
Optimistic Erasure-Coded Distributed Storage∗

Partha Dutta
IBM India Research Lab

Bangalore, India

Rachid Guerraoui
EPFL IC

Lausanne, Switzerland

Ron R. Levy
EPFL IC

Lausanne, Switzerland

Abstract

We study erasure-coded atomic register implementations in an asynchronous crash-recovery
model. Erasure coding provides a cheap and space-efficient way to tolerate failures in a dis-
tributed system. This paper presents ORCAS, Optimistic eRasure-Coded Atomic Storage, which
consists of two separate implementations, ORCAS-A and ORCAS-B. In terms of storage space
used, ORCAS-A is more efficient in systems where we expect large number of concurrent writes,
whereas, ORCAS-B is more suitable if not many writes are invoked concurrently. Compared
to replication based implementations, both ORCAS implementations significantly save on the
storage space. The implementations are optimistic in the sense that the used storage is lower in
synchronous periods, which are considered common in practice, as compared to asynchronous
periods. Indirectly, we show that tolerating asynchronous periods does not increase storage
overhead during synchronous periods.

1 Introduction

1.1 Motivation

Preventing data loss in storage devices is one of the most critical requirements in any storage
system. Enterprise storage systems in particular have multiple levels of redundancy built in for fault
tolerance. The cost of a specialized centralized storage server is very high and yet it does not offer
protection against unforseen consequences such as fires and floods. Distributed storage systems
based on commodity hardware, as alternatives to their centralized counterparts, have gained in
popularity since they are cheaper, can be more reliable and offer better scalability. However,
implementing such systems is more complicated due to their very distributed nature.

Most existing distributed storage systems rely on data replication to provide fault tolerance [14].
Recently however, it has been argued that erasure coding is a better alternative to data replication
since it reduces the cost of ensuring fault tolerance [6, 7]. In erasure-coded storage systems, instead
of keeping an identical version of a data V on each server, V is encoded into n fragments such that
V can be reconstructed from any set of at least k fragments (called k-of-n encoding), where the size
of each fragment is roughly |V |/k. A different encoded fragment is stored on each of the n servers,
and ideally such a system can tolerate the failure of f = n− k servers.

The main advantage of erasure-coded storage over replicated storage is its storage usage, i.e.,
less storage space is used to provide fault tolerance. For instance, it is well-known that a replicated
∗To appear in 22nd International Symposium on Distributed Computing (DISC 2008).

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147935742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

storage system with 4 servers can tolerate at most 1 failure in an asynchronous environment. If
each server has a storage capacity of 1 TB, the total capacity of the replicated storage system is
still 1 TB. In this case the storage overhead (total capacity/useable capacity) is 4, i.e. only 1/4
of the total capacity is available. Erasure coding allows the reduction of this overhead to 2 in an
asynchronous system, i.e., makes 2 TB useable. In a synchronous system (with 4 servers and at
most 1 failure), it is even possible to further reduce this overhead and make 3 TB available to the
user. Clearly, the synchronous erasure-coded storage is more desirable in terms of storage usage.
Unfortunately, synchrony assumptions are often not realistic in practice. Even if we expect the
system to be synchronous most of the time, it is good practice to tolerate asynchronous periods.
The idea underlying our contribution is the common practice of designing distributed systems that
can cope with worst case conditions (e.g., asynchrony and failures) but are optimized for best case
situations (e.g., synchrony and no failures) that are considered common in practice.

1.2 Contributions

In this paper we investigate one of the fundamental building blocks of a fault-tolerant distributed
storage − multi-writer multi-reader atomic register implementations [12, 3, 14]. An atomic register
is a distributed data-structure that can be concurrently accessed by multiple processes and yet
provide an “illusion” of a sequential register. (A sequential register is a data-structure that is
accessed by a single process with read and write operations, where a read always returns the last
value written.) We consider implementations over a set of n server processes in an asynchronous
crash-recovery message-passing system where (1) each process may crash and recover but has access
to a stable storage, (2) in a run, at most f out of n servers are faulty (i.e., eventually crash and
never recover), and (3) channels are fair-lossy.

We present two wait-free atomic register implementations ORCAS-A and ORCAS-B (Opti-
mistic eRasure-Coded Atomic Storage). Our implementations are the first wait-free atomic register
implementations in a crash-recovery model that have an “optimistic” (stable) storage usage. Sup-
pose that all possible write values are of a fixed size ∆.1 Then in both of our implementations,
during synchronous periods with q alive (non-crashed) servers and when there is no write operation
in progress, the stable storage used at every alive server is ∆

q−f , whereas during asynchronous pe-
riods when there is no write operation in progress, the storage used is ∆

n−2f at all but f servers (in
ORCAS-A, at most f servers may use ∆). However, the two implementations differ in their storage
usage when there is a write in progress. In ORCAS-A, when one or more writes are in progress, the
storage used at a server can be ∆, but even in the worst-case the storage used is never higher than
∆. In contrast, if there are w concurrent writes in progress in ORCAS-B then, in the worst-case,
the storage used at a server can be w∆

n−2f . Thus in terms of storage space used, ORCAS-A is more
efficient in systems where we expect large number of concurrent writes, whereas, ORCAS-B is more
suitable if not many writes are invoked concurrently. We also show how the number of messages
exchanged in ORCAS-A can be significantly reduced by weakening the termination condition of
the read from wait-free to Finite Write (FW) termination [1].2

Both ORCAS implementations are based on a simple but effective idea. The write first “gauges”
the number of alive servers in the system by sending a message to all servers and counting the

1Through out the paper we assume that, other than the write value and its encoded fragments, all other values
(e.g., timestamp) at a server are of negligible size.

2A similar idea was earlier used in [9] where the read satisfied obstruction-free termination.

2

number of replies received during a short waiting period. Depending on the number of replies, the
write decides how to erasure code its value. Additionally, to limit the communication overhead,
the ORCAS implementations ensure that the write value or the encoded fragments are sent to the
servers in only one of the phases of a write; later, the servers can locally compute the final encoded
fragments on receiving a small message that specifies how the value needs to be encoded (but the
message does not contain the final encoded fragments).

In particular, in ORCAS-A, the write sends the unencoded write value to all servers and waits
for replies. If it receives replies from q servers, the write sends a message to the servers that requests
them to locally encode the received value with (q− f)-of-n encoding. (Note that q ≥ n− f because
at most f servers can be faulty.) Roughly speaking, a subsequent read can contact at least q − f
of the servers that reply to the write, and (1) either the read receives an unencoded value from
one of those servers, or (2) it receives q − f encoded fragments. In both cases, as the write does a
(q− f)-of-n encoding, the read can reconstruct the written value. Note that, as q− f ≥ n− 2f , in
the worst-case ORCAS-A does a (n − 2f)-of-n encoding, and in synchronous periods with q alive
servers, it does a (q − f)-of-n encoding.

On the other hand, ORCAS-B, like previous erasure-coded atomic register implementations,
never sends an unencoded write value to the servers. Ideally, to obtain the same storage usage as
ORCAS-A, in a write of ORCAS-B we would like to send an (n−2f)-of-n encoded fragment to each
server, and on receiving replies from q servers, request the servers to keep a (q − f)-of-n encoded
fragment. However, in general, it is not possible to extract a particular fragment of a (q − f)-of-
n encoding from a single fragment of a (n − 2f)-of-n encoding. Thus with this naive approach,
either a write would need to send another set of fragments to the servers or the servers would
need to exchange their fragments, resulting in significant increase in communication overhead. We
solve this problem in ORCAS-B by a novel approach of storing multiple, much smaller fragments
at each server (instead of a single large one). Suppose the write estimates that there are q alive
servers. Then it encodes the value with x-of-nz encoding, where x is any common multiple of
n− 2f and q− f , and z = x

n−2f , and sends z fragments to each server. If the write receives replies
from q servers, then it requests each server to trim its stored fragments in the next phase, i.e.,
retain any y = x

q−f out of its z fragments and delete the rest. Roughly speaking, since a read
can miss at most f servers that replied to the write, if a subsequent read sees a trimmed server
then it will eventually receive y fragments from at least q − f servers, and if the read does not
see a trimmed server, then it will receive z fragments from at least n − 2f servers. In both cases,
it receives y(q − f) = z(n − 2f) = x fragments, and therefore, can reconstruct the written value.
The advantage of our approach over the naive approach is that, our approach has the same storage
usage as latter, but has lower communication overhead.

In Appendix B, we show lower bounds on storage space usage in atomic register implementation
in synchronous and asynchronous systems, for a specific class of implementations (that include
both ORCAS-A and ORCAS-B, and the implementation in [6]). Roughly speaking, we show that
implementations − (1) which at the end of a write store equal number of encoded fragments in the
stable storage of the servers, and (2) do not use different encoding schemes in the same operation −
cannot have a stable storage usage better than ORCAS-A (and ORCAS-B) in either synchronous
or asynchronous periods.

3

1.3 Related Work

Recently there has been lot of work on erasure-coded distributed storage [6, 7, 2, 5, 10, 9]. We
discuss below three representative papers that are close to our work.

Frolund et al. [6] describe an erasure-coded distributed storage (called FAB) in the same system
model as this paper, i.e., an asynchronous crash-recovery model. The primary algorithm in FAB
implements an atomic register. Servers have stable-storage and keep a log containing old versions
of the data, which is periodically garbage collected. The main difference with our approach is that
in FAB the stable storage is not used optimistically. In particular, ORCAS-B has the same storage
overhead as FAB during asynchronous periods (even when writes are in progress) but performs
better during synchronous periods. Another difference is that FAB provides strict linearizability,
which ensures that partial write operations appear to take effect before the crash or not at all. The
price that is paid by FAB is to give up wait-freedom: concurrent operations may abort. ORCAS-B
ensures that write operations are at worst completed upon recovery of the writer and guarantees
wait-freedom: all operations invoked by correct clients eventually terminate despite the concurrent
invocations of other clients.

Aguilera et al. [2] present an erasure-coded storage (that we call AJX) for synchronous sys-
tems that is optimized for f << n. AJX provides the same low storage overhead as ORCAS
during failure-free synchronous periods, and performs better than ORCAS when there are failures.
However, AJX provides consistency guarantees of only a regular register and puts a limit on the
maximum number of client failures. Also, wait-freedom is not ensured since concurrent writes may
abort.

Cachin et al. [5] propose a wait-free atomic register implementation for the byzantine model.
It uses a reliable broadcast like primitive to disseminate the data fragments to all servers, thus
guaranteeing that if one server receives a fragment, then all do. The storage required at the servers
when there is no write in progress is ∆

n−f . At first glance, one might be tempted to compare
our implementations with a crash-failure restriction of the algorithm in [5], and conclude that our
implementations have worse storage requirements in asynchronous periods (∆

n−2f). However, one
of the implications of our lower bounds in Appendix B is that there is no obvious translation of the
algorithm in [5] to a crash-recovery model while maintaining the same storage usage. (We discuss
this comparison further in Appendix B.)

2 Model and Definitions

Processes. We consider an asynchronous message passing model, without any assumptions on
communication delay or relative process speeds. For presentation simplicity, we assume the exis-
tence of a global clock. This clock however is inaccessible to the servers and clients.

The set of servers is denoted by S and |S| = n. The jth server is denoted by sj , 1 ≤ j ≤ n. The
set of clients is denoted by C and it is bounded in size. Clients know all servers in S, but the set
of clients is unknown to the servers. A client or a server is also called a process.

Every process executes a deterministic algorithm assigned to it, unless it crashes. (The process
does not behave maliciously.) If it crashes, the process simply stops its execution, unless it possibly
recovers, in which case the process executes a recovery procedure which is part of the algorithm
assigned to it. (Note that in this case we assume that the process is aware that it had crashed
and recovered.) A process is faulty if there is a time after which the process crashes and never
recovers. A non-faulty process is also called a correct process. The set of faulty processes in a run

4

is not known in advance. In particular, any number of clients can fail in a run. However, there is
an known upper bound f ≥ 1 on the number of faulty servers in a run. We also assume f < n/2
which is necessary to implement a register in asynchronous model.

Every process has a volatile storage and a stable storage (e.g., hard disk). If a process crashes
and recovers, the content of its volatile storage is lost but the content of its stable storage is
unaffected. Whenever a process updates one of its variables, it does so in its volatile storage
by default. If the process decides to store information in its stable storage, it uses a specific
operation store: we also say that the process logs the information. The process retrieves the
logged information using the operation retrieve.

Fair-lossy channels. We assume that any pair of processes, say pi and pj , communicate using
fair-lossy channels [13, 4], which satisfies the following three properties: (1) If pj receives a message
m from pi at time t then pi sent m to pj at time t, (2) if pi sends a message m to pj a finite number
of times, then pj receives the message a finite number of times, and (3) if pi sends a message m to
pj an infinite number of times and pj is correct, then pj receives m from pi an infinite number of
times.

On top of the fair-lossy channels we can implement more useful stubborn communication pro-
cedures (s-send and s-receive) which are used to send and receive messages reliably [4]. In addition
to the first two properties of fair-lossy channels, stubborn procedures satisfy the following third
property: If pi s-sends a message m to a correct process pj at some time t, and pi does not crash
after time t, then pj eventually s-receives m. We would like to note that stubborn primitives can
be implemented without using stable storage [4].

Registers. A sequential register is a data structure accessed by a single process that provides
two operations: write(v), which stores v in the register and returns ok, and read(), which returns
the last value stored in the register. (We assume that the initial value of the register is ⊥, which
is not a valid input value for a write operation.) An atomic register is a distributed data-structure
that can be concurrently accessed by multiple processes and yet provide an “illusion” of a sequential
register to the accessing processes [12, 13]. An algorithm implements an atomic register if all runs
of the algorithm satisfy the atomicity and termination properties. We follow the definition of
atomicity for a crash-recovery model given in [8], which in turn extends the definition given in [11].
We recall the definition in Appendix A.

We use the following two termination conditions in this paper. (1) An implementation satisfies
wait-free termination (for clients) if for every run where at most f of the servers are faulty (and
any number of clients are faulty), every operation invoked by a correct client completes. (2) An
implementation satisfies Finite-Write (FW) termination [1] if for every run where at most f of the
servers are faulty (and any number of clients are faulty), every write invocation by a correct client
is complete, and moreover, either every read invocation by a correct client is complete, or infinitely
many writes are invoked in the run. (Note that wait-free termination implies FW-termination.)

Erasure coding. A k-of-n erasure coding [16] is defined by the following two primitives:
- encode(V, k, n) which returns a vector [V [1], . . . , V [n]], where V [i] denotes ith encoded frag-

ment. (For presentation simplicity, we will assume that encode returns a set of n encoded fragments
of V , where each fragment is tagged by its fragment number.)

- decode(X, k, n) which given a set X of at least k fragments of V (that were generated by
encode(V, k, n)), returns V .

For our algorithms, we make no assumption on the specific implementation of the primitives
except the following one: each fragment in a k-of-n encoding of V is roughly of size |V |/k.

5

In the next two sections, we present two algorithms that implement erasure-coded, multi-writer
multi-reader, atomic registers in a crash-recovery model, ORCAS-A and ORCAS-B. Both imple-
mentations have low storage overhead when no write operation is in progress. The implementations
differ in the storage overhead during a write, and in their message sizes.

3 ORCAS-A

We now present our first implementation which we call ORCAS-A. (The pseudocode is given in Fig-
ures 1 and 2.) The implementation is inspired by the well-known atomic register implementations
in [3, 14]. Also, the registration process of a read at the servers is inspired by the listeners commu-
nication pattern in [15]. The first two phases of the write function are similar to that in [3, 14]−
they store the unencoded values at n − f (a majority) of servers with an appropriate timestamp.
Additionally in ORCAS-A, depending on the number of servers from which the write receives a
reply, it selects an encoding r-of-n. Then, the write performs another round trip where it requests
the servers to encode the value using r-of-n encoding and retain the fragment corresponding to
its server id. The crucial parts of the implementation are choosing an encoding r-of-n and the
condition for waiting for fragments at a read, such that, any read can recover the written value
without blocking permanently. We now describe the implementation in more detail.

1: function initialization:
2: ts, wid, rid ← 0; r ← 1;Tc ← timer() {at every

client}
3: Aj ← ⊥; τ, δ ← 0; ρ← 1 {at every server sj}

4: function write (V) at client ci
5: wid← wid+ 1; ts← 0
6: store(wid, ts)
7: repeat
8: send(〈get ts, wid〉, S)
9: until s-receive 〈ts ack, ∗, wid〉 from n− f servers

10: ts← 1+ max{tsj : s-received 〈ts ack, tsj , wid〉}
11: store(ts, V)
12: trigger(Tc)
13: repeat
14: send(〈write, ts, wid, 0, V 〉, S)
15: until s-receive 〈w ack, ts, wid, 0〉 from n−f servers and

expired(Tc)
16: r ← (number of servers from which s-received

〈w ack, ts, wid, 0〉 messages) −f
17: if r > 1 then
18: repeat
19: S′ ← set of servers from which s-received

〈w ack, ts, wid, 0〉 until now
20: send (〈encode, ts, wid, r〉, S′)
21: until s-receive 〈enc ack, ts, wid, r〉 from n−f servers
22: return(ok)

23: upon receive 〈get ts, wid〉 from client ci at server sj do
24: s-send(〈ts ack, τ, wid〉, {ci})

25: upon receive 〈write, ts′, wid′, rid′, V ′〉 from client ci at
server sj do

26: if rid′ > 0 then
27: R← R \ {[rid′, ∗, ∗, i]}
28: if V ′ 6= ⊥ then
29: if [ts′, wid′] >lex [τ, δ] then
30: τ ← ts′; δ ← wid′; ρ← 1;Aj ← V ′

31: store(τ, δ, ρ, Aj)
32: for all [rid, ts, id, l] ∈ R do
33: s-send(〈r ack, rid, ts′, wid′, 1, V ′〉, {cl})
34: s-send(〈w ack, ts′, wid′, rid′〉, {ci})

35: upon receive 〈encode, ts′, wid′, r′〉 from client ci at server
sj do

36: if [ts′, id′] = [τ, δ] then
37: Aj ← jth fragment of encode(Aj , r

′, n)
38: ρ← r′

39: store(ρ,Aj)
40: s-send(〈enc ack, ts′, wid′, r′〉, {ci})

41: upon recovery() at server sj do
42: [τ, δ, ρ, Aj]← retrieve()

43: upon recovery() at client ci do
44: [rid, ts, wid, r, V]← retrieve()
45: if ts 6= 0 then
46: repeat
47: send(〈write, ts, wid, 0, V 〉, S)
48: until s-receive 〈w ack, ts, wid, 0〉 from n− f servers

Figure 1: ORCAS-A: initialization, write and recovery procedures

6

1: function read() at client ci
2: rid← rid+ 1; Γ← 0; M ← ∅; once← false
3: store(rid)
4: repeat
5: send(〈read, rid〉, S)
6: M ← {msg = 〈r ack, rid, ∗, ∗, ∗, ∗〉 : s-received

msg}
7: TS ←maxlex{[ts, id] : 〈r ack, rid, ts, id, ∗, ∗〉 ∈ M}

8: if (M contains messages from at least n− f servers)
and (once = false) then

9: Γ← TS; once← true
10: if TS = [0, 0] then return(⊥)
11: until (once = true) and (∃ r′, ts′, id′ such that

([ts′, id′] ≥lex Γ) and (|{Aj : 〈r ack, rid, ts′, id′, r′, Aj〉 ∈

M}| ≥ r′))
12: A ← set of Aj satisfying the condition in line 11
13: if r′ = 1 then
14: V ← any Aj in A; V ′ ← V
15: else
16: V ← decode(A, r′, n); V ′ ← ⊥
17: repeat
18: send(〈write, ts′, id′, rid, V ′〉, S)
19: until s-receive 〈w ack, ts′, id′, rid〉 from n− f servers
20: return(V)

21: upon receive 〈read, rid〉 from client ci at server sj do
22: if R does not contain any [rid, ∗, ∗, i] then
23: R← R∪ [rid, τ, δ, i]
24: s-send(〈r ack, rid, τ, δ, ρ, Aj〉, {ci})

Figure 2: ORCAS-A: read procedure

3.1 Description

Local variables. The clients maintain the following local variables: (1) ts: part of the timestamp
of the current write operation, and (2) wid, rid: the identifiers of write and read operations, re-
spectively, which are used to distinguish between messages from different operations of the same
client, and (3) a timer Tc whose timeout duration is set to the round-trip time for contacting the
servers in synchronous periods. The pair [ts, wid] form the timestamp for the current write. The
local variables at a server sj are as follows: (1) Aj : its share of the value stored in the register,
which can either be the unencoded value or the jth encoded fragment, (2) τ, δ: the ts and the wid,
respectively, associated with the value in Aj , and (3) ρ: the encoding associated with the value in
Aj , namely, Aj is the jth fragment of a ρ-of-n encoding of some value. (In particular, ρ = 1 implies
that Aj contains an unencoded value.)
Write operation. The write operation consists of three phases, where each phase is a round-trip
of communication from the client to the servers. The first phase is used to compute the timestamp
for the servers, the second phase to write the unencoded value at the servers, and the final phase
is used to encode the value at the servers. On invoking a write(V), the client first increments and
logs its wid. This helps in distinguishing messages from different operations of the same server
even across a crash-recovery. It also logs ts = 0 so as to detect an incomplete write across a
crash-recovery. Next, the client sends get ts messages to all servers and waits until it receives ts
from at least n − f servers. (The notation send(m,X) is a shorthand for the following: for every
processes p ∈ X, send the message m to p. It is not an atomic operation.) To overcome the effect of
the fair-lossy channels, a client encloses the sending of its messages to the servers in a repeat-until
loop, and the servers reply back using the s-send primitive. On receiving the ts from at least n− f
servers, the client increments by one the maximum ts received, to obtain the ts for this write. It
then logs ts and V so that in case of a crash during the write, the client can complete the write
upon recovery. Next, it starts its timer, and sends a write message with the timestamp [ts, wid]
and the value V , to the servers. (To distinguish this message from the write message sent by a
read operation, the message also contains a rid field which is set to 0.) A server on receiving a
write message with a higher timestamp than its current timestamp [τ, wid], updates Aj , τ and δ to
V , ts and wid of the message, respectively. It also updates the encoding ρ to 1 (to denote that the

7

contents of Aj is unencoded), and logs the updated variables. (The server also sends some message
to the readers which we will discuss later.) The client waits until it receives w ack messages from
at least n − f servers, and the timer expires. (Waiting for the timer to expire ensures that the
client receives a reply from all non-crashed processes in synchronous periods.)

Next, the client select the encoding for the write to be r = q − f , where q is the number of
w ack messages received by the client. Note r ≥ 1 because q ≥ n − f and f < n/2. Then the
client sends an encode message to all servers which have replied to the write message. A server
sj on receiving this message encodes it value Aj using r-of-n encoding, and retains only the jth

fragment in Aj . It also updates its encoding ρ to r, logs Aj and ρ, and replies to the client. The
client returns from the write on receiving n− f replies. (Note that the encode phase is skipped if
r = 1, because 1-of-n encoding is same as not encoding the value at all.)
Read operation. The read operation consists of two phases. The first phase gathers enough
fragments to reconstruct a written value, and the second phase writes back the value at the servers
to ensure that any subsequent reader does not read an older value.

On invoking a read, the client increments and logs its rid. It then sends a read message to
the servers. On receiving a read message, a server registers the read3 by appending it to a local
list R with the following parameters: the rid of the read message, and the timestamp [τ, δ] at the
server when the read message was received. (The client de-registers in the second phase of the
read: line 27, Figure 1.) The server then replies with its current value of Aj and its associated
timestamp and encoding. In addition, whenever the server receives a new write message with a
higher timestamp, it forwards it to its registered readers. The client on the other hand, first chooses
a timestamp Γ which is greater than or equal to the timestamp seen at n− f processes,4 and then
waits for enough fragments to reconstruct a written value that has an associated timestamp greater
than or equal to Γ: the condition in line 11 of Figure 2 simply requires that (1) the client receives
r ack from at least n− f servers, and (2) there is an encoding r′ and timestamp [ts′, id′] such that
the client has received at least r′ fragments of the associated value, and [ts′, id′] is greater than or
equal to Γ. In Appendix C, we show that this condition is eventually satisfied for every read whose
invoking client does not crash.

The second phase of a read is very similar to the second phase of a write except for the following
case. If the read selects a value in the first phase that was encoded by the corresponding write
(r′ > 1), then the read does not need to write back the value to the servers because the write
has already completed its second phase. In this case, the second phase of the read is only used to
deregister the read at the servers.
Recovery Procedures. The recovery procedure at a server is straightforward: it retrieves all the
logged values. The client, in addition to retrieving the logged values, also completes any incomplete
write. (Note than, even if the last write invocation, before the crash at a client, is complete, ts can
be greater than 0. In this case, the recovery procedure tries to rewrite the same value with the
same timestamp. It is easy to see that this attempt to rewrite the value is harmless.)

3.2 Correctness

The proof of the atomicity of ORCAS-A is similar to the implementations in [3, 14]. The only
non-trivial argument in the proof of wait-free termination is proving that the waiting condition

3When there is no ambiguity, we also say that the server registers the client.
4The Γ selected in this way is higher than or equal to the timestamp of all preceding writes because two server

sets of size n− f always has a non-empty intersection.

8

in line 11 in Figure 2 eventually becomes true in every run where the client does not crash after
invoking the read. In this section, we give an intuition for this proof by considering a simple case
where a (possibly incomplete) write is followed by a read, and there are no other operations.

Suppose there is a write(V) that is followed by a read(). We claim that the read() can always
reconstruct V or the initial value of the register, and it can always reconstruct V if the write is
complete. The write() operation has two phases that modify the state of the servers: the write
phase and the encode phase. Suppose that during the write phase, the writer receives replies from
q servers (denoted by set Q) such that q ≥ n − f > f . If the writer fails without completing this
phase, the read() can return the initial value of the register, which does not violate atomicity. In
the encode phase, an r-of-n encode message is sent to all servers, where r = q − f ≥ n − 2f > 0.
If the writer crashes, this message reaches an arbitrary subset of servers. Subsequently, the read()
contacts a set R containing at least n− f servers. We denote the intersection of the read and write
sets, by U , i.e. U = Q ∩R, and it follows that |U | ≥ q − f = r > 0. There are two cases:

Case 1: There is at least one server in U which still has the unencoded value V . The read can
thus directly obtain V from this server.

Case 2: All the servers in U have received the encode message and encoded V . Since |U | ≥ r
and an r-of-n erasure code was used, there are enough fragments for the read to reconstruct V .

However, we must also consider the case where the read() is concurrent with multiple writes.
If there is a series of consecutive writes, the write procedure ensures that all values are eventually
encoded. If the read is slow, it could receive an encoded fragment of a different write from each
server, making it impossible for the read to reconstruct any value. But the reader registration
ensures that the servers will send all new fragments to the reader until the reader is able to
reconstruct some written value. A detailed proof of wait-freedom is given in Appendix C.

3.3 Algorithm Complexity

In this section we discuss the theoretical performance of ORCAS-A.
Timing guarantees. For timing guarantees we consider periods of a run where links are

timely, local computation time is negligible, at least n− f servers are alive, and no process crashes
or recovers. It is easy to show that a write operation completes in three round-trips (i.e., six
communication steps), as compared to two round-trips in the implementation of [14]. (We discuss
this comparison further in Section 5.) Also it is straightforward to show that a read can complete in
two round-trips if there is no write in progress. In Appendix E, we show that even in the presence
of concurrent writes, the read registration ensures that a read operation terminates within five
communication steps.

Messages. Except the r ack messages, the number of messages used by an operation is linear
in the number of servers. In Appendix D we show how to circumvent the reader registration by
slightly weakening the termination condition of the read. Message sizes in ORCAS-A are as large
as those in the replication based register implementations of [3, 14]: the first phase of the write in
ORCAS-A sends the unencoded value to all servers.

Worst-case bound on storage. Suppose that all possible write values are of a fixed size ∆,
and the size of variables, other than those containing a value of a write operation or an encoded
fragment of such a value, is negligible. Consider a partial run pr that has no incomplete write
invocation. (An invocation that has no matching return event in the partial run is called incom-
plete.) The r computed in line 16 of Figure 1 of every write is at least n−2f . Thus, every encoded
fragment is at most of size ∆/(n − 2f). Since, there are no incomplete write invocation in pr,

9

and every write encodes the value at n− f processes before it returns, the size of (stable) storage
at n − f servers is at most ∆/(n − 2f) at the end of pr. In addition, note that the size of the
storage at all servers is always bounded by ∆. This is in contrast to the implementation in [6] and
ORCAS-B implementation that we describe later, where the worst-case storage size is dependent
on the maximum number of concurrent writes.

Bound on storage in synchronous periods. Consider a partial run pr which has no
incomplete write invocation. Let wr be the write with the highest timestamp in pr. Let t be
the time when wr was invoked. Now, assume that (1) the links were timely in pr from time t
onwards, and (2) at least n− f servers are alive at time t, and no process crashes or recovers from
time t onwards. Let q ≥ n− f be the set of servers that are alive at time t. Then, it is easy to see
that the r computed in line 16 of Figure 1 is q− f in wr, and hence, the size of storage at all alive
servers is at most ∆/(q− f) at the end of pr. It also follows that, if pr is a synchronous failure-free
partial run, then the size of storage at all servers is at most ∆/(n− f) at the end of pr.

FW-termination. Consider the case in the above implementation when a client invokes a
read, registers at all the servers, and then crashes. If a server does not crash, its s-send module
will send the r ack message to the client forever. Since, these messages are of large sizes, it may
significantly increase the load on the system. Following [1], we show in Appendix D that if we
slightly weaken the waif-free termination condition of the read to Finite-Write (FW) termination,
then such messages are not required.

4 ORCAS-B

Although the ORCAS-A implementation saves storage space in synchronous periods, it has two
important drawbacks because it sends the unencoded values to the servers in the first phase of the
write. First, it uses larger messages compared to implementations which never send any unencoded
values to the servers. Second, if a client crashes before sending an encode message during a write,
servers are left with an unencoded value in the stable storage.5 In this section, we present our
second implementation, ORCAS-B, which like most erasure-coded register implementations, never
sends an unencoded value to the servers.

Due to lack of space, we discuss only those parts of ORCAS-B that significantly differ from
ORCAS-A. (The pseudocode is presented in Figures 4 and 5 in the Appendix). The crucial difference
between ORCAS-A and ORCAS-B is how the write value is encoded during a write and how it
is reconstructed during a read. In ORCAS-B, the write consists of three phases. The first phase
finds a suitable timestamp for the write, and tries to guess the number of alive servers, say r′. The
write then encodes the value such that the following three conditions holds. (1) If the second phase
of the write succeeds in contacting only n − f servers (a worst-case scenario), a subsequent read
can reconstruct the value. (2) If the second phase succeeds in contacting r′ servers (the optimistic
case), then in the third phase, the write can “trim” (i.e., reduce the size of) the stored encoded
value at the servers, and still a subsequent read can reconstruct the value. (3) The size of the
stored encoded value at a server should be equal to the size of a fragment in (n−2f)-of-n encoding
in the first case, and (r′ − f)-of-n encoding in the second case. The motivation behind these three
conditions is to have the same optimistic storage requirements as in ORCAS-A.

5In practice, the second case might not cause a significant overhead because any subsequent complete write will
erase such unencoded values.

10

It is not difficult to see that if the write uses a (n − 2f)-of-n encoding, then a server cannot
locally extract its trimmed fragment in the third phase from the encoded fragment it receives in
the second phase, without making extra assumptions about n or the erasure coding algorithm.
Thus with (n − 2f)-of-n encoding in the second phase, in the third phase of the write, either the
write needs to send the trimmed fragment to each server, or the servers need to exchange their
(second-phase) fragments. In ORCAS-B we avoid this issue by simply storing multiple fragments
at a server, while still satisfying the three conditions above.

We define the following variables: (1) r = r′ − f , (2) x be the lcm (least common multiple) or
r and n − 2f , (3) z = x/(n − 2f), and (4) y = x/r. Now the second phase of the write encodes
the value using x-of-(nz) encoding. It then tries to store z fragments at each server. If the write
succeed in storing the fragments at r′ servers, then in the next phase, it sends a trim message that
requests the servers to retain y out of its z fragments (and delete the remaining fragments). Now
it is easy to verify the above three conditions. If the second phase of the write stores the fragments
at n − f servers, a subsequent read can access at least n − 2f of those servers, and thus receive
at least (n − 2f)z = x fragments. On the other hand, if the stored fragments at some server are
trimmed, then at least r′ servers have at least y fragments, and therefore a subsequent read receives
y fragments from at least r′ − f = r servers; i.e., ry = x fragments in total. In both cases, since
the write has used x-of-(nz) encoding, the read can reconstruct the value. To see that the third
condition is satisfied, notice that the total size of z stored fragments at a server after the second
phase of the write is z(∆/x) = ∆/(n−2f). After trimming, the size of the stored fragments become
y(∆/x) = ∆/(r′ − f).

Another significant difference between ORCAS-A and ORCAS-B is the condition for deleting
an old value at a server. In ORCAS-A, whenever a server receives an unencoded value with a higher
timestamp, the old fragment or the old unencoded value is overwritten. However in ORCAS-B,
if the server receives fragments with a timestamp ts that is higher than its current timestamp,
the server adds the fragments to a set L of received fragments. Subsequently, if it receives a trim
message (i.e., a message from the third phase of a write) with timestamp ts, it deletes all fragments
in L with a lower timestamp. Also, the server sends the whole set L in its r ack reply messages
to a read. (Thus the trim message also acts as a garbage collection message.) This modification is
necessary in ORCAS-B because, until a sufficient number of encoded fragments are stored at the
servers, the newly written value is not recoverable from the stored data obtained from any set of
servers. The trim message acts as a confirmation that enough fragments of the new value have
been stored. A similar garbage collection mechanism is also present in the implementation in [6].
On the other hand, since a server in ORCAS-A receives an unencoded value first, it can directly
overwrite values with lower timestamps. An important consequence of this modification is that the
worst-case storage size of ORCAS-B (and the implementation in [6]) is proportional to the number
of concurrent writes, whereas, the storage requirement in ORCAS-A is never worse than that in
replication (i.e., storing the unencoded value at all servers). We show the wait-free termination
property of ORCAS-B in Appendix F.

5 Discussion and Future Work

There are two related disadvantages of ORCAS-A when compared to most replication based im-
plementations. The write needs three phases to complete as compared to two phases in the latter.
Also, the write needs four stable storage accesses (in its critical path) as compared to two such

11

accesses in replication based implementations. Both disadvantages primarily result from the last
phase that is used for encoding the value at the servers, and which can be removed if we slightly
relax the requirement on the storage space. ORCAS-A ensures that the stable storage is encoded
whenever there is no write in progress. Instead, if we require that the stable storage is eventually
encoded whenever there is no write in progress, then (with some minor modifications in ORCAS-A)
the write operation can return without waiting for the last phase. The last phase can then be exe-
cuted “lazily” by the client. (The two disadvantages and the above discussion hold for ORCAS-B
as well.) On a similar note, in ORCAS-A, if a read selects a value in the first phase that is already
encoded at some server, then it can return after the first phase, and lazily complete the second
phase (which in this case is used only for deregistering at the servers, and not for writing back the
value). It follows that, a read that has no concurrent write in ORCAS-A can return after the first
phase.

An important open problem is to study storage lower bounds on register implementations in a
crash-recovery model. In particular, it would be interesting to study if our lower bounds hold when
some of the underlying assumptions are removed. Another interesting direction for investigation can
be implementations that tolerate both process crash-recovery with fair-lossy channels and malicious
processes.

References

[1] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos:
optimal resilience with byzantine shared memory. Distributed Computing, 18(5):387–408, 2006.

[2] M. K. Aguilera, R. Janakiraman, and L. Xu. Using erasure codes efficiently for storage in
a distributed system. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN), pages 336–345, 2005.

[3] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in a message passing system.
Journal of the ACM, 42(1):124–142, 1995.

[4] R. Boichat and R. Guerraoui. Reliable and total order broadcast in the crash-recovery model.
Journal of Parallel and Distributed Computing, 65(4):397–413, 2005.

[5] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded byzantine distributed storage.
In Proceedings of the International Conference on Dependable Systems and Networks (DSN),
pages 115–124, 2006.

[6] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. A decentralized algorithm for
erasure-coded virtual disks. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN), pages 125–134, 2004.

[7] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient byzantine-tolerant
erasure-coded storage. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN), 2004.

[8] Rachid Guerraoui, Ron R. Levy, Bastian Pochon, and Jim Pugh. The collective memory of
amnesic processes. ACM Transactions on Algorithms, 4(1), 2008.

12

[9] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Low-overhead byzantine fault-
tolerant storage. In Proceedings of the 21st ACM Symposium on Operating Systems Principles
(SOSP), pages 73–86, 2007.

[10] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Verifying distributed erasure-
coded data. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 139–146, 2007.

[11] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, 1991.

[12] L. Lamport. On interprocess communication - part i: Basic formalism, part ii: Algorithms.
DEC SRC Report, 8, 1985. Also in Distributed Computing, 1, 1986, pages 77-101.

[13] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, 1996.

[14] N.A. Lynch and A.A. Shvartsman. Robust emulation of shared memory using dynamic quorum-
acknowledged broadcasts. Proceedings of the International Symposium on Fault-Tolerant Com-
puting Systems (FTCS), 1997.

[15] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In
Proceedings of the International Symposium on Distributed Computing (DISC), pages 311–
325, 2002.

[16] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. SIAM Journal of
Applied Mathematics, 8:300–304, 1960.

A Atomicity in a crash-recovery model (from [8])

A history of a run is a total order of events of four kinds in the run: invocations, replies, crashes and
recoveries. An invocation with no matching reply in a history is said to be pending (or incomplete)
in that history. (An invocation with a matching reply is complete, and the corresponding operation
is said to be complete.) An operation op is said to precede an operation op′ in a history if the reply
of op precedes the invocation of op′ in that history. An operation op is said to immediately precede
an operation op′ in a history if the reply of op precedes the invocation of op′ in that history such
that no operation op′′ precedes op′ where op precedes op′′. A local history is a sequence of events
associated with the same process. A local history is said to be well-formed if: (a) its first event
is either an invocation or a crash, (b) a crash is followed by a matching recovery event or is not
followed by any event, and (c) an invocation is followed by a crash or a reply event. A history is
said to be well-formed if all its local histories are well-formed. Two histories H and H ′ are said to
be equivalent if, for every process p, the local history H restricted to p has the same object events as
the local history H ′ restricted to p. To define atomicity, we reason about histories that are complete.
These are histories without any crash or recovery events where every invocation has a matching
reply. Given any well-formed history H1, we say that history H2 completes H1 if H2 does not
contain any crash or recovery events and is made of the very same invocation and reply events in
the same order as in H1, with one exception: any pending invocation in H1 is either absent in H2,
or has a matching reply that appears in H2 before the subsequent invocation of the same process.
A completed operation has a pending invocation in H1 that has a matching reply that appears in

13

H2 before the subsequent invocation of the same process. A history is said to be sequential if it is
complete and every invocation is followed by a matching reply. A sequential history of an atomic
register is said to be legal if it belongs to the sequential specification of register: a read returns
the last written value. A history H is said to be atomic if it can be completed to a history that is
equivalent to some legal sequential history. An implementation satisfies the atomicity property if
the history of every run of the implementation is atomic.

B Bounds on storage overhead

In this section, we show two lower bounds on the storage space usage in a specific kind of erasure
coding based atomic register implementation. (The bounds also hold for safe and regular registers.)
These lower bounds show that the storage requirements of ORCAS implementations are optimal if
we assume a specific kind of implementations.

We make the following assumptions on the erasure coding based register implementations.
(Recall that n denotes the number of servers.)

• There is a value V such that, for any k′ < n′, V cannot be reconstructed from less than k′

fragments of encode(V, k′, n′).

• Any given write or a read operation uses at most one encoding and that encoding is of the
form qk-of-qn for some q ≥ 1 and 1 ≤ k ≤ n.6

• If there are no pending writes at the end of some partial run pr (and there is at least one
complete write), then for at least n − f servers the following condition holds at the end of
pr. The only content of the stable storage of the server that is of non-negligible size are q′

fragments of some encode(V ′, q′k′, q′n), such that there is a write(V ′) in pr that is q′k′-of-q′n
erasure-coded.

The last assumption ensures that the servers only store the encoded fragments when there are
no write in progress. This requirement is restricted to n − f servers because in an asynchronous
system, a write operation may miss f servers.

We now present bounds on the storage requirements in synchronous and asynchronous systems.
Theorem 1 considers a synchronous system [13]: a system where message delays and process speeds
are bounded and known. We say that a run of a synchronous system is failure-free if there are no
crashes in that run.

Theorem 1 Consider an erasure-coded storage that implements an atomic register in a synchronous
system with n servers out of which f can be faulty. Then the implementation has a failure-free run
in which some write is qk-of-qn erasure-coded, such that k ≤ n− f .

Proof: Suppose by contradiction that in every failure-free run of the implementation, every write
has an encoding qk-of-qn such that k > n−f . (Different operation may use different values of q and
k.) First consider a failure-free run in which a client completes qk-of-qn erasure-coded write(V)
and there are no other operations. Let pr1 be a partial run of the failure-free run till the step where
the write returns.

6We say that a write or a read operation uses a qk-of-qn encoding (or is qk-of-qn erasure-coded) if the operation
ever invokes the encode(∗, qk, qn). Different operations may use different values of q and k.

14

From our assumptions, there are at least n− f servers such that each of these servers contains at
most q fragments from encode(V, qk, qn) or the initial value of the register. Let X be the set of
the remaining f servers. Now consider another partial run pr2 of the implementation that extends
pr1. Partial run pr2 extends pr1 as follows. After the write returns the following events occur:
(1) the servers in set X and the writer crash but never recover, (2) all other processes crash and
all messages that are in transit in the communication channels are lost, and then (3) all processes,
other than the writer and those in set X, recover. (Recall that the channels are fair-lossy.) Now
another client invokes and completes a read().
From the definition of a register, the read must return V . However, the servers that are not
in X have at most q(n − f) fragments out of the qn fragments returned by encode(V, qk, qn).
Since k > n − f , the read() cannot recover V from the fragments available at the alive servers, a
contradiction. �

The above theorem implies that there is a run in which some server stores q fragments of some
write(V) that is q(n− f)-of-qn erasure-coded. Thus its worst-case storage usage is |V |

q(n−f)q = |V |
n−f .

Next we consider a lower bound for an asynchronous system.

Theorem 2 Consider an erasure-coded storage that implements an atomic register in an asyn-
chronous system with n servers out of which f can be faulty, and n > 2f . Then the implementation
has a run in which some write is qk-of-qn erasure-coded, such that k ≤ n− 2f .

Proof: Suppose by contradiction that in every run of the implementation, every write has an
encoding qk-of-qn such that k > n−2f . Consider the following partial run pr of the implementation.
A set X of f servers crash at the beginning of the run and do not recover. Then a client c completes
qk-of-qn erasure-coded write(V). From our assumptions, there is a set Y of n− f servers, each of
which contain at most q fragments from encode(V, qk, qn) or the initial value of the register. Now
construct a set Z of f servers as follows. First choose all servers in S−X −Y . If |S−X −Y | < f ,
choose any f − |S −X − Y | servers from Y −X. (Since n > 2f , we can always choose such a set
Z.) Note X and Z are disjoint sets of size f each, and hence, |S −X − Z| = n− 2f .
Now consider another run which is exactly the same as pr till write(V) returns, except that the
servers in X do not crash, but do not take any steps till write (V) returns. (Recall that the system
is asynchronous.) Now, the following events occur: (1) servers in Z and the writer crash but never
recover, (2) all other processes crash and all messages that are in transit in the communication
channels are lost, and (3) all processes, other than the writer and those in set Z, recover. Now
another client invokes and completes a read().
From the definition of a register, the read must return V . Note that, when the read is invoked, no
server in X has any fragment of V because none of them took a step before write(V) returned, and
all messages in communication channels are lost before they took any step. Among the remaining
servers, the ones in Z do not recover from the crash, and the n − 2f servers in S − X − Z ⊆ Y
have at most q(n − 2f) fragments out of the qn fragments returned by encode(V, qk, qn). Since
k > n− 2f , the read() cannot reconstruct V , a contradiction. �

The above theorem implies that there is a run in which some server stores q fragments of some
write(V) that is q(n−2f)-of-qn erasure-coded. Thus its worst-case storage usage is |V |

q(n−2f)q = |V |
n−2f .

It follows that any translation of Cachin and Tessaro’s algorithm [5] to a crash-recovery model
with fair-lossy channels cannot preserve the storage overhead of n/(n− f). We now explain this in
more detail. For simplicity of discussion, assume that the algorithm in [5] is implemented in the

15

crash-recovery model with k-of-n encoding, where, k = n−f . Then the Disperse primitive becomes a
reliable broadcast of the encoded fragments, where each server eventually rdelivers its own fragment.
However, in a crash-recovery model with fair-lossy channels, implementing this primitive will require
servers to log more than one k-of-n encoded fragments. The proof for this is essentially same as
our lower bound proof. Consider a run in which a set X of f servers crash initially. Now some
client c rbcasts n fragments, and n − f servers rdelivers their respective fragments, and then the
client crashes. Suppose that each of these n− f servers, say set Y , store only one encoded k-of-n
fragment. Now suppose f of the servers in Y crash permanently, the remaining servers in Y crash
and recover, the set X containing f initially crashed servers recover, and all messages in transit in
the channels are lost (fair-lossy channels). Then there are only n− 2f < k fragments remaining in
the system, and therefore, the servers in X cannot reconstruct and rdeliver their fragments.

C ORCAS-A Wait-free Termination

Lemma 1 The ORCAS-A implementation is wait-free.

(Sketch.) We sketch the only non-trivial argument in the proof of wait-freedom: the condition in
line 11 of Figure 2 eventually becomes true if the client does not crash after invoking the read.
Suppose by contradiction that a client c invokes a read operation rd, and then does not crash, and
the condition in line 11 of Figure 2 is never satisfied in that operation. Thus c executes the first
repeat-until loop in the operation forever. Consider the two cases: (1) there is a time after which
the read does not receive any new timestamp [ts, id], and (2) otherwise. We now show that in both
the cases the condition in line 11 is eventually satisfied.
Let γ denote the timestamp assigned to Γ in line 9, and t be the time when the assignment was
executed. (Note that line 9 is executed exactly once in rd.)
Case 1. Let TS be the highest timestamp seen by the read in the run. We note that no correct
server ever stores a timestamp higher than TS in the run. Otherwise, since both c and the server
are correct, and timestamp at a server is non-decreasing with time, c will eventually receive a
timestamp higher than TS, which violates the definition of TS.
By definition, TS ≥lex γ. Let t1 > t be a time such that no correct process crashes after time t1.
Let wr be the write operation that corresponds to timestamp TS, and suppose it writes a value V .
Let m be an r ack message received by rd with timestamp TS. Also, suppose m is received at time
t2. If m contains an unencoded value V , then the condition in line 11 is satisfied with r′ = 1, and
[ts′, id′] = TS. Suppose otherwise. Then, m contains an encoded fragment of V , say with encoding
x-of-n. Since, a server encodes a value only in the third phase of a write, wr has completed its
second phase, and has contacted at least x + f servers in the second phase. As there are at most
f faulty servers, and no correct server ever stores a timestamp higher than TS, wr has stored the
unencoded value at x correct servers by time t2. Let us denote this set of x servers by X.
Let t3 = 1 +Max{t1, t2}. For every server s in X, consider any r ack messages m′ such that (1) s
sends m′ in line 24 of Figure 2 after time t3, and (2) c receives m′. (Note that, such a message
exists because c executes the repeat-until loop an infinite number times, and therefore, s replies
back in line 24 an infinite number of times.) We have already showed that no server in X stores a
timestamp greater than TS. Thus, the timestamp of m′ is TS, and therefore, m′ either contains
the unencoded value V or an encoded fragment of V . Let Mx be the set of such x messages from
the servers in X. Now, if any message in Mx contains the unencoded V , then the condition in

16

line 11 is satisfied with r′ = 1, and [ts′, id′] = TS. Otherwise, if all message in Mx contains an
encoded fragment of V , then the condition in line 11 is satisfied with r′ = x, and [ts′, id′] = TS.
Case 2. Let t1 > t be a time such that (1) no correct server crashes after time t1, and (2) all correct
servers have received the read message from rd (and therefore, all correct servers have registered the
read). Since there are bounded number of clients, if the read keeps on seeing new timestamps then
there is at least one client c′ that invokes an infinite number of writes. (As a client cannot invoke
a new operation without completing the last invoked operation, c′ completes an infinite number of
writes.) Thus there is a complete write operation wr such that (1) wr has a timestamp TS higher
than γ, and (2) wr is invoked after time t1. Let V be the value with which wr is invoked. Consider
any correct server that replies to the write message of wr. Before replying, the server s-sends V
to all its registered readers. Since, wr is invoked after time t1, the server s-sends V to c. Thus, rd
eventually s-receives V , and the condition in line 11 becomes true with r′ = 1, and [ts′, id′] = TS.
�

D FW-Termination of ORCAS-A

The FW-Termination property requires that in every run where at most f of the servers are faulty
(and any number of clients are faulty), every write invocation by a correct process is complete, and
moreover, either every read invocation by a correct process is complete, or infinitely many writes
are invoked in the run. Observe that in a run with finite number of writes, a read cannot see new
values and new timestamps forever. This case is same as the Case 1 in the proof of Lemma 1, whose
proof does not rely on the fact that the read registers at the servers. Thus, if we want to satisfy
FW-Termination, we can safely remove the registration. This change is presented in Figure 3. We
would like to point out another slightly subtle change from the wait-free version. The s-send in
line 24 of Figure 2 can now be replaced by a simple send.7

With these above changes, the implementation has the desirable property that, if there are
no new operations then the processes will eventually stop sending large messages (where a large
message is a message containing either a written value or an encoded fragment of a written value).

E Timing guarantee of reads in ORCAS-A

In this section we study the timing performance of the read in the presence of concurrent writes.
We make the following additional assumptions: (1) the time required for local computation is
negligible,8 (2) the links are timely, i.e., a message sent from a correct process to a correct process
is received within a known constant delay, and (3) we consider a period in which at least n − f
server are alive and no alive process crashes and no crashed process recovers.

7In runs with finite number of writes, the servers eventually stop updating the variables whose values are sent
in the r ack messages. Therefore, if the condition in line 11 is never satisfied, the read operation sends an infinite
number of read messages, and each server replies back with the same r ack message an infinite number of times.
Thus, from the property of fair-lossy channel, the reader eventually s-receives those r ack messages. This modification
does not work when there are infinite number of writes because in those runs the contents of the r ack messages keep
changing with new writes, and (if send replaces s-send then) no r ack message is sent an infinite number of times.

8In fact, the time required for stable storage access and erasure coding the data can be significant, investigating
which is outside the scope of this paper. We refer the readers to [8] for registers implementations that focus on
reducing the number of stable storage accesses.

17

1: In Figure 1 replace lines 25 to 34 by the following lines:
2: upon receive 〈write, ts′, wid′, rid′, V ′〉 from client ci at server sj do
3: if ([ts′, wid′] >lex [τ, δ]) and (V ′ 6= ⊥) then
4: τ ← ts′; δ ← wid′; ρ← 1;Aj ← V ′

5: store(τ, δ, ρ, Aj)
6: s-send(〈w ack, ts′, wid′, rid′〉, {ci})

7: In Figure 2 replace lines 21 to 24 by the following lines:
8: upon receive 〈read, rid〉 from client ci at server sj do
9: send(〈r ack, rid, τ, δ, ρ, Aj〉, {ci})

Figure 3: Modifications of ORCAS-A for Finite-Write termination

We now show that even in the presence of concurrent writes, the reader registration ensures
that a read operation terminates within 5 communication steps. (The argument is similar to the
to the proof of Lemma 1.) Suppose that some client c invokes a read at time t. Then, within two
communication steps of t, c is registered at n−f servers and it has computed Γ in line 9 in Figure 2,
say at time t1. Now consider the r ack message m which was received by c, and which contained
the timestamp Γ. If that message contains an unencoded value, then on receiving that message,
the condition in line 11 is satisfied. Otherwise, if m contains an encoded fragment, then the write
with timestamp Γ has completed its second phase by time t1, and within one communication step
of t1, c receives either (1) an unencoded value of that write, or enough encoded fragments of that
write, or (2) an unencoded value of some write with a timestamp higher than Γ. (Recall that, from
the algorithm, values with a smaller timestamp cannot overwrite values with a larger timestamp.)
Thus, within one communication step of t1, the condition in line 11 is satisfied, and within three
communication steps of t1, c completes the read operation.

F Wait-free termination of ORCAS-B

Lemma 2 The ORCAS-B implementation is wait-free.

(Sketch.) We sketch the only non-trivial argument in the proof of wait-freedom: the condition in
line 13 of Figure 5 eventually becomes true if the client does not crash after invoking the read.
Suppose by contradiction that a client c invokes a read operation rd, and then does not crash, and
the condition in line 13 of Figure 5 is never satisfied in that operation. Thus c executes the first
repeat-until loop in the operation forever. Consider the two cases: (1) there is a time after which
the read does not receive any new timestamp [ts, id], and (2) otherwise. We now show that in both
the cases the condition in line 13 is eventually satisfied.
Let γ denote the timestamp assigned to Γ in line 10, and t be the time when the assignment was
executed. (Note that line 10 is executed exactly once in rd.)
Case 1. Let TS be the highest timestamp ever computed in line 8 of the read rd in the run.
By definition, TS ≥lex γ. Let wr be the write operation that corresponds to timestamp TS, and
suppose it is invoked with a value V .
Let us call a timestamp [ts, id], a checked timestamp if the read rd ever receives an r ack message
with L containing an element with timestamp [ts, id] and A = ∅. We note that from line 44 of
Figure 4, for an element [ts, id, r, A,B] of L, a server sets A = ∅ only if it receives a trim message

18

1: function initialization()
2: ts, wid, rid, x, y, z ← 0; r ← 1;A,B ← ∅;Tc ← timer()

{at every client}
3: τ, δ, τ1, δ1 ← 0; L← {[0, 0, 1, ∅, ∅]} {at every server

sj}

4: function write (V) at client ci
5: wid← wid+ 1; ts← 0
6: store(wid, ts)
7: trigger(Tc)
8: repeat
9: send (〈get ts, wid〉, S)

10: until s-receive 〈ts ack, wid, ∗〉 from n − f servers and
expired(Tc)

11: r ← (number of processes from which received
〈ts ack, wid, ∗〉) −f

12: ts← 1 + max{tsj : received 〈ts ack, wid, tsj〉}
13: store(ts, r, V)
14: x← lcm(n− 2f, r); z ← x

n−2f
; y ← x

r

15: [C1, . . . , Czn]← encode(V, x, nz)
16: 1 ≤ l ≤ n, Bl ← [C(l−1)z+1, . . . , C(l−1)z+y]
17: 1 ≤ l ≤ n, Al ← [C(l−1)z+y+1, . . . , Clz]
18: trigger(Tc)
19: repeat
20: ∀pj ∈ S, send(〈write, ts, wid, 0, r, Aj , Bj〉, {pj})
21: until s-receive 〈w ack, ts, wid, 0〉 from n−f servers and

expired(Tc)
22: if s-received 〈w ack, ts, wid, 0〉 from r+ f servers then

isTrim = true else isTrim = false
23: repeat
24: S′ ← set of servers from which s-received

〈w ack, ts, wid, 0〉 until now
25: send (〈trim, isTrim, ts, wid, 0〉, S′)
26: until s-receive 〈trim ack, ts, wid, 0〉 from n− f servers

27: return(ok)

28: upon receive 〈get ts, wid〉 from client ci at server sj do
29: s-send(〈ts ack, wid, τ〉, {ci})

30: upon receive 〈write, ts′, wid′, rid′, r′, A′, B′〉 from client
ci at server sj do

31: if rid′ > 0 then
32: R← R \ {[rid′, ∗, ∗, i]}
33: if [ts′, wid′] >lex [τ1, δ1] then
34: if [ts′, wid′] >lex [τ, δ] then [τ, δ]← [ts′, wid′]
35: L← L ∪ {[ts′, wid′, r′, A′, B′]}
36: store(L)
37: for all [rid, ts, id, l] ∈ R do
38: s-send(〈r ack, rid, L〉, {cl})
39: s-send(〈w ack, ts′, wid′, rid′〉, {ci})

40: upon s-received 〈trim, isTrim, ts′, id′, rid′〉 from client ci
at server sj do

41: modify L as follows
42: if there is an element [ts′′, id′′, ∗, A′′, B′′] ∈ L such

that [ts′′, id′′] = [ts′, id′] then
43: if isTrim = false then B′′ ← B′′ ∪A′′
44: A′′ ← ∅; [τ1, δ1]← [ts′, wid′]
45: remove all elements [ts′′, id′′, ∗, ∗, ∗] ∈ L such

that [ts′′, id′′] <lex [ts′, id′]
46: store(L)
47: s-send(〈trim ack, ts′, id′, rid′〉, {ci})

48: upon recovery() at server si do
49: L← retrieve()
50: [τ, δ]← highest timestamp in L
51: [τ1, δ1]← lowest timestamp in L

52: upon recovery() at client ci do
53: [rid, ts, wid, r, V]← retrieve()
54: if ts 6= 0 then
55: execute lines 14 to 26 of this figure

Figure 4: ORCAS-B: initialization, write and recovery procedures

from a write with timestamp [ts, id]. Thus, a checked timestamp corresponds to a write that has
sent a trim message.
Since TS is a checked timestamp, wr has sent a trim message, and therefore, has completed its
second phase. Let r1, x1, z1, y1 be the values of r, x, z, y, respectively in wr. Thus at least r1 + f
servers have received z fragments of wr, and at least r1 among them are correct.
Next we note that all timestamps selected in line 8 of Figure 5 are checked timestamp. Thus, by
definition, TS is the highest checked timestamp received by the read rd. Also, it follows that no
correct process ever receives a trim message with timestamp TS′ >lex TS (otherwise, since c is a
correct process, the read rd will eventually receive an r ack message with checked timestamp TS′,
thus violating the definition of TS). Thus, [τ1, δ1] at correct processes is never higher than TS, and
whenever a correct process receives a write message with timestamp TS for the first time, it adds
the corresponding fragments in L. Also, some of those fragments may be later deleted (i.e., their
A set to ∅), but at least y1 fragments are always retained in L.
Now there are two cases depending on whether write wr received at least r1 + f w ack replies in
line 21 of Figure 4 or not. In the first case, at least r1 of the replying servers are correct and have

19

1: function read() at client ci
2: rid← rid+ 1; Γ← 0; once← false
3: store(rid)
4: repeat
5: send(〈read, rid〉, S)
6: M← {msg = 〈r ack, rid, ∗〉 : s-received msg}
7: L ← {[∗, ∗, ∗, ∗, ∗] ∈ L : 〈r ack, rid, L〉 ∈ M}
8: TS ← maxlex{[ts, id] : [ts, id, ∗, ∅, ∗] ∈ L}
9: if (M contains messages from at least n− f servers)

and (once = false) then
10: Γ← TS; once← true
11: if TS = [0, 0] then return(⊥)
12: ∀(r, ts, id), Fragments(r, ts, id)← union of all sets D

such that ([ts, id, r,D, ∗] ∈ L) ∨ ([ts, id, r, ∗, D] ∈ L)
13: until (once = true) and (∃(r, ts, id) such that

([ts, id] ≥lex Γ) and (|Fragments(r, ts, id)| ≥ lcm(n −
2f, r)))

14: x← lcm(n− 2f, r); z ← x
n−2f

; y ← x
r

15: V ← decode((set of fragments satisfying condition in
line 13), x, nz)

16: [C1, . . . , Czn]← encode(V, x, nz)

17: 1 ≤ l ≤ n, Bl ← [C(l−1)z+1, . . . , C(l−1)z+y]
18: 1 ≤ l ≤ n, Al ← [C(l−1)z+y+1, . . . , Clz]
19: trigger(Tc)
20: repeat
21: send(〈write, ts, wid, rid, r, Aj , Bj〉, S)
22: until s-receive 〈w ack, ts, wid, rid〉 from n − f servers

and expired(Tc)
23: if s-received 〈w ack, ts, wid, rid〉 from r + f servers

then isTrim = true else isTrim = false
24: repeat
25: S′ ← set of servers from which s-received

〈w ack, ts, wid, rid〉 until now
26: send (〈trim, isTrim, ts, wid, rid〉, S′)
27: until s-receive 〈trim ack, ts, wid, rid〉 from n − f

servers
28: return(V)

29: upon receive 〈read, rid〉 from ci at server sj do
30: if R does not contain any [rid, ∗, ∗, i] then
31: R← R∪ [rid, τ, δ, i]
32: s-send(〈r ack, rid, L〉, {ci})

Figure 5: ORCAS-B: read procedure

stored the corresponding fragments. Eventually, rd will receive at least y1 of these fragments from
each of these r1 servers, and the condition in line 13 of Figure 5 will be satisfied with r = r1, and
[ts, id] = TS. In the second case, at least n − f servers have replies with w ack to wr, and at
least n − 2f of them are correct and have stored the corresponding fragments. Also in this case,
no fragment in the corresponding element of L is deleted − the contents of A is added to B. Thus
eventually, wr will receive at least z1 of these fragments from each of these n− 2f servers, and the
condition in line 13 of Figure 5 is satisfied with r = r1, and [ts, id] = TS.
Case 2. Let t1 > t be a time such that (1) no correct server crashes after time t1, and (2) all correct
servers have received the read message from rd (and therefore, all correct servers have registered the
read). Since there are bounded number of clients, if the read keeps on seeing new timestamps then
there is at least one client c′ that invokes an infinite number of writes. As a client cannot invoke
a new operation without completing the last invoked operation, c′ completes an infinite number of
writes. Thus there is a complete write operation wr such that (1) wr has a timestamp TS higher
than γ, and (2) wr is invoked after time t1. Let V be the value with which wr is invoked and let
r1 be the value of r in the write. Consider a correct server that replies to the write message of
wr. Before replying to the write, the server adds all lcm(n−2f,r1)

n−2f received fragments of V to its set
L, and then s-sends these fragments to all registered reads. Since there are at least n − f correct
servers, the read eventually s-receives at least (n− f) lcm(n−2f,r1)

n−2f > lcm(n− 2f, r1) fragments of V ,
and the condition in line 13 is satisfied with r = r1, and [ts, id] = TS. �

20

