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Abstract  

In this paper, we present a new method for calibrating a 6 degree-of-freedom (DOF) 
high-precision flexure parallel robot. 

The innovative contributions of this work are either in the technological challenge of 
calibrating a 6 DOF robot with sub-micrometer accuracy either in the way of 
processing the measurement data in order to correct the robot pose errors. 

The first part of this work describes the procedure adopted for collecting a set of 6 D 
(3 translations + 3 rotations) measurement data from the robot. In this procedure, 
the robot was programmed, using closed-loops with external measurement devices, 
in order to execute either “pure translational” or “pure rotational” motions. All 
measurements were carried out on a thermally-stabilized environment. 

The second part describes the method used to process the acquired data in order 
to correct the pose errors. We show in which optimal way neural networks (NN) 
have been used to perform such task. In particular, we show that the use of NN 
avoids to the robot user the complex task of formulating an analytical geometric 
model that takes into account many geometric or non-geometric sources of 
inaccuracy. 

1 Introduction 

1.1 Robot calibration 

Calibration is the art of accuracy improvement. As long as robots and machine-tools 
were used in applications requiring accurate manipulations, the problem of 
calibration has been of major concern. 
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In fact, no matter how is the design of a given robot, its end-effector is always 
affected by pose errors. These errors can either have a deterministic (systematic) or 
a non-deterministic (random) nature. Systematic errors are for example errors in the 
robot geometry created by manufacturing tolerances, whereas random errors can 
be attributed to the measurement system. 

In a proper calibration procedure, the systematic part of the error has to be 
eliminated or, in other words, after a perfect calibration the robot pose accuracy is 
reduced to its non-deterministic component. 

In any calibration procedure, there are several steps: 

1. formulation of a judicious calibration model or approach; 

2. acquisition of reliable experimental data from the robot to be calibrated; 

3. data processing (linking 1. and 2.) and implementation of the new model in 
the robot controller. 

The methods found so far in the literature for the calibration of a given robot (serial 
or parallel) can be classified in the following 2 categories: 

■ model-based approaches: in this case, a corrected geometric model (or a 
correction function) has to be computed, establishing an analytical relationship 
between motor (or articular) coordinates and end-effector (or operational) 
coordinates.  

This model has a given number of parameters directly or indirectly related to the 
geometry of the robot. In the calibration procedure, these parameters are 
determined as a result of a numerical optimization of an error function properly 
defined.  

■ modeless approaches: in this case, the relationship between motor and end-
effector coordinates is a pure numerical correspondence.  

This correspondence can be obtained either by using spline interpolation (or 
approximation) or by means of neural networks. 

1.2 Presentation of the robot 

The robot considered throughout this paper is a parallel mechanism called “Sigma 
6” with 6 degrees-of-freedom (3 translations + 3 rotations). 

Each of the 6 kinematic chains of the robot is made of a prismatic and a space 
transmission. The prismatic joint consists on a simple elastic stage made of 4 



flexure hinges (Fig. 1a). The universal joint consists of 2 pairs of flexure hinges at 
90º placed in a serial way (Fig. 1b). 

 

  

Figure 1a: 4-hinge prismatic joint  Figure 1b: Universal joint 

 

Thanks to its parallel kinematics and the particular design of joints (flexure hinges), 
the robot’s motions are free of dry friction or mechanical backlash; the repeatability 
is therefore of a few nanometers. Thanks also to nanometer resolution linear 
encoders controlling the displacements of the prismatic joints, the robot is able to 
perform highly-repeatable 6D motions with a resolution of 10 [nm] and 0.25 [μrad] 
over its working volume 4 [mm] x 4 [mm] x 4 [mm] x 3 [º] x 3 [º] x 3 [º]. 

In Figures 2a and 2b, we provide schematic representations of the Sigma 6 robot, 
showing a simple kinematic structure and a more detailed representation. The 
reader might notice a resemblance with the classical Stewart platform. 

 

  

Figure 2a: Kinematic structure of the Sigma 6 
robot. 

Figure 2b: Detailed schematic view of the 
Sigma 6 robot 

 



Assuming that all flexure hinges act like perfect pivots and that the real lengths of all 
mechanical parts are equal to their corresponding nominal value, the inverse 
geometric model of the robot can be easily obtained by means of classical 
transformations between link frames. However, this model only provides a first 
approximation of the robot kinematics.  

In order to make full use of the high-precision positioning capabilities of this robot, a 
calibration is needed. Our goal is of course to obtain a pose accuracy approaching 
the motor resolutions.  

We believe that is extremely tedious and difficult to obtain an analytical kinematic 
model that, by taking into account all the main sources of inaccuracy, is able to 
predict (after parameter identification) the robot pose errors within the resolution of 
the motors. 

In this paper, we will demonstrate, after having observed the smooth behaviour of 
the robot pose errors over its working volume, that an appropriate use of neural 
networks will enable us to approximate (within the desired accuracy) the 
correspondence between the articular and operational worlds and therefore to 
calibrate the robot without any physical knowledge on the possible causes of 
inaccuracy. 

This approach has already been tested successfully on 2 different 3 DOF Delta 
high-precision flexure parallel robots. Tests on other parallel robots are planned. 

2 Experimental issues 

Acquiring reliable data for the calibration of a high-precision 6 DOF parallel robot is 
not an easy task. 

In fact at the sub-micrometer range, only non-contact measurement techniques can 
provide robust data. Moreover, data provided by high-precision measurement 
devices (in particular interferometers) is strongly influenced by environmental 
perturbations, in particular, temperature variations. 

Especial care has therefore been given to the measurement environment. 



2.1 Measurement environment 

When a temperature variation occurs in a measurement environment there are 
expansions not only in the robot mechanical parts but also in the measuring loop. 
Previous Finite-Element simulations have shown that reducing the variations in the 
level of 0.01-0.02 [°C] leads to a very small cumulative (robot + measurement 
system) error (in order of 10 - 20 [nm]).  

Working in a thermally-controlled environment is therefore a crucial point for us. 

The robot and all the measurement devices have been mounted inside a thermal 
insulated box, in which the temperatures are monitored and controlled. The 
temperatures are acquired using differential resistor temperature captors. The 
sensors are placed in order to monitor all the parts involved in the measurement 
loop (robot, measuring devices, robot frame, measuring devices frame, ambient 
air). Those readings are then converted in digital values and processed by a 
computer.  

The “active part” of the thermal stabilization are 2 Peltier cells controlled by this 
computer and used to act on the air inside the thermal box in a closed-loop way. 
This control is performed using a classical P-I-D regulator.  

In order to stabilize the robot to a certain consign temperature at least 6-8 hours are 
typically needed. The thermal stabilization has to be active also during the 
measurement phase, because the robot motors and the measuring devices will 
produce heat. 

Figure 3 shows, in a schematic view, the overall thermal stabilization system. 

In Figure 4, we present a graph of the evolution of the different temperatures during 
a typical thermal stabilization run achieved under “real” calibration conditions (robot 
moving continuously and measuring instruments inside the thermal box).   

 



 
Figure 3: Principle of the thermal stabilization (overview of the complete system). 

 

 
Figure 4: Evolution of the different temperatures involved in the measuring loop. The only 
temperature regulated to 25 °C was the one of the robot structure. As a consequence of this 
regulation, other temperatures were set to stable and repeatable values (not necessarily 25 °C). 



2.2 Measurement devices 

For measuring distances, we have used a SIOS SP 2000 interferometer 
(resolution: 1 [nm], accuracy: ~ 5 [nm], range: ± 2 [m]) and 3 Keyence LC 
2420/2430 laser displacement sensors (resolution: 10/20 [nm], accuracy: ~ 50 
[nm], range: ± 0.2/0.5 [mm]) mounted orthogonally in the 3 directions of the 
Euclidean space.  

For measuring angles, we have used 2 NewPort LDS 1000 electronic 
autocollimators (resolution: 0.02 [arcsec], accuracy: 0.16 [arcsec]). Since these 
devices have a limited range (± 400 [arcsec]), a calibrated polygon prism (facets of 
± 1.5 [º] and ± 3 [º]) has been used for measuring “large” angular motions. 

The interferometer and the 2 autocollimators readings are taken on a mirror cube 
mounted on the effector whereas the 3 laser sensors detect the displacement of a 
sphere mounted also on the end-effector. When the sphere is being measured, the 
cube is removed from the end-effector and replaced by a support simulating its 
weight on the same centre of mass. 

2.3 Measurement protocol 
The major difficulty encountered in collecting the 6D high-precision data from the 
robot using state-of-the-art measurement devices lies in the fact that is not possible 
to measure at the same time (without loosing accuracy) translations combined 
rotations. When measuring the displacements of a reflecting mirror with an 
interferometer, it is in fact well known that when an angular variation with a certain 
magnitude (± 120 [arcsec] in our case) occurs, the beam is lost. Even if this tilt 
angle is within the tolerated range, an angular variation will still have an influence 
on the distance measured by the beam between 2 points. 

For this reason, we have proposed a calibration procedure with different phases in 
order to able to acquire data having translations combined with rotations. In these 
different phases, only 3 degrees-of-freedom are calibrated per time. 

■ The first part of the procedure was called “translations without rotations” 
(TWR) and consists in calibrating only the translational degrees-of-freedom of the 
robot, imposing null rotations on the robot end-effector. At the end of this phase, the 
robot is able to move its end-effector always with “pure translation” motions all over 
its working volume. 



This part can be decomposed on 2 sub-phases: first, with the help of the 2 
autocollimators measuring the orientation of the mirror cube, the angular variations 
are suppressed for a certain number of points in the robot working volume; second, 
with the help of the interferometer, the real X, Y and Z translations of these “pure 
translational” points are determined (Figure 5a) 

The threshold under which rotations are considered to be suppressed has been set 
0.20 [arcsec]. 

 

 

Figure 5a: “Translations without rotations”: 
performing the closed-loop with the 2 
autocollimators 
 

Figure 5b: “Rotations without translations” 
programmed with the help of 3 Keyence laser 
displacement sensors detecting the 3D position 
of the centre of the sphere. 

 

■ The second part consists in performing rotations without translations (RWT) 
with the robot. At this point, a closed-loop is done with the help of the 3 Keyence 
laser displacement sensors. These sensors are used in our case as zero detectors 
to read and correct the 3D position of a sphere mounted on the end-effector (Fig. 
5b). 

The threshold under which translations are considered to be suppressed has been 
set to 40 [nm] (twice the resolution of the worst sensor). 

In order to merge these 2 phases, the absolute frame in respect to which to robot 
will be calibrated has been defined as having its origin at the centre of the sphere 
(when the robot is in the reference position). The directions are defined by those of 
the mirror cube. 

In order to merge the previous 2 measurement configurations, the following 
calibration protocol has been adopted: 



PHASE 1 – Calibration of the robot orientation: The 2 autocollimators are mounted 
and a correspondence is established between the 6 coordinates of the Inverse 
Geometric Model and the 3 angles measured. At the end of this phase, the user will 
be able to move the robot all over its working volume with correct orientation. 
“Small” angles (up to ± 400 [arcsec]) are determined by direct reading of the 
autocollimators on the surfaces of the mirror cube, whereas “big” angles (up to ± 3 
[º]) are measured with the help of calibrated polygon prisms. 

PHASE 2 – Calibration of the pure translations of the robot (TWR). 

PHASE 3 – The laser displacement sensors are mounted in a certain number of 
positions. For each position of the laser sensors, the sphere mounted on the robot 
end-effector is therefore moved to the zeroes of the 3 laser sensors:  

● the first point (from the reference position) is a “pure-translation” point, calculated 
according to the results of phase 2; 

● the following points, determined by the RWT closed-loop, are points having non-
trivial angular contributions and are determined according to the results of phase 1.  

Notice that all the points obtained (except the first one) in phase 3 are combinations 
of translations and rotations (that could not be measured in a direct way): for each 
location of the laser sensors, the translation is the one of the “pure-translation” point 
whereas the rotations are already calibrated from phase 1. 

3 Pose correction using Neural Networks 

3.1 Basic considerations 

According to Haykin [1], a Neural Network (NN) can be defined as “a machine that 
is designed to model the way in which the brain performs a particular task or 
function of interest”. 

A neuron is the basic processing unit used to build neural networks. 

From the mathematical point of view a neuron is described by the following 
equations (Fig. 6) 
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A neural network is a group of neurons connected in an appropriate way (Fig. 7). 

Because of their ability to learn the correspondence between input-output data, 
neural networks have been widely used in the past 20 years in function 
approximation applications 

 

 

Figure 6: Mathematical scheme of a neuron Figure 7: Representation of a [4 4 3] feed-
forward neural network 

 

In order to give to the network a good prediction capability, it has to go through a 
training phase in which a learning algorithm is used.  

During this process the free parameters of the network (the weights wk,l and the 
biases bk of Eq. 1) are adapted through optimization schemes by comparing the 
network output to the target that has to be predicted. 

In this paper, we only consider feed-forward networks and we will adopt the same 
convention of MatLab® for representing the structure of a given neural net:  

[number of neurons in the 1st hidden layer; number of neurons in the 2nd hidden 
layer; …    … ; number of neurons of the output layer]. 

According to this convention, the network of Figure 7 is therefore a [4 4 3] neural 
network. 

3.2 Applying Neural Networks for robot calibration 

3.2.1 State-Of-The-Art 

Although the era of Neural Networks (NN) has started more than 60 years ago with 
the pioneering work of McCulloch and Pitts [2], their use in robot calibration has less 
than 20 years. 



Josin [3] has been the first author to use neural networks in the context of robot 
calibration. The network considered received as input both the end-effector 
coordinates and the motor coordinates generated by the Inverse Geometric Model 
(IGM) and returned, as output, the corrections to be made in the motor coordinates.  

A similar procedure has been used by Takanashi [4] for the calibration of a PUMA 
560 robot.  

In Kozakiewicz’s paper [5] the NN used for the calibration of a 3 DOF SCARA robot 
was for the first time in parallel with the IGM. 

In Renders work [6], the author showed through simulation the calibration of only 3 
out of 6 DOF of a PUMA robot.  

Watanabe [7] proposed a methodology to speed up the process of training of a 
neural network. The method consisted in splitting the network into 2 different sub-
networks, with two different training phases.  

The innovative contribution of Lewis [8] and Zhong [9] lies in the use of a so-called 
“Pi-sigma” network, a particular network that uses a linear summing unit in the 
hidden layer and a product unit in the output layer. 

Xu [10] used 2 networks for calibrating a 2 DOF robotic joint. The second network in 
this case was trained by learning the residual errors of the first one. The author 
showed that 90% of the total error was corrected by the first network whereas the 
second network corrected only 5%. 

Zhong [11, 12] continued the work [8, 9], adding the comparison with another kind 
of NN, the recurrent continuous-valued Hopfield NN, in an unsupervised learning 
way. 

Wang [13] calibrated a 2 DOF planar robot using a Kohonen self-organized neural 
network. 

Dreiseitl [14] presented a method to calibrate a robot composed by only revolute 
joints. The method consisted in mapping the kinematic equations of the robot in a 
NN representation.  

Jung [15] proposed to compensate uncertainties in the robot kinematic Jacobian by 
NN in an ‘on-line’ way, at the trajectory planner level.  

Tiboni [16, 17] has been the first author to consider different connections between 
the NN and the IGM. The main conclusion was that a pure neural approach (without 
IGM) could not provide satisfactory results (in comparison to a model-based 
calibration with parameter identification) and that the best connection to use was 
the parallel one.  



3.2.2 Optimal Use of Neural Networks for robot calibration 

3.2.2.1 Connections with the Inverse Geometric Model 
The correction of the robot pose errors can be achieved in several ways considering 
(or not) the information already provided by the Inverse Geometric Model: 

• Serial 1: NN in serial with the IGM, before the IGM: the NN learns the 
correspondence between the measured end-effector coordinates and the end-
effector coordinates given by the IGM – Fig. 8;  

• Serial 2: NN in serial with the IGM, before the IGM (error): in this case, the NN 
has the same input as in previously but the output to fit is the difference between 
the measured end-effector coordinates and the end-effector coordinates given by 
the IGM (the error) – Fig. 9; 

• Serial 3:   NN in serial with the IGM, after the IGM: the NN receives as output 
the motor coordinates and as input the motor coordinates generated when the 
measured end-effector coordinates pass through the IGM – Fig. 10; 

• Serial 4:   NN in serial with the IGM, after the IGM (error): this case is identical 
to the case “Serial 2”, except that it occurs in motor coordinates – Fig. 11; 

• Parallel:   NN in parallel with the IGM: the input will be the measured end-
effector coordinates and the output will be the difference between the motor 
coordinates corresponding to the measured end-effector coordinates and the motor 
coordinates generated when the measured end-effector coordinates pass through 
the IGM – Fig. 12; 

• Without IGM:  NN without IGM: the NN learns direct the correspondence 
between the measured end-effector coordinates and the corresponding motor 
coordinates – Fig. 13. 

 

 

Figure 8:  Case “Serial 1” Figure 9:  Case “Serial 2” 
 



 

Figure 10:  Case “Serial 3” Figure 11:  Case “Serial 4” 
 

 

 

Figure 12:  Case “Parallel” Figure 13:  Case “Without IGM” 

3.2.2.2 Finding the optimal Network structure using a decision-tree 
The main difficulty in using Neural Networks in robot calibration lies in the fact that 
there is no standard algorithm nor procedure to find the optimal neural network to 
do this task.  

In general, the most common procedure used by previous researchers consists in 
varying the architecture of the network and do several trainings until the results are 
good. The kinds of adjustment that can be done are the following: 

• Adding/subtracting neurons to the network. 

• Adding/subtracting hidden layers to the network. 

• Changing training algorithm and/or the parameters of it. 

As a limit to this procedure there is the computational cost of the network, and as a 
consequence of that, the training time. This because complex networks need too 
much time to be trained. On the other side, networks that don’t have enough 
neurons will not learn very well functions that are highly non-linear (which is often 
the case for parallel robots). 

In order to find the optimal structure (number of hidden layers, number of neurons 
on each hidden layer) of the Network to be used, a search algorithm based on a 
decision-tree has been developed and act as follows: 

The research always starts from a very simple neural network. This network, called 
Father Network, is a network having only 1 hidden layer with the same number of 
neurons than the output layer. The number of layers in the output layer corresponds 
to the number of degrees of freedom of the robot or the number of joint coordinates.  



Starting from this network, the algorithm does the following steps: 

1. Generating the Children Networks from the Father Network: there are 2 
different rules for this creation: 

• rule 1: add a neuron in each hidden layer (one layer per time); 

• rule 2: duplicate a given layer and put this new layer before or after the layer from 
which it has been copied. 

2. Training of all the Children Networks: all the children generated in the previous 
iteration are trained for a certain number of epochs.  

3. Choice of the new Father Network: all the children that have been generated 
and that have not yet become fathers will be compared. The one that gives best 
results will become the father of the next iteration. 

Therefore, the tree is expanded until a certain level, for which: 

Maximum number of neurons in any layer = Number of iterations + Number of 
neurons in the output layer     (2) 

Maximum number of iterations + 2 = Maximum number of layers (3) 
Example. 
In the lines below we present an example of how the previous algorithm works.  
The score of the network corresponds to the absolute value of the prediction error 
with data not seen during training. 
 

 

Figure 14: Iteration 1 Figure 15: Iteration 2 

 

■ Iteration 1: Starting from the father network [6 6], the 2 children networks [7 6] and 
[6 6 6] have been generated (Fig. 14).  



These networks have been trained and the network with the best score has been 
chosen to become the father network ([7 6] in Fig. 14) for the next iteration. 
 

 

Figure 16: Iteration 3 Figure 17: Iteration 4 

 

■ Iteration 2: In this iteration, the network [7 6] generates 3 children: the networks [8 
6], [7 7 6] and [7 6 6] (Fig. 15).  

Like before, these 3 networks have been trained and the score of the children 
networks have been compared. However, the network having the best score is still 
the [7 6], but this network has already been the father previously.  

Therefore, the next father network for the next iteration will be the one with the best 
score that has not yet been father previously: in our case, it is the network [6 6 6]. 

 

■ Iteration 3: In this iteration, the network [6 6 6] generates the children [7 6 6], [6 7 
6] and [6 6 6 6]. Notice that the network has already been generated in the second 
iteration, so this time it will not be trained (Fig. 16). 

The 5 children networks have been compared and the one having the best score 
has been chosen as the next father. The network [7 6] is still the best one, but it can 
not become father twice. Thus, the next father has been chosen to be [6 7 6] since 
it is the children network having the best score. 

 



■ Iteration 4: In this last iteration, the network [6 7 6] has generated the children [7 6 
6], [6 8 6], [6 6 7 7], [6 7 7 6] and [6 7 6 6] (Fig. 17). 

All the children networks have been compared after training and seeing that it is the 
last iteration, the network [6 8 6] has been adopted as our final calibration network.  

Remarks: 

1. Notice that this algorithm is not of “best-path” type: if the algorithm stops now 
(because the maximum number of iterations has been reached), the network 
chosen for the calibration will still be the [7 6], even if a lot of networks have been 
checked afterwards; 

2. We can see that in our case, according to the prediction of equations 2 and 3, the 
maximum number of neurons in any given layer is 10 and the maximum number of 
layers of any generated networks is 5. 

3.2.2.3 Overfitting and training algorithm 
The networks have been trained using a back-propagation scheme on which a 
Levenberg-Marquardt algorithm is used to update the network’s weights and biases. 

For the training phase, the data has been divided in 3 sets (each set being 
representative of the whole data diversity): an “input” set composed by 80 % of the 
data, a “validation” set composed by the 16 % of the data and the last 4 % called 
the “test” set. 

The error in the validation set will normally decrease during the initial part of the 
training; however, when the network begins to overfit the data, the error on the 
validation set starts to increase despite the fact the error on the input set continues 
to decrease. This well-known phenomenon decreases the network’s generalization 
capability. 

The input set is used to actually train the network while the validation set is only 
used to monitor continuously the error during the training and therefore to evaluate 
the generalization capability of the network. 

The test set is also used to monitor the error during the training and for displaying 
the results after training. 

Two different ways have been used to prevent overfitting issues: first, the training 
algorithm used (“trainbr”) implements a so-called “regularization” on which a trade-
off factor is used to make some adjustments in the error function during the training; 

 



second, an early-stopping method was also used: the training is stopped 
whenever error in the validation set starts to increase. 

3.2.2.4 Activation functions 
After a large number of tests, we found that networks having sigmoidal functions in 
the hidden units and linear functions in the output neurons have the best prediction 
capability for calibration.   

3.3 Calibration results 

3.3.1 Predicting angular motions 

Using the decision-tree search algorithm, we have found that the network [6 8 7 3] 
was the best candidate for the prediction of angles in the phase 1 of our calibration 
procedure. When our calibration procedure was limited to the measurement of 
“small angles” directly on the mirror cube prediction errors were within ± 0.33 
[arcsec] (within a confidence level of 90 %). When “big angles” were introduced in 
the data to be trained by the network, the same prediction error increased to ± 2.70 
[arcsec], since the measurement area in the facets of the prism was reduced by a 
factor 10 in respect to the on of the mirror cube. 

 

  

Figure 18: Histogram of the prediction errors of 
the phase 1 – case of “small angles” 

Figure 19: Histogram of the prediction errors of 
the phase 1 – case of “big angles” 

 



3.3.2 Predicting translational motions 

In the phase 2 of our calibration procedure, we have also applied the decision-tree 
search algorithm to the different 5 connection cases with the IGM (Figures 8 to 12) 
as well as to the case without IGM (Figure 13). We have been able to find 
“equivalent” networks in terms of prediction capability (around 50 [nm], with a 
confidence level of 90 %). Table 1 lists the structures of these networks. 

The last point of the calibration phase consists in verifying, with the help of the 3 
laser sensors measuring the sphere, if the robot is able to turn around any centre of 
rotation. Preliminary results have shown errors up to 300 [nm] – this result is 
currently being improved. 

 

Table 1: Structure of optimal “equivalent“ networks found fort he prediction of “pure translational“ 
motions of the Sigma 6 robot. 

Connection Best Net Architecture 

Serial 1 [7 8 10 10 9 8 6 ] 

Serial 2 [7 9 9 12 9 6 ] 

Serial 3 [12 17 6] 

Serial 4 [9 9 11 9 8 9 6 ] 

Parallel [7 7 6 7 10 7 6 ] 

No-IGM [6 9 10 10 10 6 ] 

 

4 Conclusion and future work 

The contributions of this paper in respect to published literature are the following: 

■ from the experimental point of view, we have proposed a procedure to calibrate a 
6 DOF high-precision parallel within sub-micrometer accuracy. In the near future, 
this calibration will be confirmed using the robot as a nano-indenter; 

■ from the theoretical point of view, we have shown in which “optimal” way neural 
networks can be used to perform calibration of parallel robots. The major advantage 
of neural networks lies in the fact that they act in a “black-box” approach” correcting 



the robot pose errors even without any physical knowledge on the sources of 
inaccuracy.  

In the future, we are planning to use NN for correcting also the influence of external 
perturbations in data acquisition so that sub-micrometer accuracy can be reached in 
an industrial environment (without thermal stabilization). 
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