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Abstract

We consider an estimation procedure for discrete choice models in

general and Generalized Extreme Value (GEV) models in particular.

It is based on a pseudo-likelihood function, generalizing the Condi-

tional Maximum Likelihood (CML) estimator by Manski and McFad-

den (1981) and the Weighted Exogenous Sample Maximum Likelihood

(WESML) estimator by Manski and Lerman (1977). We show that

the property of Multinomial Logit (MNL) models, that consistent es-

timates of all parameters but the constants can be obtained from

an Exogenous Sample Maximum Likelihood (ESML) estimation, does

not hold in general for GEV models. We identify a speci�c class of

GEV models with this desired property, and propose a new estimator

for the more general case. This new estimator estimates the selec-

tion bias directly from the data. We illustrate the new estimator on

pseudo-synthetic and real data.
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1 Introduction

The estimation of discrete choice models is a very di�cult task in the

presence of selection bias, that is when the sampling strategy is based

on the endogenous variable: the choice. These sampling techniques, also

known as choice-based, are however commonly used in practice. In many

cases, the analyst does not have a precise knowledge of the actual market

shares in the population and therefore, cannot reect them in the sampling

scheme. Also, the analyst may want to oversample a speci�c alternative,

in order to analyze a product with a small market share. Indeed, collecting

su�cient data about such a product with a simple random sampling may

require a prohibitively large sample size.

Various procedures have been considered in the literature. For in-

stance, a Generalized Method of Moments for discrete choice models with

choice-based sampling has been proposed by Imbens (1992). Nonparamet-

ric approaches are discussed by Morgenthaler and Vardi (1986) and Manski

(1999), among others. We emphasize on the maximum likelihood paradigm

because it is the most widely used setting for discrete choice modeling.

In the presence of selection bias, the Conditional Maximum Likelihood

(CML) Estimation is known to produce consistent although ine�cient esti-

mators. As reported by Manski and Lerman (1977), McFadden has shown

that CML estimation of the Multinomial Logit (MNL) model with a full set

of Alternative Speci�c Constants (ASC) can equivalently be obtained from
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an Exogenous Sample Maximum Likelihood (ESML) estimation procedure

after adjusting appropriately the constants.

In Sections 2 and 3, we summarize the issues of estimation under various

sampling schemes, and propose an estimator based on a pseudo-likelihood

functions, which generalizes the CML Estimator by Manski and McFad-

den (1981) and the Weighted Exogenous Sample Maximum Likelihood

(WESML) Estimator by Manski and Lerman (1977). Generalized Extreme

Value models are described in Section 4, where it is shown that ESML

cannot be used as such for the estimation of non-MNL GEV models in the

presence of selection bias, except for very speci�c instances. Such an in-

stance is presented in Section 5. For the more general case, a new estimator

for GEV models in the presence of selection bias is proposed in Section 6.

Its performances are illustrated in Section 7 on pseudo-synthetic and real

data.

2 Sampling

We are interested in the estimation of a discrete choice model where the

choice set C is composed of J alternatives. The independent, or exogenous

variables are denoted by x, and are composed of socio-economic character-

istics of the decision-maker as well as the attributes of the alternatives. The

dependent, or endogenous variable, is discrete and represents the chosen

alternative. We assume without loss of generality that the choice set of

each individual is C.
The discrete choice model gives the probability that a given alternative

i is selected, conditional to a choice context characterized by x:

Pr(i|x, θ) = P(i|x, θ), (1)

where P is the choice model and θ is a vector of unknown parameters. The

joint distribution of (i, x) in the population is then given by

Pr(i, x|θ) = P(i|x, θ)p(x), (2)

where p(x) is the proportion of the population with exogenous variable x.
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We consider general strati�ed sampling strategies (Manski and McFad-

den, 1981) where the population is partitioned into G collectively exhaus-

tive groups, de�ned in terms of combinations of both exogenous and en-

dogenous variables. Individuals are randomly selected within each group.

If NP is the total number of individuals in the population, and Ns the total

number of individuals in the sample, then a sampling strategy is charac-

terized by Hg, g = 1, . . . , G, the proportion of each group in the sample.

In this case, the probability for a given individual belonging to group g to

be in the sample is

rg =
HgNs

WgNP

(3)

where Wg is the proportion of individuals in group g in the population.

If Cg is the set of alternatives relevant to group g, and Xg the set of

exogenous variables1 relevant to group g, we have from (2)

Wg =

∫
x∈Xg

∑
i∈Cg

Pr(i, x|θ)dx =

∫
x∈Xg

∑
i∈Cg

P(i|x, θ)p(x)dx, (4)

and thus the probability rg depends on the unknown parameters θ, which

signi�cantly complicates model estimation.

Sampling strategies can be classi�ed into four categories.

1. A Simple Random Sampling (SRS) is obtained when only one group

is considered, and every individual has the same probability to be

selected. In this case, Hg = Wg and rg = r = Ns/NP is clearly

independent from θ.

2. An Exogenous Strati�ed Sampling (XSS) is obtained when the groups

are characterized only by exogenous variables x. In this case, all

alternatives are relevant to each group g, that is Cg = C and

Wg =
∫

x∈Xg

∑
i∈Cg

Pr(i, x|θ)dx

=
∫

x∈Xg

(∑
i∈C P(i|x, θ)

)
p(x)dx

=
∫

x∈Xg
p(x)dx,

1We assume, without loss of generality, that the independent variables are all continu-

ous, in order to simplify the formulas. In practice, it is usually a combination of continuous

and discrete variables.
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does not depend on θ. Consequently, the probability rg for an indi-

vidual to be selected in the sample is also independent from θ.

3. An Endogenous Strati�ed Sampling (ESS), also called Choice-Based

Sampling, is obtained when the groups are characterized by the en-

dogenous variables only, that is the chosen alternative. In this case,

Wg does not simplify, and consequently depends on unknown param-

eters θ. And so does the probability for an individual to be selected

in the sample.

4. An Exogenous and Endogenous Strati�ed Sampling (XESS) is ob-

tained when the groups are characterized by both the exogenous and

endogenous variables. Again, Wg depends on θ.

Denoting g(i, x) the group containing individuals with exogenous vari-

able x and choice i, the probability for an individual to be in the sample,

conditional on i and x is

rg(i,x)(θ) = Pr(s|i, x, θ) (5)

where we denote by s the event of being in the sample, and r is de�ned by

(3).

For the sake of completeness, we also consider the context where the

choice set C contains a large number of alternatives. It may be convenient

to analyze choice as if it were limited to a subset B ⊆ C, in order to limit

data collection and computation. We assume that for an observation with

con�guration (i, x), the analyst draws a subset B with probability π(B|i, x).

We further assume that any set B that is drawn with positive probability

contains the chosen alternative i, and at least one non-chosen alternative.

We also assume a positive conditioning property that π(B|i, x) > 0 for

the observed choice i implies π(B|j, x) > 0 for each j ∈ B. It means that B
could have been drawn conditioned on any of its elements as the observed

choice. Finally, we assume without loss of generality that rg(i,x) > 0 when

π(B|i, x) > 0.

We denote R(i, x,B, θ) the probability that a population member with

con�guration (i, x) is sampled, and is assigned the truncated choice set B,
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that is

R(i, x,B, θ) = Pr(s,B|i, x, θ) = rg(i,x)(θ)π(B|i, x). (6)

3 Estimation

Estimation issues in the presence of various sampling protocols are analyzed

in details by Manski and McFadden (1981), Cosslett (1981) and Ben-Akiva

and Lerman (1985, chapter 8).

Namely, Manski and McFadden (1981, Eq. (1.41)) suggest to use the

Conditional Maximum Likelihood (CML) Estimator which produces con-

sistent estimates. As compared to the full maximum likelihood estimation,

e�ciency is lost but consistency is retained. The objective function is given

by

L(θ) =

N∑
n=1

ln Pr(in|xn,Bn, s, θ), (7)

where in and xn are the observed dependent and independent variables for

observation n in the sample, and Bn the truncated choice set considered

for that observation.

Denoting p(x) the proportion of the population with exogenous variable

x, we write the joint probability Pr(i, x,B, s, θ) in two ways:

Pr(i, x,B, s, θ) = Pr(i|x,B, s, θ)Pr(B, s|x, θ)p(x)

and

Pr(i, x,B, s, θ) = Pr(B, s|i, x, θ)Pr(i|x, θ)p(x).

Therefore,

Pr(i|x,B, s, θ) =
Pr(B, s|i, x, θ)Pr(i|x, θ)p(x)

Pr(B, s|x, θ)p(x)

where

Pr(B, s|x, θ) =
∑
j∈B

Pr(B, s|j, x, θ)Pr(j|x, θ),

that is, using (1) and (6),

Pr(i|x,B, s, θ) =
R(i, x,B, θ)P(i|x, θ)∑
j∈B R(j, x,B, θ)P(j|x, θ)

,
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and (7) becomes

L =

N∑
n=1

ln
R(in, xn,Bn, θ)P(in|xn, θ)∑
j∈Bn

R(j, xn,Bn, θ)P(j|xn, θ)
, (8)

which is a generalized version of Manski and McFadden (1981, Eq. (1.41)).

Suppose now that R(i, x,B, θ) can be written as a product

R(i, x,B, θ) = Q(i, x,B)S(i, x,B, θ), (9)

where Q is a term that contains no unknown parameters and can be cal-

culated from the sampling protocol and data, and S is a term that may

contain unknown parameters. The partition of R into Q and S need not

correspond to the partition of R into r and π, as de�ned by (6).

In this case, the pseudo-likelihood function

L̂ =

N∑
n=1

Q(in, xn,Bn)−1 ln
S(in, xn,Bn, θ)P(in|xn, θ)∑
j∈Bn

S(j, xn,Bn, θ)P(j|xn, θ)
(10)

has the same maximizers as (8) (as Q does not depend on θ) and, therefore,

its maximization provides consistent estimates of the parameters. It re-

duces to the CML estimator by Manski and McFadden (1981) when Q = 1,

and to the Weighted Exogenous Sample Maximum Likelihood (WESML)

Estimator proposed by Manski and Lerman (1977) when S = 1.

In the following, we derive this pseudo-likelihood function for General-

ized Extreme Value models, and in particular the term

S(i, x,B, θ)P(i|x, θ)∑
j∈B S(j, x,B, θ)P(j|x, θ)

. (11)

4 Generalized Extreme Value models

We consider here a random utility model where the utility associated to

alternative i is given by

Ui(x, β) = Vi(x, β) + εi, (12)
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where β is a vector of unknown parameters to be estimated, and εi is a ran-

dom term (the fact that the model is individual-speci�c is ignored here for

the sake of notational simplicity). Speci�c assumptions on the distributions

of the random terms yield to operational choice models. Namely, General-

ized Extreme Value models (McFadden, 1978) are based on the assumption

that Cumulative Distribution Functions (CDF) of the joint distributions

of the error terms are identically distributed across individuals, and that

distributions are given by

Fε = Fε1,...,εJ
(V1, . . . , VJ) = e−G(e−V1 ,...,e−VJ ;γ), (13)

where J is the number of alternatives in the choice set C, γ is a vector of

parameters, and G : RJ → R is called a µ-GEV-generating function, and

has the following properties:

1. G(y; γ) ≥ 0 for all y ∈ RJ
+;

2. G is homogeneous of degree µ > 0, that is G(λy; γ) = λµG(y; γ), for

λ > 0;

3. limyi→+∞ G(y1, . . . , yi, . . . , yJ; γ) = +∞, for each i = 1, . . . , J;

4. The mixed partial derivatives of G exist and are continuous. More-

over, the kth partial derivative with respect to k distinct yi is non-

negative if k is odd and non-positive if k is even that is, for any

distinct indices i1, . . . , ik ∈ {1, . . . , J}, we have

(−1)k ∂kG

∂yi1 . . . ∂yik

(y) ≤ 0, ∀y ∈ RJ
+. (14)

Typical examples of µ-GEV-generating functions G are

G(y; γ = {µ}) =

J∑
j=1

y
µ
j , (15)

generating a MNL model,

G(y; γ = {µ, µ1, . . . , µM}) =

M∑
m=1

(∑
j∈Cm

y
µm

i

) µ
µm

, (16)
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generating a nested logit model where the choice set C is partitioned into

M mutually exclusive nests C1, . . . , CM, and

G(y; γ = {µ, µ1, . . . , µM, α11, . . . , αJM) =

M∑
m=1

(∑
j∈C

(αjm
1/µyj)

µm

) µ
µm

, (17)

generating a cross-nested logit (CNL) model where αjm ≥ 0, ∀j,m,
∑M

m=1 αjm >

0, ∀j, µ > 0, µm > 0, ∀m, µ ≤ µm, ∀m.

The choice model derived from the GEV assumption is given by

P(i|x, θ) =
Λi(x, θ)∑
j∈C Λj(x, θ)

, (18)

where

Λi(x, θ = (β; γ)) = eVi(x,β)+lnGi(x,β,γ)

and

Gi(x, β, γ) =
∂G

∂eVi(x,β)

(
eV1(x,β), . . . , eVJ(x,β); γ

)
. (19)

In order to compute (11), we have

S(i, x,B, θ)P(i|x, θ) =
S(i, x,B, θ)Λi(x, θ)∑

j∈C Λj(x, θ)
.

We de�ne
Λ̂i(x, θ) = S(i, x,B, θ)Λi(x, θ)

= eVi(x,β)+lnGi(x,β,γ)+lnS(i,x,B,θ).

Therefore, (11) writes

S(i, x,B, θ)Λi(x, θ)∑
k∈C Λk(x, θ)

/

∑
j∈B S(j, x,B, θ)Λj(x, θ)∑

k∈C Λk(x, θ)

= S(i, x,B, θ)Λi(x, θ)/
∑

j∈B S(j, x,B, θ)Λj(x, θ)

= Λ̂i(x, θ)/
∑

j∈B Λ̂i(x, θ),

that is

S(i, x,B, θ)P(i|x, θ)∑
j∈B S(j, x,B, θ)P(j|x, θ)

=
eVi(β)+lnGi(x,β,γ)+lnS(i,x,B,θ)∑
j∈B eVj(β)+lnGj(x,β,γ)+lnS(j,x,B,θ)

. (20)
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Note that for MNL, the terms lnGi(x, β, γ) disappear and we obtain

the well-known result that ignoring the sampling probabilities biases the

constants while the other parameters are unbiased. Indeed,

S(i, x,B, θ)P(i|x, θ)∑
j∈B S(j, x,B, θ)P(j|x, θ)

=
eVi(β)+lnS(i,x,B,θ)∑
j∈B eVj(β)+lnS(j,x,B,θ)

, (21)

is a MNL model where the Alternative Speci�c Constants (ASC) are shifted

by lnS(i, x,B, θ). Using (21) in (10) leads to a WESML estimator, readily

available is estimation software packages.

Unfortunately, this nice property cannot be generalized as such to GEV

models, as the probability (20) is not the probability of a genuine GEV

model, although it looks very similar. Indeed, if the ASCs are shifted in the

main expression, they are not shifted when used as arguments of Gi(x, β, γ),

de�ned by (19). Consequently, (W)ESML cannot be used as such for the

estimation of non-MNL GEV models in the presence of selection bias, as it

does not produce consistent estimates of the parameters. We illustrate in

Section 7 that using ESML in this context indeed produces biased estimates

of the parameters.

In the following, we present a special class of GEV models such that

ESML can lead to consistent estimates of all parameters but the constants.

Then, we present a new estimator for the general case of pure choice-base

sampling.

5 Block additive GEV

We consider �rst the speci�c case where the choice set C is partitioned into

M mutually exclusive blocks

C = C1 ∪ . . . ∪ CM, (22)

and the GEV-generating function has a block additive form,

G(y1, . . . , yJ; γ) =

M∑
m=1

Gm(yCm ; γ), (23)
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where yCm denotes the subvector of y with components in Cm, and each

Gm is a µ-GEV generating function (note that µ can always be normalized

to 1). We emphasize immediately that the nested logit model de�ned by

(16) does not belong to this category, except when it collapses to a MNL

model. This is why we refer to blocks and not nests, in order to avoid

any confusion. This can be viewed as a Network GEV model (see Daly

and Bierlaire, 2006) where the nodes just below the root share the same

homogeneity parameter.

With respect to sampling, we assume that the following conditions hold:

1. π(B|i, x) is positive only if B is a union of blocks from {C1, . . . , CM}; i.e.,

alternative selection respects the block structure of the GEV model.

2. The sampling terms S(i, x,B, θ) are uniform for i in a block Cm; i.e.,

any variation in sampling rates across responses within a block is

handled by the weights Q in (10). With a slight abuse of notation,

let S(m,x,B, θ) denote those common sampling terms within block

m.

As Gm is 1-homogenous, Gm
i is 0-homogenous and shifting the V 's in

(19) does not a�ect Gi(x, β, γ). In (11), we have

S(i, x,B, θ)P(i|x, θ)D = S(i, x,B, θ)eVin(x,β)+lnGm
i (x,β,γ)

= eVin(x,β)+lnS(m,x,B,θ)+lnGm
i (S(m,x,B,θ)x,θ) (24)

where the denominator D =
∑J

j=1 eVjn(x,β)+lnGj(x,β,γ) cancels out in (11),

which writes

eVin(x,β)+lnS(m,x,B,θ)+lnGm
i (S(m,x,B,θ)x,θ)∑M

k=1

∑
j∈B∩Ck

eVjn(x,β)+lnS(m,x,B,θ)+lnGk
j (S(m,x,B,θ)x,θ)

. (25)

This is a genuine GEV model, where the V 's have been shifted. Note that

the two assumptions made above are critical for the sum at the denominator

to correspond to a GEV model

Consequently, we obtain the same property as for MNL, that the sam-

pling e�ects S are absorbed by the alternative speci�c constants, and yield

to a transformed GEV model. A common (W)ESML procedure yields con-

sistent estimates of all parameters except the constant.
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The result above is certainly special, but it is applicable when joining

several complex models together. For instance, a route choice model for

public transportation and a car type choice model for private transportation

can each be analyzed separately by a GEV model of any complexity. Then,

the mode choice dimension can be added in the model using the block

additive form described above. In this case, if public transportation is over-

or under- sampled, the bias will be absorbed in the constants, similarly to

the MNL case.

6 GEV and choice-based sampling

We assume here that the term S does not depend on x, that is

S(i, x,B, θ) = S(i,B, θ).

This assumption is fairly general, as selection based on x can be captured

by Q in (9). In this case, the simple form of (20) suggests to use another es-

timator which explicitly estimates lnS(i,B, θ) from the data. It is obtained

by solving

max
β,γ,ω

N∑
n=1

Q(in, xn,Bn)−1 ln
eVin (β)+lnGin (x,β,γ)+ωin∑

j∈C eVj(β)+lnGj(x,β,γ)+ωj
, (26)

where ωi is a parameter designed to directly estimate lnS(i,B, θ).

We illustrate below that these parameters can be identi�ed for alterna-

tives i such that the GEV term lnGi(x, β, γ) is not zero. The estimator

de�ned by (26) can easily be implemented, as its formulation is very similar

to a real GEV model. It is actually available with the Biogeme software

package (Bierlaire, 2003, Bierlaire, 2005, biogeme.epfl.ch).

It is very important to emphasize that, if the structure of the GEV

model is non trivial, that is lnGi(x, β, γ) is not zero, both the ASC and the

sampling probability are identi�ed. For alternatives such that lnGi(x, β, γ)

= 0, only the sum is identi�ed. As illustrated below, the ASC and the sam-

pling probability are identi�ed in a nested model if the nest parameter is

signi�cantly di�erent from 1. If it is 1, or close to 1, only the sum is

identi�ed.
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7 Illustrations

So the sake of simplicity of the following analysis, we do not consider

weighting, so that Q is always 1 in (10) and (26), and we do not sam-

ple the alternatives, so that π(B|i, x) = 1 if B = C, and 0 otherwise. We

�rst illustrate the new estimator on pseudo synthetic data. Then we apply

it to real data sets and compare the results with the ESML estimator.

7.1 Synthetic data: mode choice in Switzerland

The �rst set of data has been generated based on a real stated preferences

data set collected for the analysis of a future high speed train in Switzerland

(Bierlaire et al., 2001). The alternatives are

1. Regular train (TRAIN),

2. Swissmetro (SM), the future high speed train,

3. Driving a car (CAR).

Each of the 6768 observations in the sample has been used to generate 75

synthetic observations, to obtain a population of 507600 individuals. The

value of each attribute in the population has been generated from a normal

distribution N(µ, σ2), where µ is the value of the corresponding attribute

in the original database, and σ = 0.05µ. A choice has been associated

with each observation in the population using a nested logit model with

the following speci�cation table:

Alternatives

Param. Value TRAIN SM CAR

ASC CAR -0.1880 0 0 1

ASC SM 0.1470 0 1 0

B TRAIN TIME -0.0107 travel time 0 0

B SM TIME -0.0081 0 travel time 0

B CAR TIME -0.0071 0 0 travel time

B COST -0.0083 travel cost travel cost travel cost

The nesting structure is de�ned by

14



µm TRAIN SM CAR

NESTA 2.27 1 0 1

NESTB 1.0 0 1 0

where µm is the nest parameter µm in (16), the scale µ being set to one. The

\true" value of the parameters were obtained from the estimation of the

model on the real data set. Due to this nest structure, only one ω parameter

in (26) is identi�ed, in this case the one associated with alternative CAR.

Indeed, the parameter ωSM is confounded with the ASC as this is the sole

alternative in the second nest. In the �rst nest, similarly to the ASCs, one

of the two ωs is constrained to 0.

We have extracted 100 samples from the population using a choice-based

sampling strategy de�ned as follows:

Strata WgNP Wg Hg HgNs Rg

TRAIN 67938 13.4% 60% 3000 4.42E-02

SM 306279 60.3% 20% 1000 3.26E-03

CAR 133383 26.3% 20% 1000 7.50E-03

Total 507600 1 1 5000

A model has been estimated with each of these 100 samples, once with

the ESML estimator, and once with the new estimator. Table 1 reports,

for each parameter, its \true" value, the mean and standard deviation of

the 100 estimated values, and the associated t-test, that is (θ̂k − θ∗k)/σ̂k,

the ratio of the di�erence between the mean estimated value and the true

value, and the estimated standard deviation.

Most parameters estimated with the ESML are signi�cantly di�erent

from the true value, with a t-test larger than 1.96. This illustrates that

ESML may produce biased estimates with nested logit models.

The new estimator produces estimates which are not signi�cantly dif-

ferent from the true value for all parameters except ASC SM. The true values

of the ω parameters are ωTRAIN = ln 4.42e-02 = -3.1200, ωSM = ln 3.26e-03

= -5.7245, ωCAR = ln 7.50e-03 = -4.8932. Similarly to the ASCs, these pa-

rameters are identi�ed up to a constant. In order to reect the fact that we

have constrained ωTRAIN = 0 in the model, we report ωi + 3.12 in the table.
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We note that the value of ASC CAR and the (shifted) value of ωCAR = lnRCAR

are both correctly estimated. Moreover, the value of ωSM+ ASC SM is also

correctly estimated, like it would be in a MNL model, as illustrated in the

last row of Table 1.

We have performed a similar analysis for a cross-nested logit (CNL)

model on the same population, and the same 100 samples, where new

choices have been generated with a \true" CNL model. The speci�cation

of the utility functions is the same as before, and the nesting structure is

de�ned by

µm TRAIN SM CAR

NESTA 4.0 0.9 0.5 0.1

NESTB 2.0 0.1 0.5 0.9

where the entries in the table are the values of parameters µm and αjm in

(17), the scale µ being set to one. The results reported in Table 2 are consis-

tent with the �ndings obtained with the NL model: ESML produces biased

values, while the new estimator produces values which are not signi�cantly

di�erent from the true values. Moreover, because this GEV structure does

not collapse to MNL, as both nest parameters are di�erent from one and

no alternative is alone in a nest, all ASCs and ωs are separately identi�ed

(except, of course, for the base alternative). Finally, we observe that the

complexity of the CNL model produces relatively large standard deviations

for the constants, as well as for the nest parameters. This illustrates that

estimating a complex GEV model together with the sampling probabilities

comes with a cost, and that larger samples are required to obtain accurate

estimates.

7.2 Synthetic data: choice of energy in Québec

We perform a similar exercise based on synthetic data generated from a real

revealed preferences data set, capturing the choice of energy in Qu�ebec

(Bernard et al., 1996), where the choice of energy for house and water

heating is among the following alternatives:

1. Dual energy for house, and electricity for water (DE)

16
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2. Electricity for both house and water (EE)

3. Wood for the house and electricity for water (WE).

The synthetic population is composed of 284800 individuals. A choice has

been associated with each observation in the population using a nested

logit model with the following speci�cation table:

Alternatives

Param. Value DE EE WE

ASC DE -2.0 1 0 0

ASC WE -3.0 0 0 1

B COST DE RURAL -15.0 cost × rural 0 0

B COST DE URBAN -13.0 cost × urban 0 0

B COST EE RURAL -16.0 0 cost × rural 0

B COST EE URBAN -12.0 0 cost × urban 0

B COST WE RURAL -26.0 0 0 cost × rural

B COST WE URBAN -20.0 0 0 cost × urban

B FIXED COST -0.6 �xed cost �xed cost �xed cost

The nesting structure is de�ned by

µm DE EE WE

NESTA 3.0 1 1 0

NESTB 1.0 0 0 1

where µm is the nest parameter µm in (16), the scale µ being set to one.

Due to this nest structure, only one ω parameter in (26) is identi�ed, in this

case the one associated with alternative DE. Indeed, the parameter ωWE is

confounded with the ASC as this is the sole alternative in the second nest.

In the �rst nest, similarly to the ASCs, one of the two ωs is constrained to

0.

We have extracted 200 samples from the population using a choice-based

sampling strategy de�ned as follows:

19



WgNP Wg Hg HgNs Rg

DE 57510 20.2% 60% 5127 8.91E-02

EE 162040 56.9% 10% 854 5.27E-03

WE 65250 22.9% 30% 2563 3.93E-02

Total 284800 8544

As for the previous example, a model has been estimated with each of

these 200 samples, once with the ESML estimator, and once with the new

estimator. Table 3 reports, for each parameter, its \true" value, the mean

and standard deviation of the 200 estimated values, and the associated

t-test against the true value.

The general analysis of the results is consistent with the previous sec-

tion, as we observe a signi�cant improvement of the quality of the estimates

of all parameters, including the constant of the alternative which is not

alone in a nest. We note that the ESML results seem less biased in this

example than in the previous one, except for the nest parameter, which is

signi�cantly di�erent from the true value.

7.3 Real data

When estimating a nested logit model on the real Swissmetro data set, com-

posed of 6768 observations, we obtain signi�cantly di�erent results using

ESML and the new estimator, as presented in Table 4. The �nal loglikeli-

hood with the new estimator is signi�cantly better than with ESML. Also,

the parameter S CAR, capturing the selection bias, is signi�cantly di�erent

from 0. It is interesting to note that, except for the constants, the standard

error of the parameters are similar with both estimators.

We have estimated a nested logit model with 9 alternatives on the real

Qu�ebec data, and have reached the exact same conclusions. The results

are described in Table 5.

8 Conclusion

We have shown both theoretically and empirically that ESML applied to

the estimation of GEV models on choice-based samples does not yield to

20
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consistent estimates of the parameters in the general case. However, we

have shown that the form of the GEV probability allows for the derivation

of a simple estimator. We have illustrated the good quality of this estimator

both on synthetic and real data.

The authors would like to thank Moshe Ben-Akiva and Kenneth Train

for useful discussions and comments about earlier versions of the paper.
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