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Introduction

• Sampling is never random in practice

• Choice-based samples are convenient in transportation
analysis

• Estimation is an issue

• Main references:
• Manski and Lerman (1977)
• Manski and McFadden (1981)
• Cosslett (1981)
• Ben-Akiva and Lerman (1985)
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Sampling: context

• Discrete choice model, J alternatives

• Independent variables: x

• Dependent variable (choice): i

• Model:
Pr(i|x, θ) = P (i|x, θ)

• Unknown parameters: θ

• Joint distribution of (i, x) in the population

Pr(i, x|θ) = P (i|x, θ)p(x).
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Sampling: stratification

• Population partitioned into G groups

• Individuals randomly selected within each group

• Population size: NP

• % of ind. from group g in population: Wg

• Sample size: Ns

• % of ind. from group g in sample: Hg

• Probability to be in the sample: rg =
HgNs

WgNP
.
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Sampling strategies

SRS Simple random sampling
• Only one group.
• Hg = Wg,
• rg = r = Ns/NP .

XSS Exogenous stratified sampling
• Groups characterized by x

• Wg =
∫

x∈Xg
p(x)dx

• rg does not depend on θ.
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Sampling strategies

ESS Endogenous stratified sampling
• Groups characterized by i

• Wg does not simplify
• rg depends on θ

XESS Exogenous and endogenous stratified sampling
• Groups characterized both by x and i

• Wg does not simplify
• rg depends on θ
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Sampling of alternatives

• Analyze choice as if limited to B ⊆ C

• B is drawn with prob. π(B|i, x)

• Positive conditioning property:

π(B|i, x) > 0 ⇒ π(B|j, x) > 0 ∀j ∈ B.

• Appropriate sampling:

π(B|i, x) > 0 ⇒ rg(i,x) > 0
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Sampling

Probability that a population member with configuration (i, x) is
sampled, and is assigned the truncated choice set B:

R(i, x,B, θ) = Pr(s,B|i, x, θ) = rg(i,x)(θ)π(B|i, x).
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Estimation

Conditional Maximum Likelihood (CML) Estimator

maxθ L(θ) =
∑N

n=1 ln Pr(in|xn,Bn, s, θ)

=
N∑

n=1

ln
R(in, xn,Bn, θ)P (in|xn, θ)∑
j∈Bn

R(j, xn,Bn, θ)P (j|xn, θ)

In practive, R(in, xn,Bn, θ) cannot be computed, namely because it

requires p(x)
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Estimation

Assume that R(i, x,B, θ) can be written as

R(i, x,B, θ) = Q(i, x,B)S(i, x,B, θ).

Pseudo-likelihood function

L̂ =

N∑

n=1

Q(in, xn,Bn)−1 ln
S(in, xn,Bn, θ)P (in|xn, θ)∑
j∈Bn

S(j, xn,Bn, θ)P (j|xn, θ)

• Q = 1: CML by Manski & McFadden (1981)

• S = 1: WESML by Manski & Lerman (1977)
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Estimation of MEV models

• Let G be the generating function of a MEV model

• Let

Gi(x, β, γ) =
∂G

∂eVi(x,β)

(
eV1(x,β), . . . , eVJ (x,β); γ

)
.

• The main term in the CML formulation is:

S(i, x,B, θ)P (i|x, θ)∑
j∈B

S(j, x,B, θ)P (j|x, θ)
=

eVi(β)+ln Gi(x,β,γ)+ln S(i,x,B,θ)

∑
j∈B

eVj(β)+ln Gj(x,β,γ)+ln S(j,x,B,θ)
.
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Estimation of MEV models

• The term needed for CML is MNL-like

• Case of MNL model: Gi = 0.

S(i, x,B, θ)P (i|x, θ)∑
j∈B

S(j, x,B, θ)P (j|x, θ)
=

eVi(β)+ln S(i,x,B,θ)

∑
j∈B

eVj(β)+ln S(j,x,B,θ)
.

• Well-known result: if ESML is used, only constants are biased

• Question: does this generalize to all MEV?

• Answer: NO
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Estimation of MEV models

• The V ’s are shifted in the main formula

eVi(β)+ln Gi(x,β,γ)+ln S(i,x,B,θ)

∑
j∈B

eVj(β)+ln Gj(x,β,γ)+ln S(j,x,B,θ)
.

• ... but not in the Gi

Gi(x, β, γ) =
∂G

∂eVi(x,β)

(
eV1(x,β), . . . , eVJ (x,β); γ

)
.

• ESML will not produce consistent estimates on non-MNL MEV
models.
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Estimation of MEV models

eVi(β)+ln Gi(x,β,γ)+ln S(i,x,B,θ)

∑
j∈B

eVj(β)+ln Gj(x,β,γ)+ln S(j,x,B,θ)
.

• New idea: estimate lnS(i, x,B, θ) from data

• Cannot be done with classical software

• But easy to implement due to the MNL-like form
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Illustration: synthetic

• Pseudo-synthetic data

• Data base: SP mode choice for future highspeed train in
Switzerland (Swissmetro)

• Alternatives:
1. Regular train (TRAIN),
2. Swissmetro (SM), the future high speed train,
3. Driving a car (CAR).

• Generation of a synthetic population of 507600 individuals
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Illustration: synthetic NL

• Attributes are random perturbations of actual attributes

• Assumed true choice model: NL

Alternatives

Param. Value TRAIN SM CAR

ASC_CAR -0.1880 0 0 1

ASC_SM 0.1470 0 1 0

B_TRAIN_TIME -0.0107 travel time 0 0

B_SM_TIME -0.0081 0 travel time 0

B_CAR_TIME -0.0071 0 0 travel time

B_COST -0.0083 travel cost travel cost travel cost
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Illustration: synthetic NL

• Nesting structure:

µm TRAIN SM CAR

NESTA 2.27 1 0 1
NESTB 1.0 0 1 0
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Illustration: synthetic NL

• 100 samples drawn from the population

Strata WgNP Wg Hg HgNs Rg

TRAIN 67938 13.4% 60% 3000 4.42E-02

SM 306279 60.3% 20% 1000 3.26E-03

CAR 133383 26.3% 20% 1000 7.50E-03

Total 507600 1 1 5000

• Estimation of 100 models

• Empirical mean and std dev of the estimates
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Illustration: synthetic NL

ESML New estimator

True Mean t-test Std. dev. Mean t-test Std. dev.

ASC_SM 0.1470 -2.2479 -25.4771 0.0940 -2.4900 -23.9809 0.1100

ASC_CAR -0.1880 -0.8328 -7.3876 0.0873 -0.1676 0.1581 0.1292

BCOST -0.0083 -0.0066 2.6470 0.0007 -0.0083 0.0638 0.0008

BTIME_TRAIN -0.0107 -0.0094 1.4290 0.0009 -0.0109 -0.1774 0.0009

BTIME_SM -0.0081 -0.0042 3.1046 0.0013 -0.0080 0.0446 0.0014

BTIME_CAR -0.0071 -0.0065 0.9895 0.0007 -0.0074 -0.3255 0.0007

NestParam 2.2700 2.7432 1.7665 0.2679 2.2576 -0.0609 0.2043

S_SM_Shifted -2.6045

S_CAR_Shifted -1.7732 -1.7877 -0.0546 0.2651

ASC_SM+S_SM -2.4575 -2.4900 -0.2958 0.1100
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Illustration: synthetic CNL

• Assumed true choice model: cross-nested logit

• Same utility functions

• Same samples

• Nesting structure:

µm TRAIN SM CAR

NESTA 4.0 0.9 0.5 0.1
NESTB 2.0 0.1 0.5 0.9
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Illustration: synthetic CNL
ESML New estimator

True Mean t-test Std. dev. Mean t-test Std. dev.

ASC_SM 0.4520 -1.0249 -11.9786 0.1233 0.8321 0.1139 3.3367

ASC_CAR 0.1650 -0.7719 -10.2298 0.0916 0.4092 0.0677 3.6051

BCOST -0.0049 -0.0058 -1.8222 0.0005 -0.0044 0.3793 0.0012

BTIME_TRAIN -0.0048 -0.0087 -6.5725 0.0006 -0.0045 0.2715 0.0012

BTIME_SM -0.0040 -0.0064 -3.1970 0.0007 -0.0037 0.2426 0.0011

BTIME_CAR -0.0049 -0.0061 -1.9366 0.0006 -0.0045 0.2802 0.0013

NESTA 4.0000 2.9003 -2.0751 0.5299 4.8414 0.4034 2.0854

NESTB 2.0000 1.4935 -3.4632 0.1462 2.5172 0.4697 1.1011

S_TRAIN -3.3323

S_SM -5.7410

S_CAR -4.4326

S_SM_Shifted -2.4087 -3.6570 -0.1114 11.2056

S_CAR_Shifted -1.1003 -2.1203 -0.0897 11.3681
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Illustration: real data Swissmetro
ESML New estimator

Parameters 7 8

L(0) -6964.7 -6964.7

L(θ∗) -5203.9 -5160.3

ρ2 0.253 0.259

ρ̄2 0.252 0.258

Param. Std. Err t-test Param. Std. Err t-test

ASC_CAR -0.1884 0.0754 -2.4970 5.4856 2.1496 2.5519

ASC_SM 0.1475 0.1005 1.4669 -0.3880 0.1098 -3.5335

B_CAR_TIME -0.0071 0.0012 -6.0234 -0.0097 0.0012 -8.2135

B_COST -0.0083 0.0006 -14.4558 -0.0109 0.0007 -16.6062

B_SM_TIME -0.0081 0.0017 -4.7251 -0.0114 0.0018 -6.3579

B_TRAIN_TIME -0.0108 0.0011 -9.6022 -0.0131 0.0011 -12.1740

NEST 2.2626 0.1864 6.7724(1) 1.2361 0.0826 2.8602(1)

S_CAR -6.4116 2.1132 -3.0341
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Conclusions

• Except in very specific cases, ESML provides biased estimated
for non-MNL MEV models

• Due to the MNL-like form of the MEV model, a new simple
estimator has been proposed

• It allows to estimate selection bias from the data
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