The estimation of multivariate extreme value models from choice-based samples

M. Bierlaire, D. Bolduc and D. McFadden

Transport and Mobility Laboratory, EPFL Département d'économique, Université Laval, Québec Econometrics Laboratory, University of California, Berkeley

Outline

- Introduction
- Sampling
- Estimation
- Multivariate (aka generalized) extreme value models
- Illustrations

Introduction

- Sampling is never random in practice
- Choice-based samples are convenient in transportation analysis
- Estimation is an issue
- Main references:
 - Manski and Lerman (1977)
 - Manski and McFadden (1981)
 - Cosslett (1981)
 - Ben-Akiva and Lerman (1985)

Sampling: context

- Discrete choice model, J alternatives
- Independent variables: x
- Dependent variable (choice): *i*
- Model:

$$\Pr(i|x,\theta) = P(i|x,\theta)$$

- Unknown parameters: θ
- Joint distribution of (i, x) in the population

$$\Pr(i, x | \theta) = P(i | x, \theta) p(x).$$

Sampling: stratification

- Population partitioned into *G* groups
- Individuals randomly selected within each group
- Population size: N_P
- % of ind. from group g in population: W_g
- Sample size: N_s
- % of ind. from group g in sample: H_g
- Probability to be in the sample: $r_g = \frac{H_g N_s}{W_g N_P}$.

Sampling strategies

SRS Simple random sampling

• Only one group.

•
$$H_g = W_g$$
,

•
$$r_g = r = N_s/N_P$$
.

- xss Exogenous stratified sampling
 - Groups characterized by x

•
$$W_g = \int_{x \in X_g} p(x) dx$$

• r_g does not depend on θ .

Sampling strategies

ESS Endogenous stratified sampling

- Groups characterized by *i*
- W_g does not simplify
- r_g depends on θ
- **XESS** Exogenous and endogenous stratified sampling
 - Groups characterized both by *x* and *i*
 - W_g does not simplify
 - r_g depends on θ

Sampling of alternatives

- Analyze choice as if limited to $\mathcal{B}\subseteq \mathcal{C}$
- \mathcal{B} is drawn with prob. $\pi(\mathcal{B}|i, x)$
- Positive conditioning property:

$$\pi(\mathcal{B}|i, x) > 0 \Rightarrow \pi(\mathcal{B}|j, x) > 0 \quad \forall j \in \mathcal{B}.$$

• Appropriate sampling:

$$\pi(\mathcal{B}|i,x) > 0 \Rightarrow r_{g(i,x)} > 0$$

Sampling

Probability that a population member with configuration (i, x) is sampled, and is assigned the truncated choice set \mathcal{B} :

$$R(i, x, \mathcal{B}, \theta) = \Pr(s, \mathcal{B}|i, x, \theta) = r_{g(i,x)}(\theta)\pi(\mathcal{B}|i, x).$$

Estimation

Conditional Maximum Likelihood (CML) Estimator

$$\max_{\theta} \mathcal{L}(\theta) = \sum_{n=1}^{N} \ln \Pr(i_n | x_n, \mathcal{B}_n, s, \theta)$$

$$\frac{N}{N} = B(i_n | x_n, \mathcal{B}_n, \theta) P(i_n | x_n, \theta)$$

. .

$$= \sum_{n=1}^{N} \ln \frac{R(i_n, x_n, \mathcal{B}_n, \theta) P(i_n | x_n, \theta)}{\sum_{j \in \mathcal{B}_n} R(j, x_n, \mathcal{B}_n, \theta) P(j | x_n, \theta)}$$

In practive, $R(i_n, x_n, \mathcal{B}_n, \theta)$ cannot be computed, namely because it requires p(x)

Assume that $R(i, x, \mathcal{B}, \theta)$ can be written as

$$R(i, x, \mathcal{B}, \theta) = Q(i, x, \mathcal{B})S(i, x, \mathcal{B}, \theta).$$

Pseudo-likelihood function

$$\widehat{\mathcal{L}} = \sum_{n=1}^{N} Q(i_n, x_n, \mathcal{B}_n)^{-1} \ln \frac{S(i_n, x_n, \mathcal{B}_n, \theta) P(i_n | x_n, \theta)}{\sum_{j \in \mathcal{B}_n} S(j, x_n, \mathcal{B}_n, \theta) P(j | x_n, \theta)}$$

- Q = 1: CML by Manski & McFadden (1981)
- S = 1: WESML by Manski & Lerman (1977)

- Let G be the generating function of a MEV model
- Let

$$G_i(x,\beta,\gamma) = \frac{\partial G}{\partial e^{V_i(x,\beta)}} \left(e^{V_1(x,\beta)}, \dots, e^{V_J(x,\beta)}; \gamma \right).$$

• The main term in the CML formulation is:

$$\frac{S(i,x,\mathcal{B},\theta)P(i|x,\theta)}{\sum_{j\in\mathcal{B}}S(j,x,\mathcal{B},\theta)P(j|x,\theta)} = \frac{e^{V_i(\beta) + \ln G_i(x,\beta,\gamma) + \ln S(i,x,\mathcal{B},\theta)}}{\sum_{j\in\mathcal{B}}e^{V_j(\beta) + \ln G_j(x,\beta,\gamma) + \ln S(j,x,\mathcal{B},\theta)}}.$$

- The term needed for CML is MNL-like
- Case of MNL model: $G_i = 0$.

$$\frac{S(i,x,\mathcal{B},\theta)P(i|x,\theta)}{\sum_{j\in\mathcal{B}}S(j,x,\mathcal{B},\theta)P(j|x,\theta)} = \frac{e^{V_i(\beta) + \ln S(i,x,\mathcal{B},\theta)}}{\sum_{j\in\mathcal{B}}e^{V_j(\beta) + \ln S(j,x,\mathcal{B},\theta)}}.$$

- Well-known result: if ESML is used, only constants are biased
- Question: does this generalize to all MEV?
- Answer: NO

• The V's are shifted in the main formula

$$\frac{e^{V_i(\beta) + \ln G_i(x,\beta,\gamma) + \ln S(i,x,\mathcal{B},\theta)}}{\sum_{j \in \mathcal{B}} e^{V_j(\beta) + \ln G_j(x,\beta,\gamma) + \ln S(j,x,\mathcal{B},\theta)}}.$$

• ... but not in the G_i

$$G_i(x,\beta,\gamma) = \frac{\partial G}{\partial e^{V_i(x,\beta)}} \left(e^{V_1(x,\beta)}, \dots, e^{V_J(x,\beta)}; \gamma \right).$$

• ESML will not produce consistent estimates on non-MNL MEV models.

 $e^{V_i(\beta) + \ln G_i(x,\beta,\gamma) + \ln S(i,x,\mathcal{B},\theta)}$

$$\overline{\sum_{j\in\mathcal{B}} e^{V_j(\beta) + \ln G_j(x,\beta,\gamma) + \ln S(j,x,\mathcal{B},\theta)}}.$$

- New idea: estimate $\ln S(i, x, \mathcal{B}, \theta)$ from data
- Cannot be done with classical software
- But easy to implement due to the MNL-like form

- Pseudo-synthetic data
- Data base: SP mode choice for future highspeed train in Switzerland (Swissmetro)
- Alternatives:
 - 1. Regular train (TRAIN),
 - 2. Swissmetro (SM), the future high speed train,
 - 3. Driving a car (CAR).
- Generation of a synthetic population of 507600 individuals

- Attributes are random perturbations of actual attributes
- Assumed true choice model: NL

		Alternatives					
Param.	Value	TRAIN	SM	CAR			
ASC_CAR	-0.1880	0	0	1			
ASC_SM	0.1470	0	1	0			
B_TRAIN_TIME	-0.0107	travel time	0	0			
B_SM_TIME	-0.0081	0	travel time	0			
B_CAR_TIME	-0.0071	0	0	travel time			
B_COST	-0.0083	travel cost	travel cost	travel cost			

• Nesting structure:

	μ_m	TRAIN	SM	CAR
NESTA	2.27	1	0	1
NESTB	1.0	0	1	0

• 100 samples drawn from the population

Strata	$W_g N_P$	W_g	H_g	$H_g N_s$	R_g
TRAIN	67938	13.4%	60%	3000	4.42E-02
SM	306279	60.3%	20%	1000	3.26E-03
CAR	133383	26.3%	20%	1000	7.50E-03
Total	507600	1	1	5000	

- Estimation of 100 models
- Empirical mean and std dev of the estimates

		ESML			New estimator		
	True	Mean	<i>t</i> -test	Std. dev.	Mean	<i>t</i> -test	Std. dev.
ASC_SM	0.1470	-2.2479	-25.4771	0.0940	-2.4900	-23.9809	0.1100
ASC_CAR	-0.1880	-0.8328	-7.3876	0.0873	-0.1676	0.1581	0.1292
BCOST	-0.0083	-0.0066	2.6470	0.0007	-0.0083	0.0638	0.0008
BTIME_TRAIN	-0.0107	-0.0094	1.4290	0.0009	-0.0109	-0.1774	0.0009
BTIME_SM	-0.0081	-0.0042	3.1046	0.0013	-0.0080	0.0446	0.0014
BTIME_CAR	-0.0071	-0.0065	0.9895	0.0007	-0.0074	-0.3255	0.0007
NestParam	2.2700	2.7432	1.7665	0.2679	2.2576	-0.0609	0.2043
S_SM_Shifted	-2.6045						
S_CAR_Shifted	-1.7732				-1.7877	-0.0546	0.2651
ASC_SM+S_SM	-2.4575				-2.4900	-0.2958	0.1100

- Assumed true choice model: cross-nested logit
- Same utility functions
- Same samples
- Nesting structure:

	μ_m	TRAIN	SM	CAR
NESTA	4.0	0.9	0.5	0.1
NESTB	2.0	0.1	0.5	0.9

RANSP-OR

			ESML New estimator			or	
	True	Mean	<i>t</i> -test	Std. dev.	Mean	<i>t</i> -test	Std. dev
ASC_SM	0.4520	-1.0249	-11.9786	0.1233	0.8321	0.1139	3.336
ASC_CAR	0.1650	-0.7719	-10.2298	0.0916	0.4092	0.0677	3.605
BCOST	-0.0049	-0.0058	-1.8222	0.0005	-0.0044	0.3793	0.001
BTIME_TRAIN	-0.0048	-0.0087	-6.5725	0.0006	-0.0045	0.2715	0.001
BTIME_SM	-0.0040	-0.0064	-3.1970	0.0007	-0.0037	0.2426	0.001
BTIME_CAR	-0.0049	-0.0061	-1.9366	0.0006	-0.0045	0.2802	0.001
NESTA	4.0000	2.9003	-2.0751	0.5299	4.8414	0.4034	2.085
NESTB	2.0000	1.4935	-3.4632	0.1462	2.5172	0.4697	1.101
S_TRAIN	-3.3323						
S_SM	-5.7410						
S_CAR	-4.4326						
S_SM_Shifted	-2.4087				-3.6570	-0.1114	11.205
S_CAR_Shifted	-1.1003				-2.1203	-0.0897	11.368

(PAL ECOLE POLYTECHNIQUE

Illustration: real data Swissmetro

	ESML			New estimator		
Parameters	7			8		
$\mathcal{L}(0)$	-6964.7			-6964.7		
$\mathcal{L}(heta^*)$	-5203.9			-5160.3		
$ ho^2$	0.253			0.259		
$ar{ ho}^2$	0.252			0.258		
	Param.	Std. Err	<i>t</i> -test	Param.	Std. Err	<i>t</i> -test
ASC_CAR	-0.1884	0.0754	-2.4970	5.4856	2.1496	2.5519
ASC_SM	0.1475	0.1005	1.4669	-0.3880	0.1098	-3.5335
B_CAR_TIME	-0.0071	0.0012	-6.0234	-0.0097	0.0012	-8.2135
B_COST	-0.0083	0.0006	-14.4558	-0.0109	0.0007	-16.6062
B_SM_TIME	-0.0081	0.0017	-4.7251	-0.0114	0.0018	-6.3579
B_TRAIN_TIME	-0.0108	0.0011	-9.6022	-0.0131	0.0011	-12.1740
NEST	2.2626	0.1864	6.7724(1)	1.2361	0.0826	2.8602(1)
S_CAR				-6.4116	2.1132	-3.0341

Conclusions

- Except in very specific cases, ESML provides biased estimated for non-MNL MEV models
- Due to the MNL-like form of the MEV model, a new simple estimator has been proposed
- It allows to estimate selection bias from the data

