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The earlier constitutive model of Fang & Owens (2006) and Owens (2006) is extended in scope to

include non-homogeneous �ows of healthy human blood. Application is made to steady axisymmetric

�ow in rigid walled tubes. The new model features stress-induced cell migration in narrow tubes

and accurately predicts the Fåhraeus-Lindqvist e�ect (Fåhraeus & Lindqvist (1931)) whereby the

apparent viscosity of healthy blood decreases as a function of tube diameter in su�ciently small

vessels. That this is due to the development of a slippage layer of cell-depleted �uid near the vessel

walls and a decrease in the tube hematocrit (Fåhraeus (1929)) is demonstrated from the numerical

results. Although clearly in�uential, the reduction in tube hematocrit observed in small vessel blood

�ow (the so-called Fåhraeus e�ect) does not therefore entirely explain the Fåhraeus-Lindqvist e�ect.

Keywords: Non-homogeneous �ows, Fåhraeus e�ect, Fåhraeus-Lindqvist e�ect, aggregation, disag-

gregation, stress-induced di�usion

1. Introduction

Two of the most striking non-homogeneous e�ects observed in blood �ow in narrow glass tubes are

those that bear the names of Fåhraeus (1929) and Fåhraeus & Lindqvist (1931). The Fåhraeus e�ect

(1929) has to do with the decrease in average concentration of red blood cells (the so-called tube or
† Present address: Department of Mathematical Sciences, Durham University, South Road, Durham DH1

3LE, UK.
‡ Corresponding author. Email: owens@dms.umontreal.ca
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2 M. Moyers-Gonzalez, R. G. Owens and J. Fang
dynamic hematocrit Hct) in human blood as the diameter of the glass tube in which it is �owing

decreases. A simple mathematical treatment of the Fåhraeus e�ect, along the lines of that employed

by Sutera et al. (1970), shows that because of migration of cells from the vessel walls towards the

tube centre (leading to an average cell speed greater than the average axial velocity component of

the surrounding �uid) the tube hematocrit must be less than that of the blood discharged from

the end of the tube (the discharge hematocrit). As noted by many authors already, the dynamic

decrease in red cell concentration described in the Fåhraeus e�ect is quite distinct from the possible

hematocrit decrease in a small tube due to entry e�ects (cell screening), although in practice, even

in controlled laboratory experiments, both e�ects may be taking place simultaneously (Gaehtgens

et al. (1978)). In the absence of entry e�ects the discharge hematocrit must equate that of the blood

in the reservoir that feeds the tube (the so-called feed hematocrit).

Conjointly with the Fåhraeus e�ect, and as evidenced by Fåhraeus and Lindqvist in 1931, a

decrease in the tube diameter D from approximately 0.3mm down to D ≈ 5 − 7µm will result, in

healthy human blood, in a drop in the apparent viscosity. This e�ect, also due to cell migration,

results in part from the development of a slippage layer of plasma-rich cell-depleted �uid near

the vessel walls. Although the thickness of the cell-depleted lubricating layer depends upon �ow

rate and tube diameter it seems to do so only weakly and the layer thickness remains more or

less in the range 2 − 4µm (Caro et al. (1978)). Therefore the relative volume of the slippage (low

viscosity) layer increases as the tube diameter decreases. This, combined with the Fåhraeus e�ect,

results in a decrease in the apparent viscosity. Thus, although the Fåhraeus e�ect is important for

a correct understanding of the Fåhraeus-Lindqvist e�ect, it does not entirely explain it (Azelvandre

& Oiknine (1976)), something that we take some trouble to further show in Section 3.4. Enjoying

little contestation since their discovery early in the 20th century (although see, for example, Mayer

(1965)), the Fåhraeus and Fåhraeus-Lindqvist e�ects have spawned a huge research literature in the

intervening years, and the reader is referred to Blair (1958) and Goldsmith et al. (1989) for readable

and fascinating accounts of some of the major research milestones up to the late 1950's and 1980's.

In vivo, the apparent viscosity of blood in the smaller vessels is further reduced because of plasma

skimming. That is, a small side branch on a larger vessel may receive blood containing a larger

proportion of plasma than in the feeder vessel, due to the fact that the blood supplying it largely
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A non-homogeneous constitutive model for human blood. Part I 3
comes from the near-wall plasma-rich layer (Caro et al. (1978)). It should also be noted, however,

that �ow resistance in vivo in smaller vessels is larger than is predicted with in vitro data due to the

presence of a thick endothelial cell layer (Pries & Secomb (2005)). For very small vessels (D . 5µm)

both the tube hematocrit and apparent viscosity of normal human blood increase sharply due to

the very small clearance between the cells and the vessel walls (Goldsmith et al. 1989; Yen & Fung

1977).

Although healthy blood under physiological �ow conditions in the heart and in the larger arteries

of the human cardiovascular system may be adequately described using the Navier-Stokes equations,

realistic modelling in the microcirculation requires that proper account be taken of (at the very least)

radial variations in viscosity. Macroscopic modelling of blood in narrow tubes has often involved

representing the �owing blood as a concentrated core of suspended red blood cells, surrounded by

a lower viscosity annulus near the vessel walls. See Secomb (2003) and Sharan & Popel (2001) and

the references therein, for example. Sharan & Popel (2001) numerically solved a consistent system of

nonlinear equations to estimate the e�ective viscosity in the cell-free layer, the thickness of this layer

and the hematocrit in the concentrated core. The system of equations was closed using experimental

data for the apparent viscosity and tube hematocrit from Pries et al. (1992). Rather than adopt an

empirical macroscopic model a more satisfactory, but potentially hugely more expensive approach,

is to directly simulate multi-particle systems. This has been made possible very recently due to

the massive increase in computing power available to researchers. Sun & Munn (2005) have used a

two-dimensional lattice Boltzmann method to simulate the �ow of both red and white blood cells

in 20µm and 40µm conduits at various hematocrits. Both the Fåhraeus and the Fåhraeus-Lindqvist

e�ects could be qualitatively reproduced, although agreement with in vitro experiments was limited

due to the authors' use of rigid particles and a channel rather than a tube. Three-dimensional

computations using an immersed �nite element method and deformable biconcave particles were

performed by Liu & Liu (2006) to investigate the dependence of blood viscosity on shear rate, the

in�uence of cell deformability on the viscosity and the Fåhraeus-Lindqvist e�ect. The connection

between the radial migration of the cells and the Fåhraeus-Lindqvist e�ect was established. No

comparisons were made between experiments and the predicted apparent viscosity with decreasing

tube diameter, however. Finally, and most recently, Bagchi (2007) has modelled red blood cells as
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4 M. Moyers-Gonzalez, R. G. Owens and J. Fang
liquid capsules and employed the immersed boundary method to model �ows in two-dimensional

rectangular channels involving as many as 2500 cells. Comparisons of the predictions of the size of

the cell-free layer in channels of di�erent widths were made with the in vitro data of Bugliarello &

Sevilla (1970) and analytical data of Sharan & Popel (2001) and showed good agreement. Agreement

between the numerical results of Bagchi (2007) and the empirical expression of Pries et al. (1992) for

the relative apparent viscosity of blood at three di�erent discharge hematocrits was also very close.

The approach that we have adopted thus far in our work has been to derive and use a macroscopic

continuum model for blood �ow which nevertheless rests on sound microscopic-level foundations

(Fang & Owens 2006; Owens 2006). Owens (2006) showed that predictions of shear stress hysteresis

loops in triangular hysteresis experiments in a Couette rheometer were in close agreement with the

experimental data of Bureau et al. (1980) and resulted from a complex mixture of shear-thinning,

viscoelastic and thixotropic e�ects. Fang & Owens (2006) used the microstructure-based constitutive

model of Owens (2006) to investigate the steady, oscillatory and pulsatile �ow of blood in a tube of

radius 0.43mm. Elastic e�ects were most pronounced at low �ow rates and low �ow rate amplitudes

and agreement with data from Thurston (1975) was good. In the present paper the basic model is

extended to include the possibility of describing highly non-homogeneous �ows. In particular, the

new developments outlined in the theoretical sections that follow allow us to investigate blood �ow

in tubes of su�ciently small diameter that wall e�ects become signi�cant.

The present paper is divided into two major sections. The �rst, Section 2, deals at some length with

the mathematical development of the non-homogeneous model and leads to the coupled nonlinear

system of equations (2.43), (2.45), (2.46), (2.51) and (2.55) to be solved in a straight rigid walled tube,

subject to an imposed pressure gradient and satisfying the boundary conditions given in Section 2.2.3.

The model is derived by starting with the basic equations in a solution of non-interacting dumbbells

for the number density and polymeric stress, that are already available in the polymeric �uids

literature (Beris & Mavrantzas 1994; Bhave et al. 1991; Cook & Rossi 2004; Rossi et al. 2006). As

a consequence, these basic equations are simply written down in Section 2.1. The non-homogeneous

blood model proposed in this paper conceives of blood as an ensemble of aggregates undergoing

binary interactions, each aggregate consisting of di�erent numbers of cells that are modelled by

Hookean dumbbells, on the assumption that rates of deformation are small. The modi�cations that
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A non-homogeneous constitutive model for human blood. Part I 5
have to be brought to bear on the original kinetic theory are clearly explained in Section 2.2. The

substantial simpli�cations that may be made to the full set of non-homogeneous blood equations in

the case of steady axisymmetric �ow in a straight, rigid walled tube are detailed in Section 2.2.4.

The second major section in the paper is concerned with the numerical solution of the simpli�ed

non-homogeneous equations in a tube. Section 3.3 shows how, when the tube hematocrit is �xed, the

basic variables vary with the radial distance at di�erent values of the Péclet number and pressure

gradient. Next, by allowing the tube hematocrit to vary with tube diameter according to an empirical

relation of Pries et al. (1992), we study the in�uence of both the Fåhraeus e�ect and other non-

homogeneous e�ects on the apparent viscosity of steady blood �ow in tubes of various diameters.

2. Mathematical modelling

2.1. Basic equations for a solution of non-interacting dumbbells

Consider an ensemble of non-interacting Hookean dumbbells in a viscous solvent, each dumbbell

consisting of two point masses (both of mass m) joined by a massless linear spring, as shown in Fig.

1. The two point masses are labelled �1� and �2� and have position vectors r1 and r2, respectively.

The position vector of the centre of mass is therefore rc = (r1 + r2)/2 and we denote the end to

end vector r2 − r1 by q. The tension F in the spring is calculated from F = Hq, where H is the

spring constant. Suppose that p and P denote, respectively, the momentum vectors associated with

the centre of mass and the internal degrees of freedom. Then we de�ne the phase space distribution

function f = f(rc, q, p, P , t) to be such that f(rc, q, p,P , t) drcdqdpdP is the number of dumbbells

having centre of mass in the range [rc, rc + drc], end-to-end vector in the range [q, q + dq] and

momenta in the ranges [p,p + dp] and [P ,P + dP ]. Starting with the continuity equation for f

(the Liouville equation) it may be shown, using standard arguments in polymer kinetic theory (see,

for example, Beris & Mavrantzas (1994); Bhave et al. (1991); Cook & Rossi (2004); Rossi et al.

(2006)) that if N denotes the number density of dumbbells and if a microscopic length scale `0

(corresponding to the length in equilibrium of a dumbbell, say) is su�ciently small relative to a

macroscopic length scale (a tube radius, for example) then neglecting quantities of third and higher

Page 5 of 37



6 M. Moyers-Gonzalez, R. G. Owens and J. Fang
order in the ratio of these length scales leads to an equation for N of the form

DN

Dt
= Dtr∇2N − 1

2ζ
∇∇ : τ , (2.1)

where D/Dt denotes the material derivative ∂/∂t + v · ∇ and v is the �uid velocity. In (2.1) Dtr =

kBT/2ζ is the translational di�usivity, kB is the Boltzmann constant, T the temperature, ζ a friction

factor and τ the elastic stress tensor, representing the contribution to the total (Cauchy) stress tensor

from the dumbbells. If it is further assumed that ‖∇v‖ ¿ λ−1
H , where λH = ζ/4H is the relaxation

time for an isolated dumbbell, we may derive an approximate evolution equation for the orientation

tensor 〈qq〉 in the form
5
〈qq〉= Dtr∇2〈qq〉+

4NkBT

ζ
δ − 4H

ζ
〈qq〉, (2.2)

where 5· denotes the upper convected derivative

D·
Dt

−∇v · − · ∇vT ,

and 〈·〉 denotes an ensemble average, de�ned for a quantity B = B(rc, q,p,P , t) by

〈B〉 :=
∫

Q

∫ ∫

P
Bf dpdP dq. (2.3)

In the de�nition (2.3) above Q and P denote, respectively, con�guration and momentum space. δ

in (2.2) and throughout this paper denotes the identity tensor.

2.2. Non-homogeneous blood model

A healthy unstressed red blood cell assumes a biconcave discoid shape, approximately 8µm in di-

ameter and 2− 3µm maximum thickness and is made up of a viscoelastic membrane �lled with an

almost saturated solution of haemoglobin. The interested reader is referred to Caro et al. (1978)

for further details. Human blood is a suspension of formed elements in plasma, by far the greatest

proportion of which consists of red blood cells. It is the behaviour of these cells, therefore, which

primarily determines the rheology of blood. In the present paper we attempt to model human blood

as a suspension of red cell aggregates in plasma. Although at very low shear rates red cells in healthy

human blood form complex networks made up of column-like structures of cells (called rouleaux),

as the shear rate increases the rouleaux disassociate from each other. As the shear rate continues to

increase the rouleaux progressively fragment and blood becomes a concentrated suspension of single

cells (see, for example, Chien & Jan (1973)). The presence of blood proteins such as �brinogen and
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A non-homogeneous constitutive model for human blood. Part I 7
immunoglobulins in the plasma is known to play an important role in the process of aggregation

(Baskurt & Meiselman 2003) and the entire disaggregation process is reversible. In the model pro-

posed in the present paper, we consider blood as a concentrated suspension of rouleaux of various

sizes, the distribution of rouleaux lengths at any point and time in a �ow depending upon the rheo-

logical and �ow conditions. In the model, each rouleau may undergo binary interactions with others,

being able to fragment into two smaller ones or coalesce with another rouleau to form a larger one.

Each rouleau will be represented by a Hookean elastic dumbbell, as shown in Fig. 1, and a rouleau

composed of k red cells will henceforth be termed a k-mer. The number density of k-mers will be

denoted by Nk and if N0 :=
∑∞

k=1 kNk and M :=
∑∞

k=1 Nk are the notations used for the number

density of red cells and number density of the rouleaux, respectively, it follows that the average

rouleau size n at a point in the �ow domain is calculated from

n =
N0

M
.

Owens (2006) assumed, as is common in reversible polymer network theory, that aggregation is a

Brownian process and that the aggregation rate of k-mers is proportional to the equilibrium (no

�ow, homogeneous) number density Nk,0. He also assumed that the fragmentation rate of k-mers

is proportional to Nk. We denote the aggregation and fragmentation rate coe�cients by hk and gk

and will assume a little later that these are functions of the shear rate γ̇ and time.

The equations equivalent to (2.1) and (2.2) above are now, respectively,

DNk

Dt
= Dtr,k∇2Nk − 1

2ζk
∇∇ : τk + hkNk,0 − gkNk, (2.4)

and
5
〈qq〉k= Dtr,k∇2〈qq〉k +

4(kBT + κ)kNk

ζk
δ − 4H

ζk
〈qq〉k + hk〈qq〉k,0 − gk〈qq〉k, (2.5)

where ζk is the k-dependent friction factor and Dtr,k = (kBT +κ)k/2ζk is the translational (thermal

and convective) di�usivity for k-mers. The numerator of Dtr,k consists of the sum of a very small

Brownian contribution and a constant κ which takes account of impacts with other blood cells. Since

the k−mer consists of k cells we choose (kBT + κ)k = k(kBT + κ) and ζk = kζ and this reduces the

di�usion coe�cients Dtr,k to Dtr = (kBT + κ)/2ζ for all k. τk in (2.4) denotes the contribution to

the total elastic stress tensor τ :=
∑∞

k=1 τk from k-mers. Substituting from the Kramers expression
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8 M. Moyers-Gonzalez, R. G. Owens and J. Fang
(Kramers (1944)) for the elastic stress tensor τk:

τk = H〈qq〉k − kNk(kBT + κ)δ, (2.6)

we then get from (2.4) and (2.5) that

τk + µk
5
τ k −Dtrµk(∇2τk + (∇∇ : τk)δ) = kNk(kBT + κ)µkγ̇, (2.7)

where the relaxation time

µk =
kλH

1 + gkkλH
. (2.8)

We see from (2.8) that the relaxation time for a rouleau is increased (through the numerator) relative

to that for a single cell due to the increase in friction but decreased (through the denominator) due

to the extra relaxation mechanism brought about by fragmentation. With gk a function of shear

rate, µk is therefore a non-trivial function of both shear rate and rouleau size. Since we expect that

in the in�nite shear rate limit all rouleaux break up into individual cells with zero aggregation and

fragmentation, µk (k ≥ 2) will tend in this case to 0 and µ1 to λH . The constitutive equation satis�ed

by the elastic stress tensor will then tend to the non-homogeneous Oldroyd B equation

τ + λH
5
τ −DtrλH(∇2τ + (∇∇ : τ )δ) = N0(kBT + κ)λH γ̇. (2.9)

As in our previous work (Fang & Owens 2006; Owens 2006) we choose

gkNk =
1
2

k−1∑

i=1

Fi,k−iNk +
∞∑

j=1

Kk,jNkNj ,

hkNk,0 =
1
2

k−1∑

i=1

Ki,k−iNiNk−i +
∞∑

j=1

Fk,jNk+j ,

where Ki,j is an aggregation kernel, expressing the rate at which an (i + j)-mer is formed from an

i-mer and a j−mer, and Fi,j is a fragmentation kernel, denoting the rate at which an (i + j)-mer

breaks into an i-mer and a j-mer. As in Fang & Owens (2006) and Owens (2006) we choose the

aggregation and fragmentation kernels to be simple functions a and b of the shear rate γ̇ since the

reaction sites are principally the end points of the rouleau, independently of k. In this case, gk and

hk become

gk =
b(γ̇)(k − 1)

2
+ a(γ̇)

∞∑

j=1

Nj , (2.10)

hk =
a(γ̇)
2Nk,0

k−1∑

i=1

NiNk−i +
b(γ̇)
Nk,0

∞∑

j=1

Nk+j , (2.11)
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A non-homogeneous constitutive model for human blood. Part I 9
and we note that, as is to be expected,

∞∑

k=1

k(hkNk,0 − gkNk) = 0, (2.12)

this expressing the fact (mass conservation) that in any material volume the number of red cells

remains constant.

Rather than work with a multi-mode model, which even with a truncated sum
∑

k τk would

necessitate the solution of a potentially large number of constitutive equations of the type (2.7), we

compute an average relaxation time µ̄ := µn and may now sum k times (2.4) from k = 1 to ∞ to

get

DN0

Dt
= Dtr∇2N0 − Dtr

(kBT + κ)
∇∇ : τ , (2.13)

and sum (2.7) from k = 1 to ∞, which gives us

τ + µ̄
5
τ −Dtrµ̄(∇2τ + (∇∇ : τ )δ) = N0(kBT + κ)µ̄γ̇. (2.14)

With the choice Kij = a(γ̇) and Fij = b(γ̇) we sum (2.4) from k = 1 to ∞ to get the evolution

equation for the number density of aggregates

DM

Dt
= Dtr∇2M − Dtr

(kBT + κ)
∇∇ : σ − a(γ̇)

2
M2 +

b(γ̇)
2

(N0 −M), (2.15)

where

σ =
∞∑

k=1

τk

k
,

and satis�es

σ + µ̄
5
σ −Dtrµ̄(∇2σ + (∇∇ : σ)δ) = M(kBT + κ)µ̄γ̇. (2.16)

To close the system of equations for (v, p, N0, M, σ, τ ) we must add the usual equation of conservation

of linear momentum and the incompressibility constraint:

ρf
Dv

Dt
= −∇p + ηN∇2v +∇ · τ , (2.17)

∇ · v = 0, (2.18)

where ρf denotes the �uid density, p the pressure and ηN is the constant plasma viscosity.

If D ⊂ R3 denotes the region occupied by a blood sample and Ve is the volume of a single red
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10 M. Moyers-Gonzalez, R. G. Owens and J. Fang
blood cell (the so-called mean corpuscular volume ≈ 90µm3), the tube hematocrit Hct is de�ned as

Hct =
Ve

volD
∫

D
N0(x, t) dx. (2.19)

We may also de�ne an average number density of red cells Nav in D:

Nav :=
1

volD
∫

D
N0(x, t) dx, (2.20)

which, from (2.19) is seen to be related to the hematocrit by Nav = Hct/Ve.

2.2.1. Non-dimensionalization of the equations

We scale the variables as follows:

N̂0 =
N0

Nav
, M̂ =

M

Nav
, p̂ =

p

Nav(kBT + κ)
, t̂ =

tV

R
,

x̂ =
x

R
, v̂ =

v

V
, τ̂ =

τ

Nav(kBT + κ)
, σ̂ =

σ

Nav(kBT + κ)
,

where Nav is given by (2.20), R denotes a characteristic length and V a characteristic �ow speed (a

maximum or average value, for example).

Introducing the non-dimensionalized variables into (2.13)-(2.16) and using the fact that µ̄ = µn,

we get

DN̂0

Dt̂
=

1
Pe
∇̂2N̂0 − 1

Pe
∇̂∇̂ : τ̂ , (2.21)

and

τ̂ + De
5
τ̂ −De

Pe
(∇̂2τ̂ + (∇̂∇̂ : τ̂ )δ) = N̂0Deˆ̇γ. (2.22)

In (2.22) we de�ne the (shear rate and time-dependent) Deborah number De as

De :=
µ̄V

R
=

nDe∞
1 + gnnDe∞

,

where

De∞ =
λHV

R
.

The Péclet number

Pe :=
V R

Dtr
=

2ζRV

(kBT + κ)
,

relates the rate of convection of the �ow to the rate of mass di�usion. The physical signi�cance of

the ratio De∞/Pe may be seen by computing

De∞
Pe

=
λHV

R

(kBT + κ)
2ζRV

=
1
8

(kBT + κ)
HR2

=
`20

24R2
,
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A non-homogeneous constitutive model for human blood. Part I 11
where `0 =

√
3(kBT + κ)/H is the ensemble average equilibrium length of a simple (k = 1) Hookean

dumbbell in the absence of wall e�ects. (De∞/Pe)1/2 therefore measures the relative magnitudes of a

microscopic length scale to a macroscopic length scale. Where this ratio is non-negligible wall e�ects

may be considered to be important. Moyers-Gonzalez & Owens (2008) show that when De∞/Pe ¿ 1

boundary layers of thickness O(De∞/Pe)1/2 develop.

The non-dimensionalized equations for M̂ and σ̂ read

DM̂

Dt̂
=

1
Pe
∇̂2M̂ − 1

Pe
∇̂∇̂ : σ̂ − â(ˆ̇γ)

2
M̂2 +

b̂(ˆ̇γ)
2

(N̂0 − M̂), (2.23)

σ̂ + De
5
σ̂ −De

Pe
(∇̂2σ̂ + (∇̂∇̂ : σ̂)δ) = M̂Deˆ̇γ, (2.24)

where

â(ˆ̇γ) := a(γ̇)Nav
R

V
= a(γ̇)Nav

λH

De∞
, and b̂(ˆ̇γ) := b(γ̇)

R

V
= b(γ̇)

λH

De∞
, (2.25)

are non-dimensional aggregation and fragmentation rates, respectively. The precise functional forms

of a(γ̇)Nav and of b(γ̇) are determined from experiments (see Murata & Secomb 1988; Shiga et al.

1983) and from the a− b relationship in steady homogeneous �ow, respectively. See Appendix A. As

before, the average aggregate size is n = N̂0/M̂ . If we introduce

η∞ := Nav(kBT + κ)λH and η :=
De∞ηN

η∞
, (2.26)

then the non-dimensionalized equations of motion become

Re
Dv̂

Dt̂
= −∇̂p̂ + η∇̂2v̂ + ∇̂ · τ̂ , (2.27)

∇̂ · v̂ = 0, (2.28)

with the Reynolds number Re being de�ned as

Re =
ρfV RDe∞

η∞
.

(Note that, as an alternative to the Reynolds number de�ned above, scaling time with λH rather

than R/V would lead to a more conventional de�nition of a Reynolds number: Re = ρfV R/η∞.)

For the rest of the paper, and for the sake of simplicity, we will drop the hats on the non-

dimensional variables.
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12 M. Moyers-Gonzalez, R. G. Owens and J. Fang
2.2.2. Equations for axisymmetric non-homogeneous �ow of blood in a uniform pipe

We introduce cylindrical polar coordinates (r, θ, z) and consider steady pressure-driven axisym-

metric �ow in a uniform pipe of radius R having axis in the z-direction. Then, seeking a solution

with a velocity �eld of the form v = (0, 0, vz(r)), pressure p = p(z) and all other variables functions

of r alone, the equations (2.21)-(2.27) may be written as

1
r

d

dr

(
r
dN0

dr

)
−

(
1
r

d

dr

(
r
dτrr

dr

)
+

1
r

d

dr
(τrr − τθθ)

)
= 0, (2.29)

1
Pe

1
r

d

dr

(
r
dM

dr

)
− 1

Pe

(
1
r

d

dr

(
r
dσrr

dr

)
+

1
r

d

dr
(σrr − σθθ)

)
− aN0

2n
M +

b

2
(N0 −M) = 0,

(2.30)

τrr − De

Pe

(
2
r

d

dr

(
r
dτrr

dr

)
+

1
r

d

dr
(τrr − τθθ)− 2

r2
(τrr − τθθ)

)
= 0, (2.31)

τθθ − De

Pe

(
1
r

d

dr

(
r
dτθθ

dr

)
+

1
r

d

dr

(
r
dτrr

dr

)
+

1
r

d

dr
(τrr − τθθ) +

2
r2

(τrr − τθθ)
)

= 0,

(2.32)

τrz −De
dvz

dr
τrr − De

Pe

(
1
r

d

dr

(
r
dτrz

dr

)
− τrz

r2

)
−N0De

dvz

dr
= 0, (2.33)

τzz − 2De
dvz

dr
τrz − De

Pe

(
1
r

d

dr

(
r
dτzz

dr

)
+

1
r

d

dr

(
r
dτrr

dr

)
+

1
r

d

dr
(τrr − τθθ)

)
= 0,

(2.34)

− dp

dz
+ η

1
r

d

dr

(
r
dvz

dr

)
+

1
r

d

dr
(rτrz) = 0. (2.35)

Since vz = vz(r), the incompressibility condition (2.28) is identically satis�ed. τrθ, τθr, τzθ, τθz and

the corresponding components of σ are all zero. Equations for the remaining components of σ are

analogous to those for the corresponding components of τ and are obtained by replacing τij with

σij and N0 with M in (2.31)-(2.34).

2.2.3. Boundary conditions

We assume, as have other authors before us (Bhave et al. 1991; Cook & Rossi 2004; Rossi et al.

2006), that the principal axes of the microstructure on the wall are orientated in the z-direction, so

that non-dimensionalization of the Kramers expression (2.6) then leads to the elastic stress boundary

condition

τ = N0Q
2
0ezez −N0δ, (2.36)
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A non-homogeneous constitutive model for human blood. Part I 13
where Q0 is the length of a Hookean dumbbell divided by `0/

√
3 and ez is a unit vector in the

z-direction. Since τzz is not required in order to solve the equations (2.29)-(2.33) and (2.35) for the

other variables, we have no need to estimate Q0 and the wall stress condition on the remaining

components is just τij = −N0δij . Along the axis of symmetry τrz is set equal to zero and the normal

derivatives of τrr and τθθ equal zero, from symmetry considerations. Boundary conditions for σ are

equivalent to the ones for τ , the only di�erence being that N0 is exchanged for M .

Subtracting (2.31) and (2.32) we get

τrr − τθθ − De

Pe

(
1
r

d

dr

(
r
dτrr

dr

)
− 1

r

d

dr

(
r
dτθθ

dr

)
− 4

r2
(τrr − τθθ)

)
= 0. (2.37)

Now, let w = τrr − τθθ. Then (2.37) is equal to

w − De

Pe

(
1
r

d

dr

(
r
dw

dr

)
− 4

w

r2

)
= 0, (2.38)

together with the homogeneous boundary conditions

dw

dr
= 0 at r = 0, (2.39)

w = 0 at r = 1. (2.40)

The solution to (2.38) with boundary conditions (2.39)-(2.40) is w ≡ 0, which implies τrr ≡ τθθ.

Using the same arguments with the corresponding equations for σrr and σθθ allows us to conclude

that σrr ≡ σθθ.

N0 and M satisfy the natural boundary conditions

dN0

dr
− dτrr

dr
= 0, (2.41)

and

dM

dr
− dσrr

dr
= 0, (2.42)

at the walls r = 1. Equation (2.41) is equivalent to ensuring that there is no �ux of rouleaux through

the tube wall. In addition, the non-dimensional form of (2.20) where the region D is taken to be any

right circular cylindrical section of the tube, imposes the condition
∫ 1

0

N0rdr =
1
2
, (2.43)

upon N0. Solvability of (2.30) for M requires that M be bounded at r = 0 and this is achieved in the

weak �nite element formulation (see Section 3.2) by setting ∂M/∂r = 0 on the axis of symmetry.

Page 13 of 37



14 M. Moyers-Gonzalez, R. G. Owens and J. Fang
2.2.4. Further simpli�cations

Heeding the arguments above, it may be seen that the set of equations describing steady axisym-

metric tube �ow reduces to

1
r

d

dr

(
r
dN0

dr

)
− 1

r

d

dr

(
r
dτrr

dr

)
= 0, (2.44)

1
Pe

1
r

d

dr

(
r
dM

dr

)
− 1

Pe

(
1
r

d

dr

(
r
dσrr

dr

))
− aN0

2n
M +

b

2
(N0 −M) = 0, (2.45)

τrr − De

Pe

(
2
r

d

dr

(
r
dτrr

dr

))
= 0, (2.46)

τrz −De
dvz

dr
τrr − De

Pe

(
1
r

d

dr

(
r
dτrz

dr

)
− τrz

r2

)
−N0De

dvz

dr
= 0, (2.47)

τzz − 2De
dvz

dr
τrz − De

Pe

(
1
r

d

dr

(
r
dτzz

dr

)
+

1
r

d

dr

(
r
dτrr

dr

))
= 0, (2.48)

− dp

dz
+ η

1
r

d

dr

(
r
dvz

dr

)
+

1
r

d

dr
(rτrz) = 0. (2.49)

In the paragraphs that follow we demonstrate that yet further simpli�cation is possible. We begin

by multiplying (2.44) by an arbitrary function φ ∈ C∞(0, 1) and integrating by parts over [0, 1] to

get

−
∫ 1

0

r
dN0

dr

dφ

dr
dr +

dN0

dr

∣∣∣∣
r=1

= −
∫ 1

0

r
dτrr

dr

dφ

dr
dr +

dτrr

dr

∣∣∣∣
r=1

.

Applying (2.41) we have,
∫

r
dN0

dr

dφ

dr
dr =

∫
r
dτrr

dr

dφ

dr
dr. (2.50)

Since (2.50) holds for any φ ∈ C∞(Ω), we get

dN0

dr
=

dτrr

dr
,

so that integrating yields

N0 = τrr + C, (2.51)

for some constant C, chosen such that (2.43) is satis�ed. Eqn. (2.51) expresses the original idea of

Onuki (2002) that the degree of inhomogeneity in a polymer solution due to stress-induced migration

is proportional to the �rst normal stress di�erence in the �ow.

Letting T := ηγ̇ + τ , we can write the equation of motion, (2.49) as

1
r

d

dr
(rTrz) =

dp

dz
, (2.52)
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A non-homogeneous constitutive model for human blood. Part I 15
where

Trz = η
dvz

dr
+ τrz. (2.53)

We solve for Trz in (2.52), and noting that the shear stress should be bounded at r = 0 we have,

Trz =
r

2
dp

dz
. (2.54)

Substituting (2.53) into (2.47) leads to

η
De

Pe

(
1
r

d

dr

(
r

d

dr

(
dvz

dr

))
− 1

r2

dvz

dr

)
− dvz

dr
(De τrr + N0De + η) + Trz = 0. (2.55)

This is a di�erential equation for dvz/dr, with boundary conditions

dvz

dr
= 0 at r = 0, (2.56)

i.e., zero shear rate along the line of symmetry and

dvz

dr
=

1
2η

dp

dz
at r = 1. (2.57)

Boundary condition (2.57) may require further explanation. We note that from (2.36) that τrz is

zero at the wall, and this implies, from (2.53), that at r = 1

dvz

dr
=

Trz

η
.

Using (2.54) we now get (2.57).

3. Numerical Results

In this section we present the results of solving (2.45), (2.46) (and the corresponding equation

for σrr) and (2.55), subject to an imposed (dimensional) pressure gradient P and satisfying the

boundary conditions on M , τrr, σrr and dvz/dr described in the paragraphs above. N0 is found

from (2.43) and (2.51). Once converged solutions have been found for τrr and dvz/dr, one may

compute τzz and vz, should one wish to do so, from (2.48) and the identity

vz(r) = −
∫ 1

r

dvz

dr′
dr′. (3.1)

3.1. Parameter selection

Since the fragmentation rate function b(γ̇) is determined from the a − b relationship that holds in

steady homogeneous �ow (see Appendix A), we need to select the parameters that appear in the
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16 M. Moyers-Gonzalez, R. G. Owens and J. Fang

Parameter symbol assigned value units

plasma viscosity ηN 0.001 Pa.s

zero shear rate polymeric viscosity η0 0.0326 Pa.s

high shear rate polymeric viscosity η∞ 0.00234 Pa.s

Cross model power law exponent m 2.1238 -

Cross model parameter β 0.7014 sm

Maxwell relaxation time λH = ζ/4H 0.005 s

in�nite shear rate Deborah number De∞ = λHV/R 1.4 -

homogeneous average cell number density Nav,hom 5× 1015 m−3

Table 1. Material and �ow parameters and their assigned values

Cross model description (A 2) of the contribution of the cell suspension to the steady shear viscosity

(the other contribution is that due to the plasma). We shall refer to this contribution as the steady

polymeric shear viscosity. The parameters required by (A 2) are the zero shear-rate steady polymeric

shear viscosity η0, the in�nite shear-rate steady polymeric shear viscosity η∞, and parameters β and

m (a power law exponent), that determine the shape of the viscosity curve as a function of shear

rate as it passes between η0 and η∞. The values of the aforementioned parameters are tabulated in

Table 1 and for a justi�cation of the value assigned to η∞, see Section 3.4. The plasma viscosity ηN

is set equal to 0.001Pa.s.

With λH chosen as 0.005s (see Moyers-Gonzalez et al. (2008), where this value was best for

agreement with the small amplitude oscillatory data of Thurston (1975)) and the homogeneous

(in�nite radius tube) average cell number density Nav,hom (see Appendix A) selected to be equal to

5× 106 per µ` (a realistic value, for an hematocrit of 0.45), the formula (2.26) for η∞ now �xes the

value of kBT + κ. We note, in passing, that this necessitates that κ be several orders of magnitude

greater than kBT and this is consistent with the experimental observation by Goldsmith & Marlow

(1979), for example, that the principal cause of di�usion is that due to particle-particle interactions

rather than thermal e�ects. De∞ was chosen equal to 1.4 (this being the product of λH with a shear

rate of 280s−1, characteristic of that found in an arteriole (Caro et al. (1978))). The Péclet number
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Pe is determined from R2 from

Pe =
V R

Dtr
=

2ζRV

(kBT + κ)
=

(
2ζDe∞

(kBT + κ)λH

)
R2 =

(
8De∞H

(kBT + κ)

)
R2, (3.2)

and best results were found when the ratio between the two quantities was set equal to 1.75× 1011.

This results in a characteristic single red cell dimension of
√

3(kBT + κ)/H = 1.38× 10−5m which

is slightly on the high side. However, it is not expected that increasing the ratio between the Péclet

number and R2 so as to reduce the cell dimension to O(10−6) will signi�cantly change the presented

results. Finally, in order to be able to impose a given physical (dimensional) pressure gradient P

(say) we calculate the dimensionless pressure drop from

dp

dz
=

(
R

Nav(kBT + κ)

)
P =

(
RλH

η∞

)
P.

3.2. Numerical method

The system of equations is discretized using a standard second-order Galerkin �nite element method

and the resulting nonlinear system is solved iteratively with a Picard-type iteration. Starting with

an initial guess for the velocity gradient (calculated by assuming simple Poiseuille �ow in a pipe

subject to the imposed P ) we perform two inner loops: the �rst for the τrr −N0 pair (Eqns. (2.43),

(2.46) and (2.51)) and the second for the σrr − M pair (Eqn. (2.45) and the σrr equation). The

variables in each inner loop are considered to have converged when the L2 norm of the di�erence

in successive iterates drops below a prescribed tolerance (equal to ε = 1 × 10−4). dvz/dr is then

updated and the process continued until the L2 norm of the di�erence in successive iterative values

of all variables is less than ε. In order to accurately approximate the solution in the boundary layer

and near the axis of symmetry the �nite element mesh was re�ned in r ∈ [0, 0.05]
⋃

[0.95, 1]. In the

main part of the mesh the element length ∆r was set equal to 5 × 10−3 and in the re�ned regions

to one tenth of this value. We experimented with di�erent ε and ∆r but no obvious di�erence was

to be seen in the computed solutions by reducing either any further, at least for the parameter set

given in Table 1.

Although we defer a complete asymptotic analysis until Part II of this paper, it may be seen that

as Pe → ∞ the dominant terms in Eqn. (2.45) in those parts of the normalized �ow domain [0, 1]
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18 M. Moyers-Gonzalez, R. G. Owens and J. Fang
where

1
r

d

dr

(
r
dM

dr

)
and 1

r

d

dr

(
r
dσrr

dr

)
.

remain �nite will be

−aN0

2n
M +

b

2
(N0 −M), (3.3)

and that therefore the relationship between M and N0 there will assume the same form as that for

homogeneous �ow (cf. Eqn. (9) of Owens (2006)). In the boundary layer adjacent to the tube wall

steep derivatives develop in M so that the dominant balance as Pe →∞ changes and the method of

matched asymptotic expansions is needed in order to correctly match the inner to the outer solution.

Equally, as explained at greater length by Moyers-Gonzalez & Owens (2008) in Part II of this paper,

the development of a steep internal layer in the steady homogeneous average aggregate size and upon

which the function b (and therefore M) depends will mean that the M will no longer behave as in

(3.3) as Pe →∞ and su�ciently close to r = 0. In Fig. 2(a) we show, as a check on our numerical

scheme, the solution M to (2.45) and the homogeneous solution, when Pe = 85750 and the physical

pressure gradient is P = −1000Nm−3. The agreement between the two solutions is excellent in a

region in the interior of the �ow domain, as anticipated, the only remaining discrepancy being due

to the fact that su�ciently close to the axis of symmetry, M , in the non-homogeneous case, is larger

than in the homogeneous case. In Fig. 2(b) we show the non-homogeneous boundary layer solution.

We will comment on the behaviour of M as Pe and P are allowed to vary in the following section.

3.3. Results with varying Pe and P

In Figs. 3-6 we show how the computed �ow variables change as a function of normalized radial

distance as the Péclet number Pe increases from 4.38 × 102 (corresponding to a tube of physical

radius 50µm) to 4.38× 104 (for which the equivalent tube radius is R = 500µm) and as the physical

pressure gradient P passes from −10Nm−3 to −1000Nm−3. The results are most easily considered

by dividing them into two groups: those at Pe = 4.38× 102 and those at the higher Péclet numbers.

We begin our comments on the results with those at the two highest Péclet numbers. In Figs. 11-

14 we have produced surface plots of N0, M , n and N0De to show how these quantities vary as

functions of the normalized radial distance and Péclet number when the pressure gradient P is �xed

at −500Nm−3. All results in Sections 3.3.1 and 3.3.2 have been computed at a �xed tube hematocrit
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A non-homogeneous constitutive model for human blood. Part I 19
equal to the feed/discharge hematocrit. The results of more realistic calculations, where we allow

Hct to decrease with tube diameter, are reported in Section 3.4.

3.3.1. Pe = 1.09× 104 and 4.38× 104.

Variations in N0 with r as the Péclet number is reduced (equivalently, as the tube radius R is

reduced) and visible in Figs. 3-4 and Fig. 11, indicate migration of the cells away from the walls.

The process of di�usion is driven by the anisotropy of τrr, and indeed would continue to be even

in equilibrium (P = 0). It is worth mentioning in passing that if the model were not viscoelastic

(λH = 0) τrr would, of course, be zero and there would be no particle migration. Migration e�ects in

the present steady �ow, where inertial e�ects are absent, are therefore dependent on the deformability

of the cells and leave a cell-depleted region near the tube wall. In the in�nite Pe case (homogeneous

�ow) wall e�ects would be absent and N0 = 1, but as the Péclet number is reduced the near-wall

number density N0 decreases and the boundary layer thickens. Since mass conservation requires that

(2.43) be satis�ed, a smaller cell number density near the walls is compensated for with a higher

density near the axis of symmetry as cells di�use across �uid streamlines towards the centre of the

tube. In this way, wall e�ects are felt by the �uid throughout the �ow domain, however large the

Péclet number and however thin the boundary layer. An increasing �ow rate (and corresponding

shear rate) leads to closer alignment of the rouleaux with the streamlines and an increase in stretch

in this direction. As evidenced by Figs 3-6, these kinematical and microstructural changes lead to

a reduction in |τrr| at any radial position and to an increase in |τrz|. The consequence of normal

stresses having smaller magnitude is a reduction in migration e�ects.

As the pressure drop increases, so for a tube of any radius (�xed Pe) the volume �ow rate and the

maximum shear rate (attained at the walls) increase (see Figs. 7-8). Figs. 7-8 also indicate that the

centreline axial velocity value and wall shear rates increase with Péclet number. At the lowest �ow

rate (P = −10Nm−3), the shear rate in the bulk �ow (outside the boundary layers) is extremely

small and as a result aggregates are not broken up in any great numbers. This means (see Fig. 3)

that the number density of aggregates M is small and uniform in the bulk �ow which in turn means

that n is larger than the values it assumes at the same radial positions at much higher �ow rates
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20 M. Moyers-Gonzalez, R. G. Owens and J. Fang
(compare Figs. 9 and 10, for example). Fig. 12 shows the behaviour of M as a function of Pe and r,

calculated with an intermediate pressure gradient P = −500Nm−3.

At the largest Péclet number, the impact on the viscosity N0De of nearly constant N0 and n in

the bulk �ow (and away from the centreline, in the case of P = −1000Nm−3) is that it too shows

only small variations with r in this region of the �ow and, as a consequence, the velocity pro�le is

essentially parabolic and the elastic shear stress τrz a linear function of r (Fig. 5). With increasing

�ow rates the shear rate increases at any radial position r (Figs. 7-8), aggregates are broken up and

all the more so as one approaches the wall. This leads inevitably to pro�les of n and N0De that

are monotonic decreasing functions of r at any given �ow rate, whose average values decrease with

increasing �ow rates. As the �ow rate increases to the maximum value considered in our numerical

experiments (Fig. 10), aggregates have been broken up at all Péclet numbers to the extent that the

average aggregate size is only slightly greater than 1 away from the centreline.

3.3.2. Pe = 4.38× 102

From Figs. 3-6 it may be observed that at a Péclet number of 4.38 × 102 cell migration is at

its strongest, in response to the greater elastic normal stress e�ects near the walls and the deeper

penetration of these e�ects into the �ow domain compared with those at the Péclet numbers con-

sidered in Section 3.3.1. Although, of the three values shown in Fig. 3, the centreline value of the

number density N0 is found to be a maximum for the narrowest tube (R = 50µm), the correspond-

ing number density of aggregates there is su�ciently large compared to its value for tubes of larger

radius that the variation of the average aggregate size n along the centreline as the tube radius is

reduced from 500µm to 50µm is non-monotonic. The same non-monotonic behaviour was observed

in the centreline viscosity, although we only show graphs corresponding to tubes of three di�erent

radii in Fig. 9. Referring to Fig. 10, the sharp decrease in n and N0De as one moves away from the

axis of symmetry that is to be seen at higher Péclet numbers is replaced, when Pe = 4.38 × 102,

by an aggregate size distribution and associated viscosity that decay with r much more gradually.

The tube is now so small compared to a cell that, with the exception of the very near wall region,

�ow conditions are approximately uniform (plug-like). The non-monotonic progression of both n and

N0De as functions of r from the high to very low Pe regimes may be seen most clearly in Figs. 13

Page 20 of 37
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and 14, where the pressure gradient P = −500Nm−3. At high values of Pe both variables show a

steep decrease with r and at the lower values of Pe, n and N0De are more uniform in the bulk �ow.

Note the viscosity boundary layer, indicating the presence of a near-wall cell-depleted layer.

In summary, the model predicts, as it should, that blood becomes thinner as �ow rates increase

and that the viscosity assumes its maximum along the axis of symmetry, which is where both the

greatest number density and the largest average size aggregates are to be found. The viscosity is a

non-trivial function of both the local hematocrit (measured by N0) and the average aggregate size

(in�uenced strongly by the local shear stress). In the smallest vessels and at su�ciently high �ow

rates (see Fig. 10) the viscosity is, on the whole, higher in the bulk �ow than in larger vessels but

smaller, because of migration e�ects, in the near-wall region. Lower shear stresses in the smallest Pe

�ow means that the viscosity is larger and the velocity pro�le blunter near the centre. The thicker

blood in the core more closely resembles a plug lubricated by plasma near the wall, whereas blood

in the larger vessels is much more Newtonian in behaviour, with an almost parabolic velocity pro�le

and very small elastic normal stresses. It may appear somewhat surprising, given the higher viscosity

in the bulk �ow at the lowest Péclet number compared to that in the �ows at higher Péclet numbers,

that the apparent viscosity should decrease as the tube radius decreases. This is due, however, to

lubrication e�ects and (were the Fåhraeus e�ect to be taken account of) to a reduction in the tube

hematocrit as the vessel diameter is made smaller.

We examine the phenomenon of decreasing apparent viscosity (the Fåhraeus-Lindqvist e�ect) and

that of the decreasing tube hematocrit that accompanies it (the Fåhraeus e�ect) in the next section.

3.4. Comparisons with in vitro experiments

The conclusion of Barbee & Cokelet (1971) that the Fåhraeus e�ect is entirely responsible for the

Fåhraeus-Lindqvist e�ect has not been supported by subsequent experiments (Azelvandre & Oiknine

(1976)). In an e�ort to distinguish between the contributions of tube hematocrit and the presence

of a wall slippage layer to the Fåhraeus-Lindqvist e�ect we consider three separate cases as the tube

diameter (and, therefore, with it, the Péclet number Pe) is reduced from 1mm to 10µm. These cases

are as follows:

(a) Non-homogeneous model with tube hematocrit set equal to the feed/discharge hematocrit,
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(b) Non-homogeneous model with tube hematocrit determined experimentally by Pries et al.

(1990),

(c) Homogeneous model (Fang & Owens 2006; Owens 2006) with tube hematocrit determined

experimentally by Pries et al. (1990).

In all three cases we will plot the predictions of the apparent viscosity relative to the plasma viscosity

(a quantity which we denote by relative ηapp) against tube diameter D, measured in µm. The

feed/discharge hematocrit Hc is held constant at 0.45. Di�erences in our results between (a) and

(b) above may be attributed to the Fåhraeus e�ect and those between (b) and (c) to the wall slip

layer, since case (c) corresponds to the limit D →∞ and uniform cell number density. Comparison

is made with the empirical curve of Pries et al. (1992)

relative ηapp,0.45 = 220 exp(−1.3D) + 3.2− 2.44 exp(−0.06D0.645), (3.4)

(with D measured in µm), the parameters in which were determined by �tting the curve to 163

data points coming from 18 experimental studies performed over a period of some 60 years. The

measurements in the studies were made at feed hematocrits of between 0.4 and 0.45 and where

Hc was below 0.45 an extrapolated relative ηapp was calculated. Even allowing for the fact that

apparent viscosities were calculated relative to the suspending medium used (which was not always

plasma) it is remarkable (see Fig. 2. of Pries et al. (1992)), given the very di�erent conditions

under which the experiments were performed (anticoagulant, tube length, temperature, pressure

drop, method of determination of the apparent viscosity and even animal species) that scatter of

the experimental data points about the curve (3.4) is not greater than it appears to be. The relative

apparent viscosity tended consistently to a value of approximately 3.2 in tubes of diameter 1mm

but this does not appear to us to be the asymptotic value from the data of Fig. 2. of Pries et al.

(1992) (which is still increasing with D) and this motivated the choice of η∞ = 0.00234Pa.s made

in our model, thus yielding a relative ηapp ≈ 3.34 as D →∞. The pressure gradient P for all results

presented in this section was �xed at −1000Nm−3.

3.4.1. The Fåhraeus e�ect

At this stage in the development of the non-homogeneous model proposed in this paper, no

satisfactory equation predicting the tube hematocrit Hct from the �ow conditions and material
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parameters is available. However, using the empirical parametric description of the Fåhraeus e�ect

given by Pries et al. (1990):

Hct

Hc
= Hc + (1−Hc)(1 + 1.7 exp(−0.35D)− 0.6 exp(−0.01D)), (3.5)

(with D measured in µm) we are able to �t the tube hematocrit by adjusting η∞. This is done by

returning to the de�nition (2.26) of η∞:

η∞ := Nav(kBT + κ)λH ,

and then using (2.19)-(2.20) to conclude that

Hct =
η∞Ve

(kBT + κ)λH
⇒ η∞(D) =

Hct(D)
Hct(∞)

η∞(∞), (3.6)

where, as before, Ve is the volume of a single erythrocyte. The �tted curve for Hct as determined

from (3.6) and the empirical (3.5) is shown in Fig. 15. Of course, the �tting does not rely in any way

upon the model being non-homogeneous and exactly the same procedure may be followed for the

homogeneous model of Fang & Owens (2006) and Owens (2006). The upturn in Hct for D su�ciently

small and referred to earlier in our discussion, is to be seen for D . 15µm. The corresponding upturn

in the apparent viscosity occurs at a yet smaller D, however.

3.4.2. The Fåhraeus-Lindqvist e�ect

In Fig. 16 we show the relative apparent viscosity as a function of tube diameter predicted by

the non-homogeneous model both when the tube hematocrit is �tted from (3.6) and when the

tube hematocrit is �xed equal to its feed/discharge value of 0.45. Although agreement with the

experimental data in the case of a constant tube hematocrit (�xed η∞) is good it is signi�cantly

better, and especially so at intermediate values of D, when a realistic Hct is used. From the results

shown in Fig. 16 it would not seem that the apparent relative viscosity is a sensitive function of tube

hematocrit, although tube hematocrit clearly plays a non-negligible role in determining the apparent

viscosity. This is in contradiction, therefore, to the contention by Barbee & Cokelet (1971) that the

Fåhraeus e�ect is completely responsible for the Fåhraeus-Lindqvist e�ect.

When the homogeneous model with �tted Hct is used in the same experiment the upper curve of

Fig. 17 results. To be absolutely sure that this is correctly calculated we have used separate codes

employing both the �nite element method described in Section 3.2 and the �nite di�erence code
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of Fang & Owens (2006) with no-slip boundary conditions. Di�erences in the homogeneous model

plot and the non-homogeneous model plot may now be attributed to di�usion (migration) e�ects

and the consequent appearance of a cell-depleted wall slip layer, since in the homogeneous model

the number density of cells is always a constant across the tube radius. The dramatic rise in the

relative apparent viscosity as D → 0 manifested in the homogeneous model curve is reminiscent

of that observed experimentally, for example, in the case of heated red blood cells or those �xed

with glutaraldehyde, where in the former case the cells are less deformable than normal cells and

in the latter are rigid (McKay & Meiselman (1988)). Changing the deformability of red cells in this

way changes the migration properties of the same, and was shown by McKay & Meiselman (1988)

to result in reversal of the Fåhraeus-Lindqvist e�ect in tubes of diameters below approximately

150µm, even though the tube hematocrit of the heated red blood cells continued to decrease with

tube diameter beyond this point. In the homogeneous model, the asymptotic value of the relative

ηapp as D → 0 is that corresponding to the total zero shear rate viscosity (η0 + ηN )/ηN . This is

due to the fact that the polymeric centreline viscosity is always η0, the number density N0 being

constant everywhere and the average aggregate size n in steady �ow being a function only of the

local shear rate.

Conclusions

In this paper we have presented a non-homogeneous model for whole human blood, taking account

of fragmentation and aggregation of the aggregates and stress-induced di�usion. The magnitude of

the elastic normal stress component driving particle migration in small tubes has been shown to

depend on cell deformability. Predictions of the Fåhraeus-Lindqvist e�ect in narrow tubes match

closely the experimental data and the relative importance of the Fåhraeus e�ect and of a cell depleted

layer near the wall on the apparent viscosity has been discussed. We conclude that the Fåhraeus

e�ect is in�uential but not determinative in this regard.
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Appendix A. De�nition of aggregation and disaggregation functions and

parameter values.

Motivated by the work of Murata & Secomb (1988) and of Shiga et al. (1983) the aggregation

rate a(γ̇)Nav,hom is de�ned as:

a(γ̇)Nav,hom =





a1,3γ̇
3 + a1,2γ̇

2 + a1,0 for 0 ≤ γ̇ ≤ γ̇c,

a2,3γ̇
3 + a2,2γ̇

2 + a2,1γ̇ + a2,0 for γ̇c ≤ γ̇ ≤ γ̇max,

0 for γ̇ > γ̇max,

(A 1)

where

a1,0 = 1,

a1,2 = 3a1,0/γ̇2
c ,

a1,3 = −2a1,0/γ̇3
c ,

a2,0 =
2a1,0γ̇

2
max(−γ̇max + 3γ̇c)

−γ̇3
max − 3γ̇maxγ̇2

c + γ̇3
c + 3γ̇cγ̇2

max

,

a2,1 =
−12γ̇ca1,0γ̇max

−γ̇3
max − 3γ̇maxγ̇2

c + γ̇3
c + 3γ̇cγ̇2

max

,

a2,2 =
6a1,0(γ̇max + γ̇c)

−γ̇3
max − 3γ̇maxγ̇2

c + γ̇3
c + 3γ̇cγ̇2

max

,

a2,3 =
−4a1,0

−γ̇3
max − 3γ̇maxγ̇2

c + γ̇3
c + 3γ̇cγ̇2

max

,

and where the critical shear rate (see Murata & Secomb (1988)) is chosen as γ̇c = 5.78s−1 and the

maximum shear rate γ̇max = 900s−1. Nav,hom is the in�nite radius tube average cell number density,

de�ned (cf. Eqn. (2.20)) as

Nav,hom =
Hct(∞)

Ve
=

Hc

Ve
.

Therefore, Nav,hom/Nav = Hc/Hct.

b(γ̇) is determined from a(γ̇)Nav from the relationship that holds in steady homogeneous �ow (see

Eqns (27) and (28) of Owens (2006)):

b(γ̇) =
a(γ̇)Nav,hom

nst(nst − 1)
,

where

nst :=
ηst(γ̇)
η∞

(
1 +

3
2
a(γ̇)Nav,homλH

)
,
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Figure 1. Single Hookean dumbbell and its representation of the end-to-end vector of a simple rouleau.

A linear spring connects two point masses m having position vectors r1 and r2. The end-to-end vector

q = r2 − r1 and the position vector of the centre of mass rc = (r1 + r2)/2.

and

ηst(γ̇) = η0

(
1 + θγ̇m

1 + βγ̇m

)
, (A 2)

with θ/β := η∞/η0, is the steady polymeric viscosity of Cross type (Cross (1965)), �tted to steady

shear data.
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Figure 2. (a) Comparison of aggregate number density M for ◦: homogeneous and ¤: non-homogeneous

�ow, against normalized radial distance r. P = −1000Nm−3, R = 700µm, Pe = 85750. (b) Zoom of the

boundary layer near r = 1.
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Figure 3. Cell number density N0 and aggregate number density M against normalized radial distance

r. P = −10Nm−3 ◦: R = 500µm, Pe = 4.38 × 104, ¤: R = 250µm, Pe = 1.09 × 104, M: R = 50µm,

Pe = 4.38× 102.
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Figure 11. Cell number density N0 as a function of normalized radial distance r and Péclet number Pe.

P = −500Nm−3.
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Figure 12. Aggregate number density M as a function of normalized radial distance r and Péclet number

Pe. P = −500Nm−3.

Figure 13. Average aggregate size n as a function of normalized radial distance r and Péclet number Pe.

P = −500Nm−3.
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Figure 14. Viscosity N0De as a function of normalized radial distance r and Péclet number Pe.

P = −500Nm−3.

Bhave, A. V., Armstrong, R. C. & Brown, R. A. 1991 Kinetic theory and rheology of dilute, non-

homogeneous polymer solutions. J. Chem. Phys. 95, 2988�3000.

Blair, G. W. Scott 1958 The importance of the sigma phenomenon in the study of the �ow of blood.

Rheol. Acta 1, 123�126.

Bugliarello, G. & Sevilla, J. 1970 Velocity distribution and other characteristics of steady and pulsatile

blood �ow in �ne glass tubes. Biorheology 7, 85�107.

Bureau, M., Healy, J. C., Bourgoin, D. & Joly, M. 1980 Rheological hysteresis of blood at low shear

rate. Biorheology 17, 191�203.

Caro, C. G., Pedley, T. J., Schroter, R. C. & Seed, W. A. 1978 The Mechanics of the Circulation.

Oxford University Press.

Chien, S. & Jan, K.-M. 1973 Ultrastructural basis of the mechanism of rouleaux formation. Microvascular

Res. 5, 155�166.

Cook, L. P. & Rossi, L. F. 2004 Slippage and migration in models of dilute wormlike micellar solutions

and polymeric �uids. J. Non-Newtonian Fluid Mech. 116, 347�369.

Cross, M. M. 1965 Rheology of non-Newtonian �uids: a new �ow equation for pseudoplastic systems. J.

Colloid Sci. 20, 417�437.

Fåhraeus, R. 1929 The suspension stability of the blood. Physiol. Rev. 9, 241�274.

Page 33 of 37



34 M. Moyers-Gonzalez, R. G. Owens and J. Fang

10
1

10
2

10
3

0.7

0.75

0.8

0.85

0.9

0.95

1

D(µm)

H
ct

/H
c

Figure 15. Fåhraeus e�ect. Relative tube hematocrit Hct/Hc against tube diameter D

(µm). P = −1000Nm−3. Fit of non-homogeneous model (¤) to the empirical formula

Hct/Hc = Hc + (1−Hc)(1 + 1.7 exp(−0.35D)− 0.6 exp(−0.01D)) (Pries et al. (1990)).

Fåhraeus, R. & Lindqvist, T. 1931 The viscosity of the blood in narrow capillary tubes. Am. J. Physiol.

96, 562�568.

Fang, J. & Owens, R. G. 2006 Numerical simulations of pulsatile blood �ow using a new constitutive

model. Biorheology 43, 637�660.

Gaehtgens, P., Albrecht, K. H. & Kreutz, F. 1978 Fahraeus e�ect and cell screening during tube

�ow of human blood. I. E�ect of variation of �ow rate. Biorheology 15, 147�154.

Goldsmith, H. L., Cokelet, G. R. & Gaehtgens, P. 1989 Robin Fåhraeus: evolution of his concepts

in cardiovascular physiology. Am. J. Physiol. 257 (Heart Circ. Physiol. 26), H1005�H1015.

Goldsmith, H. L. & Marlow, J. C. 1979 Flow behavior of erythrocytes. II. Particle motions in concen-

trated suspensions of ghost cells. J. Colloid Interface Sci. 71, 383�407.

Kramers, H. A. 1944 Het gedrag van macromoleculen in een stroomende vloeistof. Physica 11, 1�19.

Liu, Y. & Liu, W. K. 2006 Rheology of red blood cell aggregation by computer simulation. J. Comp. Phys.

220, 139�154.

Mayer, G. 1965 Anomalous viscosity of human blood. Am. J. Physiol. 208, 1267�1269.

Page 34 of 37



A non-homogeneous constitutive model for human blood. Part I 35

10
1

10
2

10
3

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

D(µm)

R
el

at
iv

e 
η ap

p

Figure 16. Fåhraeus-Lindqvist e�ect. Apparent relative viscosity ηapp against tube diameter D (µm).

P = −1000Nm−3. : ηapp = 220 exp(−1.3D) + 3.2 − 2.44 exp
�−0.06D0.645

�
(Pries et al. (1992)).

◦: non-homogeneous model with constant tube hematocrit Hct = Hc. ¤: non-homogeneous model with

Hct/Hc = Hc + (1−Hc)(1 + 1.7 exp(−0.35D)− 0.6 exp(−0.01D)) (Pries et al. (1990)).

McKay, C. B. & Meiselman, H. J. 1988 Osmolality-mediated Fahraeus and Fahraeus-Lindqvist e�ects

for human RBC suspensions. Am. J. Physiol. 254 (Heart Circ. Physiol. 23), H238�H249.

Moyers-Gonzalez, M. & Owens, R. G. 2008 A non-homogeneous constitutive model for human blood.

Part II: Asymptotic solution for large Péclet numbers. J. Non-Newtonian Fluid Mech. .

Moyers-Gonzalez, M., Owens, R. G. & Fang, J. 2008 A non-homogeneous constitutive model for

human blood. Part III: Oscillatory �ow. J. Non-Newtonian Fluid Mech. .

Murata, T. & Secomb, T. W. 1988 E�ects of shear rate on rouleau formation in simple shear �ow.

Biorheology 25, 113�122.

Onuki, A. 2002 Phase Transition Dynamics . Cambridge University Press.

Owens, R. G. 2006 A new microstructure-based constitutive model for human blood. J. Non-Newtonian

Fluid Mech. 140, 57�70.

Pries, A. R., Neuhaus, D. & Gaehtgens, P. 1992 Blood viscosity in tube �ow: dependence on diameter

and hematocrit. Am. J. Physiol. 263 (Heart Circ. Physiol. 32), H1770�H1778.

Page 35 of 37



36 M. Moyers-Gonzalez, R. G. Owens and J. Fang

10
1

10
2

10
3

0

5

10

15

20

25

30

35

D(µm)

R
el

at
iv

e 
η ap

p

Figure 17. Fåhraeus-Lindqvist e�ect. Apparent relative viscosity ηapp against tube diameter D

(µm). P = −1000Nm−3. M: homogeneous model. ¤: non-homogeneous model. In both models

Hct/Hc = Hc + (1−Hc)(1 + 1.7 exp(−0.35D)− 0.6 exp(−0.01D)) (Pries et al. (1990)).

Pries, A. R. & Secomb, T. W. 2005 Microvascular blood viscosity in vivo and the endothelial surface

layer. Am. J. Physiol. Heart Circ. Physiol. 289, H2657�H2664.

Pries, A. R., Secomb, T. W., Gaehtgens, P. & Gross, J. F. 1990 Blood �ow in microvascular

networks. Experiments and simulation. Circ. Res. 67, 826�834.

Rossi, L. F., McKinley, G. & Cook, L. P. 2006 Slippage and migration in Taylor-Couette �ow of a

model for dilute wormlike micellar solutions. J. Non-Newtonian Fluid Mech. 136, 79�92.

Secomb, T. W. 2003 Mechanics of red blood cells and blood �ow in narrow tubes. In Modeling and Simu-

lation of Capsules and Biological cells (ed. C. Pozrikidis), pp. 163�196. Boca Raton, Fl.: Chapman and

Hall.

Sharan, M. & Popel, A. S. 2001 A two-phase model for �ow of blood in narrow tubes with increased

e�ective viscosity near the wall. Biorheology 38, 415�428.

Shiga, T., Imaizumi, K., Harada, N. & Sekiya, M. 1983 Kinetics of rouleaux formation using TV image

analyzer. I. Human erythrocytes. Am. J. Physiol. 245, H252�H258.

Page 36 of 37



A non-homogeneous constitutive model for human blood. Part I 37
Sun, C. & Munn, L. L. 2005 Particulate nature of blood determines macroscopic rheology: a 2D lattice

Boltzmann analysis. Biophys. J. 88, 1635�1645.

Sutera, S. P., Seshadri, V., Croce, P. A. & Hochmuth, R. M. 1970 Capillary blood �ow : II.

Deformable model cells in tube �ow. Microvasc. Res. 2, 420�433.

Thurston, G. B. 1975 Elastic e�ects in pulsatile blood �ow. Microvasc. Res. 9, 145�157.

Yen, R. T. & Fung, Y. C. 1977 Inversion of Fahraeus e�ect and e�ect of mainstream �ow on capillary

hematocrit. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42, 578�586.

Page 37 of 37


