

Random Sampling of Alternatives in a Route Choice Context

Emma Frejinger

Transport and Mobility Laboratory, EPFL, transp-or.epfl.ch

Outline

- Introduction to choice set generation
- Sampling of alternatives
- Stochastic path generation
- Derivation of sampling correction
- Numerical results
- Conclusions and future work

Introduction

Path Sampling for the Estimation of Route Choice Models – p.3/24

Introduction

- Underlying assumption in existing approaches: the actual choice set is generated
- Empirical results suggest that this is not always true
- Our approach:
 - True choice set = universal set \mathcal{U}
 - Too large
 - Sampling of alternatives

Sampling of Alternatives

 Multinomial Logit model (e.g. Ben-Akiva and Lerman, 1985):

$$P(i|\mathcal{C}_n) = \frac{q(\mathcal{C}_n|i)P(i)}{\sum_{j\in\mathcal{C}_n}q(\mathcal{C}_n|j)P(j)} = \frac{e^{V_{in}+\ln q(\mathcal{C}_n|i)}}{\sum_{j\in\mathcal{C}_n}e^{V_{jn}+\ln q(\mathcal{C}_n|j)}}$$

 C_n : set of sampled alternatives $q(C_n|j)$: probability of sampling C_n given that j is the chosen alternative

Importance Sampling of Alternatives

- Attractive paths have higher probability of being sampled than unattractive paths
- Path utilities must be corrected in order to obtain unbiased estimation results

MNL Route Choice Models

- Path Size Logit (Ben-Akiva and Ramming, 1998 and Ben-Akiva and Bierlaire, 1999) and C-Logit (Cascetta et al. 1996)
- Additional attribute in the deterministic utilities capturing correlation among alternatives
- These attributes should reflect the true correlation structure
- Hypothesis: attributes should be computed based on all paths (or as many as possible)

Stochastic Path Enumeration

- Flexible approach that can be combined with various algorithms, here a biased random walk approach
- The probability of a link l with source node v and sink node w is modeled in a stochastic way based on its distance to the shortest path
- Kumaraswamy distribution, cumulative distribution function $F(x_{\ell}|a, b) = 1 - (1 - x_{\ell}^{a})^{b}$ for $x_{\ell} \in [0, 1]$.

$$x_{\ell} = \frac{SP(v, d)}{C(\ell) + SP(w, d)}$$

Stochastic Path Enumeration

Path Sampling for the Estimation of Route Choice Models - p.9/24

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Stochastic Path Enumeration

• Probability for path j to be sampled

$$q(j) = \prod_{\ell=(v,w)\in\Gamma_j} q((v,w)|\mathcal{E}_v)$$

- Γ_j : ordered set of all links in j
- v: source node of j
- \mathcal{E}_v : set of all outgoing links from v
- In theory, the set of all paths ${\mathcal U}$ may be unbounded. We treat it as bounded with size J

Sampling of Alternatives

- Following Ben-Akiva (1993)
- Sampling protocol
 - 1. A set \widetilde{C}_n is generated by drawing *R* paths with replacement from the universal set of paths \mathcal{U}
 - 2. Add chosen path to $\widetilde{\mathcal{C}}_n$
- Outcome of sampling: $(\widetilde{k}_1, \widetilde{k}_2, \dots, \widetilde{k}_J)$ and $\sum_{j=1}^J \widetilde{k}_j = R$

$$P(\widetilde{k}_1, \widetilde{k}_2, \dots, \widetilde{k}_J) = \frac{R!}{\prod_{j \in \mathcal{U}} \widetilde{k}_j!} \prod_{j \in \mathcal{U}} q(j)^{\widetilde{k}_j}$$

• Alternative j appears $k_j = \widetilde{k}_j + \delta_{cj}$ in \widetilde{C}_n

Sampling of Alternatives

• Let
$$\mathcal{C}_n = \{j \in \mathcal{U} \mid k_j > 0\}$$

$$q(\mathcal{C}_n|i) = q(\widetilde{\mathcal{C}}_n|i) = \frac{R!}{(k_i - 1)! \prod_{\substack{j \in \mathcal{C}_n \\ j \neq i}} k_j!} q(i)^{k_i - 1} \prod_{\substack{j \in \mathcal{C}_n \\ j \neq i}} q(j)^{k_j} = K_{\mathcal{C}_n} \frac{k_i}{q(i)}$$

$$K_{\mathcal{C}_n} = \frac{R!}{\prod_{j \in \mathcal{C}_n} k_j!} \prod_{j \in \mathcal{C}_n} q(j)^{k_j}$$

$$P(i|\mathcal{C}_n) = \frac{e^{V_{in} + \ln\left(\frac{k_i}{q(i)}\right)}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} + \ln\left(\frac{k_j}{q(j)}\right)}}$$

Path Sampling for the Estimation of Route Choice Models - p.12/24

- Estimation of models based on synthetic data generated with a postulated model
- Evaluation of
 - Sampling correction
 - Path Size attribute
 - Biased random walk algorithm parameters

• True model: Path Size Logit $U_j = \beta_{PS} \ln PS_j^{\mathcal{U}} + \beta_L Length_j + \beta_{SB} SpeedBumps_j + \varepsilon_j$

$$\beta_{\rm PS} = 1$$
, $\beta_{\rm L} = -0.3$, $\beta_{\rm SB} = -0.1$

 ε_j distributed Extreme Value with scale 1 and location 0

$$\mathsf{PS}_{j}^{\mathcal{U}} = \sum_{\ell \in \Gamma_{j}} \frac{L_{\ell}}{L_{j}} \frac{1}{\sum_{p \in \mathcal{U}} \delta_{\ell p}}$$

• 3000 observations

• Four model specifications

		Sampling Correction		
		Without With		
Path	\mathcal{C}	$M_{PS(\mathcal{C})}^{NoCorr}$	$M_{PS(\mathcal{C})}^{\mathbf{Corr}}$	
Size	\mathcal{U}	$M_{PS(\mathcal{U})}^{NoCorr}$	$M_{PS(\mathcal{U})}^{\mathbf{Corr}}$	

$$\mathbf{PS}_{i}^{\mathcal{U}} = \sum_{\ell \in \Gamma_{i}} \frac{L_{\ell}}{L_{i}} \frac{1}{\sum_{j \in \mathcal{U}} \delta_{\ell j}}$$
$$\mathbf{PS}_{in}^{\mathcal{C}} = \sum_{\ell \in \Gamma_{i}} \frac{L_{\ell}}{L_{i}} \frac{1}{\sum_{j \in \mathcal{C}_{n}} \delta_{\ell j}}$$

Path Sampling for the Estimation of Route Choice Models – p.16/24

- Model $M_{PS(\mathcal{C})}^{\text{NoCorr}}$: $V_{in} = \mu \left(\beta_{\text{PS}} \ln \text{PS}_{in}^{\mathcal{C}} - 0.3 \text{Length}_{i} + \beta_{SB} \text{SpeedBumps}_{i} \right)$
- Model $M_{PS(\mathcal{C})}^{\text{Corr}}$: $V_{in} = \mu \left(\beta_{\text{PS}} \ln \text{PS}_{in}^{\mathcal{C}} - 0.3 \text{Length}_{i} + \beta_{SB} \text{SpeedBumps}_{i} + \ln(\frac{k_{i}}{q(i)}) \right)$
- Model $M_{PS(\mathcal{U})}^{\text{NoCorr}}$: $V_{in} = \mu \left(\beta_{\text{PS}} \ln \text{PS}_{in}^{\mathcal{U}} - 0.3 \text{Length}_i + \beta_{SB} \text{SpeedBumps}_i \right)$
- Model $M_{PS(\mathcal{U})}^{\text{Corr}}$: $V_{in} = \mu \left(\beta_{\text{PS}} \ln \text{PS}_{in}^{\mathcal{U}} - 0.3 \text{Length}_i + \beta_{SB} \text{SpeedBumps}_i + \ln(\frac{k_i}{q(i)}) \right)$

	True	$M_{PS(\mathcal{C})}^{NoCorr}$	$M_{PS(\mathcal{C})}^{Corr}$	$M_{PS(\mathcal{U})}^{NoCorr}$	$M_{PS(\mathcal{U})}^{Corr}$
	PSL	PSL	PSL	PSL	PSL
$\widehat{\beta}_{L}$ fixed	-0.3	-0.3	-0.3	-0.3	-0.3
$\widehat{\mu}$	1	0.182	0.724	0.141	0.994
Standard error		0.0277	0.0226	0.0263	0.0286
t-test w.r.t. 1		-29.54	-12.21	-32.64	-0.2
\widehat{eta}_{PS}	1	1.94	0.411	-1.02	1.04
Standard error		0.428	0.104	0.383	0.0474
t-test w.r.t. 1		2.20	-5.66	-5.27	0.84
\widehat{eta}_{SB}	-0.1	-1.91	-0.226	-2.82	-0.0867
Standard error		0.25	0.0355	0.428	0.0238
t-test w.r.t0.1		-7.24	-3.55	-6.36	0.56

	True	$M_{PS(\mathcal{C})}^{NoCorr}$	$M_{PS(\mathcal{C})}^{Corr}$	$M_{PS(\mathcal{U})}^{\text{NoCorr}}$	$M_{PS(\mathcal{U})}^{Corr}$
	PSL	PSL	PSL	PSL	PSL
Final Log-likelihood		-6660.45	-6082.53	-6666.82	-5933.98
Adj. Rho-square		0.018	0.103	0.017	0.125

Null Log-likelihood: -6784.96, 3000 observations

Algorithm parameters: 10 draws, a = 5, b = 1, $C(\ell) = L_{\ell}$

Average size of sampled choice sets: 9.66

BIOGEME (Bierlaire, 2007 and Bierlaire, 2003) has been used for all

model estimations

- Compute Path Size attribute based on an extended choice set C_n^{extended}
- Simple random draws from $\mathcal{U} ackslash \mathcal{C}_n$ so that

 $|\mathcal{C}_n| \leq |\mathcal{C}_n^{\mathsf{extended}}| \leq |\mathcal{U}|$

Path Sampling for the Estimation of Route Choice Models – p.21/24

- Heuristic for finding an extended choice set C_n^{extended} (all paths in C_n are included)
- "Recursive gateway approach"
 - For each link in the network we generate a path
 - We count the number of times each link is used

- Heuristic for finding an extended choice set C_n^{extended} (all paths in C_n are included)
- "Recursive gateway approach"
 - For each link in the network we generate a path
 - We count the number of times each link is used

Path Sampling for the Estimation of Route Choice Models – p.22/24

- Heuristic for finding an extended choice set C_n^{extended} (all paths in C_n are included)
- "Recursive gateway approach"
 - For each link in the network we generate a path
 - We count the number of times each link is used

- Heuristic for finding an extended choice set C_n^{extended} (all paths in C_n are included)
- "Recursive gateway approach"
 - For each link in the network we generate a path
 - We count the number of times each link is used

- Heuristic for finding an extended choice set C_n^{extended} (all paths in C_n are included)
- "Recursive gateway approach"
 - For each link in the network we generate a path
 - We count the number of times each link is used

	True	$PS(C^{extended})$	PS(C)
	PSL	PSL	PSL
$\widehat{\beta}_{L}$ fixed	-0.3	-0.3	-0.3
$\widehat{\mu}$	1	0.885	0.724
Standard error		0.0259	0.0266
t-test w.r.t. 1		-4.43	-12.21
\widehat{eta}_{PS}	1	1.52	0.411
Standard error		0.102	0.104
t-test w.r.t. 1		5.10	-5.66
\widehat{eta}_{SB}	-0.1	-0.131	-0.266
Standard error		0.0281	0.0355
t-test w.r.t0.1		-1.10	-3.55
Adj. Rho-Squared		0.114	0.103
Final Log-likelihood		-6006.96	-6082.53

Conclusions

- New point of view on choice set generation and route choice modeling
- Path generation is considered an importance sampling approach
- We present a path generation algorithm and derive the corresponding sampling correction
- Path Size should be computed based on true correlation structure Heuristic for computing an approximation is proposed
- Numerical results are very promising
 STRANSP-OR

