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Abstract

We consider an estimation procedure for discrete choice models in
general and Generalized Extreme Value (GEV) models in particular.
It is based on a pseudo-likelihood function, generalizing the Condi-
tional Maximum Likelihood (CML) estimator by Manski and McFad-
den (1981) and the Weighted Exogenous Sample Maximum Likelihood
(WESML) estimator by Manski and Lerman (1977). We show that
the property of Multinomial Logit (MNL) models, that consistent es-
timates of all parameters but the constants can be obtained from
an Exogenous Sample Maximum Likelihood (ESML) estimation, does
not hold in general for GEV models. We identify a specific class of
GEV models with this desired property, and propose a new estimator
for the more general case. This new estimator estimates the selec-
tion bias directly from the data. We illustrate the new estimator on
pseudo-synthetic and real data.



1 Introduction

The estimation of discrete choice models is a very difficult task in the
presence of selection bias, that is when the sampling strategy is based
on the endogenous variable: the choice. These sampling techniques, also
known as choice-based, are however commonly used in practice. In many
cases, the analyst does not have a precise knowledge of the actual market
shares in the population and therefore, cannot reflect them in the sampling
scheme. Also, the analyst may want to oversample a specific alternative,
in order to analyze a product with a small market share. Indeed, collecting
sufficient data about such a product with a simple random sampling may
require a prohibitively large sample size.

Various procedures have been considered in the literature. For in-
stance, a Generalized Method of Moments for discrete choice models with
choice-based sampling has been proposed by Imbens (1992). Nonparamet-
ric approaches are discussed by Morgenthaler and Vardi (1986) and Manski
(1999), among others. We emphasize on the maximum likelihood paradigm
because it is the most widely used setting for discrete choice modeling.

In the presence of selection bias, the Conditional Maximum Likelihood
(CML) Estimation is known to produce consistent although inefficient esti-
mators. As reported by Manski and Lerman (1977), McFadden has shown
that CML estimation of the Multinomial Logit (MNL) model with a full set
of Alternative Specific Constants (ASC) can equivalently be obtained from



an Exogenous Sample Maximum Likelihood (ESML) estimation procedure
after adjusting appropriately the constants.

In Sections 2 and 3, we summarize the issues of estimation under various
sampling schemes, and propose an estimator based on a pseudo-likelihood
functions, which generalizes the CML Estimator by Manski and McFad-
den (1981) and the Weighted Exogenous Sample Maximum Likelihood
(WESML) Estimator by Manski and Lerman (1977). Generalized Extreme
Value models are described in Section 4, where it is shown that ESML
cannot be used as such for the estimation of non-MNL GEV models in the
presence of selection bias, except for very specific instances. Such an in-
stance is presented in Section 5. For the more general case, a new estimator
for GEV models in the presence of selection bias is proposed in Section 6.
Its performances are illustrated in Section 7 on pseudo-synthetic and real
data.

2 Sampling

We are interested in the estimation of a discrete choice model where the
choice set C is composed of ] alternatives. The independent, or exogenous
variables are denoted by x, and are composed of socio-economic character-
istics of the decision-maker as well as the attributes of the alternatives. The
dependent, or endogenous variable, is discrete and represents the chosen
alternative. We assume without loss of generality that the choice set of
each individual is C.

The discrete choice model gives the probability that a given alternative
1 is selected, conditional to a choice context characterized by x:

Pr(ilx,0) = P(ilx, 0), (1)

where P is the choice model and 0 is a vector of unknown parameters. The
joint distribution of (i,x) in the population is then given by

Pr(i,x|0) = P(ilx, 0)p(x), (2)

where p(x) is the proportion of the population with exogenous variable x.



We consider general stratified sampling strategies (Manski and McFad-
den, 1981) where the population is partitioned into G collectively exhaus-
tive groups, defined in terms of combinations of both exogenous and en-
dogenous variables. Individuals are randomly selected within each group.
If Np is the total number of individuals in the population, and N, the total
number of individuals in the sample, then a sampling strategy is charac-
terized by Hy, g = 1,..., G, the proportion of each group in the sample.
In this case, the probability for a given individual belonging to group g to
be in the sample is HN

S
=W 3)
where W, is the proportion of individuals in group g in the population.

If C4 is the set of alternatives relevant to group g, and X, the set of
exogenous variables® relevant to group g, we have from (2)

Tg

W, = J > Pr(i,x|0)dx = J > P(ilx, 0)p(x)dx, (4)
*X€Xg iccy *x€Xa iec,
and thus the probability vy depends on the unknown parameters 0, which
significantly complicates model estimation.
Sampling strategies can be classified into four categories.

1. A Simple Random Sampling (SRS) is obtained when only one group
is considered, and every individual has the same probability to be
selected. In this case, Hy = W, and vy = v = N/Np is clearly
independent from 0.

2. An Exogenous Stratified Sampling (XSS) is obtained when the groups
are characterized only by exogenous variables x. In this case, all
alternatives are relevant to each group g, that is C; =C and

Wy = Jiex, Ziec, Pr(i,x0)dx
= [rex, (Zice P(Ux,0)) p(x)dx
Jyex, P(¥)ax,

1We assume, without loss of generality, that the independent variables are all continu-
ous, in order to simplify the formulas. In practice, it is usually a combination of continuous
and discrete variables.



does not depend on 0. Consequently, the probability r4 for an indi-
vidual to be selected in the sample is also independent from 0.

3. An Endogenous Stratified Sampling (ESS), also called Choice-Based
Sampling, is obtained when the groups are characterized by the en-
dogenous variables only, that is the chosen alternative. In this case,
W, does not simplify, and consequently depends on unknown param-
eters 0. And so does the probability for an individual to be selected
in the sample.

4. An Exogenous and Endogenous Stratified Sampling (XESS) is ob-
tained when the groups are characterized by both the exogenous and
endogenous variables. Again, W, depends on 0.

Denoting g(i,x) the group containing individuals with exogenous vari-
able x and choice 1, the probability for an individual to be in the sample,
conditional on 1 and x is

To10(8) = Pr(sli, x, 0) (5)

where we denote by s the event of being in the sample, and r is defined by
(3).

For the sake of completeness, we also consider the context where the
choice set C contains a large number of alternatives. It may be convenient
to analyze choice as if it were limited to a subset B C C, in order to limit
data collection and computation. We assume that for an observation with
configuration (i, x), the analyst draws a subset 3 with probability 7t(5|i, x).
We further assume that any set B that is drawn with positive probability
contains the chosen alternative i, and at least one non-chosen alternative.
We also assume a positive conditioning property that nt(BJi,x) > 0 for
the observed choice i implies 7t(B[j, x) > O for each j € B. It means that B
could have been drawn conditioned on any of its elements as the observed
choice. Finally, we assume without loss of generality that vq,) > 0 when
(B, x) > 0.

We denote R(i,x,B,0) the probability that a population member with
configuration (i,x) is sampled, and is assigned the truncated choice set B,



that is
R(i,x,B,0) =Pr(s, Bli,x,0) = 1431 (0)(Bi, x). (6)

3 Estimation

Estimation issues in the presence of various sampling protocols are analyzed
in details by Manski and McFadden (1981), Cosslett (1981) and Ben-Akiva
and Lerman (1985, chapter 8).

Namely, Manski and McFadden (1981, Eq. (1.41)) suggest to use the
Conditional Maximum Likelihood (CML) Estimator which produces con-
sistent estimates. As compared to the full maximum likelihood estimation,
efficiency is lost but consistency is retained. The objective function is given
by

N
L£(8) =) InPr(iy/xn, Bu,s,0), (7)
n=1

where 1i,, and x,, are the observed dependent and independent variables for
observation m in the sample, and B, the truncated choice set considered
for that observation.

Denoting p(x) the proportion of the population with exogenous variable
x, we write the joint probability Pr(i,x, ,s,0) in two ways:

Pr(i,x,B,s,0) = Pr(i|x, B, s, 0) Pr(B, s|x, 0)p(x)

and
Pr(i,x,B,s,0) = Pr(B, si, x, 0) Pr(i|x, 0)p(x).
Therefore,
: Pr(B, sli,x, 0) Pr(ilx, 0)p(x)
P —
i B,s, 0] Pr(B, slx, 0)px)
where

Pr(B,slx,0) = Y Pr(B,slj,x,6) Pr(jlx,0),
jeB
that is, using (1) and (6),
R(i,x, B,0)P(ilx, 0)

Pr(ilx, B,s,0) =
r(ilx, B, s, 0) ZjeBR(j’X)B)e)P(ﬂx,G)’

7



and (7) becomes

ZiEBn R(j)xn) BTL) e)P(]‘XTL) e) )

EzZIn

n=1

(8)

which is a generalized version of Manski and McFadden (1981, Eq. (1.41)).
Suppose now that R(i,x,3,0) can be written as a product

R(i,x,B,0) = Q(i,x,B)S(1,x,B,0), (9)

where Q is a term that contains no unknown parameters and can be cal-
culated from the sampling protocol and data, and S is a term that may
contain unknown parameters. The partition of R into Q and S need not
correspond to the partition of R into r and 7, as defined by (6).

In this case, the pseudo-likelihood function

-~

L = Q(in) Xn, Bn)_I In S(lru Xn, Bn) e)P(ln‘Xn) e)

1 Z]’EBn S(j’xn)Bn’e)P(ﬂXn)e)

N
(10)
has the same maximizers as (8) (as Q does not depend on 0) and, therefore,
its maximization provides consistent estimates of the parameters. It re-
duces to the CML estimator by Manski and McFadden (1981) when Q =1,
and to the Weighted Exogenous Sample Maximum Likelihood (WESML)
Estimator proposed by Manski and Lerman (1977) when S = 1.
In the following, we derive this pseudo-likelihood function for General-
ized Extreme Value models, and in particular the term

S(i,x, B, 8)P(ilx, 6)
ZjeB S(]',X, B) e)P(]‘X> 6) .

(11)

4 Generalized Extreme Value models

We consider here a random utility model where the utility associated to
alternative i is given by

ui(x> B) = Vi(x') B) + €& (12)



where 3 is a vector of unknown parameters to be estimated, and ¢; is a ran-
dom term (the fact that the model is individual-specific is ignored here for
the sake of notational simplicity). Specific assumptions on the distributions
of the random terms yield to operational choice models. Namely, General-
ized Extreme Value models (McFadden, 1978) are based on the assumption
that Cumulative Distribution Functions (CDF) of the joint distributions
of the error terms are identically distributed across individuals, and that
distributions are given by

Fo=Feo(Vh,..., V) = e G e Ty (13)
where | is the number of alternatives in the choice set C, v is a vector of
parameters, and G : R — R is called a u-GEV-generating function, and
has the following properties:

1. G(y;y) >0forally € RL;

2. G is homogeneous of degree n > 0, that is G(Ay;y) = A*G(y;y), for
A > 0;

3. limy, 400 G(Y1,---,Yiy.- -, Up;Y) =400, foreachi=1,...,];

4. The mixed partial derivatives of G exist and are continuous. More-
over, the kth partial derivative with respect to k distinct y; is non-
negative if k is odd and non-positive if k is even that is, for any
distinct indices i4,...,1 € {1,...,]}, we have

"G

—1)k S
( ) ayh e ayik

(y) <0, Yy e R),. (14)
Typical examples of u-GEV-generating functions G are

Gly;y ={uh) =) vl (15)

j=1

generating a MNL model,

n

M nm
Gly;y ={wpr, o ommd) = ) (Z yJ“) ) (16)

m=1 \jECm



generating a nested logit model where the choice set C is partitioned into
M mutually exclusive nests Cq,...,Cm, and

i

M m
(HWY:{MHMHwHM“ﬂw~>WM%:Z:<Z]“mvmﬂw> , (17)

m=1 jecC

generating a cross-nested logit (CNL) model where «;,, > 0, Vj, m, an\ila O >
0, Vj, 0 >0, um >0, Vm, p < ppy, Vm.
The choice model derived from the GEV assumption is given by

/\i(Xa e)

P(ijx,0) = =————, 18
Ziec Aj(x, 0) (18)
where
/\i(X, 0= ([5”}/)) = eVi(X»B)JFln Gi (x,B,Y)
and
0G Vi (x,B) V; (x,B)
Gi(x,B,v) = PYSACT) (6 P, e T ;y) ) (19)

In order to compute (11), we have

S(i)xv B) e)Ai(X) 9)

S(i,x,B,0)P(ix,0) = S Ax,0)
jee 7Y%

We define R
/\i(x)e) = S(i>X)B)e)Ai(X)e)
— eV-l(x,[?))Jrln Gi (x,B,y)+n S(i,x,B,G)'

Therefore, (11) writes

S(i,x, B, 0)A(x, e)/ZjeB S(,x, B,0)A;(x, 0)
Zkec Ax(x,0) Zkec Ax(x,0)

(:L)X) B» e)/\i(X> e)/ Zje[; S(j)X) B) e)/\](xv e)

~

/\i(X, e)/ Z)'GB Ai(x> 9),
that is

S(i,x, B,0)P(ilx, 0) e Vi(B)+n Gi (x,3,y)Hn S(i,x,5,0) (20)
— - = . . 20
ZjEB S(],X, B) e)P(ﬂx) e) ZjEB evj (B)+n G; (x,B3,y)+n S(j,x,5,0)

10



Note that for MNL, the terms In Gi(x, 3,v) disappear and we obtain
the well-known result that ignoring the sampling probabilities biases the
constants while the other parameters are unbiased. Indeed,

S(i,x,B,0)P(ilx, 0) eVi(B)+n S(i,x.B,0)

_ , 21
> e550,%B,8)P(x,8) 3, eV (FIHasixEo)’ (21)

is a MNL model where the Alternative Specific Constants (ASC) are shifted
by InS(i,x,5,0). Using (21) in (10) leads to a WESML estimator, readily
available is estimation software packages.

Unfortunately, this nice property cannot be generalized as such to GEV
models, as the probability (20) is not the probability of a genuine GEV
model, although it looks very similar. Indeed, if the ASCs are shifted in the
main expression, they are not shifted when used as arguments of Gi(x, 3,v),
defined by (19). Consequently, (W)ESML cannot be used as such for the
estimation of non-MNL GEV models in the presence of selection bias, as it
does not produce consistent estimates of the parameters. We illustrate in
Section 7 that using ESML in this context indeed produces biased estimates
of the parameters.

In the following, we present a special class of GEV models such that
ESML can lead to consistent estimates of all parameters but the constants.
Then, we present a new estimator for the general case of pure choice-base
sampling.

5 Block additive GEV

We consider first the specific case where the choice set C is partitioned into
M mutually exclusive blocks

C=CiU...UCwn, (22)

and the GEV-generating function has a block additive form,

M
Gy, upY) =) G™Ue. ), (23)
m=1

11



where yc,, denotes the subvector of y with components in C,,, and each
G™is a u-GEV generating function (note that u can always be normalized
to 1). We emphasize immediately that the nested logit model defined by
(16) does not belong to this category, except when it collapses to a MNL
model. This is why we refer to blocks and not mests, in order to avoid
any confusion. This can be viewed as a Network GEV model (see Daly
and Bierlaire, 2006) where the nodes just below the root share the same
homogeneity parameter.

With respect to sampling, we assume that the following conditions hold:

1. 7t(BJi,x) is positive only if 13 is a union of blocks from {C;,...,Cm}; i.e.,
alternative selection respects the block structure of the GEV model.

2. The sampling terms S(i,x, B,0) are uniform for i in a block C,; i.e.,
any variation in sampling rates across responses within a block is
handled by the weights Q in (10). With a slight abuse of notation,
let S(m,x,B,0) denote those common sampling terms within block
m.

As G™ is 1-homogenous, GI" is 0-homogenous and shifting the V’s in
(19) does not affect Gi(x, 3,v). In (11), we have

S(i,x,B,0)P(ijx,0)D = S(i,x,B,0)evin(xp)HnG"(xBy)
eVm (x,)+n S(m,x,,0)+n GI" (S(m,x,B,0)x,0)

(24)
where the denominator D = Y| ; eVin(®F)+1nGxB) cancels out in (11),
which writes

eVi“ (x,)+n S(m,x,3,0)+n GI" (S(m,x,5,0)x,0)

Z M Z ' e\/]-n (x,)+n S(m,x,5,0)+ln G'i< (S(m,x,B,0)x,0)
k=1 jeEBNCy

(25)

This is a genuine GEV model, where the V’s have been shifted. Note that
the two assumptions made above are critical for the sum at the denominator
to correspond to a GEV model

Consequently, we obtain the same property as for MNL, that the sam-
pling effects S are absorbed by the alternative specific constants, and yield
to a transformed GEV model. A common (W)ESML procedure yields con-
sistent estimates of all parameters except the constant.

12



The result above is certainly special, but it is applicable when joining
several complex models together. For instance, a route choice model for
public transportation and a car type choice model for private transportation
can each be analyzed separately by a GEV model of any complexity. Then,
the mode choice dimension can be added in the model using the block
additive form described above. In this case, if public transportation is over-
or under- sampled, the bias will be absorbed in the constants, similarly to
the MNL case.

6 GEV and choice-based sampling

We assume here that the term S does not depend on x, that is
S(i,x,B,0) =S(i,B,0).

This assumption is fairly general, as selection based on x can be captured
by Q in (9). In this case, the simple form of (20) suggests to use another es-
timator which explicitly estimates In S(i, B, 0) from the data. It is obtained
by solving

N o eVin (BIHR Goy (xBiy)
max 3 Q(in,xn, Bn) ' In S VRG] (26)
n=I1 S

where w; is a parameter designed to directly estimate In S(i, 5, 0).

We illustrate below that these parameters can be identified for alterna-
tives i such that the GEV term In Gi(x, 3,7y) is not zero. The estimator
defined by (26) can easily be implemented, as its formulation is very similar
to a real GEV model. It is actually available with the Biogeme software
package (Bierlaire, 2003, Bierlaire, 2005, biogeme.epfl.ch).

It is very important to emphasize that, if the structure of the GEV
model is non trivial, that is In Gi(x, 3,y) is not zero, both the ASC and the
sampling probability are identified. For alternatives such that In Gi(x, 3,v)
= 0, only the sum is identified. As illustrated below, the ASC and the sam-
pling probability are identified in a nested model if the nest parameter is
significantly different from 1. If it is 1, or close to 1, only the sum is
identified.

13



7 Illustrations

So the sake of simplicity of the following analysis, we do not consider
weighting, so that Q is always 1 in (10) and (26), and we do not sam-
ple the alternatives, so that 7(Bli,x) = 1 if B = C, and 0 otherwise. We
first illustrate the new estimator on pseudo synthetic data. Then we apply
it to real data sets and compare the results with the ESML estimator.

7.1 Synthetic data: mode choice in Switzerland

The first set of data has been generated based on a real stated preferences
data set collected for the analysis of a future high speed train in Switzerland
(Bierlaire et al., 2001). The alternatives are

1. Regular train (TRAIN),
2. Swissmetro (SM), the future high speed train,
3. Driving a car (CAR).

Each of the 6768 observations in the sample has been used to generate 75
synthetic observations, to obtain a population of 507600 individuals. The
value of each attribute in the population has been generated from a normal
distribution N(u, 0?), where p is the value of the corresponding attribute
in the original database, and o0 = 0.05u. A choice has been associated
with each observation in the population using a nested logit model with
the following specification table:

Alternatives
Param. Value TRAIN SM CAR
ASC_CAR -0.1880 0 0 1
ASC_SM 0.1470 0 1 0
B_TRAIN_TIME -0.0107 travel time 0 0
B_SM_TIME -0.0081 0 travel time 0
B_CAR_TIME -0.0071 0 0 travel time

B_COST -0.0083 travel cost travel cost travel cost

The nesting structure is defined by

14



Uwn TRAIN SM CAR
NESTA 2.27 1 0 1
NESTB 1.0 0 1 0

where ., is the nest parameter p,, in (16), the scale 1 being set to one. The
“¢rue” value of the parameters were obtained from the estimation of the
model on the real data set. Due to this nest structure, only one w parameter
in (26) is identified, in this case the one associated with alternative CAR.
Indeed, the parameter wgy is confounded with the ASC as this is the sole
alternative in the second nest. In the first nest, similarly to the ASCs, one
of the two ws is constrained to 0.

We have extracted 100 samples from the population using a choice-based
sampling strategy defined as follows:

Strata W Np Wy,  Hg HgNg Ry
TRAIN 67938 13.4% 60% 3000 4.42E-02
SM 306279 60.3% 20% 1000 3.26E-03
CAR 133383 26.3% 20% 1000 7.50E-03
Total 507600 1 1 5000

A model has been estimated with each of these 100 samples, once with
the ESML estimator, and once with the new estimator. Table 1 reports,
for each parameter, its “true” value, the mean and standard deviation of
the 100 estimated values, and the associated t-test, that is (Oy — 0%)/0x,
the ratio of the difference between the mean estimated value and the true
value, and the estimated standard deviation.

Most parameters estimated with the ESML are significantly different
from the true value, with a t-test larger than 1.96. This illustrates that
ESML may produce biased estimates with nested logit models.

The new estimator produces estimates which are not significantly dif-
ferent from the true value for all parameters except ASC_SM. The true values
of the w parameters are wrpay = In 4.42e-02 = -3.1200, wgy = In 3.26e-03
= -5.7245, wcpr = In 7.50e-03 = -4.8932. Similarly to the ASCs, these pa-
rameters are identified up to a constant. In order to reflect the fact that we
have constrained wgay = O in the model, we report w; + 3.12 in the table.

15



We note that the value of ASC_CAR and the (shifted) value of weyr = In Repp
are both correctly estimated. Moreover, the value of wgy+ ASC_SM is also
correctly estimated, like it would be in a MNL model, as illustrated in the
last row of Table 1.

We have performed a similar analysis for a cross-nested logit (CNL)
model on the same population, and the same 100 samples, where new
choices have been generated with a “true” CNL model. The specification
of the utility functions is the same as before, and the nesting structure is
defined by

Wm TRAIN SM CAR
NESTA 4.0 09 05 0.1
NESTB 2.0 0.1 05 09

where the entries in the table are the values of parameters u,, and ;. in
(17), the scale u being set to one. The results reported in Table 2 are consis-
tent with the findings obtained with the NL model: ESML produces biased
values, while the new estimator produces values which are not significantly
different from the true values. Moreover, because this GEV structure does
not collapse to MNL, as both nest parameters are different from one and
no alternative is alone in a nest, all ASCs and ws are separately identified
(except, of course, for the base alternative). Finally, we observe that the
complexity of the CNL model produces relatively large standard deviations
for the constants, as well as for the nest parameters. This illustrates that
estimating a complex GEV model together with the sampling probabilities
comes with a cost, and that larger samples are required to obtain accurate
estimates.

7.2 Synthetic data: choice of energy in Québec

We perform a similar exercise based on synthetic data generated from a real
revealed preferences data set, capturing the choice of energy in Québec
(Bernard et al., 1996), where the choice of energy for house and water
heating is among the following alternatives:

1. Dual energy for house, and electricity for water (DE)

16
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2. Electricity for both house and water (EE)
3. Wood for the house and electricity for water (WE).

The synthetic population is composed of 284800 individuals. A choice has
been associated with each observation in the population using a nested
logit model with the following specification table:

Alternatives

Param. Value DE EE WE

ASC_DE -2.0 1 0 0

ASC_WE -3.0 0 0 1
B_COST_DE_RURAL -15.0 cost x rural 0 0
B_COST_DE_URBAN -13.0 cost x urban 0 0
B_COST_EE_RURAL -16.0 0 cost x rural 0
B_COST_EE_URBAN -12.0 0 cost x urban 0
B_COST_WE_RURAL -26.0 0 0 cost x rural
B_COST_WE_URBAN -20.0 0 0 cost x urban
B_FIXED_COST -0.6 fixed cost fixed cost fixed cost

The nesting structure is defined by

Wn DE EE WE
NESTA 3.0 1 1 0O
NESTB 1.0 0 0 1

where w,, is the nest parameter p,, in (16), the scale p being set to one.
Due to this nest structure, only one w parameter in (26) is identified, in this
case the one associated with alternative DE. Indeed, the parameter wyg is
confounded with the ASC as this is the sole alternative in the second nest.
In the first nest, similarly to the ASCs, one of the two ws is constrained to
0.

We have extracted 200 samples from the population using a choice-based
sampling strategy defined as follows:
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WyNp W, Hy HgN, R,
DE 57510 20.2% 60% 5127 8.91E-02
EE 162040 56.9% 10% 854 5.27E-03
WE 65250 22.9% 30% 2563 3.93E-02
Total 284800 8544

As for the previous example, a model has been estimated with each of
these 200 samples, once with the ESML estimator, and once with the new
estimator. Table 3 reports, for each parameter, its “true” value, the mean
and standard deviation of the 200 estimated values, and the associated
t-test against the true value.

The general analysis of the results is consistent with the previous sec-
tion, as we observe a significant improvement of the quality of the estimates
of all parameters, including the constant of the alternative which is not
alone in a nest. We note that the ESML results seem less biased in this
example than in the previous one, except for the nest parameter, which is
significantly different from the true value.

7.3 Real data

When estimating a nested logit model on the real Swissmetro data set, com-
posed of 6768 observations, we obtain significantly different results using
ESML and the new estimator, as presented in Table 4. The final loglikeli-
hood with the new estimator is significantly better than with ESML. Also,
the parameter S_ CAR, capturing the selection bias, is significantly different
from 0. It is interesting to note that, except for the constants, the standard
error of the parameters are similar with both estimators.

We have estimated a nested logit model with 9 alternatives on the real
Québec data, and have reached the exact same conclusions. The results
are described in Table 5.

8 Conclusion

We have shown both theoretically and empirically that ESML applied to
the estimation of GEV models on choice-based samples does not yield to
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consistent estimates of the parameters in the general case. However, we
have shown that the form of the GEV probability allows for the derivation
of a simple estimator. We have illustrated the good quality of this estimator
both on synthetic and real data.

The authors would like to thank Moshe Ben-Akiva and Kenneth Train
for useful discussions and comments about earlier versions of the paper.
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