

Random Sampling of Alternatives in a Route Choice Context

Emma Frejinger

Transport and Mobility Laboratory, EPFL,transp-or.epfl.ch

Outline

- Introduction to choice set generation
- Sampling of alternatives
- Stochastic path generation
- Derivation of sampling correction
- Numerical results
- Conclusions and future work

Introduction

Introduction

- Underlying assumption in existing approaches: the actual choice set is generated
- Empirical results suggest that this is not always true
- Our approach:
- True choice set = universal set \mathcal{U}
- Too large
- Sampling of alternatives

Sampling of Alternatives

- Multinomial Logit model (e.g. Ben-Akiva and Lerman, 1985):

$$
P\left(i \mid \mathcal{C}_{n}\right)=\frac{q\left(\mathcal{C}_{n} \mid i\right) P(i)}{\sum_{j \in \mathcal{C}_{n}} q\left(\mathcal{C}_{n} \mid j\right) P(j)}=\frac{e^{V_{i n}+\ln q\left(\mathcal{C}_{n} \mid i\right)}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}+\ln q\left(\mathcal{C}_{n} \mid j\right)}}
$$

\mathcal{C}_{n} : set of sampled alternatives
$q\left(\mathcal{C}_{n} \mid j\right)$: probability of sampling \mathcal{C}_{n} given that j is the chosen alternative

Importance Sampling of Alternatives

- Attractive paths have higher probability of being sampled than unattractive paths
- Path utilities must be corrected in order to obtain unbiased estimation results

MNL Route Choice Models

- Path Size Logit (Ben-Akiva and Ramming, 1998 and Ben-Akiva and Bierlaire, 1999) and C-Logit (Cascetta et al. 1996)
- Additional attribute in the deterministic utilities capturing correlation among alternatives
- These attributes should reflect the true correlation structure
- Hypothesis: attributes should be computed based on all paths (or as many as possible)

Stochastic Path Enumeration

- Flexible approach that can be combined with various algorithms, here a biased random walk approach
- The probability of a link ℓ with source node v and sink node w is modeled in a stochastic way based on its distance to the shortest path
- Kumaraswamy distribution, cumulative distribution function $F\left(x_{\ell} \mid a, b\right)=1-\left(1-x_{\ell}{ }^{a}\right)^{b}$ for $x_{\ell} \in[0,1]$.

$$
x_{\ell}=\frac{S P(v, d)}{C(\ell)+S P(w, d)}
$$

Stochastic Path Enumeration

Stochastic Path Enumeration

- Probability for path j to be sampled

$$
q(j)=\prod_{\ell=(v, w) \in \Gamma_{j}} q\left((v, w) \mid \mathcal{E}_{v}\right)
$$

- Γ_{j} : ordered set of all links in j
- v : source node of j
- \mathcal{E}_{v} : set of all outgoing links from v
- In theory, the set of all paths \mathcal{U} may be unbounded. We treat it as bounded with size J

Sampling of Alternatives

- Following Ben-Akiva (1993)
- Sampling protocol

1. A set $\widetilde{\mathcal{C}_{n}}$ is generated by drawing R paths with replacement from the universal set of paths \mathcal{U}
2. Add chosen path to $\widetilde{\mathcal{C}_{n}}$

- Outcome of sampling: $\left(\widetilde{k}_{1}, \widetilde{k}_{2}, \ldots, \widetilde{k}_{J}\right)$ and $\sum_{j=1}^{J} \widetilde{k}_{j}=R$

$$
P\left(\widetilde{k}_{1}, \widetilde{k}_{2}, \ldots, \widetilde{k}_{J}\right)=\frac{R!}{\prod_{j \in \mathcal{U}} \widetilde{k}_{j}!} \prod_{j \in \mathcal{U}} q(j)^{\widetilde{k}_{j}}
$$

- Alternative j appears $k_{j}=\widetilde{k}_{j}+\delta_{c j}$ in $\widetilde{\mathcal{C}_{n}}$

Sampling of Alternatives

- Let $\mathcal{C}_{n}=\left\{j \in \mathcal{U} \mid k_{j}>0\right\}$

$$
\begin{aligned}
q\left(\mathcal{C}_{n} \mid i\right) & =q\left(\widetilde{\mathcal{C}_{n}} \mid i\right)=\frac{R!}{\left(k_{i}-1\right)!\prod_{\substack{j \in \mathcal{C}_{n} \\
j \neq i}} k_{j}!} q(i)^{k_{i}-1} \prod_{\substack{j \in \mathcal{C}_{n} \\
j \neq i}} q(j)^{k_{j}}=K_{\mathcal{C}_{n}} \frac{k_{i}}{q(i)} \\
K_{\mathcal{C}_{n}} & =\frac{R!}{\prod_{j \in \mathcal{C}_{n} k_{j}!}} \prod_{j \in \mathcal{C}_{n}} q(j)^{k_{j}}
\end{aligned}
$$

$$
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}+\ln \left(\frac{k_{i}}{q(i)}\right)}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}+\ln \left(\frac{k_{j}}{q(j)}\right)}}
$$

Numerical Results

- Estimation of models based on synthetic data generated with a postulated model
- Evaluation of
- Sampling correction
- Path Size attribute
- Biased random walk algorithm parameters

Numerical Results

Numerical Results

- True model: Path Size Logit
$U_{j}=\beta_{\mathrm{PS}} \ln \mathrm{PS}_{j}^{\boldsymbol{U}}+\beta_{\mathrm{L}}$ Length $_{j}+\beta_{\text {SB }}$ SpeedBumps $_{j}+\varepsilon_{j}$
$\beta_{\mathrm{PS}}=1, \beta_{\mathrm{L}}=-0.3, \beta_{\mathrm{SB}}=-0.1$
ε_{j} distributed Extreme Value with scale 1 and location 0
$\mathrm{PS}_{j}^{U}=\sum_{\ell \in \Gamma_{j}} \frac{L_{\ell}}{L_{j}} \frac{1}{\sum_{p \in \mathcal{U}} \delta_{\ell_{p}}}$
- 3000 observations

Numerical Results

- Four model specifications

	Sampling Correction		
		Without	With
Path	\mathcal{C}	$M_{P S(\mathcal{C})}^{\text {NoCor }}$	$M_{P S(\mathcal{C})}^{\text {Corr }}$
Size	\mathcal{U}	$M_{P S(\mathcal{U})}^{\text {Nocr }}$	$M_{P S(\mathcal{U})}^{\text {Corr }}$

$$
\begin{aligned}
& \mathrm{PS}_{i}^{\mathcal{U}}=\sum_{\ell \in \Gamma_{i}} \frac{L_{\ell}}{L_{i}} \frac{1}{\sum_{j \in \mathcal{U} \delta_{\ell j}}} \\
& \mathrm{PS}_{i n}^{\mathcal{C}}=\sum_{\ell \in \Gamma_{i}} \frac{L_{\ell}}{L_{i}} \frac{1}{\sum_{j \in \mathcal{C}_{n}} \delta_{\ell j}}
\end{aligned}
$$

Numerical Results

- Model $M_{P S(\mathcal{C})}^{\text {NoCorr. }}$:
$V_{i n}=\mu\left(\beta_{\mathrm{PS}} \ln \mathrm{PS}_{\text {in }}^{\mathcal{C}}-0.3\right.$ Length $_{i}+\beta_{S B}$ SpeedBumps $\left._{i}\right)$
- Model $M_{P S(\mathcal{C})}^{\text {Corr }}$:
$V_{i n}=\mu\left(\beta_{\mathrm{PS}} \ln \mathrm{PS}_{\text {in }}^{\mathcal{C}}-0.3\right.$ Length $_{i}+\beta_{S B}$ SpeedBumps $\left._{i}+\ln \left(\frac{k_{i}}{q(i)}\right)\right)$
- Model $M_{P S(\mathcal{U})}^{\text {NoCorr. }}$
$V_{i n}=\mu\left(\beta_{\mathrm{PS}} \ln \mathrm{PS}_{i n}^{\mathcal{U}}-0.3\right.$ Length $_{i}+\beta_{S B}$ SpeedBumps $\left._{i}\right)$
- Model $M_{P S(\mathcal{U})}^{\text {Corr }}$:
$V_{i n}=\mu\left(\beta_{\mathrm{PS}} \ln \mathrm{PS}_{i n}^{\mathcal{U}}-0.3\right.$ Length $_{i}+\beta_{S B}$ SpeedBumps $\left._{i}+\ln \left(\frac{k_{i}}{q(i)}\right)\right)$

Numerical Results

	True PSL	$M_{P S(\mathcal{C})}^{\text {NoCorr }}$ PSL	$M_{P S(\mathcal{C})}^{\text {Corr }}$ PSL	$M_{P S(\mathcal{U})}^{\text {NoCorr }}$ PSL	$M_{P S(\mathcal{U})}^{\text {Corr }}$ $P S L$
$\widehat{\beta}_{\mathrm{L}}$ fixed	$-\mathbf{0 . 3}$	-0.3	-0.3	-0.3	-0.3
$\widehat{\mu}$	$\mathbf{1}$	$\mathbf{0 . 1 8 2}$	$\mathbf{0 . 7 2 4}$	$\mathbf{0 . 1 4 1}$	0.994
Standard error		0.0277	0.0226	0.0263	0.0286
t-test w.r.t. 1		-29.54	-12.21	-32.64	-0.2
$\widehat{\beta}_{\text {PS }}$	$\mathbf{1}$	1.94	0.411	-1.02	1.04
Standard error		0.428	0.104	0.383	0.0474
t-test w.r.t. 1		2.20	-5.66	-5.27	0.84
$\widehat{\beta}_{\text {SB }}$	$-\mathbf{0 . 1}$	-1.91	-0.226	-2.82	-0.0867
Standard error		0.25	0.0355	0.428	0.0238
t-test w.r.t. -0.1		-7.24	-3.55	-6.36	0.56

Numerical Results

	True	$M_{P S(\mathcal{C})}^{\text {NoCorr }}$	$M_{P S(\mathcal{C})}^{\text {Corr }}$	$M_{P S(\mathcal{U})}^{\text {NoCor }}$	$M_{P S(\mathcal{U})}^{\text {Corr }}$
	PSL	PSL	PSL	PSL	PSL
Final Log-likelihood		-6660.45	-6082.53	-6666.82	-5933.98
Adj. Rho-square		0.018	0.103	0.017	0.125

Null Log-likelihood: -6784.96, 3000 observations
Algorithm parameters: 10 draws, $a=5, b=1, C(\ell)=L_{\ell}$
Average size of sampled choice sets: 9.66
BIOGEME (Bierlaire, 2007 and Bierlaire, 2003) has been used for all model estimations

Extended Path Size

- Compute Path Size attribute based on an extended choice set $\mathcal{C}_{n}^{\text {extended }}$
- Simple random draws from $\mathcal{U} \backslash \mathcal{C}_{n}$ so that

$$
\left|\mathcal{C}_{n}\right| \leq\left|\mathcal{C}_{n}^{\text {extended }}\right| \leq|\mathcal{U}|
$$

Extended Path Size

Extended Path Size

- Heuristic for finding an extended choice set $\mathcal{C}_{n}^{\text {extended }}$ (all paths in \mathcal{C}_{n} are included)
- "Recursive gateway approach"
- For each link in the network we generate a path
- We count the number of times each link is used

Extended Path Size

- Heuristic for finding an extended choice set $\mathcal{C}_{n}^{\text {extended }}$ (all paths in \mathcal{C}_{n} are included)
- "Recursive gateway approach"
- For each link in the network we generate a path
- We count the number of times each link is used

Extended Path Size

- Heuristic for finding an extended choice set $\mathcal{C}_{n}^{\text {extended }}$ (all paths in \mathcal{C}_{n} are included)
- "Recursive gateway approach"
- For each link in the network we generate a path
- We count the number of times each link is used

Extended Path Size

- Heuristic for finding an extended choice set $\mathcal{C}_{n}^{\text {extended }}$ (all paths in \mathcal{C}_{n} are included)
- "Recursive gateway approach"
- For each link in the network we generate a path
- We count the number of times each link is used

Extended Path Size

- Heuristic for finding an extended choice set $\mathcal{C}_{n}^{\text {extended }}$ (all paths in \mathcal{C}_{n} are included)
- "Recursive gateway approach"
- For each link in the network we generate a path
- We count the number of times each link is used

Extended Path Size

	True	PS $\left(C^{\text {extended }}\right)$	PS (C)
PSL	PSL	PSL	
$\widehat{\beta}_{\mathrm{L}}$ fixed	-0.3	-0.3	-0.3
$\widehat{\mu}$	$\mathbf{1}$	$\mathbf{0 . 8 8 5}$	$\mathbf{0 . 7 2 4}$
Standard error		0.0259	0.0266
t-test w.r.t. 1		-4.43	-12.21
$\widehat{\beta}_{\text {PS }}$	$\mathbf{1}$	$\mathbf{1 . 5 2}$	0.411
Standard error		0.102	0.104
t-test w.r.t. 1		5.10	-5.66
$\widehat{\beta}_{\text {SB }}$	$-\mathbf{0 . 1}$	-0.131	-0.266
Standard error		0.0281	0.0355
t-test w.r.t. -0.1		-1.10	-3.55
Adj. Rho-Squared		0.114	0.103
Final Log-likelihood		-6006.96	-6082.53

Conclusions

- New point of view on choice set generation and route choice modeling
- Path generation is considered an importance sampling approach
- We present a path generation algorithm and derive the corresponding sampling correction
- Path Size should be computed based on true correlation structure
Heuristic for computing an approximation is proposed
- Numerical results are very promising

