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Abstract

Analytic queueing network models often assume infinite capacity for all queues. For real systems this

infinite capacity assumption does not hold, but is often maintained due to the difficulty of grasping

the between-queue correlation structure present in finite capacity networks. This correlation structure

helps explain bottleneck effects and spillbacks, the latter being of special interest in networks containing

loops because they are a source of potential deadlock. We present an analytic queueing network model

which acknowledges the finite capacity of the different queues. By explicitly modeling the blocking

phase the model yields a description of the congestion effects. The model is adapted for multiple

server finite capacity queueing networks with an arbitrary topology and blocking-after-service. A

decomposition method allowing the evaluation of the model is described. The method is validated, by

comparison to both pre-existing methods and simulation results. A real application to the study of

patient flow in a network of operative and post-operative units of the Geneva University Hospital is

also presented.

1 Introduction

Modeling complex systems using analytic queueing network models allows us to better understand

their behavior, to evaluate and ultimately to improve their performance. The most researched queueing

network model is the Jackson network model (Jackson, 1957, 1963) which assumes infinite capacity for

all queues. For real systems this infinite capacity assumption does not hold, but is often maintained

due to the difficulty of grasping the between-queue correlation structure present in finite capacity

networks; e.g. acknowledging the links between the behavior of adjacent queues where chained events

can take place. Consider a network of operative and post-operative hospital units where each unit

is modeled as a specific queue and where it is the patient flow that is of main interest. For such

a network understanding the correlation between the occupation of the different units (e.g. surgical
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intensive care, surgical intermediate care) can help avoid bed blocking and improve a patients recovery

procedure. More generally, the between-queue correlation explains bottleneck effects and spillbacks,

the latter being of special interest in networks containing loops because they are a source of potential

deadlocks (also known as gridlocks) (Daganzo, 1996). This correlation structure is of importance in

a variety of networks such as manufacturing networks (Papadopoulos and Heavey, 1996), software

architecture networks (Balsamo et al., 2003), circulation systems (e.g. corridors) (Cheah and Smith,

1994) and even prison networks (Korporaal et al., 2000). In order to capture this correlation and to

estimate these congestion effects we resort to models with finite capacities. When wanting to model

real scale finite capacity networks with arbitrary topologies the main complexity lies in appropriately

acknowledging the between-queue correlation while also maintaining a tractable model. We propose

a finite capacity queuing network (FCQN) model capturing the between-queue correlation based on

a decomposition method which allows the analysis of real scale networks. The intended use of this

model is within an optimization framework. We therefore resort to an analytic model which unlike

pre-existing methods preserves the network topology and its configuration (number of queues and their

capacities) as static parameters. This makes this approach suitable for an optimization framework.

We explicitly model the blocking phase within our analytical approach, yielding performance measures

such as the probability distribution of the number of blocked jobs in a queue. This paper is structured

as follows. We describe the FCQN framework and then review the existing analysis methods. The

proposed model and approximation method are then described, followed by their validation versus

both pre-existing methods and simulation results. The method is then applied to a real case study.

2 General Framework

In this section we describe the queueing network framework.

A queueing network is composed of a set of linked queues, hereafter called stations. Of interest is the

study of the flow of “jobs” throughout the network. A job is the generic name for the units of interest,

e.g. a pedestrian, a prisoner, a patient. We consider open queueing networks where jobs are allowed

to leave the network and where the external arrivals arise from an infinite population of jobs. We

now describe the general process that a job goes through upon arrival to a station. Jobs arriving to a

station are either served immediately or queue until a server becomes available. Once a job is served it

is routed to its next station, which is chosen according to a probability distribution. If this destination

station has finite capacity then it may be full. If it is full then the job will be blocked at its current

station until a server becomes available at the destination station. Various blocking mechanisms,

which are at the heart of spillbacks, have been defined in the literature (Balsamo et al., 2001). They

differ either in the moment the job is considered to be blocked (e.g. before or after service) or in the

routing mechanism of blocked jobs. The blocking mechanism that we have just described is known as

blocking-after-service (BAS). The jobs are unblocked with a First In First Out (FIFO) mechanism.

The average arrival rate to station i is denoted λi. Station i has ci parallel servers, each one serves

with an average rate µi. The total number of jobs allowed in the station is called the capacity of the

station, Ki, the buffer size is Ki − ci. The possible routings among stations are given by the transition

probability matrix (pij), where pij denotes the probability that a job at station i is routed to station

j.

3 Literature review

In this section we describe the existing methods allowing the analysis of FCQN models.

A first survey of FCQN models was made by Perros (1984), who later on also wrote a historical
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overview of the research motivations and advances in networks with blocking (Perros, 2003). A detailed

introductory book was written by Balsamo et al. (2001). Surveys focusing on specific application fields

are given for for software architecture performance (Balsamo, De Nitto Persone and Inverardi, 2003),

for the production and manufacturing sector (Papadopoulos and Heavey, 1996) and on retrial queues

for the telecommunications sector (Artalejo, 1999).

3.1 Exact methods

The joint stationary distribution of the network, which contains the probability of each possible state

of the network, allows us to derive the main network performance measures. Exact analysis of FCQN

models, that is exact evaluation of this joint distribution, can be obtained either in analytic closed

form or numerically. For an open Jackson network the joint stationary distribution has a product form,

thus the stations behave as if they were independent. For a FCQN the between-station correlation

suggests a non-product form stationary distribution, thus exact analysis of FCQN models are limited

to very small networks.

Closed form analytic expressions for the joint distribution are difficult to obtain and are only available

for specific topologies such as single server two or three station tandem topologies (Grassman and

Derkic, 2000; Langaris and Conolly, 1984; Latouche and Neuts, 1980; Konheim and Reiser, 1978;

Konheim and Reiser, 1976) or two station closed networks (Akyildiz and von Brand, 1994; Balsamo

and Donatiello, 1989).

On the other hand exact numerical evaluation of the joint stationary distribution can be obtained

by solving the global balance equations. A detailed description of these numerical methods can be

found in Stewart (1999). These equations require the construction of the transition rate matrix,

i.e. the description of the transition rates between all feasible states of the network. This time

consuming task is therefore only conceivable for small networks (i.e. small in the number of stations

and their capacity). This approach also lacks flexibility because changes in the network topology

require redefining the transition rate matrix. If the networks of interest have a more general topology

or an arbitrary size then their analysis is done by approximation methods.

3.2 Approximation methods

Approximation methods can be classified into either analytic approaches or simulation-based meth-

ods.

The use of disaggregate models based on simulation is the most popular approach to evaluate the

performance of a finite capacity queueing networks. Surveys of simulation models exist for sectors

such as transportation (Nagel, 2002; Ben-Akiva et al., 2001), healthcare (Fone et al., 2003; Jun et al.,

1999), computer science (Sadoun, 2000; Obaidat, 1990) and the analysis of call centers (Koole and

Mandelbaum, 2002; Mandelbaum, 2001). This approach although more realistic and detailed, can be

cumbersome to optimize, and its accuracy is strongly dependent on the quality of the calibration data

(Korporaal et al., 2000). Analytic models are simpler, less data expensive, more flexible and more

suited for an optimization framework (Cochran and Bharti, 2006).

The main motivation of analytic approximation methods is to reduce the dimensionality of the system

under study. Decomposition methods achieve this by decomposing the network into subnetworks and

analyzing each subnetwork in isolation. The structural parameters of each subnetwork (e.g. average

arrival and service rates) depend on the state of other subnetworks and thus capture the correlation

with other subnetworks. The main difficulty lies in obtaining good approximations for these parame-

ters so that the stationary distribution of the subnetwork is a good estimate of its marginal stationary
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distribution. Given a subnetwork its stationary distribution can be obtained by either establishing a

behavioral analogy with a network whose distribution has a closed (and often product) form, or by

exact numerical evaluation of the global balance equations which now have a smaller dimension but

are often non-linear.

Existing decomposition methods have analyzed small subnetworks consisting of single stations, pairs

of stations or triplets. If not stated otherwise the methods concern open finite capacity networks with

exponentially distributed service times. The most commonly used decomposition method is single

station decomposition, which dates back to the work of Hillier and Boling (1967) who considered

tandem single server networks. One of the most used approaches concerns single server feed-forward

networks where each station is modeled as an M/M/1 station (Takahashi, Miyahara and Hasegawa,

1980). An extension of this method to multiple servers (i.e. M/M/c stations) is given by Koizumi

et al. (2005). Here the buffers are considered infinite for each isolated station and their average queue

length updates the capacity of the predecessor stations. This approximation holds if the capacity of

adjacent predecessor stations can accommodate this average queue length. This constraint is checked

only a posteriori. Each station is an M/M/c queue for which closed form expressions of the per-

formance measures exist. A method applicable to networks with an arbitrary topology is given by

Korporaal et al. (2000). The individual stations are modeled as M/M/c/K stations for which closed

form performance measures are used. As for the method of Koizumi et al. (2005) the capacity of the

stations are revised and the validity of these capacity adjustments are verified a posteriori.

The Expansion method (Kerbache and Smith, 1988, 1987), was developed for networks of M/M/1/K

stations. Here a network reconfiguration expands all finite capacity stations to artificial infinite ca-

pacity holding stations, which register the blocked jobs. This method was later extended to multiple

servers and applied to pedestrian traffic flows by Cheah and Smith (1994). Gupta and Kavusturucu

(2000) applied this method to production feed-forward systems, where service interruptions are al-

lowed. Singh and Smith (1997) used it to evaluate network performance measures within a buffer

allocation problem. A similar transformation where all GE/GE/c/K stations are transformed into

GE/GE/c stations, and thus the joint distribution is approximated by a product form joint distribu-

tion, was proposed by Tahilramani, Manjunath and Bose (1999). Single server networks with phase-

type service distributions have been proposed for tandem (Altiok, 1982) and feed-forward topologies

(Altiok and Perros, 1987), with phase-type service distributions. Jun and Perros (1988) have extended

this work to an arbitrary topology and have also considered general service times for an open tan-

dem network in Jun and Perros (1990). The use of a phase-type service distribution accounts for

all possible blockings but, as stated in Altiok and Perros (1987), it requires the construction of very

detailed phase-type service mechanisms, which is a “cumbersome” and CPU time consuming task for

large networks. In these methods queue capacity is also augmented in order to allow for storage of all

predecessor station capacities.

Few authors have considered subnetworks larger than single stations. Two-station decomposition

methods have been proposed for open tandem networks (Alfa and Liu, 2004; Brandwajn and Jow,

1988; Brandwajn and Jow, 1985) and for an arbitrary topology (Lee et al., 1998). Pairwise decompo-

sition was used by van Vuuren, Adan and Resing-Sassen (2005) to study multi-server tandem stations

with generally distributed service times. As an extension of the work by Brandwajn and Jow (1988),

Schmidt and Jackman (2000) proposed a three-station decomposition method for a single server ar-

bitrary topology network. Subnetworks consisting of more than one station can theoretically provide

more accurate results than single station decomposition, but are computationally more intensive (Per-

ros, 1994).

Recent methods, such as those of Koizumi et al. (2005) and Korporaal et al. (2000), have extended the
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use of decomposition algorithms mainly to multiple server networks with an arbitrary topology. Nev-

ertheless in order to acknowledge the finite capacity property of these networks the existing methods

either revise station capacities or vary the network topologies. The revision of the station capaci-

ties renders them dynamic parameters. Moreover, approximations need to be used to ensure their

integrality and their positivity is only checked a posteriori. We believe that an optimization-friendly

model is one that preserves the network topology and its configuration (number of stations and their

capacities) as static parameters. We are also interested in explicitly modeling the blocking phase

within our analytical approach, yielding performance measures such as the probability distribution of

the number of blocked jobs in a station. Since we have not found methods with these characteristics

we have developed the method that we shall now describe.

4 Method

In this section we describe the decomposition method that allows the analysis of a network with fi-

nite capacity queues. The model accounts for multiple server queues with an arbitrary topology and

blocking-after-service. The method is based on a decomposition of the network into single stations

whose structural parameters are approximated so that they can account for the between-station cor-

relation. The general process that a job goes through upon arrival to a station has been described in

Section 2. In this paper we are interested in explicitly modeling the blocking phase that a job may go

through in a finite capacity network. Thus we now describe in more detail how a job is processed. A

job:

1. arrives to a station,

2. waits if all the servers are occupied,

3. is served (this is called the active phase),

4. is blocked if its destination station is full (this is called the blocked phase),

5. leaves the station.

Let π(i) denote the stationary distribution of the isolated station i. The main aim of our method is to

appropriately approximate π(i) so that it is a good estimate of the marginal stationary distribution

of station i. π(i) can be obtained via the global balance equations along with the use of a normalizing

constraint:






π(i)Q(i) = 0,
∑

s∈S(i)

π(i)s = 1, (1)

where π(i)s denotes element number s of π(i). The global balance equations involve the state space

of station i, S(i), as well as the transition rate matrix, Q(i). We now define these two elements.

State space, S(i)
The state of station i is described by the number of active jobs Ai, blocked jobs Bi and waiting jobs

Wi.

S(i) = {(Ai, Bi,Wi) ∈ N
3, Ai + Bi ≤ ci, Ai + Bi + Wi ≤ Ki}

Of interest in the validation runs that will be presented in Section 5 are bufferless stations, (Ki = ci),

where the state space reduces to: S(i) = {(Ai, Bi) ∈ N
2, Ai + Bi ≤ ci}. We denote by card(S(i)) the

cardinal or dimension of the state space.
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4.1 Transition rate matrix, Q(i)

Q(i) contains the transition rates between all pairs of states in S(i). Hereafter all rates are average

rates. The non diagonal elements, Q(i)sk s 6= k, represent the average rate at which the transition

between state s and k takes place. The diagonal elements are defined as: Q(i)ss = −
∑

k 6=s Q(i)sk.
Thus −Q(i)ss represents the rate of departure from state s. Each equation of the system of global

balance equations can be written as:

∑

k∈S(i)

π(i)kQ(i)ks = −π(i)sQ(i)ss,

it therefore balances the inflow and the outflow for a given state s.
We define Q(i) as a function of the following structural parameters:

• the average arrival rate to station i, λi,

• the average service rate of a server at station i, µi,

• the average probability of being blocked at station i, Pf
i .

• the average unblocking rate given that there are b blocked jobs at station i, µ̃(i, b),

These four parameters will allow us to describe the transition rates between the different states of

station i. We can write Q(i) = f(λi, µi, P
f
i , µ̃(i, b)), where µi is an endogenous parameter whereas λi,

µ̃(i, b), and P f
i are exogenous.

To define f let us consider a state s such that (Ai, Bi,Wi) = (a, b, w). The possible transitions with

their corresponding rates are displayed in Table 1. The set of possible states to where a transition

can take place are tabulated in the second column, the corresponding transition rate is in the third

column and the conditions under which such a transition can take place are in the last column. We

initial state new state rate condition

s k Q(i)sk
(a, b, w) (a + 1, b, w) λi a + b + 1 ≤ ci

(a, b, w) (a, b, w + 1) λi a + b == ci & w + 1 ≤ Ki − ci

(a, b, w) (a − 1, b, w) aµi(1 − P f
i ) w == 0

(a, b, w) (a, b, w − 1) aµi(1 − P f
i ) w ≥ 1

(a, b, w) (a − 1, b + 1, w) aµiP
f
i always possible

(a, b, w) (a, b − 1, w) µ̃(i, b) w == 0

(a, b, w) (a + 1, b − 1, w − 1) µ̃(i, b) w ≥ 1

Table 1: Transition rates of station i.

now describe the contents of this table. The first two lines of the table distinguish between an arrival

that can be served immediately and an arrival that must queue before being served. The next two lines

concern the completion of a service (the active phase) that is not followed by a blocking phase, in the

first case the freed server remains available whereas in the second case the freed server immediately

starts serving a job that was in the queue. The fifth line concerns jobs that have completed their

service and become blocked. The last two lines relate to the completion of the blocking phase and

differ in whether the server that was blocked stays available or immediately starts serving a queued job.
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As emphasized by Korporaal et al. (2000), the main challenge of decomposition methods is to ap-

propriately approximate these structural parameters so that π(i) is a good estimate of the marginal

stationary distribution of station i. The main complexity lies in appropriately capturing the correla-

tion between the stations via these structural parameters. We now describe how our method revises

the structural parameters in order to capture this correlation.

4.1.1 Arrival rate, λi

We model each station as a two-dimensional M/M/c/K station (the distributional assumptions will

be detailed further on). For these models, known as loss models, all the arrivals that arise while the

station is full are considered to be lost. In our model we assume that only external arrivals may be lost,

whereas arrivals that arise from within the network are blocked if the destination station is full. We

therefore approximate the arrival rates by combining flow conservation with loss model information.

We denote by

• λi: the total arrival rate to station i (includes potentially lost arrivals),

• λeff
i : the effective arrival rate to station i (accounts only for the arrivals that are actually pro-

cessed, i.e. excludes all lost arrivals),

• γi: the external arrival rate to station i.

Accounting for the lost arrivals we have:

λeff
i = λi(1 − P (Ni = Ki)), (2)

where Ni denotes the total number of jobs at station i (Ni = Ai + Bi + Wi). P (Ni = Ki) is known as

the blocking probability.

In most existing decomposition methods the arrival rate is obtained via the flow conservation equa-

tions. In the loss model context, the flow conservation laws hold for the effective arrival rates and are

approximated as follows:

λeff
i = γi(1 − P (Ni = Ki)) +

∑

j

pjiλ
eff
j . (3)

Inter-arrival times to station i are assumed to be independent and identically distributed exponential

variables with parameter λi.

4.1.2 Average probability of being blocked, P f
i

The average probability of being blocked at station i, P f
i , helps us describe the rate at which a job

gets blocked after service. P f
i is approximated by the weighted average of the blocking probabilities

of all downstream stations:

P f
i =

∑

j

pijP (Nj = Kj). (4)
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4.1.3 Service and unblocking rates, µi and µ̃(i, b)

The average service rate of a server at station i is µi. It accounts for the active phase. It is an

exogenous parameter.

We now describe how we approximate µ̃(i, b). Suppose that station i is in the state (Ai, Bi,Wi) =

(a, b, w). Then the service rate of the station is aµi, i.e. the active jobs are being processed by a
parallel servers. In the state (a, b, w) there are b blocked servers, but they do not all work in parallel,

as we now describe. We define:

• µ̃o
i : the average unblocking rate of a destination station of station i. (We describe its derivation

below.)

• D(i, b): the number of distinct destination stations that are blocking the b jobs at station i.

For each destination station that is blocking a job at station i, we approximate the rate at which it

unblocks jobs at station i by µ̃o
i . Thus if all b jobs are blocked by the same destination station, then

they can be seen as forming a virtual queue in front of the blocking station with a FIFO unblocking

mechanism. The average unblocking rate at station i is then µ̃o
i . If the jobs are blocked by D(i, b)

distinct destination stations then they can be seen as forming D(i, b) virtual parallel queues, each

with a FIFO unblocking mechanism. The average unblocking rate at station i is then D(i, b)µ̃o
i . More

specifically we have:

1

µ̃(i, b)
=

min(b,card(I+))
∑

d=1

P (D(i, b) = d)
1

d µ̃o
i

, (5)

where I+ represents the set of destination stations of station i, and card(I+) is its cardinal. Equation

(5) holds because we assume that each destination station unblocks at rate µ̃o
i . We now describe how

we approximate both µ̃o
i and P (D(i, b) = d).

The average unblocking rate of a destination station, µ̃o
i

We denote by:

• µ̂i: the effective service rate of a server at station i (it includes service and blocking). We will

describe its approximation further on.

• p̃ij: the transition probabilities conditional on a job being blocked at station i, i.e.

p̃ij =
pijP (Nj = Kj)

Pf
i

.

• rij: the proportion of arrivals to station j that arise from blocked jobs at station i, i.e.

rij =
p̃ijλ

eff
i

λeff
j

.

Suppose station j is blocking jobs at predecessor stations. It is therefore full and is serving at rate

µ̂jcj . It unblocks jobs at station i at the rate rij µ̂jcj . Thus the average time between successive

unblockings is:

1

µ̃o
i

=
∑

j

p̃ij
1

rijµ̂jcj
,
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1

µ̃o
i

=
∑

j∈I+

λeff
j

λeff
i µ̂jcj

. (6)

Equation (6) is used to approximate µ̃o
i .

Probability that d distinct stations are blocking the b blocked jobs, P (D(i, b) = d)

We denote by:

• δ(i, b, d): the random vector containing the b destination stations of the blocked jobs, d of which

are distinct, i.e. δ(i, b, d)k denotes the destination station of the kth blocked job.

• ∆(i, b, d): the sample space of δ(i, b, d).

• d: a realization of δ(i, b, d).

In order to approximate P (D(i, b) = d) we sum over all possible realizations of δ(i, b, d).

P (D(i, b) = d) =
∑

d∈∆(i,b,d)

P (δ(i, b, d) = d)

=
∑

d∈∆(i,b,d)

P (δ(i, b, d)1 = d1, δ(i, b, d)2 = d2, ..., δ(i, b, d)b = db)

=
∑

d∈∆(i,b,d)

p̃id1
p̃id2

...p̃idb

We define ℓ(i, b, d)j as the number of jobs blocked by station j at station i (given that there are a total

of b blocked jobs that are blocked by d distinct destination stations). We thus have:

P (D(i, b) = d) =
∑

d∈∆(i,b,d)

∏

j∈I+

p̃
ℓ(i,b,d)j

ij .

This last equation shows that for a given realization d of δ(i, b, d), what is of interest in determining

P (D(i, b) = d) is the occurrence of each destination station (i.e. the vector ℓ(i, b, d)), the ordering of

the destination stations is not important. Thus instead of summing over ∆(i, b, d), we will sum over

the set of ℓ(i, b, d) vectors. This reduces the size of the space over which we sum. The set of such

vectors is noted L(i, b, d) and is defined by:

ℓ(i, b, d) ∈ L(i, b, d) ⇔



















∑

j∈I+

ℓ(i, b, d)j = b,

∑

j∈I+

11( ℓ(i,b,d)j>0 ) = d,

ℓ(i, b, d)j ≥ 0 ∀j ∈ I+,

(7)

where 11(x) is the indicator function. The first equation of the system of equations (7) means that

there are a total of b jobs blocked at station i, and the second means that these jobs are blocked

by d different destination stations. For a given vector ℓ(i, b, d) that satisfies the system of equations

(7) there are b!/(
∏

j∈I+ ℓ(i, b, d)j ! ) different realizations of δ(i, b, d) that are associated with it. This

corresponds to the number of permutations of a vector of b destination stations, where destination

station j is repeated ℓ(i, b, d)j times. Therefore we obtain:

P (D(i, b) = d) =
∑

d∈∆(i,b,d)

P (δ(i, b, d) = d) =
∑

ℓ(i,b,d)∈L(i,b,d)

b!
∏

j∈I+

ℓ(i, b, d)j !

∏

j∈I+

p̃
ℓ(i,b,d)j

ij .
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Coming back to Equation (5) and replacing P (D(i, b) = d) by the approximation that we have just

derived we obtain:

1

µ̃(i, b)
=

1

µ̃o
i

min(b,card(I+))
∑

d=1

1

d

∑

ℓ(i,b,d)∈L(i,b,d)

b!
∏

j∈I+

ℓ(i, b, d)j !

∏

j∈I+

p̃
ℓ(i,b,d)j

ij . (8)

The size of the space L(i, b, d) is still considerably large therefore when approximating µ̃(i, b) we use

an exogenous approximation of p̃ij:

p̃ij =
pijP (Nj = Kj)

Pf
i

=
pijP (Nj = Kj)

∑

k

pikP (Nk = Kk)
≈

pij
∑

k

pik

.

This approximation makes both summations of Equation (8) exogenous. These two summations are

therefore evaluated only once when solving the entire system of equations. This approximation is

appropriate if the blocking probabilities of the destination stations have the same magnitude, whereas

it is inadequate if their magnitudes differ. The only endogenous parameter remaining in Equation (8)

is µ̃o
i . Thus we have written µ̃(i, b) in the form:

µ̃(i, b) = µ̃o
i φ(i, b), (9)

where φ(i, b) is estimated exogenously and can be seen as the average number of distinct destination

stations that are blocking the b jobs at station i.

When describing the approximation µ̃o
i we came across the effective service rate of a server, µ̂i. We

now describe how we approximate this parameter.

The effective service rate, µ̂i

The total time spent by a job in front of a server, called the effective service time 1/µ̂i , is composed

of the service time (active phase) and for some jobs of the blocked time (blocked phase). We denote

by TB
i the random variable representing the blocked time of a job conditional on it being blocked. For

a given station i, all servers serve on average at rate µi (active phase). Thus the average time that

a job spends in the active phase is 1/µi. A given job is blocked on average with probability Pf
i and

once he is blocked the average time he spends blocked is E[TB
i ]. Accounting for both the service and

the possible blocking we obtain the average effective service time 1/µ̂i, which is approximated by:

1

µ̂i

=
1

µi

+ P f
i E[TB

i ]. (10)

In this equation µi is an exogenous parameter, the approximation of P f
i was given in Equation (4).

We approximate E[TB
i ] by conditioning on the length of the blocked queue:

E[TB
i ] = E[E[TB

i | Bi]] =
∑

b≥0

P (Bi = b | Bi > 0) E[TB
i | Bi = b] =

∑

b≥1

P (Bi = b)

P (Bi > 0)
E[TB

i | Bi = b].

Let t(i, b)j denote the blocked time of the job that was unblocked in jth position given that there were

b blocked jobs. We have:

E[TB
i | Bi = b] =

1

b

b
∑

j=1

E[t(i, b)j ].

10



We know that the average time between successive departures given that there are b blocked jobs at

station i is represented by 1/µ̃(i, b), thus we can approximate the average blocked time of the first job

to be unblocked by 1/µ̃(i, b), that of the second job to be unblocked by 1/µ̃(i, b) + 1/µ̃(i, b − 1) and

that of the jth by:

E[t(i, b)j ] =

b
∑

k=b−j+1

1

µ̃(i, k)
.

Putting the last two equations together and then interchanging the summations we obtain:

E[TB
i | Bi = b] = 1

b

b
∑

j=1

b
∑

k=b−j+1

1
µ̃(i,k)

= 1
b

b
∑

k=1

1
µ̃(i,k)

b
∑

j=b−k+1

1

= 1
b

b
∑

k=1

k
µ̃(i,k) .

Therefore our approximation of E[TB
i ] is given by:

E[TB
i ] =

∑

b≥1

P (Bi = b)

P (Bi > 0)

b
∑

k=1

k

b

1

µ̃(i, k)
. (11)

Distributional assumptions
Service time and the time between successive unblockings are each assumed to follow an exponential

distribution with parameters µi and µ̃o
i respectively. For a given station all service times are assumed

to be independent and identically distributed, as are all blocked times. By explicitly modeling both

of these exponential phases, the number of jobs in front of the servers becomes a two dimensional

system (Ai, Bi) composed of the active and the blocked jobs. We are thus in the presence of an

M/M/c/K model with a two-dimensional state space. By working in this two-dimensional space we

avoid constructing the CPU intensive phase-type service mechanisms defined in some of the pre-existing

methods.

4.2 System of equations

The main aim is to obtain the stationary distributions of each station, π(i). The main equations

consist of the global balance equations which require the definition of the transition rate matrix, for a

given station these equations are:















π(i)Q(i) = 0,
∑

s∈S(i)

π(i)s = 1,

Q(i) = f(λi, µi, P
f
i , µ̃(i, b)).

The third equation which defines Q(i) is described in Table 1. We have directly implemented these

three sets of equations as a single set:

π(i)g(λi, µi, µ̃(i, b), P f
i ) = 0. (12)

11



The system of nonlinear equations (2-4,6,9-12) is solved simultaneously for all stations. The exogenous

parameters are {ci,Ki, pij , µi, γi, φ(i, b)}, all other parameters are endogenous. For each station there

are seven endogenous parameters: λi, λ
eff
i , µ̃o

i , µ̂i, P
f
i , P (Ni = Ki), P (Bi > 0).

For a given station the dimension of its distribution is equal to card(Si) = (ci + 1)(Ki + 1− ci

2 ). Thus

the total size of the system of equations is:

∑

i

(ci + 1)(Ki + 1 −
ci

2
) + 7,

where 7 denotes the seven endogenous parameters for a given station.

Pre-existing methods that require a posteriori validation (e.g. to ensure the integrality of endogenous

station capacities) resort to iterative methods. For a given iteration the system of equations for each

station is solved sequentially. Since our method requires no a posteriori validation we are able to solve

the set of equations associated to all stations simultaneously.

The system is solved by using the Matlab routine fsolve, which implements a trust-region dogleg

algorithm. The jacobian of the system has been calculated analytically and implemented. In order

to ensure the positivity of distributions the system of equations has been implemented in terms of

an auxiliary variable y(i) such that y(i)2 = π(i). The initialization of the endogenous parameters

are given in Table 2. In this table λFC corresponds to the arrival rates that satisfy the classical flow

conservation laws. π is initialized using a uniform distribution, thus no a priori information concerning

the stationary behavior of the stations is required. The other endogenous parameters are deduced from

these initializations.

parameter initialization

µ̂ µ
µ̃o µ
λ λFC

λeff λFC

π U

Table 2: Parameter initialization

5 Validation

We now present validation results by comparing our method to both pre-existing methods and to

simulation results on a set of small networks.

5.1 Validation versus pre-existing methods

Triangular topology

We first compare our method to that of Altiok and Perros (1987) and that of Takahashi, Miyahara and

Hasegawa (1980). The latter considered a single server network with triangular topology (depicted in

Figure 1) and two cases according to the buffer size of the stations: a null buffer and a buffer of size

two. For each case they considered a set of scenarios with increasing service rates for stations two and

three. These scenarios are displayed in Table 3. The chosen performance measure was the blocking

probability of station one, P (N1 = K1). They then compared their estimates to either simulation

results or to exact results derived by using the global balance equations of the entire network. The

12



relative error of the estimates of the different methods are displayed in Figure 2. For both cases all

methods yield good estimates, the relative error remaining under 7% for the first case and 4% for the

second case. For both cases we yield similar estimates to those of Takahashi, Miyahara and Hasegawa

(1980). For the first case Altiok and Perros (1987) yields the most accurate estimates.

∀i ci = 1, p12 = 1
2

γ1 = 1, γ2 = γ3 = 0

scenario µ1 µ2 µ3

1 1 1.1 1.2

2 1 1.2 1.4

3 1 1.3 1.6

4 1 1.4 1.8

5 1 1.5 2

6 1 1.6 2.2

7 1 1.7 2.4

8 1 1.8 2.6

9 1 1.9 2.8

10 1 2 3

Table 3: Increasing service rate scenarios, corre-

sponding to the triangular topology.

1

2

3γ1

1 − p12

p12

Figure 1: Triangular topology.

Tandem two station topology

Bell (1982) derived a theoretical upper bound on the mean throughput rate of M/M/c/K networks.

By considering a tandem two station topology network under a set of scenarios he showed that several

decomposition methods “lead to impossible mean throughput rates”. We compare the mean through-

put estimates of our method with the methods of Singh and Smith (1997), Kerbache and Smith (1988),

Boxma and Konheim (1981), Takahashi, Miyahara and Hasegawa (1980) and Hillier and Boling (1967).

The different scenarios and the topology are displayed in Table 4 and the mean throughput estimates

of the various methods are depicted in Figure 3. Our mean throughput is estimated by using the ef-

fective departure rate at station two, λeff
2 . Figure 3 shows that our mean throughput estimate remains

near the upper bound, and is similar to that of the Expansion method of Singh and Smith (1997) and

Kerbache and Smith (1988). It slightly violates the bound for the last three scenarios. The relative

violations are: 0.3%, 2.2% and 3.8%. Our method therefore yields consistent throughputs unlike the

methods of Takahashi, Miyahara and Hasegawa (1980), Hillier and Boling (1967) and Boxma and

Konheim (1981).

5.2 Validation versus simulation results

Of main interest in our method are the distributional estimates, which allow us to derive the main

performance measures. These could not be compared to pre-existing methods because we know of no

method that defines the state space in such a way. We resort to simulation results in order to validate

our method on a larger set of scenarios and topologies.

We consider three different topologies. Each network consists of nine stations, all of which are bufferless

with three servers. For each network we consider a set of scenarios with increasing external arrival

rates. The network configurations and scenario definitions of networks A, B and C are displayed

13
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Figure 2: Comparison with the methods of Altiok and Perros (1987) and of Takahashi, Miyahara and

Hasegawa (1980) under two capacity configurations.

γ7 7 8 9

4 5 6

γ1 1 2 3

4 8

γ1 1 3 5 7 9

2 6

Figure 4: Topologies of networks B and C (left and right hand side respectively).

in Table 5. Network A is a simplified version of the case study network presented in Section 6. Its

topology and transition probabilities are the same as that of the case study. The transition probability

matrix is in Table 7. The simplifications with regards to the case study concern the number of servers

per station and the external arrival rates. The topologies of networks B and C are displayed in

Figure 4. For a given station the transition probabilities are uniformly distributed among the possible

destinations. In order to validate our results we developed the corresponding simulation models using

a discrete event simulator, ProModel version 4.1. Let to denote the temporal unit of the transition

rates (e.g. minutes, hours). The simulation runs consisted of 20 replications with a warm-up time of

10000 to and further run time of 40000 to.
Figure 5 displays a histogram of the errors of the distributional estimates for all three networks. For

all scenarios, stations and states we consider: π(i)(a,b) −π∗(i)(a,b), where π(i)(a,b) denotes our estimate

of the probability that station i is in state (a, b) and π∗ is the simulation estimate. There are a total

of 1200 estimates. 70% of the absolute errors are smaller than 0.0065, 80% smaller than 0.0125 and

90% smaller than 0.0241. Our method therefore yields good distributional estimates.

In order to illustrate the blocking information derived by our method we consider the scenarios of

network C (Table 5). Figure 6 displays the estimates of the distribution of station five given by our

14



µ1 = 3, µ2 = 1, c1 = c2 = 1

γ1 = 1, γ2 = 0

scenario K1 − c1 K2 − c2

1 1 1

2 1 2

3 2 1

4 2 2

5 2 3

6 3 3

7 4 4

8 5 5

9 10 10

1 2γ1

Table 4: Increasing buffer size scenar-

ios that are applied to the tandem two

station topology depicted under the ta-

ble.

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5
Network throughput

increasing buffer size scenarios

 

 
our approx.
Takahashi
Kerbache
Singh
Hillier
Boxma
Bell’s bound

Figure 3: Comparison of the mean throughput estimate of

various decomposition methods with the theoretical upper

bound derived by Bell (1982).

method and those obtained via simulation. Each plot considers a given state s = (a, b) and plots π(5)s
for all scenarios. The scenarios are in a lighter color as the external arrival rate of station one increases.

The simulated distribution is depicted as empty squares, whereas our estimates are represented by

filled circles. The figure shows that as the external arrival rates increase the states with blocked jobs

become more likely, e.g. states (a, b) in {(1, 1), (1, 2), (2, 1)}. For all states our estimates follow the

trend of the simulated probabilities. Overall the estimates are very accurate.

5.3 Convergence of validation runs

A description of the convergence of the algorithm under the different validation runs is tabulated in

Table 6. Columns 2-4 summarize the number of iterations, and column 5 gives the average time until

convergence across the scenarios. The threshold for the stopping criteria was chosen as 10−15. Con-

vergence was attained when either the first-order optimality condition was smaller than this threshold

or when both the relative value and the sum of squares of the system of equations were smaller than

the threshold. If after 150 iterations there was no convergence the run was stopped and initialized

again. Across all 44 runs 7 required a second initialization to reach convergence.

6 Case study

We now apply our method to a real case study. We consider the patient flow in a network of hospital

operative and post-operative units. Clinically, bed blocking may occur for example when a recovered

intensive care patient cannot proceed to the intermediate care facility due to unavailable beds, he is

said to be blocked until his placement is possible. Studies have acknowledged that bed unavailability
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Network A
station index i: 1 2 3 4 5 6 7 8 9

γi - 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0

µi 0.3 0.3 0.3 0.1 0.01 0.014 0.1 0.4 0.5

∀i ci = Ki = 3, card(Si) = 10

scenario γ1

1 0.1

2 0.2

3 0.3

4 0.4

Network B
station index i: 1 2 3 4 5 6 7 8 9

γi - 0 0 0 0 0 - 0 0

µi 0.3 0.3 0.3 0.6 0.6 0.6 0.3 0.3 0.3

∀i ci = Ki = 3, card(Si) = 10

scenario γ1 γ7

1 0.1 0.1

2 0.3 0.3

3 0.5 0.5

4 0.7 0.7

5 0.9 0.9

Network C
station index i: 1 2 3 4 5 6 7 8 9

γi - 0 0 0 0 0 0 0 0

µi 0.3 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.3

∀i ci = Ki = 3, card(Si) = 10

scenario γ1

1 0.1

2 0.3

3 0.5

4 0.7

5 0.9

Table 5: Configuration and scenario definitions for networks A, B and C.

Runs
nb of iterations average total nb

min mean max time (sec) of scenarios

Triangular
case a 7 10.7 20 0.08 10

case b 7 9 13 0.07 10

Tandem two station 6 6.9 9 0.06 10

Networks A, B and C 11 23.6 39 0.7 14

Table 6: Convergence of validation runs

renders the emergency and surgical admissions procedure less flexible and less responsive (Mackay,

2001). Modeling bed blocking and estimating its effects would bring both patient care and budgetary

improvements (Cochran and Bharti, 2006; Koizumi et al., 2005 ). Thus the importance of modeling

the bed blocking phase within a patients recovery procedure. Although few analytic models incorpo-

rating blocking have been developed, there is a recently recognized need for them. This is a recent

aim defined by Cochran and Bharti (2006): “The next generation of the methodology would include

an approximation of the blocking of patients in the queueing model”. The existing analytic models

that account for blocking in the healthcare sector have limited their study to feed-forward networks

with at most three finite capacity queues (Koizumi et al., 2005; Weiss and McClain, 1987; Hershey,

Weiss and Cohen, 1981).

The hospital of interest is the Geneva University Hospital (denoted HUG). The considered units are

the emergency operating suite (BO U), elective operating suite (BO OPERA), otorhinolaryngology

operating suite (BO ORL), surgical intensive care (IF CHIR), medical intensive care (IF MED), med-

ical intermediate care (IM MED), neuro-surgical intermediate care (IM NEURO), elective recovery

(REV OPERA) and otorhinolaryngology recovery (REV ORL). Here the patients are modeled as jobs.
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Figure 5: Histogram of the errors of the distributional estimates for all scenarios of networks A, B and

C.

Since there is no waiting space each unit is modeled as a bufferless station (ci = Ki). The servers of

interest are the beds. The blocking-after-service (BAS) mechanism of our model accurately mimics

in-patient bed blocking. The capacities of the different units were estimated according to the evalua-

tions of HUG members. HUG members also extracted patient flow data which we used to estimate the

exogenous parameters γ, µ and pij. Maximum likelihood estimates were used for γ and µ, whereas as

the transition probabilities were estimated by the transition frequencies. The data consisted of 25336

patient records ranging over a year. The configuration of the network is presented in Table 7. Note

that the sum of the transition probabilities for a given unit (i.e. a given line) may not sum to 1, in

this case 1−
∑

j pij represents the probability of exiting the network given that the job is at station i.
The network consists of 9 operative and post-operative units, with 49 possible transitions, containing

numerous cycles. This makes the network prone to blocking. We have also carried out this case study

using the simulator. This allows us to compare our distributional estimates to those obtained via

simulation. The simulation setup is the same as that of Section 5.2. Figure 7 displays the histogram

of the errors of the distributional estimates. The 90th, 95th and 99th percentiles of the absolute errors

are 0.008, 0.02 and 0.0733 respectively. We have four estimates that have an absolute error larger than

0.1. Figure 8 displays a more detailed error distribution by omitting the four estimates with absolute

errors beyond 0.1. These figures show that overall the distributional estimates are very good. The

cumulative distribution function for the total number of jobs at each station are depicted in Figure

9. The estimates of our method are represented by filled circles, whereas the simulation estimates are

denoted by empty squares. All stations except stations seven and nine have excellent estimates.

Three of the four previously mentioned estimates with large errors concern station seven, the fourth

error concerns station nine. Explaining the cause of these large errors is not a straightforward task

given the correlation between the endogenous parameters of our system of equations. The detailed

distributions of stations seven and nine are displayed in Figure 10. The estimates of our method are

represented by filled circles, whereas the simulation estimates are denoted by empty squares. The

states (a, b) are ordered by increasing number of active jobs and then increasing number of blocked
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Figure 6: Distribution of station 5 for network C across all scenarios.

jobs. This figure shows that for station seven the state (4,0) is underestimated and for station nine it

is the blocked states (0,1) and (0,2) that are underestimated. These misestimations may be correlated

since p̃97 = 0.82 (displayed in Table 8 and discussed later on), i.e. given that a job is blocked at station

nine the probability that is has been blocked by station seven is 0.82. Thus the underestimation of

the occupation of station seven may lead to an underestimation of the blocking at station nine.

The outputs of our model can help us quantify the blocking, and also investigate its sources. The

transition probabilities conditional on a patient being blocked, p̃ij , displayed in Table 8, can help us

determine the source of blocking. The probabilities have been rounded to 10−2, those smaller than

0.01 are denoted by a dashed line. For a given unit (i.e. a given line in the table) we can identify the

destination units that are more likely to block patients. This table helps us detect three main sources

of blocking. IF MED and IM MED mutually block each others patients. The same holds for IF CHIR

and IM NEURO. This first type of blocking (mutual blocking) may be irrelevant in practice given that

the swapping of patients can be identified and carried out easily. The second source of blocking which

may be more difficult to solve is the blocking at operating units (BO U, BO OPERA or BO ORL) due

to IF CHIR. Moreover, the performance of BO U is strongly linked to its responsiveness, which will

be deteriorated by blocking. The third source of blocking occurs at the recovery units (REV OPERA

and REV ORL) and is due to IM NEURO.

Other performance measures of the different units are depicted in Table 9. It is important to notice

that although P f
i quantifies the occurrence of blocking at a given unit, it does not capture the impact

that a given blocking event may have on the unit or the patient which is blocked. Take for example the

ORL recovery unit where P f
i = 0.03, that is on average the probability of a patient getting blocked at

that unit is 0.03. In this unit the average service time is 1.9 hours (1/µ9) and blocking is mainly due

to IM NEURO (p̃97 = 0.82) where the average service time is 66.67 hours (1/µ7). Thus the average

blocked time at the ORL recovery due to IM NEURO will have a strong impact on the ORL recovery
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BO U BO OPERA BO ORL IF CHIR IF MED IM MED IM NEURO REV OPERA REV ORL

ci 4 8 5 18 18 4 4 10 6

γi 0.392 0.502 0.246 0.059 0.176 0.025 0.013 0.155 0

µi 0.317 0.255 0.335 0.013 0.015 0.014 0.015 0.22 0.518

card(Si) 15 45 21 190 190 15 15 66 28

∀i Ki = ci

(pij) =





























0 0 0 0.16 0.02 0 0 0.71 0

0 0 0 0.07 0 0 0 0.84 0

0 0 0 0.03 0.01 0 0 0 0.95

0.18 0.01 0.03 0 0.03 0.01 0.11 0.03 0

0.05 0.01 0.01 0.01 0 0.07 0 0 0

0.02 0 0 0.01 0.1 0 0 0 0

0.05 0 0.05 0.04 0 0 0 0.01 0

0 0 0 0 0 0 0.01 0 0

0 0 0 0.05 0 0 0.05 0.02 0





























Table 7: Configuration of the Geneva University Hospital network of operative and post-operative

units.

unit. This can also be seen when comparing E[Bi]/E[Ni] and P f
i . The fact that E[Bi]/E[Ni] is much

larger than P f
i also indicates that although blocking may be rare the impact that it may have on

the unit or on the job is not to be ignored. In the case of the ORL recovery unit these performance

measures are 0.11 and 0.03 respectively.

The threshold for the stopping criteria of the algorithm was chosen as 10−9. Over a set of 20 runs

the average convergence time was 20.5 min, and the average number of iterations required was 2200.4.

The jacobian at the solution is ill-conditioned. The 2-norm condition number is 1.310. The application

of preconditioning methods is a source of further improvement.

7 Conclusions and future work

We have presented a method allowing the analysis of network flows via the use of analytic queueing

networks that acknowledge the finite capacity property of the real system. The model is adapted for

multiple server finite capacity queueing networks with an arbitrary topology and blocking-after-service.

The analysis method is based on a decomposition of the network into single queues whose structural

parameters are approximated so that they can account for the between-queue correlation. Unlike pre-

existing methods the network topology and its configuration are preserved throughout the analysis

thus no constraints need to be checked a posteriori. This renders the method suitable for use within an

optimization framework. The originality of this method also lies in its capacity to explicitly model the

blocking phase that jobs may go through under congested traffic conditions. Performance measures

have been validated by comparison with both pre-existing methods and with a theoretical upper bound

on the average throughput, on networks with varying buffer size or service rates. The distributional

approximations have been compared to those obtained via simulation on a set of networks under a

set of scenarios with varying arrival rates, namely under high intensity traffic. This has allowed us to

validate distributional information concerning blocked jobs, which will be used in the description of

congestion effects. In both types of validations the results are very encouraging.

Pre-exiting methods that allow for feedback topologies have assumed that no deadlock occurs or that it

is solved instantaneously (e.g. by swapping). The latter approach, although more realistic, violates the

FIFO service mechanism assumption. Such as other methods our method does not detect nor solve
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Figure 7: Histogram of errors for the distribution estimates of the HUG network.

deadlock occurrence. Nevertheless we believe that it is of interest to investigate analytic deadlock

detection methods.

Further improvements of the method will focus on two main topics. Firstly we will consider aggregating

the state space for stations with large capacities, this will considerably reduce the size of the system of

equations. Secondly we wish to improve the approximation of the transition probabilities conditional

on the job being blocked. This model will be combined with a simulation model within an optimization

framework, while ensuring consistency between the two models. The aim of this framework is to allow

us to benefit from an optimization friendly analytic model, while accounting for fine details that can

be reproduced by the simulation tool.
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