition directly mirrors the change of growth
direction as a function of anisotropy in the phase-field simulations
(Fig. 2). In particular, 〈100〉 directions only exist up to a critical
Zn composition (25 wt%). For a concentration higher than 55 wt%,
the dendrites are clearly growing along 〈110〉 directions as indicated
in Fig. 4 for an Al–90 wt% Zn (right inset). As shown by the
circle and square symbols, associated with Bridgman and DS
specimens respectively, the results do not depend on the type
of experiments, thus showing their independence with respect
to the velocity. This eliminates the contribution of attachment
kinetics anisotropy in the present experiments, thus supporting
a continuous change of steady-state dendrite orientation dictated
only by the surface energy anisotropy variation, as in the phase-
field simulations. This is in contrast to other DS experiments
where abrupt velocity-dependent transitions between slow 〈100〉
and fast 〈111〉 growth modes have been related to the anisotropic
departure from local chemical equilibrium at the solid–liquid
interface for ammonium chloride dendrites44. For concentrations
between 25 and 55 wt% Zn, the misorientation of the dendrite
trunks continuously increases from 0 to 45◦. The left inset in
Fig. 4 shows the steady-state dendrite trunks for an Al–50 wt% Zn
which are close to a 〈320〉 direction. One interesting difference
between the phase-field simulations of equiaxed growth and the
directional growth experiments is the observation, in the latter,
of more-disordered seaweed structures at the beginning and at
the end of the dendrite orientation transition (that is, around 25
and 55 wt% Zn). However, these seaweeds exhibit a well-defined
orientation texture in DS specimens where many grains form at
the bottom, thus indicating that a selection mechanism based on
a preferred orientation has nevertheless occurred during grain
growth competition. This preferred orientation indicated by the
mean texture direction of the seaweed structure (filled symbols
in Fig. 4) follows the general trend predicted for the dendrite
orientation transition.

The striking similarity between the computational and the
experimental results strongly support the hypothesis that the
change of anisotropy parameters with Zn composition is the
underlying mechanism of the change of growth direction observed
experimentally, as indicated by the blue arrow in Fig. 3. This
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Figure 4 Columnar dendrites and growth directions from experiments. Plot of
the dendrite growth misorientation obtained from microstructural analysis of
directionally solidified Al–Zn alloys as a function of Zn composition showing a
continuous increase from 0 to 45◦ over a finite range of Zn composition, comprised
between 〈100〉 and 〈110〉 dendrites for dilute and concentrated alloys. The
Bridgman experiments were done at 67μms−1 in a gradient of 100 K cm−1,
whereas in the directional solidification experiments, the velocity varied between 3
and 0.5mms−1 and the gradient from 30K cm−1 to 0 depending on the distance
from the bottom water-cooled surface. Open squares and circles correspond to
directionally solidified and Bridgman specimens, respectively. Filled symbols have
been used for textured seaweeds. Insets: micrographs of dendrites in longitudinal
sections of Bridgman specimens corresponding to Al–50wt%Zn (left, 〈320〉 growth)
and Al–90wt%Zn (right, 〈110〉 growth).

interpretation is supported by the fact that the dendrite tip
composition is close to the nominal composition of the alloy for
the range of growth rates in the experiments, thereby making the
correlation of growth direction and composition valid. A further
test of this hypothesis would require a determination of crystalline
anisotropy parameters in Al–Zn alloys using either MD simulations
or equilibrium shape measurements.

These results bring new challenges for dendritic growth theory.
The commonly accepted theory uses the Ivantsov transport
theory13 to relate the product ρV of the dendrite tip radius ρ
and velocity V to the tip undercooling (or tip supersaturation
for alloys), together with a solvability condition for the existence
of steady-state needle crystal solutions9–12. The latter relates
the product ρ2V to the capillary anisotropy, thereby uniquely
determining ρ and V independently. We have used this theory to
predict the growth rate and limit of existence of 〈100〉 dendrites
in the (ε2, ε1) plane. The predictions were found to be in good
quantitative agreement with the phase-field simulations. However,
this theory falls short of independently predicting the steady-state
operating state of the dendrite tip and its growth direction (ρ2V
and the misorientation ϕ) in three dimensions. This prediction
is currently only possible in two dimensions45. In addition, the
minimum stiffness criterion only predicts 〈100〉 or 〈110〉 directions
(Fig. 2) within a description of γ with only two cubic harmonics.
This criterion is mainly useful to identify a region of the anisotropy
parameter space where a continuous variation of misorientation
may occur, close to a boundary between two discrete sets of
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directions where stiffness minima are degenerate (Fig. 2), but
cannot fundamentally predict this variation. Hence, a general
theory capable of predicting dendrite growth directions in three
dimensions is still lacking.

In summary, we have demonstrated both computationally and
experimentally that orientation selection in dendritic evolution
is considerably richer than previously expected. Dendrite growth
directions encompass a continuous range of misorientations, which
dramatically enlarges the scope of possible dendritic patterns that
can be expected to form in nature. The fact that misoriented
dendritic microstructures cover a large region of the anisotropy
parameter space relevant for metallic alloys suggests that these
microstructures may be more common than previously thought,
consistent with their existence over a wide range of composition
in the present experiments. Moreover, the possibility of altering
anisotropy parameters, and hence orientation selection, by the
addition of solute elements (such as Zn or Mg for Al alloys) offers
new prospects to control dendritic microstructures and optimize
material behaviour in a wide range of applications.

Received 9 March 2006; accepted 6 June 2006; published 9 July 2006.
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