A latent route choice model in Switzerland

M. Bierlaire, E. Frejinger and J. Stojanovic

transp-or.epfl.ch

Transport and Mobility Laboratory, EPFL

Outline

- Swiss mobility pricing project
- Aggregate observations and latent choices
- Modeling approach
- Empirical results
- Conclusion

Mobility Pricing

Swiss Mobility Pricing Project

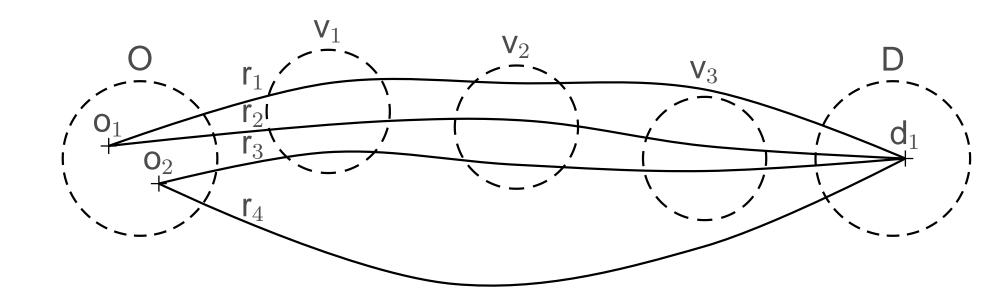
- A part of a major study on various mobility pricing scenarios in Switzerland
- A collaboration with ETH Zurich and USI Lugano
- Revealed Preferences (RP) and Stated Preferences
 (SP) data has been collected
- RP data concern long distance route choice by car
 - Route descriptions are approximative
 - Route choices are latent

Objective

- Estimate route choice models based on latent chosen routes
- Literature on latent choice models
 - Ben-Akiva et al. (1984), label path approach
 - Ben-Akiva and Lerman (1985), destination choice
 - Toledo et al. (2003), lane choice

Observations

- Exact descriptions of chosen routes are difficult and expensive to obtain
- The concept of path and network as we need for modeling is abstract for respondents
- Here, a chosen route is described by a sequence of cities and locations
- Aggregate observations (several paths in the network can correspond to the same observation)



Observations

- Better quality of the observations
- Travelers do not need to refer to the network used by the analyst
- Exact origin-destination pairs are not necessarily known
- Exact route is not known

Observations - Example

Modeling Approach

- Several possible modeling approaches
 - Construction of paths from the aggregate observations
 - Involves subjective judgments and generate noise
 - Alternatives in the model are aggregates instead of physical paths
 - Estimated model is of little use in practice
- Our approach: compute the likelihood of an aggregate observation for a classical route choice model

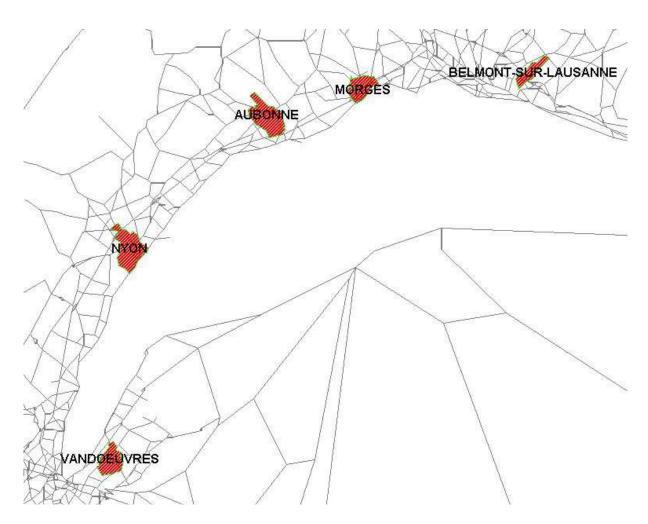
Modeling Approach

Probability of an aggregate observation i:

$$P(i) = \sum_{s \in S} P(s|i) \sum_{r \in C_s} P(r|i) P(r|C_s)$$

- s: origin-destination pair
- S: set of all origin-destination pairs
- r: route
- C_s : set of all routes for origin-destination pair s

Modeling Approach


Probability of an aggregate observation i:

$$P(i) = \sum_{s \in S} P(s|i) \sum_{r \in C_s} P(r|i) P(r|C_s)$$

- P(s|i) and P(r|i) can be modeled in several ways
- $P(r|C_s)$: route choice model that is identifiable if
 - 1. at least one of the routes in C_s crosses the observed zones, and
 - 2. at least one route in C_s does not cross the observed zones.
- This type of models can be estimated with BIOGEME

- Simplified Swiss network (39411 links and 14841 nodes)
- RP data collection through telephone interviews
- Long distance car travel
- The chosen routes are described with the origin and destination cities as well as 1 to 3 cities or locations that the route pass by
- 940 observations available after data cleaning and verification

- This application is one of few presented in the literature that are based on RP data
- The network is to our knowledge the largest one used for evaluation of route choice modeling approaches

 No information available on the exact origin destination pairs

$$P(s|i) = \frac{1}{|S_i|} \ \forall s \in S_i$$

• P(r|i) is modeled with a binary variable

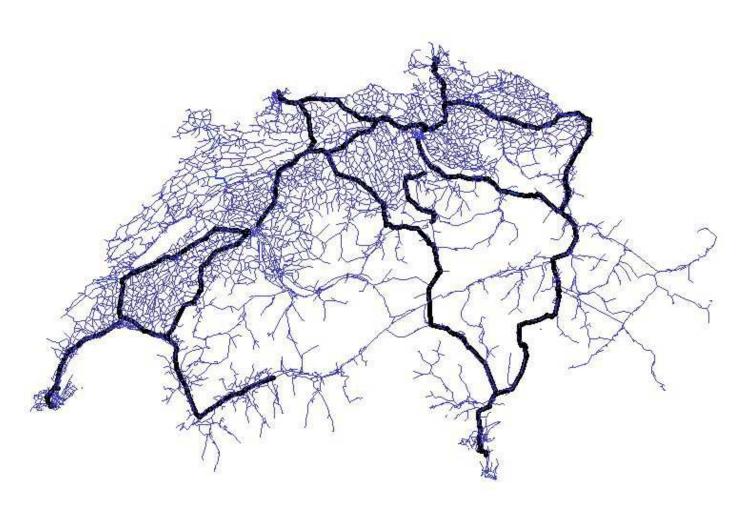
$$\delta_{ri} = \begin{cases} 1 & \text{if } r \text{ corresponds to } i \\ 0 & \text{otherwise} \end{cases}$$

- Two origin-destination pairs are randomly chosen for each observation
- 46 routes per choice set are generated with a choice set generation algorithm
- After choice set generation 780 observations are available
 - 160 observations were removed because either all or none of the generated routes crossed the observed zones

Probability of an aggregate observation i

$$P(i) = \sum_{s \in S_i} \frac{1}{|S_i|} \sum_{r \in C_s} \delta_{ri} P(r|C_s)$$

- We estimate Path Size Logit (Ben-Akiva and Bierlaire, 1999) and Subnetwork (Frejinger and Bierlaire, 2006) models
- BIOGEME (biogeme.epfl.ch) used for all model estimations



Empirical Results - Subnetwork

- Subnetwork: main motorways in Switzerland
- Correlation among routes is explicitly modeled on the subnetwork
- Combined with a Path Size attribute
- Linear-in-parameters utility specifications

Empirical Results - Subnetwork

Parameter	PSL		Subnetwork	
In(path size) based on free-flow time	1.04	(0.134) 7.81	1.10	(0.141) 7.78
Scaled Estimate	1.04		1.04	
Freeway free-flow time 0-30 min	-7.12	(0.877) -8.12	-7.45	(0.984) -7.57
Scaled Estimate	-7.12		-7.04	
Freeway free-flow time 30min - 1 hour	-1.69	(0.875) -1.93	-2.26	(1.03) -2.19
Scaled Estimate	-1.69		-2.14	
Freeway free-flow time 1 hour +	-4.98	(0.772) -6.45	-5.64	(1.00) -5.61
Scaled Estimate	-4.98		-5.33	
CN free-flow time 0-30 min	-6.03	(0.882) -6.84	-6.25	(0.975) -6.41
Scaled Estimate	-6.03		-5.91	
CN free-flow time 30 min +	-1.87	(0.331) -5.64	-2.16	(0.384) -5.63
Scaled Estimate	-1.87		-2.04	
Main free-flow travel time 10 min +	-2.03	(0.502) -4.05	-2.46	(0.624) -3.95
Scaled Estimate	-2.03		-2.33	
Small free-flow travel time	-2.16	(0.685) -3.16	-2.75	(0.804) -3.42
Scaled Estimate	-2.16		-2.60	
Proportion of time on freeways	-2.2	(0.812) -2.71	-2.31	(0.865) -2.67
Scaled Estimate	-2.2		-2.18	
Proportion of time on CN	0 fixed		0 fixed	
Proportion of time on main	-4.43	(0.752) -5.88	-4.40	(0.800) -5.5
Scaled Estimate	-4.43		-4.16	
Proportion of time on small	-6.23	(0.992) -6.28	-6.02	(1.03) -5.83
Scaled Estimate	-6.23		-5.69	
Covariance parameter			0.217	(0.0543) 4.00
Scaled Estimate			0.205	•

	PSL	Subnetwork		
Covariance parameter		0.217		
(Rob. Std. Error) Rob. T-test		(0.0543) 4.00		
Number of simulation draws	-	1000		
Number of parameters	11	12		
Final log-likelihood	-1164.850	-1161.472		
Adjusted rho square	0.145	0.147		
Sample size: 780, Null log-likelihood: -1375.851				

- All parameters have their expected signs and are significantly different from zero
- The values and significance level are stable across the two models
- The subnetwork model is significantly better than the Path Size Logit (PSL) model

Conclusion

- Aggregate observations are convenient to report paths
- They can be used for estimating route choice models
- Care must be taken about the level of aggregation
- Parameters of the RP model are significant and meaningful
- Available in Biogeme / Bioroute

