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Abstract
The Kohn–Sham formulation of density functional theory (DFT) has posed itself as one of the most

popular and versatile methods for condensed phase studies owing to its reasonable accuracy and af-

fordable computational cost. DFT, in principle, yields exact ground state energy, including dispersion

forces that are of primordial importance in chemical and biological systems. Yet with many exchange-

correlation functionals in practical use such as the local density approximation or generalized gradient

approximations, DFT either provides sporadic results or fails completely to account for these forces. In

consequence, various methods offering remedy for this shortcoming have been proposed in this active

field of research. In particular, dispersion-corrected atom-centered potentials (DCACPs) serve as a ro-

bust and efficient way to include these weak forces in a fully self-consistent manner within current DFT

frameworks.

The aim of this thesis is twofold: first, to improve the predictive power and the understanding of the

DCACP concept; second, applying DCACPs to systems of increasing complexity starting with dimers,

continuing through larger clusters and ending with the condensed phase. The success of the second

aim not only justifies the use of DCACPs but more importantly, provides insights to the role dispersion

forces play in the systems investigated.

We first draw on the atoms-in-molecules theory and a multi-center density expansion to justify the

form and universality of DCACPs. A library of DCACPs calibrated with an improved penalty functional

against high-levelab initio references is presented. With the library in hand, we extend our studies

to systems of biological significance, mainly constituents of proteins and DNA; polycyclic aromatic

molecules intercalated in between segments of DNA are the center of focus. The application of DCACPs

is then furthered to the condensed phase and the importance of van der Waals interactions in liquid water

is investigated.

Keywords: amino acids, density functional theory, dispersion-corrected atom-centered potentials, dis-

persion forces, interaction energy, liquid water, nucleic acids.
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Résumé
La formulation de Kohn–Sham de la théorie de la fonctionnelle de la densité (DFT) s’est imposée

comme l’une des méthodes les plus populaires et les plus souples pour les études en phase condensée,

grace à sa précision raisonnable pour un coût informatique abordable. La DFT, en principe, permet

d’obtenir l’énergie exacte de l’état fondamental d’un système, y compris la contribution des forces de

dispersion qui sont de première importance dans les systèmes chimiques et biologiques. Pourtant, avec

de nombreuses fonctionnelles d’échange-corrélation couramment utilisées – telles l’approximation de la

densité locale ou les approximations du gradient généralisé – la DFT fournit des résultats sporadiques,

voire échoue complètement à reproduire ces forces. Par conséquent, diverses méthodes permettant de

corriger cette imperfection ont été dévelopées. Les potentiels centrés sur les atomes et corrigés pour

la dispersion (DCACPs) constituent une approche prometteuse pour inclure ces forces faibles de facon

cohérente dans le cadre de la DFT.

Le but de cette thèse est double: premièrement, l’amélioration de la performance prédictive et de

la compréhension du concept de DCACP; deuxièmement, l’application des DCACPs à des systèmes

de complexité croissante: des dimères, de plus grands clusters, et finalement la phase condensée. La

seconde partie justifie l’utilisation des DCACPs, mais aussi, plus important, elle fournit des informations

sur le rôle des forces de dispersion dans les systèmes étudiés.

Nous nous basons sur la théorie de la mécanique moléculaire des atomes et sur un développement

multi centré de la densité pour justifier la forme et l’universalité des DCACPs. Une librairie de DCACPs

calibrés avec une fonctionnelle de pénalité améliorée et des valeurs de référence calculées ab initio

à niveau élevé a d’abord été dévelopée. A l’aide de cette librairie, nous avons élargi notre étude à

des systèmes d’importance biologique, principalement aux constituants des protéines et aux acides dé-

soxyribonucléique (ADN) pour lesquels; nous nous sommes focalisés sur l’intercalation de molécules

aromatiques polycycliques entre des segments d’ADN. L’application des DCACPs a ensuite été étendue

à la phase condensée, avec l’étude de l’importance des interactions de van der Waals dans l’eau liquide.

Mots-clé: acides aminés, acides nucléiques, eau liquide, énergie d’interaction, forces de dispersion,

théorie de la fonctionnelle de la densité, potentiels centrés sur les atomes et corrigés pour la dispersion.
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2 Chapter 1. Introduction

Computer Simulations

The expanding role of computer simulations in basic sciences has been fueled by the steady progress in

computer technology and in the development of numerical algorithm. The performance to price ratio

has increased significantly over the years and shows no signs of abating. Moreover, the introduction

of massive parallelization in computer architecture will certainly maintain this present trend. With this

rapid advance in both hardware and software, simulating highly complex systems over a longer time

scale with theories or models based on less assumptions and approximations has become feasible.

Predicting properties of intricate molecular systems via computer simulations –in silico experiments

– is certainly not yet accurate enough to justify a total replacement of experimental measurements; in-

stead, the strength of simulations lies in their ability to give insights into the planning and analysis

of their conventional counterparts. At the most basic level, computer simulations provide a standard

tool in determining the spatial structures obtained from experiments such as X-ray crystallography and

neutron diffraction; electronic structure calculations can also be directly compared with a variety of

spectroscopic data (Infrared, Raman, and NMR) without additional assumptions. Simulations, in ad-

dition, allow one to probe the relation between microscopic properties and macroscopic behavior. A

microscopic model can be modified with a high degree of confidence, and the consequences on the

macroscopic behavior of the molecular system can then be evaluated. The level of control that can be

exertedin silico is nearly impossible to achieve in conventional experiments since modifications in the

latter tend to have unintentional secondary effects that can be difficult to differentiate from the primary

effect being studied.In silico experiments thus offer a clean and clear-cut way to test hypotheses re-

garding, for example, biological phenomena at the molecular level, including structures of biomolecules

or mechanisms of enzyme catalysis. Furthermore, qualitative, sometimes even quantitative, theoretical

estimates for quantities like binding constants of ligands to receptors can be obtained even when the

production of the specific ligand is too costly or the measurement too time-consuming to carry out. Last

but not least, simulations can be performed under unobservable or extreme conditions of temperature

and pressure inaccessible by conventional experiments, freeing scientific investigation to what cannot

be seen, touched, nor made.

The reliability of simulations depends on whether the relevant phase space is sufficiently sampled,

the degree to which the microscopic system simulated reflects the typically macroscopic system in na-
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ture, and the accuracy of the theory/model adopted. In order to enhance the accessible time scale, an

appropriate model combined with a clever choice of rare-event sampling techniques is necessary. Clas-

sical force fields are able to access either very long runs (up to about one microsecond) for a medium

number of particles (< 104) or shorter period of time for systems containing106 particles or more; in

coarse-grained methods, an atomistic description is replaced by a lower-resolution model that averages

away fine details so even longer time- and length-scale dynamics become tractable. The limitation of

length-scale can also be circumvented by multi-scale simulations [1–3] where the system is divided into

various subsystems that are treated at different level of details and bridged by transition regions defined

in a coherent fashion,e.g., quantum mechanics/molecular mechanics [4–6]. Nevertheless, one needs to

strike a fine balance between the level of accuracy targeted in different subsystems so the computing

effort for the subsystem treated with a highly accurate method is not wasted because of some distorting

effects from the cruder parts of the model. When the degrees of freedom are infinitely dense or suffi-

ciently sampled, the accuracy of simulations will depend solely on the quality of the assumptions and

approximations chosen. In order to establish a firm foundation for applyingin silico experiments, the

theoretical predictions and experimental data should be compared whenever possible, bearing in mind

that a good agreement between calculated and experimental data can sometimes be due to fortuitous

error cancellations.

Complementary to experiments, computer simulations have played an equal, and sometimes pivotal,

role in quantitative characterizations and in advancing qualitative understandings. Although there are

still problems not yet solved and will remain at the forefront for many years to come, the ongoing devel-

opment and steady advance will only further stress their status as the central and basic methodological

approach in the future.

Motivation

Well-established empirical force fields based on two-body interactions have made headway in computer

simulations. Many of them, however, are parameterized against experimental data, calling into ques-

tion their predictive power for situations differing largely from the reference system. Moreover, since

many-body effects are represented in an effective way by modifying the two-body interaction terms,

a direct physical interpretation of the simulated phenomena at the molecular level is sometimes not
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straightforward, and the neglect of cooperative effects can also be problematic. In addition, most stan-

dard force fields employ fixed point charges and do not allow the flexibility for an explicit polarization

of atoms. The most obvious limitation of empirical force fields lies in their inability to describe reactive

events since they are unable to adapt to changes in chemical environment with their predefined fixed

parameters.

The use ofab initio methods minimizes the risk of violating assumptions implicit in the parame-

terization of empirical or semi-empirical approaches; features difficult or impossible to describe with

force fields such as electronic polarization effects or bond breaking/forming events can be treated self-

consistently. Their application, however, is limited to only a few hundred nuclei, and the accessible time

scale is in the (tens of) picosecond range.

Even though the available computer resources are usually one of the main considerations when

choosing one particular model over the other, the dominant factor still hinges on the physical adequacy of

the chosen model for the specific property one is interested in. For reactive events, a quantum mechanical

treatment of electronic degrees of freedom with the nuclear coordinates as parameters is mandatory.

In addition, a detailed atomistic investigation of a biological system, for example, often requires the

knowledge of its electronic structure.

The Kohn–Sham (KS) formalism of density functional theory (DFT) [7,8] has proven its popularity

in solid state physics and has steadily expanded its stronghold to biological systems such as proteins and

nucleic acids. It scales favorably with the system size compared with Hartree–Fock (HF) and high-level

correlatedab initio methods, and it has the further advantage over HF for being able to treat electron

correlation effects to a certain extent. From the implementation point of view, DFT is well suited for

modern parallel computing and linear-scaling techniques [9].

DFT is, in principle, exact if the true expression for the exchange-correlation potential were known.

Unfortunately, the exact form remains elusive and the many reported deficiencies of DFT stem solely

from the approximated nature of the exchange-correlation potentials in practical use. Much effort has

been devoted to find good approximations to achieve the goal of chemical accuracy, the accuracy needed

to predict rates of chemical reactions (energy errors within 1 kcal/mol). DFT has been quite successful

in describing a wide variety of strongly interacting systems, isolated molecules, or dense solid state

systems. The local density approximation (LDA) treats largely homogeneous systems such as simple
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metals and semiconductors with surprising accuracy; for inhomogeneous systems, semi-local density

approximations such as members of the generalized gradient approximation (GGA) family work well

for cohesion, bonds, structures and other properties. Nevertheless, systems such as soft matter and

biomolecules are at least as abundant and they generally have inter-particle separations for which non-

local long-range interactions (e.g., dispersion forces) are influential.

A classical picture of dispersion forces entails the energy lowering associated with polarization by

instantaneous fluctuations in the charge distributions of two inert or widely separated systems. These

weak forces, which act between separated atoms/molecules even in the absence of charges or permanent

electric moments, contribute significantly to phenomena such as solvation, physisorption, molecular

recognition, as well as the stability and conformational variability of molecular crystals and biomacro-

molecules. Without taking dispersion forces into account, proteins may be predicted to be unstable and

relative energies of various polypeptide conformations may be largely in error [10]. Even for systems

in which stronger intermolecular forces (e.g., direct electrostatic interactions) seem to dominate, these

very weak forces may still play a pivotal role; for example, the relative energies of two phases in ionic

materials are often sufficiently sensitive to dispersion interactions to have a substantial effect on the

transition pressure [11].

Many popular density functionals are based on the local electron density (LDA), its gradient (GGA)

and sometimes even the local kinetic energy density (meta-GGA). As dispersion interactions contribute

even at distances where the electron overlap is negligible, these purely local functionals fail by con-

struction to reproduce these interactions and are unable to describe correctly the leadingR−6 dispersion

interaction term which originates from correlated instantaneous dipole fluctuations. GGA functionals

cover only the short-range exponentially decaying contribution [12, 13] of van der Waals (vdW) in-

teractions. This, however, is described very differently by various GGAs in both their exchange and

correlation parts [14]. Although the exchange part should be purely repulsive for rare-gas dimers, the

magnitude of repulsion varies with the functional, which can be traced back to their different behaviors

at the small density and high reduced-gradient region [15]. Some GGAs lead to an artificial attraction

even at the exchange-only level whereas others overestimate Pauli repulsion; correlation effects due to

the short range overlap term are also covered in varying degrees [13, 16]. Within some GGAs (PBE,

for example), the (He)2 interaction energy tends to be severely overestimated, and much too short equi-
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librium bond lengths are predicted. The well depths of the heavier rare-gas dimers, on the other hand,

are severely underestimated by GGAs. BLYP [17,18] yields only repulsive potential energy profiles for

rare-gas dimers [12, 13, 15, 19–21]. In addition, many GGAs predict repulsiveπ − π stacking [22–27],

key interactions in nucleic acids as well as aromatic polymers, to name just a few.

One can thus conclude that the general performance of DFT in predicting dispersion forces is rather

dismal. In consequence, if these forces are of any importance in the system of interest, they must be

recovered in calculations to grant the results any credibility or significance. Methods for efficient calcu-

lation of dispersion forces have been the focus of many recent works [27–33]. From the practical point

of view, any proposed scheme that is to be generally applicable to a wide range of chemically and biolog-

ically interesting systems needs to be system independent (transferable) and computationally tractable.

In this work, we concentrate on one recently introduced approach – dispersion-corrected atom-centered

potentials (DCACPs) [34]. The concept of DCACPs is to represent the effect of dispersion forces via

atomic orbital-dependent potentials whose two adjustable parameters are obtained by calibrating against

references of chosen accuracy, offering a robust way to include these forces in a fully self-consistent

manner within current DFT frameworks.

Overview

The thesis is organized as follows: the theoretical background is briefly sketched out in Chapter 2.

Chapter 3 draws on the atoms-in-molecules theory and a multi-center density expansion to justify the

form and universality of DCACPs. Chapter 4 presents a library of DCACPs for rare-gas atoms and

some of the most abundant elements in biological/chemical systems. Furthermore, transferability to

systems with different geometrical orientations or chemical compositions from the calibration ones is

investigated. In Chapters 5 and 6, we extend our studies to both neutral and charged complexes larger

than simple dimers; systems of biological significance, including complexes of nucleobases, amino

acids, and intercalator–nucleobase adducts, are the center of focus. The importance of vdW interactions

in liquid water is addressed in Chapters 7 and 8. Finally, conclusions are drawn, and possible future

extension to this work is discussed.



Chapter 2

Theory

7
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2.1 Density Functional Theory

Density functional theory (DFT) presents a promising alternative to high-level correlatedab initio theo-

ries. It has posed itself as one of the most popular and versatile methods available for investigating the

electronic structure of many-body systems, in particular large molecules and condensed phases.

TheN -electron wave functionΨ(x1,x2, . . . ,xN ) contains all the information we could ever have,

but more than we usually want; often we are interested in no more than the total energy (as well as its

changes) and the electron densityρ(r),

ρ(r1) = N

∫
dx2 . . . dxNΨ(x1,x2, . . . ,xN )Ψ∗(x1,x2, . . . ,xN ).

DFT, on the other hand, allows one to replaceΨ(x1,x2, . . . ,xN ) which depends on the coordinates of

the particles (3N variables, or4N if the spin is taken into account) by the much simplerρ(r), a function

of three spatial coordinates only (and, for spin polarized systems, the spin).

The fundamental of DFT is described only briefly here, applying it to the simplest case of non-

relativistic interacting electrons in a closed shell ground-state system with integer occupation number for

which the Born-Oppenheimer approximation is valid. For more details, one is referred to Refs. [35–38].

Atomic units are employed throughout unless otherwise specified.

The first Hohenberg–Kohn theorem [7] states that the external potentialvext(r) is uniquely deter-

mined by the ground-state densityρ(r) within a trivial additive constant. Sinceρ(r) determines the

number of electronsN , N =
∫
drρ(r), it follows thatρ(r) also determines the full Hamiltonian and

implicitly, all properties of the system. The second Hohenberg–Kohn theorem [7] provides the energy

variational principle. It states that for a trial densityρ(r) in whichρ(r) > 0 and
∫
ρ(r)dr = N , we have

E[ρ] > E0 (E0 is the true ground-state energy).

E[ρ] = T [ρ] + Vee[ρ] + Vne[ρ]

= FHK[ρ] +
∫
dr vext(r)ρ(r),

FHK[ρ] = T [ρ] + Vee[ρ].

T [ρ], Vne[ρ], andVee[ρ] stand for the kinetic energy, the electron-nucleus attraction energy, and the
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electron-electron repulsion energy, respectively.FHK[ρ] is independent of the system, thus known as the

universal functional.

Kohn and Sham proposed to replace the kinetic energy of the interacting electrons with that of an

equivalent non-interacting system because the latter can be easily (and accurately) evaluated [8]. In the

Kohn–Sham (KS) formalism,F [ρ] thus consists of the classical Coulomb repulsionJ [ρ] and the kinetic

energyTs[ρ] in terms of the non-interacting KS orbitals{ψi} whose corresponding density equals the

density of the real target system of interacting electrons,

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ],

Ts[ρ] = −1
2

N∑
i

〈ψi|∇2|ψi〉, J [ρ] =
1
2

∫
drdr′

ρ(r)ρ(r′)
|r− r′|

, ρ(r) =
N∑
i

|ψi(r)|2.

The exchange-correlation termExc[ρ] contains all the remaining, yet undefined, contributions to the en-

ergy. In other words,Exc[ρ] not only accounts for the non-classical part of electron-electron interactions,

but it also includes the difference in kinetic energy between the fictitious non-interacting and the real

interacting systems.

In analogy to the HF scheme, the KS orbitals must minimize the energy under the constraint〈ψi|ψj〉

= δij . This leads to the KS equation,

(
−1

2
∇2 + v(r) +

δJ

δρ
+
δExc

δρ

)
ψi = εiψi,

in which
δJ

δρ
=

∫
dr′

ρ(r′)
|r− r′|

,
δExc

δρ
= vxc.

Apart from the kinetic energy term, all other terms in the bracket constitute the KS effective potential,

i.e., veff = v(r) +
∫
dr′ ρ(r′)

|r−r′| + vxc(r).

KS-DFT is a formally rigorous way of approaching any interacting problem by mapping it to a less

complicated non-interacting problem. It looks (and, more importantly, scales with the system size) like a

mean-field theory with a self-consistent effective one-electron Schrödinger equation for the KS orbitals,

but includes, in principle, all correlation effects on the ground-state electron density and the total energy.

If the true expression forvxc were known, solving the KS equations would be the equivalent of solving
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the exact Schrödinger equation within the Born–Oppenheimer approximation. Unfortunately, the exact

vxc remains elusive and much effort has been devoted to find good approximations.

2.1.1 Exchange-correlation functionals

As mentioned previously, DFT, in principle, is able to provide the exact ground-state energy, the ap-

proximation only enters when one is to choose an explicit form for the unknown functionals ofExc

and the correspondingvxc. The quality of the density functional approach thus hinges solely on the

accuracy of the chosen approximation. The local density approximation (LDA), generalized gradient

approximations (GGAs) and the hybrid GGA functionals are sketched out in brief here.

LDA. In the LDA,ELDA
xc andvLDA

xc are defined as

ELDA
xc =

∫
ρ(r)εLDA

xc (ρ)dr,

vLDA
xc (r) =

δELDA
xc

δρ(r)
= εLDA

xc (ρ) + ρ(r)
∂εLDA

xc (ρ)
∂ρ

.

εxc(ρ) is the exchange and correlation energy density of a uniform electron gas of densityρ. εxc(ρ) can

be divided into exchange and correlation contributions:εLDA
xc (ρ) = εLDA

x (ρ)+εLDA
c (ρ). Accurate values

of εc(ρ) from quantum Monte Carlo calculations [39] have been interpolated to provide an analytic

form [40]. The exchange part is given by the Dirac exchange-energy functional [41],

εLDA
x (ρ) = −Cxρ(r)1/3, Cx =

3
4

(
3
π

)1/3

.

The LDA is applicable to systems with slowly varying density, but it cannot be formally justified for

highly inhomogeneous systems such as atoms and molecules. It predicts structural properties in the solid

state with surprising accuracy considering its crudeness; however, the only moderate accuracy it delivers

for bond energies and other molecular properties is insufficient for most applications in chemistry.

GGA. GGAs are the first step to go beyond the LDA by incorporating explicit density gradient de-

pendence intoExc and they have been quite successful in repairing the over-binding character of the

LDA.

EGGA
xc =

∫
ρ(r)εGGA

xc (ρ,∇ρ)dr.
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As for the LDA, the contributions from exchange and correlation are normally split, and approximations

are sought individually,EGGA
xc = EGGA

x + EGGA
c . EGGA

x is then re-cast in a form that involvess(r),

the reduced density gradient:

EGGA
x = ELDA

x −
∫
F (s)ρ4/3(r)dr,

s(r) =
|∇ρ(r)|
ρ4/3(r)

.

Becke proposedF to be of the following form (abbreviated as B),

FB =
βs2

1 + 6βs sinh−1 s
,

whereβ is an empirical parameter determined to be 0.0042 by a least-square fit to the exact exchange

energies of the rare-gas atoms (helium through radon) [17]. Among the most commonly used correlation

functionals in chemistry are functionals due to Lee, Yang, Parr (LYP) [18] and Perdew (P) [42]. The

former is derived from an expression for the correlation energy of the helium atom based on an accurate

correlated wave function by Colle and Salvetti [43]; the latter is based on the uniform electron gas and

employs an empirical parameter fitted to the correlation energy of the neon atom. In principle, each

exchange functional can be combined with any of the correlation functionals, but only a few combina-

tions are in popular use. The exchange part is almost exclusively chosen to be Becke’s functional which

is either combined with P or LYP – abbreviated as BP and BLYP, respectively. Another popular GGA

functional is the one proposed by Perdew, Burke, and Ernzerhof (PBE), it is based on exact results and

retains the correct features of the LDA.

Despite the success of GGAs, there is no known systematic procedure for improving such ‘gradi-

ent corrections’ to the LDA, and continued progress in this area relies largely on physical intuition,

knowledge of various constraining relationships, and simple trial and error.

Hybrid GGA. The exchange contribution is usually significantly larger in absolute numbers than the

corresponding correlation effects, an accurate expression for the exchange functional is thus essential for

obtaining meaningful results from DFT. The introducing of hybrid functionals which contain a certain

amount of exact exchange has been an important step towards higher accuracy in DFT. One of the most
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popular hybrid functionals is known as B3LYP [44],

EB3LYP
xc = (1− a)ELDA

x + aEexact
x + bEB

x + cELYP
c + (1− c)ELDA

c ,

wherea, b, andc are 0.20, 0.72, and 0.81, respectively. Nevertheless, the hybrid functionals have yet to

find popularity in solid state physics, owing to the high computational cost associated with calculating

exact exchange in plane wave codes.

2.1.2 Plane waves and pseudopotentials

Plane waves form a complete and orthonormal basis and are defined as

fPW
G (r) =

1√
Ω

exp[iG · r],

with the cell volumeΩ and the reciprocal space vectorG. The KS orbitals can then be expanded:

ψi(r) =
1√
Ω

∑
G

ci(G) exp[iG · r].

This expansion has to be truncated at an energy cutoffEcut = 1
2G

2, which determines the number of

plane waves,

NPW =
1

2π2
ΩE3/2

cut ,

and, in consequence, the accuracy of the calculations. There are many advantages of plane waves: (1)

they are not space-fixed functions, implying that the Pulay forces [45] vanish exactly even within a finite

basis, facilitating the computation of forces tremendously; (2) plane waves form an unbiased basis set

without favoring certain atoms or regions over others; (3) no basis set superposition errors (BSSEs) occur

when evaluating interaction energies; (4) the quality of the basis is controlled simply by the parameter

Ecut; and (5) the evaluation of various expressions can be speeded up significantly by using Fast Fourier

Transforms [46]. Expanding the core wave functions or the core oscillatory region of the valence wave

functions into plane waves, however, is extremely inefficient. In practice, in order to minimize the size of

the plane wave basis necessary for calculations, core electrons are always replaced by pseudopotentials.

Pseudopotentials are required to produce pseudo wave functions that approach the full wave func-
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tions outside a core radiusrc. Inside this radius, the pseudopotential and the pseudo wave function

should be as smooth as possible to allow for a small plane wave cutoff. For the pseudo wave function

this requires the nodal structure of the valence wave function to be replaced by a smooth function. In

addition, the charge enclosed withinrc for the all-electron and pseudo wave functions must be equal.

If a pseudopotential satisfies all the conditions above, it is commonly referred to as a norm-conserving

pseudopotential [47, 48], which, by construction, has to be angular-momentum dependent. In its most

general form, it is semi-local,

V PP
(
r, r′

)
=

∑
lm

|Ylm (r̂)〉Vl(r)δr,r′〈Ylm

(
r̂′

)
|,

whereYlm are spherical harmonics. Most applications nowadays adapt a fully separable form in order to

achieve substantial savings in computer time and storage [49–52]. More information on pseudopotentials

and their construction can be found in Refs. [53,54].

Plane wave basis sets are not without flaws even when coupled with pseudopotentials. A downside

of being an unbiased basis set is that one cannot assign more basis functions to regions where they are

more needed, and this is particularly unfavorable for strongly inhomogeneous systems. In addition, to

calculate exact exchange with plane waves incurs a large computational overhead, hindering the use of

hybrid functionals which in many respects are known to be more accurate than standard GGAs.

2.2 Ab Initio Molecular Dynamics

Ab initio molecular dynamics (AIMD) combines first-principles electronic structure methods, most com-

monly DFT, with molecular dynamics based on Newton’s equations of motion; the basic idea is to gener-

ate the dynamical trajectory using forces computed directly from electronic structure calculations which

are performed on the fly as simulations proceed. AIMD, unlike its classical counterpart, is thus able

to respond to changes in chemical situations during the course of simulation and allows for a proper

treatment of electronic polarization and many-body effects. The accessible simulation length, however,

is much shorter (∼ 103 − 104 times) than what is affordable with its classical counterpart.

Two most popular AIMD schemes, Born-Oppenheimer molecular dynamics (BOMD) and Car-

Parrinello molecular dynamics (CPMD) [55], rely heavily on the Born-Oppenheimer approximation
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which states that the ionic and electronic degrees of freedom can be separated adiabatically at all points

in the phase space. Yet this approximation breaks down in some cases and more advanced AIMD scheme

(e.g., Ehrenfest dynamics) is then required. A brief description on BOMD and CPMD is given here; one

is referred to Refs. [56] and [57] for more involved descriptions.

2.2.1 Born-Oppenheimer molecular dynamics

BOMD solves the static electronic structure problem at every molecular dynamics step given the set

of fixed nuclear positions at that instant in time. As a result, the time-dependence of the electronic

structure is a consequence of the nuclear motion and the electronic structure part is reduced to solving

the time-independent Schrödinger equation concurrently to propagate the nuclei via classical mechanics:

MIR̈I(t) = −∇I min
Ψ0

〈Ψ0|He|Ψ0〉,

E0Ψ0 = HeΨ0.

Since the force depends exclusively on the minimization of〈He〉, a tight convergence of the wave

function at every step is essential for a properly conserved classical nuclear Hamiltonian that shows

minimal drift.

2.2.2 Car-Parrinello molecular dynamics

CPMD takes advantage of the smooth time-evolution of the dynamically evolving electronic subsystem

as much as possible and makes an acceptable compromise on the length of the time step. A set of

orbitals optimized initially is given a fictitious time dependence and is propagated along with the nuclear

configuration.

The Car-Parrinello Lagrangian,

LCP =
1
2

∑
I

MI

.
R

2

I +
1
2

∑
i

µ〈
.
ψi |

.
ψi〉 − 〈Ψ0|He|Ψ0〉+

∑
ij

Λij(〈ψi | ψj〉 − δij),

contains the kinetic energies of the nuclei and the electrons, the KS energy, and the constraintsΛij

which ensure that the orbitals remain orthonormal. A fictitious massµ is assigned to the orbital degrees
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of freedom. Newton’s equations of motion are obtained from the associated Euler-Lagrange equations:

d

dt

∂LCP

∂
.
RI

=
∂LCP

∂ RI

,

d

dt

δLCP

δ
.
ψ∗

i

=
δLCP

δ ψ∗
i

.

The corresponding Car-Parrinello equations are:

MI

..
RI (t) = − ∂

∂RI
〈Ψ0|He|Ψ0〉+

∑
ij

Λij
∂

∂RI
〈ψi | ψj〉,

µ
..
ψi (t) = − δ

δψ∗
i

〈Ψ0|He|Ψ0〉+
∑

j

Λijψj ,

with the conserved energyEcons,

Econs =
1
2

∑
I

MI

.
R

2

I +
1
2

∑
i

µi〈
.
ψi |

.
ψi〉+ 〈Ψ0|He|Ψ0〉.

The fictitious massµ must be carefully chosen so to maintain the adiabatic separation [i.e., the lowest

electronic frequency (ωmin
e ∝ Egap/µ, Egap is the energy gap of the system) is much larger than the

highest frequency of the nuclei] while still keeping a reasonable time step (∆tmax ∝ µ/Ecut, Ecut is

the cutoff energy).

2.3 London Dispersion Forces

2.3.1 Dispersion forces in general

London dispersion forces are also known as dispersion forces, London forces, and sometimes van

der Waals (vdW) forces. They are universal attractive forces that arise from the transient dipoles all

molecules possess as a result of the fluctuations in the instantaneous positions of electrons. Two instan-

taneous dipoles are correlated in direction, and because of this correlation, the attraction between the

two instantaneous dipoles does not average to zero.

A quantum treatment of dispersion forces is outlined briefly using perturbation theory to calculate

the lowering in energy when two closed-shell atoms are brought to a separationR [58]. The perturbation

Hamiltonian is the interaction of two electric dipole operators (µµµA, µµµB) based on the two atomsA and
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B. It follows from classical electrostatics,

H(1) =
1
R3
{µµµA ·µµµB − 3 (µµµA ·R) (µµµB ·R)

R2
}.

It is often convenient to choose thez-axis to be parallel withR, the vector joiningA toB and the origin

atA. The perturbation is then

H(1) =
1
R3
{µAxµBx + µAyµBy − 2µAzµBz}.

The total Hamiltonian of the system is

H = H(0) +H(1),H(0) = HA +HB.

The unperturbed states of the pair of atoms are|nAnB〉, with

H(0)|nAnB〉 = (EnA + EnB )|nAnB〉.

We shall writeEnAnB = EnA + EnB and consider interactions between the two atoms in their ground

states,|00〉. The first-order correction to the energy is zero because every matrix element is the ground-

state expectation value of the electric dipole moment operator, which is zero for a non-polar species.

The second-order energy is

E(2) =
∑

nA,nB

〈00|H(1)|nAnB〉〈nAnB|H(1)|00〉
E00 − EnAnB

= −2
3

(
1
R3

)2 ∑
nA,nB

(µµµA,0nA
·µµµA,nA0)(µµµB,0nB

·µµµB,nB0)
∆EnA0 + ∆EnB0

where∆EnA0 + ∆EnB0 = EnAnB −E00 and〈0|µAx|nA〉〈nA|µAx|0〉 = µµµA,0nA
·µµµA,nA0. This expres-

sion confirms that there is a nonzero interaction energy which is attractive and is inversely proportional

toR−6.

After few approximations, one arrives at the London formula:

V = −C
r6
, C =

2
3
α1α2

I1I2
I1 + I2
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whereI andα are the ionization energy and polarizability of the molecule, respectively. The London

formula, although only approximate, reveals the essential character of the dispersion interaction and

may be used to make rough estimates of its magnitude.

From the quantum chemical point of view, a description of these very weak forces requires an accu-

rate treatment of electron correlation effects. HF is unable to treat these attractive forces at all; high-level

correlatedab initio methods such as coupled-cluster theory with large basis sets or quantum Monte Carlo

are required, but they are too costly to be applicable for all but the smallest systems.

2.3.2 Dispersion forces in density functional theory

DFT has been quite successful in describing a wide variety of strongly interacting systems, but it has

not met equal success in describing weak interactions. The precision achievable with the current ap-

proximated exchange-correlation functionals on systems dominated by dispersion forces is rather dis-

appointing and is difficult to assessa priori. As vdW interactions contribute to the interaction energy

even at distances where electron overlap is negligible, current functionals that are based on the local

electron density, its local gradient, or the local kinetic energy density fail by construction to reproduce

these interactions. The development for possible solutions to this failure has become an active field of

research, and numerous approaches have since emerged.

Approaches based on electron density partitioning, involving the assignment of fragments, have

been applied to rare-gas dimers and small hydrocarbon complexes [59–61]. Introducing non-local cor-

relations into a vdW functional has shown promising results on rare-gas dimers, aromatic ring complexes

and, graphite [29,62–67]. In addition, a long-range correction scheme combined with a vdW functional

has successfully described interactions of small vdW complexes as well as benzene and naphthalene

dimers [68,69]. An alternative approach is to optimize a functional specifically for non-bonded interac-

tions (e.g., M05-2X and PWB6K [70]). Nevertheless, it still gives an exponential decay at long range

instead of the asymptoticR−6 tail for the interaction energy of two systems with no permanent multipole

moments. A method utilizing frequency-dependent density susceptibilities predicted by time-dependent

DFT to compute the dispersion energy at finite inter-monomer separations has been proposed [71]. Fur-

thermore, Kohnet al.[28] has presented a scheme that is valid at all distances but is computationally very

demanding; it is thus conceptually helpful yet not applicable to systems of chemical/biological interest.
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The most straightforward solution to recover dispersion forces is to explicitly include empirical pairwise

inter-atomic potentials of thef(R)C6R
−6 form in the total energy wheref(R) is a damping function.

This scheme generally leads to reasonable stabilization energies and nuclear forces [16,23,30,72], but it

involves parameterization ofC6 coefficients and defining appropriatef(R). Furthermore, the electronic

structure is left uncorrected. Recently, a post HF model in which the instantaneous dipole moment of

the exchange hole is used to generate the dispersion coefficients (C6 or higher) [33,73–75] has predicted

the geometries and binding energies for a large test set of intermolecular complexes remarkably well,

except for theπ − π stacked benzene dimer.

2.4 Dispersion-Corrected Atom-Centered Potentials

In analogy to the concept of atomic pseudopotentials where the parameters are generated by iteratively

minimizing a penalty functional that expresses the deviations of pseudo wave function from its all-

electron counterpart, a similar procedure can be adapted to design atom-centered potentials (ACPs) for

not only atomic but also complex molecular electronic properties. The latter involves having a penalty

functional that penalizes deviations of molecular properties (e.g., dispersion forces or electron density)

with respect to experimental or high-levelab initio references.

Dispersion-corrected atom-centered potentials (DCACPs) are one example of such concept in which

ACPs are introduced to recover dispersion forces within DFT-GGA [34]. This approach attempts to

model the attractive long-range electron density correlation by an atom–electron interaction instead of

an atom–atom interaction of theC6R
−6 form.

DCACPs retain the same analytical form as the non-local part of the Goedecker-Teter-Hutter (GTH)

pseudopotentials [52] since we believe that the non-local form can inherently cast the non-local character

of dispersion forces. In addition, it will be straightforward to apply DCACPs in (plane wave) DFT

calculations by simply including the parameters to the corresponding pseudopotential files. The DCACP

operator is defined as

v̂DCACP
I (r, r′) =

`max∑
`=0

+∑̀
m=−`

Y`m(r̂)p̂`(r)σ1p̂`(r′)Y ∗
`m(r̂′),
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and the normalized projectorŝp`(r) are Gaussian functions of the form

p̂`(r) =
√

2r`exp[−r2/(2σ2
2)]

σ
`+3/2
2

√
Γ(`+ 3/2)

.

r = |r−RI | is the distance from the position of nucleusI, r̂ is the unit vector in the direction ofr−RI ,

andY`m denotes a spherical harmonic. We have chosen to use only` = 3 in the above expansion (see

Chapter 4 for further discussions). The two parametersσ1 andσ2 are generated by minimizing a penalty

functionalP composed of two energy- and one nuclear-force-dependent terms:

min
{σi}

P(r) = min
{σi}

[ |Eref(rmin)− E(rmin, {σi})|2 +

|Eref(rmid)− E(rmid, {σi})|2 +∑
I

wI |FI(rmin, {σi})|2 ].

rmin and rmid are the equilibrium and midpoint distances1 of the reference calculations.Eref is the

reference interaction energy. Only forces along the intermolecular interaction axis are considered.wI

is a weighting factor chosen so that contributions from the energy and the force (FI ) terms are of the

same order of magnitude; the typical value is10−2. By tuning the amplitudeσ1 and the widthσ2 of

DCACPs,P is minimized in such a way that the reference equilibrium interaction energy/distance and

the midpoint interaction energy are optimally reproduced for a chosen calibration system.

DCACPs, with their current form, do not model the asymptotic dipolar nature of dispersion interac-

tions explicitly. As a consequence, this approach can be accurate at the equilibrium distance but not in

the long-range limit that would be important for, say, small-angle scattering of rare gases in molecular

beams. The introduction of the midpoint energy term in the penalty functional is the first attempt in

improving the long-range behavior of the resulting interaction energy curves [76]. Nevertheless, it is

possible to achieve the asymptoticr−6 behavior by having a more complete (spherical harmonics and/or

Gaussian functions) basis,i.e., expanding DCACPs with more than one` (see Chapter 3).

1the midpoint distance is where the interaction energy is half of the equilibrium energy.
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Chapter 3

Multi-Center Density Functionals

Abstract

We propose to express corrections to the approximated universal density functionals as multi-(atom)-

centered functionals, drawing on the atoms-in-molecules theory of Bader in combination with a multi-

center density expansion. Unlike the conventional density functionals which depend on the origin-

centered electron density, variables of these newly formulated multi-center functionals are the positions

of the nuclei and their identity which can be unambiguously determined from the topology of the elec-

tronic charge density.

21
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We propose a multi-(atom)-centered expansion for the correction of most commonly used (origin-

centered) density functionals. Multi-center expansions of classical and quantum fields, such as densities

and wave functions, have been exploited in many electronic structure theories [77–80]. Most com-

monly, the centers of the expansion coincide with the positions of the atoms in a system. Nevertheless,

to the best of our knowledge, there is so far no attempt to apply this technique for the derivation of

more accurate exchange-correlation functionals to be used in density functional theory (DFT). In this

case, the particular choice of multi-(atom)-centered expansion is physically intuitive since deviations

from the homogeneous electron gas reference are largest at the atoms. Specifically, the total electronic

density of a system can be regarded as a sum of the atomic densities corrected for the inter-atomic in-

teractions [77]. Some of the topological properties of the atomic densities are preserved even in the

formation of molecules and solids; cases in point are the locations of the density maxima and the cusps

which are uniquely associated with the positions of the atoms [81–83]. Considering all these, it is thus

natural to derive a multi-center-expansion-based scheme for the optimization of density functionals that

are based on the topology of the total electronic density.

We first introduce the concept of reformulating corrections to the approximated universal density

functional (eq 3.2) as a multi-center functional, drawing largely from the idea of multi-center density

expansions [80]. Using the atoms-in-molecules theory of Bader [84], we then demonstrate that all quan-

tities required for the functional,i.e., the positions and the charges of the nuclei in a system, can be

uniquely derived from the electronic charge density. The approach of atom-centered potentials (ACPs)

is briefly recapped before we show its success on treating the lack of dispersion forces in DFT-BLYP, re-

producing essentially exact asymptoticr−6 behavior when a sufficiently complete (spherical harmonics

and/or Gaussian functions) basis is employed.

The concept of multi-center density functionals.In DFT, the basic variable is the electron density

ρ(r), a function of three spatial coordinates (and, for spin polarized systems, the spin) defined with

respect to an arbitrarily chosen origin. Given a density, the following relation,

E[ρ] = F [ρ] +
∫
dr vext(r)ρ(r), (3.1)

delivers the corresponding energy and upon minimization, the ground state density and energy.F [ρ] is

a universal functional which does not depend explicitly on the external potentialvext(r). Even though
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such a functional exist, its exact functional form is still elusive and many works have been devoted to

the search of better approximations. One can rewrite the exact universal functionalF [ρ] as the sum

of an approximate form commonly adapted by the DFT community (F approx[ρ]) and a correction term

(∆F [ρ]) with respect toF [ρ],

F [ρ] = F approx[ρ] + ∆F [ρ]. (3.2)

Instead of an origin-centered∆F [ρ], here we propose to utilize a multi-center expansion of the form

∆f [ρ]({rj}M
j=1); rj is defined with respect to sitej, rj = r−Rj . We shall follow closely the argument

presented by Averill and Painter [80] who considered the decomposition of the charge density into a sum

of atom-centered functions. From now on, the functional form used for∆F [ρ] and all its components is

∆F [ρ] =
∫
dr∆F [ρ](r).

Using the projection technique pioneered by Boys and Rajagopali [77] and further refined by Becke [78]

and Delley [79],∆F [ρ] can be written as a sum of site-j-centered functionsPj ,

∆F [ρ] ≈ ∆f [ρ]({rj}M
j=1) =

M∑
j=1

Pj [ρ](rj) =
M∑

j=1

∆fj [ρ](rj). (3.3)

Pj is defined by a set of weight functionsωj also centered at sitej,

Pj [ρ](rj) = ωj(r)∆F [ρ](r), (3.4)

where for anyr,

∑
j

ωj(r) = 1. (3.5)

One can chooseωj to be the homonuclear fuzzy-cell function of Becke [78]. In this scheme, eachωj

has value unity in the vicinity of its own nucleus, but vanishes in a continuous and well-behaved manner

near any other nucleus; the system is thus divided into fuzzy, overlapping analytically continuous cells.

Applying ωj to ∆F [ρ](r) producesPj that is large in magnitude near sitej and approaches zero away

from sitej.

It is more convenient at this point to introduce an expansion for the corresponding multi-center
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operator∆f̂(r) so that

∆fj [ρ](r) = ρ(r)∆f̂j(r). (3.6)

Carrying out partial-wave projections aboutj,

p̂j
`m(rj) =

∫
Y j

`m(r̂j)P̂j(rj) dΩ, (3.7)

determines the approximate representation ofP̂j ,

P̂j(rj) ≈
`max∑
`=0

+∑̀
m=−`

Y j
`m(r̂j)p̂

j
`m(rj), (3.8)

wheredΩ is the angular volume element and the accuracy of the expansion is controlled solely by the

cutoff value`max.

Putting the pieces together and generalizing for the non-local case, we obtain

∆f̂j(rj , r′j) =
`max∑
`=0

+∑̀
m=−`

Y j
`m(r̂j)p̂

j
`m(rj)p̂

j
`m(r′j)Y

j
`m(r̂′j). (3.9)

In the following, however, we would like to consider orbital-dependent corrections of the form,

∆fj [{φi}] =
∑

i

∫ ∫
drdr′φ∗i (rj)∆f̂j(rj , r′j)φi(r′j), (3.10)

wherei runs through the Kohn-Sham orbitals. This is the proposed orbital-dependent-functional form

we use to expand∆F [ρ] in eq 3.2.

Variables of multi-center functionals are uniquely defined by the densityρ only. Sitesj in

the multi-center scheme are most commonly (and naturally) chosen to be the location of atomI in

the system. One thus requires knowledge of the positions (and sometimes the charges) of the nuclei

for the evaluation of multi-center functionals. These two pieces of information should be defined by

ρ and ρ only; in other words, the following requirements need to be satisfied: (a) the topology of

ρ(r) (maxima and cusps in particular) uniquely determines the positions of the multi-center expansion

{RI}M
I=1 [83,84]; (b) for any given choice ofI-centered weight functionωI , requirement (a) determines

the projectionpI
`m(r); and (c) a one-to-one mapping betweenZI andρ(RI), I is the index labeling the
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atom in the system.

Using the atoms-in-molecules theory of Bader [84], one is able to determine the atomic fragments in

molecular systems on the basis of the topology of the total electron density alone. The electronic charge

density exhibits a local maximum only at the position of a nucleus in both the ground and excited states

of many-electron systems (with relatively few exceptions to be discussed later). The principle justifi-

cation comes from extensive theoretical studies of charge distributions calculated from wave functions

close to the Hartree–Fock (HF) limit. Analyzing the topological properties of the charge distributions

of a very large number of polyatomic molecules has shown that maxima found at positions other than

the nuclei are trivially small compared with the ones at the nuclear positions [85]. This usual topology

of ρ can change when two nuclei with dissimilar charges are in very close contact with each other and

the local maximum at the position of the lesser of the two charges will disappear [85]. Fortunately, this

behavior is not observed for energies normally encountered in chemical reactions for atoms that possess

a core density (hydrogen does not possess a core and may be problematic when in combination with a

very electronegative species) [86]. Strictly speaking, the local maxima at the positions of nuclei are not

‘true’ (3,-3) critical points1 because the gradient vector of the charge density is discontinuous at the

nuclear cusp that is present in both the wave function and density. Nevertheless, there always exists a

function homeomorphic toρ(r;RI) which coincides withρ almost everywhere and for which the nu-

clear positions are (3,-3) critical points [84]. In this sense, the nuclear positions behave topologically

as do (3,-3) critical points in the charge distribution; as a consequence, they can be used to describe the

mapping in (b), together with the always-present cusps.

Regarding the requirement (c), the value of the charge density at a nuclear position [ρ(RI)], except

for protons, is much larger than its value at any other of its extrema.ρ(RI) of a free atom in the

HF approximation is roughly proportional toZ3 for Z < 55 (Z is the atomic number) as depicted in

Figure 3.1 [87]. On the other hand, values ofρ at the saddle or bond critical points between certain

pairs of nuclei over the range of chemically significant inter-nuclear separations range between0 ≤

ρ ≤ 1.0 a.u [84], of considerably smaller magnitude thanρ(RI). This universal mapping still holds in

most chemical and physical electronic structure approaches, particularly those in which the frozen-core

1The critical point is labeled by its rankω and signatureσ in the form of (ω, σ). The former is equal to the number of
non-zero eigenvalues (of the Hessian matrix) ofρ at the critical point and the latter is the algebraic sum of the signs of the
eigenvalues,i.e., (3,-3) denotes the critical point where all curvatures are negative andρ is a local maximum [84].
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Figure 3.1: Value of spherically averaged single-particle density at nucleus [ρ(RI) in a.u.] as a function
of the atomic numberZ for all neutral atoms withZ < 55 in the HF approximation. Data are taken
from Ref. [87].

approximation is invoked.

Furthermore, DFT states that, in principle, knowledge of the ground-state electron density is suffi-

cient to determine all molecular properties [82]. Kato’s theorem [81] states that

ZI = − 1
2ρ(r)

∂ρ(r)
∂r

∣∣∣∣
r≡RI

, (3.11)

where the partial derivatives are taken at the nucleiI. The cusps of the density thus tell us where the

nuclei are (RI ) and what the atomic numbersZI are.

In conclusion, given any (even approximate) density of a many-electron system constructed from a

sum of atomic density and optimized according to anyab initio approach, it is possible to unambiguously

locate all atoms (RI ) in the system and to identify the corresponding physical nature (ZI ) on the basis of

the electron density distribution only, and any functionals that involves atomic positions can be re-cast

into a density-only (i.e., ‘universal’) form.

The concept of ACPs.We have demonstrated that the origin-centered∆F [ρ(r)] can be projected

into a multi-(atom)-centered functional∆f [ρ]
(
{rj}M

j=1

)
(herein referred to as ACP). This correction

term can be derived either from theory, but this is almost as difficult as searching for the true universal

functional,F [ρ]. One can also empirically tune the ACP against some well-defined penalty functionals
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to improve chosen atomic or molecular properties [88]. In this case we used an analytic form sim-

ilar to the one proposed by Goedeckeret al. [52] in the context of atomic pseudopotentials. These

atom-centered analytic forms can be tuned to reach accuracy for specific properties on par with high-

level ab initio calculations or simply functionals of higher rank. Among others, this approach has been

used for (1) generating link atoms to bridge the quantum and classical fragments in quantum mechan-

ics/molecular mechanics simulations, designed in such a way that the link atoms minimally perturb the

electronic structure in the quantum mechanical region [88]; for (2) reproducing the electron density and

derived molecular properties of hybrid functional quality within BLYP calculations [88]; and for (3)

improving the description of dispersion forces in DFT (dispersion-corrected atom-centered potentials,

DCACPs) [34].

ACPs employed in the above-mentioned studies are generally defined as

∆f̂I(rI , r′I) = v̂ACP
I (r, r′) =

`max∑
`=0

+∑̀
m=−`

Y`m(r̂)p̂I
` (r)hI`(ZI)p̂I

` (r
′)Y ∗

`m(r̂′) (3.12)

with the normalized projector,

p̂I
` (r) ∝

r` exp[−r2/2βI`(ZI)2]
βI`(ZI)`+3/2

. (3.13)

hI`(ZI) andβI`(ZI) are two adjustable atom-dependent parameters per` that, in principle, are uniquely

assigned to different atoms in the system according to the mapping in (c).

We will concentrate on one particular application of ACPs in treating the lack of dispersion forces

in DFT, but the following argument will be generally applicable.

For the spherical averaged part of the operatorP̂j [ρ](rj) in eq 3.7, namely the DCACPs projector

p̂I
` , we can easily identify

ω`
j(r) =

exp[−r2/2βI`(ZI)2]
βI`(ZI)`+3/2

, (3.14)

∆F ` = r`, (3.15)

where∆F `[φα] =
∫
dr∆F̂ `φα(r). Therefore, the atom-centered DCACP corrections in the origin-
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centered representation are generated by a weighted sum of ‘multiple moments’,

qα
`m =

∫
drY`m(r̂)r`φα(r). (3.16)

With DCACPs, we have opted for a one-channel (` = 3) expansion [76] since we are mostly inter-

ested in the region of the van der Waals (vdW) minimum and less so in the long-range limit. Indeed, de-

spite its general excellent performance and transferability for dispersion interactions within distances up

to∼ 5 Å, some deviations are observed at the long-range limit of the asymptotic dipolar nature [89–92].
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Figure 3.2: Interaction energy of (H2)2 aligned in parallel computed with DCACPs having multiple
projectors.

Since both the spherical harmonics (angular) and Gaussian functions (radial) expansions adopted

here form a complete set of orthonormal functions, they can in principle reproduce any functions with

arbitrary accuracy. It should thus be straightforward to achieve ther−6 behavior by including more

projectors in the expansion. To demonstrate this, H2 dimer is chosen as an example for hydrogen is

devoid of any non-local components in its atomic pseudopotential, and we are allowed to assignl as low

as 0 to the DCACP without any interference with the underlying atomic pseudopotential2. The results

2All DFT calculations have been carried out using the CPMD code [93], the BLYP functional [17, 18], Goedecker-Teter-
Hutter pseudopotentials [52], and a plane wave cutoff of 100 Ry in an isolated cell with dimensions10 × 10 × 20 Å3. The
hydrogen DCACP has been calibrated against full CI reference of H2 dimer aligned in parallel [94], using the scheme proposed
in Ref. [34].
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are presented in Figure 3.2. The ‘tail’ of the CI reference is fitted to a function of the forma · r−6, and

the two deviate slightly from each other, especially in the long-range limit, indicating influence of higher

order terms such asr−8. In addition, a drastic improvement in ther−6 description is observed when the

expansion of DCACPs includes more than one`. Essentially, exactr−6 behavior can be reached by as

few as two projectors. This clearly demonstrates that the DCACP approach is capable of reproducing

the physically correctr−6 asymptotic limit in spite of the fact that this functional form is not explicitly

imposed.

To summarize, we have drawn on the atoms-in-molecules theory and the multi-center potential ap-

proach to show that it is possible to expand corrections to the approximated universal density functional

in terms of multi-(atom)-centered contributions. This expansion is unambiguously determined by the

topology of the electron density: the cusp condition determines the centers of the expansion (the nu-

clear positions) andρ(RI) the nature of the atom at positionRI , ZI . In this sense, this expansion can

be considered ‘universal’,i.e., it depends solely on the electronic density. The final assessment of the

multi-center functionals is obtained through a fitting procedure of theZI -dependent parameters used in

∆f̂I(RI , r′I). This procedure, in principle, is carried out only once for each element, and it involves

tuning the parameters so that the desired accuracy on any chosen molecular properties can be optimally

reproduced. For the multi-center correction aimed to cure the lack of dispersion forces in DFT-GGA,

we have shown, with the example of (H2)2, that it is possible to achieve the desired level of accuracy

(i.e., the correctr−6 asymptotic tail in the interaction energy curve) by including a sufficient number of

components in the expansion in eq 3.12.
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Chapter 4

Library of Dispersion-Corrected

Atom-Centered Potentials

Abstract

Parameters for analytical dispersion-corrected atom-centered potentials (DCACPs) are presented to im-

prove the description of London dispersion forces within the generalized gradient approximation func-

tionals BLYP, BP, and PBE. A library of DCACPs for hydrogen, carbon, nitrogen, oxygen, helium, neon,

argon, and krypton is generated via calibration against CCSD(T) or full CI references. The performance

as well as the transferability of DCACPs are tested on weakly bound complexes, and excellent results

are obtained in all investigated systems.

31
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4.1 Introduction

London dispersion forces arise from the transient dipoles all molecules possess as a result of the fluctua-

tions in the instantaneous positions of electrons. They are of primordial importance in chemical and bi-

ological systems; they play a crucial role in colloidal systems, in noble-gas chemistry, and in soft matter

generally, contributing significantly to phenomena such as solvation, physisorption, molecular recogni-

tion, as well as the stability and conformational variability of molecular crystal and biomacromolecules.

Kohn–Sham density functional theory (KS-DFT) [7, 8] combined with the local density approximation

(LDA) or present-day generalized gradient approximation (GGA) exchange-correlation functionals ei-

ther provides sporadic results or fails completely to account for these weak forces [12, 13, 15, 19–21].

Considerable efforts have been made to remedy this shortcoming [27–33].

Dispersion-corrected atom-centered potentials (DCACPs) represent the effect of dispersion forces

via atomic orbital-dependent potentials whose two parameters are obtained by calibrating against refer-

ences of chosen accuracy [34]. The first generation of DCACPs calibrated against MP2 references has

already shown promising results [89,95,96].

Herein, a library of DCACPs, including parameters for hydrogen, carbon, nitrogen, oxygen, helium,

neon, argon, and krypton, to be used in conjunction with BLYP [17, 18], BP [17, 42], and PBE [97]

functionals, is presented. DCACPs can be tuned to reach any desired accuracy given by the chosen cali-

bration reference. In this work, DCACPs are calibrated against high-level correlatedab initio CCSD(T)

or full CI references of (H2)2 in a parallel configuration [94], sandwich benzene dimer [98], (N2)2 (par-

allel), (CO2)2 (cross-shaped), and rare-gas dimers [99]. The calibration systems are chosen in order to

fulfill the following criteria: (a) the system is small enough so that high-level reference calculations are

tractable, (b) the interaction energy is dominated by the balance between Pauli repulsion and dispersion

forces, and (c) the electronic structures of the monomers in the complex are well described by the GGA

employed. Testing is restricted to simple van der Waals (vdW) complexes where high-level reference

data are available. Furthermore, we investigate the influence of DCACPs on intramolecular geometries

and electronic structures by analyzing bond lengths, vibrational frequencies, electron densities, multi-

pole moments, and polarisabilities. The compatibility of DCACPs with various atomic pseudopotential

types is also addressed.
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4.2 Computational Details

All DFT calculations have been carried out using the programCPMD [93]. Goedecker-Teter-Hutter

(GTH) pseudopotentials [52] have been used throughout the calibrations; for the test calculations,

Troullier-Martins (TM) [51] and Vanderbilt [50] types have also been employed as specified. For the

calibrations, we have used plane wave cutoffs (referred to as cutoff from now on) of 100 Ry (C and Ar),

120 Ry (He), 125 Ry (N), 150 Ry (H, O, Ar, and Kr), 550 Ry (Ne, for PBE and BP), and 600 Ry (Ne,

BLYP). The calibrations of H, He, Ar, and Kr have been carried out in an isolated10× 10× 20 Å3 cell

using the Poisson solver implemented inCPMD according to Ref. [100]. The calibration of neon has

been carried out in an isolated cell of10× 10× 15 Å3 (BLYP) and10× 10× 18 Å3 (BP and PBE). N

(10 × 10 × 20 Å3 cell) as well as C and O (15 × 15 × 20 Å3 cell) have been calibrated with periodic

boundary conditions (PBCs). Unless otherwise stated, calibration references have been calculated at

CCSD(T)/aug-cc-pVTZ level of accuracy (counterpoise-corrected [101] for basis set superposition er-

rors) using the GAUSSIAN 03 package [102]. The test calculations have been set up as follows: 150 Ry

cutoff, 10× 10× 20 Å3 cell with PBCs for Ar-N2 complexes; 100 Ry cutoff, isolated12× 12× 30 Å3

cell for formaldehyde dimer; 100 Ry cutoff,15× 15× 15 Å3 cell with PBCs for H2-benzene complex.

For the minimization of the penalty functional, a simple but robust simplex-downhill algorithm [46]

has been employed.

4.3 Results and Discussion

4.3.1 Preliminary

Choice of`. We found that one projector is sufficient to obtain reasonable accuracy (deviations within

0.05 kcal/mol and 0.1 Å) for the reference and test systems. To ensure that there is no interference

with the atomic pseudopotentials centered atRI , any angular momentum component` not occupied in

the atomic pseudopotentials should, in principle, be used. The very different length scale between the

atomic pseudopotentials and DCACPs should also ensure negligible interference between the two.

To illustrate this, interaction energies of H2 dimer in parallel (calibration system) and cross config-

urations calculated with DCACPs located at different` channels are plotted in Figure 4.1. The atomic

pseudopotential for hydrogen consists of only the local part; DCACP can thus occupy angular momenta
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Figure 4.1: Interaction energies of H2 dimer in (a) parallel and (b) cross configurations evaluated with
DCACP at different̀ channels. The two numbers in the legend correspond toσ2 andσ1 (in a.u.),
respectively.

# Cutoff local only ` = 0 ` = 1 ` = 2 ` = 3
[Ry] Time Time % Time % Time % Time %

He 200 100 22.45 23.00 2.4 24.04 7.1 25.09 11.8 26.18 16.6
He 240 100 26.72 27.40 2.5 28.76 7.6 30.24 13.2 31.52 18.0

Table 4.1: CPU time (Time, seconds) and the associated % increase with respect to the pure BLYP
calculation (marked as ‘local only’) incurred by using different` as the DCACP channel. CPU time
quoted is for one wave function optimization step on 128 nodes of Blue Gene/L (equivalent to 356
CPUs, each has 0.5 gigabytes of memory). # is the number of helium atoms.

as low as̀ = 0. Having the DCACP at a lower angular momentum gives slightly better long-range

behavior and is more computationally efficient [the scaling for calculating the non-local part of pseu-

dopotentials goes up as(2` + 1)N3, N is the number of atoms]. As an example, an increase of almost

20% in CPU time is decreased to mere 3% when` is changed from3 to 0 (Table 4.1, CPU time per

wave function optimization step for a box of 200 or 240 helium atoms on 128 nodes of Blue Gene/L

with 0.5 gigabytes of memory per CPU). Despite these, considered that most elements have up to` = 2,

sometimes eveǹ = 3, occupied in their respective atomic pseudopotentials and the almost negligible

improvement when going from̀= 3 to 2, we have chosen to standardize on the rarely used component

` = 3.

Atom-, united-atom-, or atom-type-based.It would be ideal if the element of interest were the sole

component of the calibration system. This, however, will not be practical for elements such as carbon
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or boron where a ‘pure’ homonuclear dispersion-bound complex tends to have more than tens of atoms

(e.g., fullerene, graphene, or boron clusters) so a high-level reference is not readily available. This

also raises the question whether DCACP should be atom-, atom-type-, or united-atom-based. The first

choice, atom-dependent, is the most general; each element will have one and only one DCACP for

all chemical environments without further tuning. The latter two are inspired by classical force fields:

atom-type is similar to the all-atom force fields that provide parameters for every chemical type of an

atom in a system, including hydrogen (e.g., sp3 and sp2 carbon will have different parameters); with

united-atom, the approach adopted by the first generation of DCACPs [34], the hydrogen and heavy (for

example, carbon) atoms of different hybridization states are treated as a single interaction center.

Dependency & BLYP PBE
calibration system (C6H6)2 (CH4)2 H2-C6H6 (C6H6)2 (CH4)2 H2-C6H6

for C DCACP Emin(rmin) Emin(rmin) Emin(rmin) Emin(rmin) Emin(rmin) Emin(rmin)
United-atom 1. C6H6 -1.72 (3.9) -0.10 (4.1) -0.42 (3.14)-1.70 (3.9) -0.49 (3.8) -0.93 (2.70)
C only 2. CH4 -5.55 (3.7) -0.44 (3.8) -0.99 (2.74)-1.17 (3.8) -0.51 (3.7) -1.06 (2.70)
Atom 3. C6H6 -1.72 (3.9) -0.83 (3.7) -0.98 (2.70)-1.75 (3.9) -0.43 (3.8) -0.90 (2.70)
H: CI 4. CH4 +1.60 (3.9) -0.45 (3.8) -0.54 (2.95)-1.83 (3.8) -0.51 (3.7) -1.12 (2.70)
Atom 5. C6H6 -1.72 (3.9) -0.69 (3.8) -0.90 (2.74)-1.70 (3.9) -0.34 (4.0) -0.84 (2.95)
H: CCSD(T) 6. CH4 +0.68 (3.9) -0.45 (3.8) -0.53 (2.71)-2.70 (3.7) -0.50 (3.7) -1.20 (2.70)
CCSD(T)a -1.70 (3.9) -0.50 (3.7) -0.95 (2.75)-1.70 (3.9) -0.50 (3.7) -0.95 (2.75)
a (C6H6)2: aug-cc-pVQZ* [98], (CH4)2: aug-cc-pVTZ (this work) and H2-C6H6: aug-cc-pVTZ [103].

Table 4.2: Transferability of the carbon and hydrogen DCACPs calibrated in various schemes. In the
united-atom-based scheme (united-atom), the carbon DCACP is calibrated and contributions from hy-
drogen are implicitly included; in the atom-based scheme (atom), the hydrogen DCACP is calibrated
against either CI or CCSD(T) reference of (H2)2 (as labeled) first and is later used in the carbon DCACP
calibration against CCSD(T) reference of either methane or benzene dimer as denoted in the first col-
umn.Emin andrmin are in kcal/mol and Å, respectively.

To probe the relative performance of these different schemes, we have carried out six sets of calibra-

tions involving hydrogen and carbon: sets 1 and 2 are united-atom-based models in which the DCACP

for carbon is calibrated against CCSD(T) reference of either benzene or methane dimer whose hydrogen

atoms are DCACP-free; sets 3 and 4 are atom-based sets in which the DCACP for hydrogen is first

calibrated against a full CI reference of (H2)2 and is then employed in the calibration of the DCACP

for carbon against a CCSD(T) reference of either benzene or methane dimer; lastly, sets 5 and 6 use

the same procedure as sets 3 and 4 but a CCSD(T) reference of H2 dimer is used instead. The resulting

DCACPs are subject to a small set of transferability tests including benzene as well as methane dimers

and hydrogen adsorbed on benzene. The results are tabulated in Table 4.2. The performance of DCACPs
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complementing PBE does not seem to depend much on the particular approach or calibration system one

takes. On the other hand, DCACPs complementing BLYP show a large variation; using methane dimer

as the calibration system for carbon generally leads to worse transferability, probably due to the over-

repulsive character of Becke’s exchange. With the united-atom-based approach, the carbon DCACP

fails badly regardless of the calibration system. As a compromise, we choose to take the atom-based

approach and the highest level of reference possible whenever a decision needs to be made (full CI in the

case of hydrogen). With regard to the atom-type-dependency, a separate study [90] on vdW complexes

of aliphatic hydrocarbons molecules and crystals of aromatic hydrocarbon compounds illustrates the

transferability of the DCACP scheme across different hybridization states of carbon: the typical error of

binding energies for gas-phase dimers amounts to 0.3 kcal/mol. This further demonstrates that only one

DCACP per element is sufficient, irrespective of the hybridization state, and the atom-based approach is

more than adequate.

4.3.2 Parameters

BLYP BP PBE
σ1[10−4] σ2 σ1[10−4] σ2 σ1[10−4] σ2

H −4.06 2.71 −5.55 2.66 0.50 2.47
C −5.49 3.11 −3.71 3.50 −5.79 2.84
N −6.05 2.91 −8.06 2.82 −1.77 2.83
O −7.92 2.57 −10.65 2.64 −6.47 1.73

Table 4.3: DCACP parameters for H, C, N, and O in a.u.

BLYP BP PBE
σ1[10−4] σ2 σ1[10−4] σ2 σ1[10−4] σ2

He −3.92 2.40 −9.91 2.16 3.31 1.98
Ne −6.41 2.48 −12.92 2.42 3.00 2.07
Ar −12.96 2.77 −16.42 2.79 −7.44 2.15
Kr −12.95 3.18 −14.68 3.22 −3.48 3.20

Table 4.4: DCACP parameters for the rare-gas atoms in a.u.

Tables 4.3 and 4.4 list the DCACP parameters for H, C, N, O, and the rare-gas atoms He, Ar, Ne,

and Kr to be used in combination with the GGA functionals BLYP, BP, and PBE. The radial term of

DCACPs is plotted in the form of -|σ1|1/2p`=3(r) in Figure 4.2.
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Figure 4.2: The radial term of DCACPs for the BLYP functional plotted in the form of -|σ1|1/2p`=3(r)
(a.u.).

A positive σ1 indicates that the original exchange-correlation functional produces over-binding

curves whereas a negativeσ1 shows that the uncorrected interaction energy curve is under-binding.

While the BLYP and BP intermolecular interaction curves are always repulsive for the calibration sys-

tems, PBE shows partial binding in some cases. As a result, DCACPs for BLYP and BP have consistently

negativeσ1. No obvious trend, however, can be observed for DCACPs complementing PBE, and the sign

of σ1 varies according to the performance of uncorrected PBE. Even though we choose to concentrate

only on three popular GGA functionals – BLYP, BP, and PBE – the DCACP approach is general, and it

can be applied to any functionals, including the LDA. The LDA is accurate for solids and is still widely

used in condensed matter physics; however, GGAs show a more consistent performance across vari-

ous disciplines, including chemistry and biology, and they offer a better description on intramolecular

properties over the LDA [104,105].

4.3.3 Calibrations

Figure 4.3 shows the interaction energy curves of (H2)2 calculated using DCACPs calibrated with and

without the midpoint term in the penalty functional. The inclusion of the midpoint term significantly

improves the midrange to long-range behavior; however, in order to satisfy this additional criterion,

compromises are made:rDCACP
min for DCACP-PBE is shifted outwards by 0.06 Å with respect torCI

min,

and the interaction energy is more attractive by 0.002 kcal/mol. DCACP-BLYP behaves slightly worse:
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Figure 4.3: Interaction energy curves of the parallel H2 dimer as a function of the intermolecular distance
showing the effect of including the midpoint term in the penalty functional.

rDCACP
min is shifted out by 0.12 Å compared withrCI

min, and the complex is over-stabilized by 0.007

kcal/mol. Bearing in mind that the interaction energy curve is shallow around the minimum, this shift is

negligible for simulations at finite temperatures. Better fitting results are obtained for all other calibration

systems using the midpoint penalty functional.
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Figure 4.4: Interaction energy curves of the sandwich benzene dimer as a function of intermolecular
distance with (a) pure and (b) DCACP-augmented GGA functionals.

Figure 4.4 shows the interaction energy curves of the sandwich benzene dimer as an example of the

DCACP’s performance on a calibration system. The overall shape of the interaction energy curves cal-
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He2 Ne2 Ar2 Kr2
Emin rmin Emin rmin Emin rmin Emin rmin

DCACP-BLYP 0.020 3.0 0.094 3.0 0.247 3.8 0.322 4.2
DCACP-BP 0.022 3.1 0.105 3.2 0.250 3.8 0.322 4.2
DCACP-PBE 0.021 3.0 0.077 3.2 0.248 3.8 0.317 4.2
Ref. [99] 0.020 3.0 0.082 3.2 0.249 3.8 0.322 4.2

Table 4.5: Equilibrium interaction energies (Emin, kcal/mol) and distances (rmin, Å) of the rare-gas
dimers.

µH2CO αAr αAr−N2
QCO2 QN2 QC6H6

BLYP 2.295 12.24 24.43 -3.21 -1.13 -5.38
DCACP-BLYP 2.294 12.24 24.43 -3.21 -1.13 -5.39

αAr−N2
= αAr−N2T

zz , Q =
〈
z2 − 1

2x
2 − 1

2y
2
〉

Table 4.6: Polarisabilities (α), dipole (µ), and quadrupole (Q) moments of formaldehyde, Ar, Ar-N2,
CO2, N2, and benzene. All values are in a.u., except for dipole moments which are quoted in Debye.

culated at the same level of accuracy as the reference points [CCSD(T)] and the ones evaluated with the

DCACP-augmented functionals (DCACP-GGA) agree very well, considering that there are only three

penalty terms (two energy- and one nuclear-force-dependent terms) and two adjustable parameters per

element. For the rare-gas dimers,rmin andEmin are also in very good agreement with the reference

values (Table 4.5), in great contrast to the spurious attractive or repulsive behavior of the pure function-

als [12,13,20].

4.3.4 Effects on the electronic structure

The facts that DCACPs occupy a polarization channel and are much weaker as well as longer ranged

than the atomic pseudopotentials should ensure that there is no interference between the two. To ver-

ify this, we have checked the effect of DCACPs on intramolecular geometries; specifically, the bond

lengths of the isolated monomers of the calibration systems, including single, double, and triple bonds,

have been computed. The values obtained with DCACP-GGA deviate negligibly from those of the cor-

responding uncorrected functionals (one thousandth of an Å). Furthermore, dynamical properties have

been tested via vibrational frequency analysis on geometry-optimized (ionic gradient tolerance of10−5

a.u.) molecular hydrogen, water, and carbon dioxide molecules, and only small deviations of≤ 5 cm−1

are observed, within numerical accuracy.

Unlike DFT-D [30] in which an explicit force-field-liker−6 dependency is included, DCACPs are
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Figure 4.5: Graphs showing∆(z) =
∫
dxdy[nDCACP(r)− nBLYP(r)] (a.u.) against the intermolecular

axisz (Å) for the benzene dimer (left) and the H2 dimer (right). The dotted lines show the position of
the moieties. The inset shows the DCACP-BLYP electron density for the respective system.

effective potentials whose contributions to the total energy depend explicitly on the electronic wave

function. As a consequence, DCACPs adapt to the chemical environment where the atom is and ex-

hibit remarkable generality. On the other hand, it is not desirable to have DCACPs strongly influencing

the already reasonably well-described electronic properties. In this regard, the very small amplitude of

DCACPs (10−4 − 10−5 times smaller than the corresponding atomic pseudopotential) induces a negli-

gible effect on characteristics that depend on the electronic structure; properties such as polarisabilities

and multipole moments remain basically unchanged (Table 4.6). Figure 4.5 illustrates that the effect of

DCACPs on the electronic structure of a vdW complex is small (the largest electron density difference

is 10−4 times smaller than the maximum electron density of the complex) but relevant. The electron

density in the inter-moiety region is increased at the expense of the density on the molecular plane.

4.3.5 Transferability

To be transferable entails that one and the same potential can be used in calculations of different chemical

environments with comparable accuracy. It is one of the prerequisites for a newly developed method to

be of any practical use. The assessment of the newly generated DCACPs is limited to a simple set of

weakly bound complexes. Even though the size of the testing set is relatively small and is restricted

to gas-phase systems only, the transferability of the parameters is expected to be at least on par with
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Figure 4.6: Interaction energy (Eint, kcal/mol) surface of the parallel-displaced benzene dimer at various
x andz distances (both in Å) predicted by DCACP-BLYP. The global minimum is at(x, z, Eint) =
(±1.76, 3.6,−2.60); the estimated CCSD(T)/aug-cc-pVQZ* result is(±1.67, 3.6,−2.63) [98].

the ones calibrated against MP2 references where encouraging results have been obtained for rare gases,

graphene, and hydrocarbon complexes [34,89]. Furthermore, one recent study [90] has shown successful

applications of CCSD(T)-calibrated DCACPs with BLYP on describing different hybridization states of

carbon and condensed phase phenomena such as the binding energy of graphene sheets and the cohesive

energy of benzene crystal.

The 2-dimensional interaction energy surface of the parallel-displaced benzene dimer is plotted

in Figure 4.6. The global minimum predicted by DCACP-BLYP is only off by 0.1 Å (inx) and -

0.03 kcal/mol compared with the estimated CCSD(T)/aug-cc-pVQZ* reference [98], showing the excel-

lent transferability of DCACPs to complexes of different orientations from the calibration one.

The interaction energy of H2-benzene (bound by dispersion forces), the Ar-N2 complex in two dif-

ferent configurations (bound by dispersion forces), and the anti-parallel formaldehyde (H2CO) dimer

(bound by dipole-dipole interaction and dispersion forces) have been evaluated with fixed monomer

geometries. The results are tabulated in Table 4.7. DFT-GGAs fare badly; the minimum interaction

energyEmin is overly underestimated [mean absolute error (MAE) 0.80 kcal/mol], and the equilibrium

distancermin, if predicted at all, is shifted out, in one case by as much as 0.6 Å. BLYP (MAE 0.95

kcal/mol) and BP (MAE 1.10 kcal/mol) fail to predict minima in all cases apart from the dipole-dipole-

interaction-dominated formaldehyde dimer; PBE shows qualitative binding, albeit at the wrongrmin

(MAE: 0.35 kcal/mol, 0.22 Å).
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H2-C6H6 (H2CO)2 Ar-N2 L Ar-N2 T
Emin rmin Emin rmin Emin rmin Emin rmin

BLYP 0.47 2.90 −0.91 3.8 0.23 4.40 0.34 3.80
DCACP-BLYP −1.06 2.90 −2.35 3.3 −0.15 4.40 −0.25 3.80
BP 0.56 2.75 −0.71 3.6 0.35 4.41 0.52 3.76
DCACP-BP −1.24 2.75 −2.39 3.2 −0.11 4.41 −0.26 3.76
PBE −0.48 3.05 −1.55 3.4 −0.12 4.45 −0.12 3.98
DCACP-PBE −0.96 2.85 −2.06 3.3 −0.20 4.31 −0.24 3.80
CCSD(T)a −0.95 2.75 −2.18 3.3 −0.23 4.26 −0.30 3.70
a Reference: Ar-N2 [106], H2-C6H6 [103], H2CO dimer calculated in this
work with aug-cc-pVDZ basis set.

Table 4.7: Equilibrium distances (rmin, Å) and interaction energies (Emin, kcal/mol) of some weakly
bound complexes. For repulsive interaction curves, the interaction energy is calculated at the equilibrium
distance predicted by DCACP-GGAs.

The inclusion of DCACPs greatly improves the performance of DFT-GGAs on these complexes with

only an additional CPU cost of no more than 10%.rmin is predicted extremely well throughout the set,

with deviations of less than 0.2 Å from the CCSD(T) values. Overall MAEs are reduced down to 0.08 Å

and 0.11 kcal/mol forrmin andEmin, respectively. DCACP-PBE with a MAE of 0.05 kcal/mol stands

out as the best among the three functionals tested (MAE: 0.10 and 0.16 kcal/mol for DCACP-BLYP and

DCACP-BP, respectively).

As mentioned previously, the DCACP parameters depend heavily on the performance of the underly-

ing GGA functionals. PBE provides some spurious interactions for dispersion-bound systems. DCACPs

complementing PBE can thus be either attractive or repulsive depending on the element in question,

making it possibly more system dependent and less transferable. On the other hand, for BP and BLYP

in which spurious dispersion interactions are entirely absent, DCACPs consistently provide an attrac-

tive correction to the underlying repulsive functional, in line with the idea of a dispersion-motivated

correction. Thus, we believe that the latter combinations are preferable over the occasional superior per-

formance of DCACP-PBE due to the more clean-cut interpretations they offer. As a side note, the linear

Ar-N2 complex (labeled L in Table 4.7) shows the largest deviation of all test cases. Sincermin for this

complex lies at a relatively distant 4.3 Å, this might be attributed to the slight discrepancy between the

midrange to long-range description of DCACP-GGA and the actualr−6 asymptotic behavior.
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cutoff [Ry] Emin [kcal/mol] rmin [Å]
GTH 150 -0.20 3.85
TM 70 -0.20 3.80
TM∗ 70 -0.20 3.80
Vanderbilt 40 -0.20 3.80

Table 4.8: A comparative study (N2 dimer, DCACP-PBE) on DCACPs applied with GTH, TM, and
Vanderbilt pseudopotentials. TM∗ denotes the numerical version of DCACP which is included as thef
channel in the TM pseudopotential.

Besides being applicable to different exchange-correlation functionals, DCACPs are not restricted

to be employed with the analytical format of GTH pseudopotentials [52] only. The constraint to the

analytical format is only enforced during calibrations. Numerical pseudopotentials such as TM [51] or

Vanderbilt [50] types can be (and have been) used alongside. The DCACP-PBE N2 dimer is used as an

illustration for this “pseudopotential transferability” and shows that the improvement brought about by

DCACPs is equally good in all three cases with the usual wave function cutoff for each pseudopotential

type (Table 4.8). In addition, a numerical version of DCACPs can easily be included as an extra channel

(f channel in this case) in TM pseudopotentials (the procedure is described in the Appendix).

4.4 Conclusions

We present a library of DCACPs that are calibrated against CCSD(T) or full CI (H only) references and

can be used in combination with the GGA functionals BLYP, BP, and PBE. The results indicate that

without introducing any significant distortions on intramolecular geometries and electronic structures,

the effects of London dispersion forces can be well described within DFT-GGAs with the DCACP

approach. Furthermore, DCACPs display a strong transferability to systems other than the calibration

ones,i.e., once calibrated, DCACPs can be applied in various chemical environments without further

tuning the parameters. In brief, the DCACP approach shows promising outcomes despite its empiricism,

suggesting a more physical interpretation underlying this remarkable performance.
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Chapter 5

Noncovalent Interactions in

Nucleobase–Intercalator Complexes

Abstract

Within the framework of Kohn–Sham density functional theory, interaction energies of hydrogen bonded

and π–π stacked supramolecular complexes of aromatic heterocycles, nucleobase pairs, and nucle-

obases with the anti-cancer agent ellipticine as well as its derivatives are evaluated. Dispersion-corrected

atom-centered potentials (DCACPs) are employed together with the BLYP functional. For all systems

presented, the DCACP results are in very good agreement with available post Hartree–Fock quantum

chemical results. Estimates of 3-body contributions (<15% of the respective interaction energy) and

deformation energies (5-15% of the interaction energy) are given. Based on our results, we predict a

strongly bound interaction energy profile for the ellipticine intercalation process with a stabilization of

nearly 40 kcal/mol when fully intercalated (deformation energy not taken into account). The frontier

orbitals of the intercalator–nucleobase complex and the corresponding non-intercalated nucleobases are

investigated and show significant changes upon intercalation. The results not only offer chemical in-

sights but also suggest that DCACPs can serve as an effective way to achieve higher accuracy in density

functional theory without incurring a prohibitive computational cost, paving ways for realistic studies

on biomolecular complexes in the condensed phase.

45
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5.1 Introduction

One of the goals in modern biology is to understand biological phenomena at the molecular level, which

involves studying structures of biomolecules and their functions. Noncovalent interactions between aro-

matic molecules are believed to contribute significantly to the stability and conformational variability of

many biomacromolecules. In particular,π–π interactions play a key role in assembling many biologi-

cally important architectures such as DNA and RNA. These interactions not only influence the structure

and dynamics of nucleic acids but also their interactions with polycyclic aromatic molecules whose abil-

ity to intercalate between base pairs of DNA has attracted much attention owing to the clinical success

of many intercalators in anti-tumor chemotherapy [107–109]. Detailed knowledge ofπ–π interactions

may prove invaluable in designing novel DNA–intercalation drugs.

The macromolecular effects of intercalator–DNA interactions, such as the unwinding and the length-

ening of DNA, have been studied extensively by experiments [110–114]. These provide only limited

information on the nature of this association at the atomistic level [115]. On the other hand, computer

simulations can give atomistic insights into DNA-sequence specific interactions, binding selectivity, and

the role of solvents as well as counter-ions in the intercalation process without additional assumptions.

Intercalator Charge R1 R2 R3
E 0 H H -
9HE 0 OH H CH3

E+ +1 H H H
9AE+ +1 NH2 H H

Table 5.1: Structure of ellipticine and its derivatives.

For this study, the alkaloid ellipticine and its derivatives (Table 5.1) are chosen. Ellipticine is isolated

from Ochrosia elliptica[116], and many of its more soluble derivatives yield promising results for cancer

treatments [117]. NMR studies have shown intercalation to be a DNA binding mode for ellipticine [118].

Further searches for ellipticine-derived drugs are likely to profit from a detailed atomistic knowledge of

their binding mechanism.
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For simple heterocycles or large polarizable aromatic polycyclic compounds such as ellipticine and

nucleobases, London dispersion forces constitute one of the major stabilizing components for their

supramolecular complexation [119–122]. Unfortunately, a description of these forces requires an ac-

curate treatment of electron correlation effects; high-level correlatedab initio methods such as coupled-

cluster theory with large basis sets or quantum Monte Carlo allow for an accurate treatment, but they

are not applicable for all but the smallest systems. The tractable size of aromatic heterocycle complexes

has prompted studies using MP2 and CCSD(T) methods [24, 72, 123–127]. For larger systems such as

stacked DNA base pairs, interaction energies have been computed withab initio methods, albeit to our

knowledge, CCSD(T) calculations with large basis set have yet to be attempted. Instead, MP2 calcu-

lations extrapolated to the complete basis set (CBS) limit are augmented with a∆CCSD(T) correction

computed in a smaller basis, which systematically corrects the over-binding nature of MP2 forπ–π

interactions, to estimate the CBS CCSD(T) results [25, 122, 123, 125, 128–135]. Still, this approach

is computationally infeasible for biologically more relevant studies such as the intercalator–nucleobase

complex investigated here.

The Kohn–Sham (KS) formalism of density functional theory (DFT) [7, 8], in principle, is exact

and should correctly describe dispersion forces if the true exchange-correlation functional were known.

Many popular exchange-correlation functionals, however, are unsuitable for a proper treatment of these

forces [12, 13, 22–26, 28, 136, 137]. New methods for efficient calculations of dispersion forces in

DFT have thus been the focus of many recent works. Approaches based on electron density parti-

tioning, involving the assignment of fragments, have been used to describe rare gas and small hydrocar-

bon complexes [59–61]. The introduction of non-local correlations into a van der Waals (vdW) func-

tional has shown promising results on systems such as rare-gas dimers, aromatic ring complexes, and

graphite [29, 62–67]. In addition, a long-range correction scheme combined with a vdW functional has

been successfully applied to small vdW complexes, benzene dimers, and naphthalene dimers [68, 69].

Recently, a post Hartree–Fock model has been proposed in which the instantaneous dipole moment of

the exchange hole is used to generate the dispersion coefficients [33, 73, 74]. This model has predicted

the geometries and binding energies for a large test set of intermolecular complexes remarkably well

with the notable exception of theπ-stacked benzene dimer. An alternative approach involves optimizing

a functional for better descriptions of non-bonded interactions, for example, PWB6K [138] and M05-
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2X [70]. A combination of a DFT description of the interacting monomers with a symmetry-adapted

perturbation theory (SAPT) treatment of inter-monomer interactions (DFT-SAPT) [71, 139] and the in-

troduction of the density-fitting approximation has made SAPT calculations with extended basis sets

on medium-sized systems possible [140]. A more pragmatic solution is to explicitly include empirical

pairwise inter-atomic dispersion terms. This scheme generally leads to reasonable stabilization energies

and nuclear forces [16, 23, 30, 72], but it involves defining the appropriate damping functions and the

parameterization of theC6 coefficients. Furthermore, the electronic structure is left uncorrected.

The use of dispersion-corrected atom-centered potentials (DCACPs) provides an alternative ap-

proach to include dispersion forces in a fully self-consistent manner within the framework of KS-

DFT. DCACPs represent corrections to standard exchange-correlation functionals as non-local angular-

momentum-dependent atom-centered electronic potentials [34]. So far, DCACPs have been successfully

applied to small vdW clusters [76,89,90], crystals of graphite and benzene [90], the adsorption of argon

on graphite, liquid crystals [96], and a large set of biomolecules including more than 100 nucleobase

and amino acid complexes [92].

Here, we study complexes of weakly bound heterocycles, nucleobase pairs, and intercalator–nucleobase

complexes using DCACPs which have been calibrated against CCSD(T) (with large basis sets) or full CI

results [76]. By including systems ranging from relatively simple molecules to intercalator–nucleobase

complexes, we aim to both validate and challenge the DCACP concept in a systematic way using re-

alistic applications. In particular, much attention is paid to the electronic and structural modifications

of the monomers upon binding. We begin by studying the interaction energy of three model hetero-

cyclic complexes: (furan)2, (pyridine)2, and (pyrimidine)2. We then evaluate the stabilization energy

of few selected stacked nucleobase pairs: guanine· · · cytosine (G· · ·C), adenine· · · thymine (A· · ·T),

uracil· · ·uracil (U· · ·U), and cytosine· · · cytosine (C· · ·C) for which high-level reference data is avail-

able. The performance of DCACPs on H-bonding is assessed by considering two Watson–Crick (WC)

base pairs [141]: adenine· · · thymine (A· · ·T WC) and guanine· · · cytosine (G· · ·C WC). Interaction

energies of the neutral and charged complexes formed between the ellipticine derivative and the WC

base pair (abbreviated as ellip–WC from now on): GC–9HE, GC–E+, GC–9AE+, GC–E, AT–E+, and

AT–E [defined in Table 5.1 and Figure 5.1(a)] are evaluated. Lastly, anin vacuomodel for the DNA

intercalation process is investigated. The model is based on an available crystal structure [142] and con-
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sists of an ellipticine molecule intercalated between two WC base pairs that are connected by phosphate

backbone groups [ellipticine–d(CG)2 complex].

5.2 Computational Details

All DFT calculations have been carried out using the program CPMD [93], the BLYP functional [17,

18], pseudopotentials of Troullier-Martins type [51], and the Poisson solver implemented in CPMD

according to Ref. [100]. DCACPs calibrated against references at CCSD(T) or full CI level have been

taken from Ref. [76] in which the fitting procedure and the dependency of the correction on the employed

functional are discussed. For the larger complex, ellipticine–d(CG)2, we have employed a plane wave

cutoff of 70 Ry and a gradient tolerance of1.5× 10−3 a.u. per nuclear degree of freedom for geometry

optimizations. For all other systems we have used a plane wave cutoff of 75 Ry and a tolerance of

5× 10−4 a.u. for geometry optimizations.

The interaction energy between moieties X and Y is most commonly defined as the difference be-

tween the total energy of the fully relaxed complex (Eopt
XY) and the fully optimized isolated moieties

(Eopt
X , Eopt

Y ),

∆Eopt
X−Y = Eopt

X−Y − Eopt
X − Eopt

Y . (5.1)

Eopt thus takes the intramolecular deformation energy into account. Nevertheless, to be consistent with

previously published results, two other definitions for the interaction energy, when explicitly mentioned,

are also used:

∆Efix
X−Y = Efix

X−Y − Eopt
X − Eopt

Y , (5.2)

∆Eexp
X−Y = Eexp

X−Y − Efix
X − Efix

Y . (5.3)

The superscript ‘opt’ is to stress that the energy is calculated with the moiety fully relaxed, ‘exp’ de-

notes the structure is taken from some known experimental structures, and ‘fix’ means that the com-

plex/monomer is constructed/taken from some defined geometry and not relaxed [in eq 5.2, this means

the complex X-Y is constructed from the optimized monomer (X, Y) geometry and the only variable

is the intermolecular distance; in eq 5.3, the monomer (X, Y) is fixed at the geometry assumed in the

experimental complex].
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Another quantity that can shed light on the physical nature of the stacking interaction is the defor-

mation energy of the complex components. The deformation energy for a moiety (Edef ) is defined as

the energy difference between two conformations: one corresponding to the isolated moiety’s optimized

conformation and the other corresponding to the conformation assumed in the relaxed complex. Large

Edef is usually an indication of interactions other than the London type such as dipole-dipole or H-

bonding interactions. In addition, for complexes consisting of an ellipticine derivative and one WC base

pair (ellip–WC), the 3-body term∆(3) gives an indication on the importance of the cooperative effects

as a result of, say, charge transfer or polarization upon complexation.

Applying a new method on new ground requires validation. We rely, whenever possible, on previ-

ously published high-levelab initio results as our benchmark. For the relatively small aromatic hetero-

cycle complexes, this does not pose a problem. Yet there are only few high-level calculations on stacked

DNA base pairs and none involves intercalators. In general, MP2 calculations overestimateπ–π inter-

actions with respect to the CCSD(T) values. Owing to error cancellation, results from MP2 calculations

using a modified medium-sized basis set [6-31G*(0.25)] where the standardd-polarization functions

were replaced by more diffuse ones are found to be much closer to the CCSD(T) values than the ones

with a large basis set. For example, MP2/6-31G*(0.25) calculations overestimate the equilibrium inter-

action energy of the sandwich benzene dimer by only 8% compared with the CCSD(T)/aug-cc-pVQZ

result whereas MP2/aug-cc-pVQZ overestimates by 97% [24, 98]. In light of these observations, for

systems where no higher reference value is available from literature, MP2/6-31G*(0.25) calculations

have been carried out using the GAUSSIAN 03 [102] package. These values, however, should not be

considered as high quality benchmark but more as guiding values for qualitative trends.

Interaction energies∆Efix for dimers of benzene, pyrimidine, pyridine, and furan have been com-

puted at various intermolecular distancesr with fixed DCACP-BLYP optimized monomer geometries,

as shown in Table 5.2.

Geometry optimizations of the stacked and H-bonded A· · ·T and G· · ·C base pairs and their iso-

lated moieties have been carried out to evaluate the interaction energy∆Eopt. Energies of the isolated

moieties at the geometry assumed in the complex have also been evaluated for the calculations ofEdef .

For U· · ·U and C· · ·C stacked base pairs, interaction energies∆Eexp have been computed using the

geometry from Ref. [135] (UUst, CCst).
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(a) AT–E+ complex

z

y

x

(b) Ellipticine–d(CG)2 complex

Figure 5.1: Graphical representation of the simulation set-up. (a) Configuration of the AT–E+ complex.
(b) Structure of the ellipticine–d(CG)2 complex; thex-coordinate of the atoms marked with an asterisk
* is constrained during the simulations. H atoms are omitted for clarity in (b).

The ellipticine and its derivatives are described in Table 5.1. The intercalator and the WC base

pair are arranged in a coplanar fashion with a vertical separationr [the AT–E+ complex is shown in

Figure 5.1(a) as an example]. Single point energy calculations have been carried out forr = 3.2, 3.4,

3.5, and 3.6 Å; the bases and the intercalator moieties are kept rigid at the optimized B3LYP/6-31G*

geometries to obtain the interaction energy∆Efix.

The interaction energiesEint of the ellipticine–d(CG)2 complex [Figure 5.1(b)] have been evaluated

by defining the intercalator (ellipticine) as one moiety and the 4-nucleobase complex as the other. As

we are mostly interested in computing energies arising from the stacking interaction, we define, for the

present system,Eint = Eopt
whole complex− Efix

ellipticine − Efix
4-nucleobase complex. An inter-moiety displacement

coordinate∆x defines the intercalation coordinate according to the axis frame shown in Figure 5.1(b).

Constraints on the key atoms involved in the∆x displacement are imposed to preserve the parallel dis-

placement throughout the simulations. Configurations with∆x ranging from 0 up to 5 Å have been pre-

pared in 1 Å step increments using the bis-intercalated hexanucleotide crystal structure from Ref. [142]

as the initial structure for∆x = 0 Å. Since the ellipticine–d(CG)2 complex we adopted is situated at the

extremity of the crystal, to closely mimic its non-intercalated state, we have chosen the 5’-d(CpG)-3’

segment of a B-DNA decamer, 5’-d(CpGpApTpTpApApTpCpG)-3’ [143], as the initial structure of the

intercalator-free 4-nucleobase complex. Simulated annealing has been employed in order to obtain the

optimized structure for all configurations.
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5.3 Results and Discussion

5.3.1 Heterocycles

(Pyrimidine)2 (Pyridine)2 (Furan)2 (Benzene)2
r [Å] 3.4 3.6 3.7 3.7 3.8 3.9 3.8 4.0 4.2 3.8 3.9 4.0

BLYP 4.03 2.22 1.66 4.23 3.52 2.97 2.77 1.99 1.51 3.84 3.23 2.74
DCACP −2.56 −3.35 −3.42∗ −1.33 −1.53 −1.58∗ −0.98 −1.03∗ −0.87 −1.61 −1.72∗ −1.71
MP2 −3.66 −3.92∗ −3.83 −1.81 −1.84∗ −1.78 −0.76 −0.80∗ −0.71 −1.83∗ −1.82 −1.74
CCSD(T) −2.03 −2.64∗ − − − − − − − −1.66 −1.70∗ −1.67

Table 5.2: Interaction energies (∆Efix, kcal/mol) of heterocycle and benzene dimers at various vertical
separationsr. MP2 are MP2/6-31G*(0.25) results calculated in this work, apart from the pyrimidine
dimer whose values have been taken from Ref. [123]. CCSD(T) are CCSD(T) calculations with either
diffuse cc-pVDZ (pyrimidine dimer [123]) or estimated aug-cc-pVQZ (benzene dimer [98]) basis sets.
The asterisk∗ denotes the equilibrium∆Efix.

Table 5.2 summarizes the interaction energies of heterocycle dimers at various vertical separations.

Our results show that the uncorrected BLYP functional predicts no interaction minimum for any of the

investigated pairs, failing to describeπ–π interactions altogether. In contrast, results from the DCACP-

augmented BLYP functional (DCACP-BLYP) not only show attractive interactions between all stacked

dimers but also reproduce the trend in the MP2 binding energies when going from pyrimidine to pyridine

to furan.

The DCACP-BLYP results agree to within 0.5 kcal/mol with the MP2/6-31G*(0.25) values for the

equilibrium ∆Efix. For N-heterocycles, the DCACP-BLYP equilibrium∆Efix are underestimated by

no more than 15% and the equilibrium distances are shifted outwards by 0.1 Å with respect to the

MP2/6-31G*(0.25) results. Since the potential energy surface around the minimum is very shallow, a

discrepancy of only 0.1 Å is doubtfully relevant. On the other hand, DCACP-BLYP overestimates the

equilibrium ∆Efix in furan, O-heterocycle, by 0.2 kcal/mol (approximately 30%) but reproduces the

MP2/6-31G*(0.25) equilibrium distance perfectly.

5.3.2 Base pairs

For the stacked and H-bonded base pairs, the DCACP-BLYP results are in good agreement with the ref-

erence data [MP2 calculations in CBS limit augmented with∆CCSD(T) corrections]. Results from three
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A· · ·T G· · ·C U· · ·U st C· · ·C st
∆Eopt ∆atom ∆Eopt ∆atom ∆Eexp ∆atom ∆Eexp ∆atom

BLYP 1.2 −0.43 −7.4 −0.33 1.8 −0.39 1.0 −0.42
DCACP −9.5 −0.07 −14.6 −0.08 −6.3 −0.05 −7.9 −0.08
BLYP-D [144] −11.2 −0.01 −15.6 −0.04 −7.2 −0.01 −9.1 −0.03
PWB6K [145] −9.5 −0.07 −14.9 −0.07 - - - -
SAPT [140] −10.9 −0.02 −17.8 +0.03 - - - -
Ref. [135] −11.6 0.00 −16.9 0.00 −7.5 0.00 −10.0 0.00
∆atom = (∆Eopt

Ref. −∆Eopt
DFT)/Natom.

Table 5.3: Interaction energies (∆E, kcal/mol) of the stacked nucleobase pairs. Two∆E definitions
are used: optimized (∆Eopt) and experimental (∆Eexp) complex geometry; the latter is not corrected
for the deformation energy. BSSEs are not considered in the cited BLYP-D and PWB6K values while
deformation energy is not taken into account in the SAPT results. References are MP2 calculations in
CBS limit with a∆CCSD(T) correction.

other approaches are also included for comparison: BLYP augmented with the empirical dispersion cor-

rections [BLYP-D, with TZV(2d,2p) basis] [144], hybrid meta GGA functional PWB6K [6-31+G(d,p)

basis] [145], and DFT-SAPT (CBS limit, abbreviated as SAPT from now) [140]. One should bear in

mind that PWB6K and BLYP-D results are not counterpoise-corrected [101] for the basis set superpo-

sition errors (BSSEs) and once corrected should lead to smaller binding energies. As a reference, the

BSSEs with PWB6K/6-31+G(d,p) for the stacked and the H-bonded G· · ·C base pairs are estimated

to be 1.6 and 1.1 kcal/mol, respectively [145]. On the other hand, the CBS SAPT values do not take

deformation energies into account.

The interaction energies∆E of the stacked base pairs are presented in Table 6.3. As expected, the

BLYP functional leads to grossly underestimated, sometimes even repulsive,∆E for all stacked base

pairs investigated; the mean deviation per atom (∆atom) is -0.39 kcal/mol. Compared with the reference

data, DCACP-BLYP systematically underestimates∆E with ∆atom of roughly -0.07 kcal/mol and a

deviation of approximately 20% or lower from the benchmark. These results demonstrate the notable

improvement obtained with the DCACP approach. The DCACP-BLYP performance is comparable to

BLYP-D (where electronic structure remains uncorrected) and the two more complex but computation-

ally more demanding methods: PWB6K and SAPT.

The DCACP-BLYP∆E per atom∆Eatom is approximately -0.3 kcal/mol for all stacked base pairs
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A T G C
µa 2.36 4.37 6.55 6.43
µb 2.49 4.39 6.68 6.50

Table 5.4: Overall dipole moment (Debye) of the nucleobase in its optimized geometry (µa) and the
geometry observed in the stacked complex (µb). The values obtained with uncorrected and DCACP-
augmented BLYP functionals are the same.

Figure 5.2: Detail of the optimized geometry of the G· · ·C stacked base pair. The distance (Å) between
the acceptor and the donor of the H-bond is indicated.

here apart from the G· · ·C pair (-0.5 kcal/mol). Furthermore, the G· · ·C base pair is the only one which

shows non-negligible binding with the uncorrected BLYP functional, suggesting that the larger∆Eatom

is due to interactions other than dispersion forces. The stacking interaction of nucleobases involves

a combination of dispersion forces and permanent multipole–multipole interactions. The G· · ·C pair

has the largest dipole–dipole interaction among all studied pairs due to the large dipole moment of

the respective bases (Table 5.4). Two points are worth noting: first, the formation of stacked base

pairs increases the dipole moment of the individual moiety only by a very small amount, the largest

increase is 5%; second, the uncorrected and the DCACP-augmented BLYP functionals produce the same

dipole moments. The latter has been observed previously for a benzene–argon complex, indicating

that static electronic quantities change only slightly upon including DCACPs [34]. This observation

is not surprising considering that DCACPs constitute very weak potentials compared with the atomic

pseudopotentials. In addition to the strong dipole–dipole interactions, H-bonding (Figure 5.2, N-H· · ·O)

originating from a tilting of the two monomers, G and C, is also likely to contribute. This H-bond has

a H· · ·O separation of 2.0 Å, close to the typical H-bond length in water (1.97 Å) and an acceptable

directionality (∠NH···O = 150◦). The other complexes also have potential H-bond sites; however, the

distances between the corresponding hydrogen and the H-acceptor atoms are all larger than 2.7 Å, clearly

excluding H-bonding.

The deformation of monomers upon binding depends on the subtle balance between intra- and
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inter-molecular forces, and it is intimately related to the cluster’s vibrational spectra, polarizability,

and charge-transfer properties [131]. The DCACP-BLYP deformation energyEdef is small: 0.6 and

1.5 kcal/mol for the stacked A· · ·T and G· · ·C complexes, respectively (i.e., less than 10% of the corre-

sponding interaction energy). For the DCACP-BLYP geometry-optimized stacked base pairs, the NH2

group enhances its pyramidal shape compared with the isolated monomer, owing to the polar attraction

between one of the hydrogen atoms of the amino group and the closest electronegative atom of the adja-

cent base. In particular, the G· · ·C complex exhibits the largest deformation energy among all stacked

base pairs due to the formation of the H-bond previously mentioned (Figure 5.2).

A· · ·T WC G· · ·C WC
∆Eopt ∆atom rN−N rN−O ∆Eopt ∆atom rN−O rN−N rO−N

BLYP −10.9 −0.15 2.86 2.90 −22.6 −0.21 2.95 2.96 2.81
DCACP −15.4 +0.00 2.86 2.90 −27.7 −0.04 2.93 2.93 2.79
BLYP-D [144] −15.5 +0.00 2.85 2.94 −28.0 −0.03 2.95 2.94 2.79
PWB6K [145] −14.2 −0.04 - - −28.4 −0.01 2.91 2.94 2.80
SAPT [140] −15.7 +0.01 - - −30.5 +0.06 - - -
Ref. [135] −15.4 0.00 2.86 2.94 −28.8 0.00 2.94 2.93 2.79
∆atom = (∆Eopt

Ref. −∆Eopt
DFT)/Natom.

Table 5.5: Interaction energies (∆Eopt, kcal/mol) and H-bond lengths (Å) of the WC base pairs. BSSEs
are not taken into account in the quoted BLYP-D and PWB6K results while the SAPT result is not
corrected forEdef . References are MP2 calculations in CBS limit with∆CCSD(T) corrections.

The results for the WC base pairs are presented in Table 5.5. BLYP describes H-bonding interactions

reasonably well, in great contrast to its complete failure in treatingπ–π interactions. The DCACP

approach further improves these estimates:∆atom, the mean deviation from the reference value per

atom, is decreased to 0.02 kcal/mol from BLYP’s 0.18 kcal/mol, making it one of the most accurate

methods out of the five discussed here. In addition, the DCACP-BLYP-estimated H-bond lengths are

closer to the references than the corresponding BLYP values, providing evidence that the inclusion of

DCACPs also improves the description of H-bonding.

The DCACP-BLYP deformation energyEdef for the WC base pairs is much larger than in the stacked

cases: 1.6 and 3.5 kcal/mol for the A· · ·T WC and the G· · ·C WC base pairs, respectively. These com-

pare well with the respective estimated CCSD(T) values [MP2 augmented with∆CCSD(T) corrections]
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of 1.5 and 3.6 kcal/mol [131] and are slightly improved from the already reasonable BLYP values of 1.7

and 3.3 kcal/mol. Other functionals predictEdef much worse: for the G· · ·C pair, PWB6K and PW91

yield 2.9 [138] and 5.4 kcal/mol, respectively.

5.3.3 Intercalator–DNA complexes

As mentioned before, high-level correlated calculations for systems larger than base pairs are not avail-

able and the quoted MP2/6-31G*(0.25) values should be considered as guiding values for qualitative

trend only. Direct comparisons between the MP2/6-31G*(0.25) and the DCACP-BLYP results have to

be made with care as DCACPs have been calibrated against CCSD(T) (full CI for hydrogen) references.

The study on complexes of one ellipticine derivative stacked with one WC base pair (ellip–WC) in-

volves not only larger systems but also complexes containing both charged and neutral species, showing

DCACPs’ transferability across not only hybridization but also charge states.

GC–9HE AT–9HE GC–E+ AT–E+ GC–9AE+

rmin DCACP 3.5 3.5 3.5 3.5 3.5
MP2 3.4 3.4 3.4 3.3 3.3

∆Efix DCACP −14.89 −14.62 −16.67 −19.13 −21.18
BLYP 8.31 8.67 6.35 3.82 2.37
MP2 −18.63 −18.38 −21.82 −24.52 −26.82

∆(3) DCACP 0.88 0.24 1.77 0.49 0.35

∆atom −0.06 −0.06 −0.08 −0.08 −0.09
∆atom = (∆Efix

MP2 −∆Efix
DCACP)/Natom.

Table 5.6: Equilibrium distances (rmin, Å) and interaction energies (∆Efix, kcal/mol) of the ellip–WC
complexes. MP2 values are calculated with 6-31G*(0.25) basis set [146]. The 3-body term (∆(3),
kcal/mol) is calculated at the equilibrium distance with the DCACP-augmented BLYP functional.

Table 5.6 lists the DCACP-BLYP equilibrium distancesrmin and interaction energies∆Efix of the

ellip–WC complexes. Results for the neutral and the positively charged complexes are both consistently

underestimated by roughly 20% with respect to MP2/6-31G*(0.25). The equilibrium distances, on the

other hand, are in good agreement with MP2/6-31G*(0.25), slightly larger by∼ 0.1 Å on average. The

3-body term∆(3) gives information on the non-additivity of pair interactions. In all cases investigated

here,∆(3) is less than 15% of the corresponding∆Efix, the largest 3-body contribution is found in the

GC–E+ complex whose∆(3) is roughly 11% of∆Efix.
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A detailed atomistic investigation of a biological system often requires the knowledge of the elec-

tronic structure. One attractive feature ofab initio calculations is that one can investigate the effects

of complexation on the electronic structure, a phenomenon which is inaccessible to classical force field

simulations. The electron density of the AT–E+ and AT–E complexes is analyzed further. Upon proto-

nation, a newσ bond is formed resulting in an increase in the in-plane electron density. To compensate

for this change, the electron density in theπ system of protonated ellipticine is slightly depleted.

Complex GC–9AE+ AT–E+ GC–E+ AT–E GC–E
∆Eopt

complex −25.02 −21.47 −20.47 −15.48 −16.56

∆Efix
base −27.23 −14.37 −27.18 −15.01 −27.97

µbase 6.76 2.31 6.15 1.70 5.92

Table 5.7: Interaction energy of the fully relaxed ellip–WC complexes (∆Eopt
complex, kcal/mol) and

the H-bonding energy of the WC base pair in the geometry-optimized ellip–WC complexes (∆Efix
base,

kcal/mol). The latter should be compared with the corresponding values in Table 5.5. The overall dipole
moment (µbase, Debye) of the WC base pair is also included. ‘In’ denotes the corresponding intercalator.

Table 5.7 summarize the results of DCACP-BLYP geometry optimizations on the five selected ellip–

WC complexes. The interaction energy∆Eopt
complex follows the same trend as observed in calculations

using rigid monomer geometries (∆Efix, Table 5.6), but the values are 10–20% larger. The contributions

to the interaction energy can be roughly separated into dispersion, multipole-multipole interactions, H-

bonding, and for the charged complexes, multipole-charge interactions. The deformation of the planar

WC base pair leads to slightly weaker H-bonds: the H-bond strength∆Efix
base, on average, is roughly

1.0 kcal/mol weaker in the significantly deformed charged ellip–WC complexes than the corresponding

isolated WC base pairs. In the neutral complexes it is only weaker by roughly 0.3 kcal/mol due to the

largely preserved planar structures. The loss of H-bonding, however, is more than compensated for by

other favorable interactions introduced upon deformation. An increase in thez-component (z-axis as

shown in Table 5.7) of the dipole moment results in a stronger dipole–charge as well as dipole–dipole

interactions in the charged complexes (Table 5.7). For comparison, the dipole moments of the planar

A· · ·T WC and G· · ·C WC base pairs are 1.42 and 5.87 Debye, respectively. It is worth noting that

the GC–E complex is more stable than the AT–E complex by a small margin (0.8 kcal/mol), supporting
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the observation that ellipticine has a preference to intercalate between the d(GpC)2 over the d(ApT)2

stacked pairs [142].

Figure 5.3: Interaction energy profile of the intercalation process in the ellipticine–d(CG)2 complex as
a function of the inter-moiety displacement∆x. The interaction energy (Eint, kcal/mol) is quoted in the
plot. The upper left and lower right insets correspond to the∆x = 0 Å and∆x = 5 Å configurations,
respectively; H atoms are omitted for clarity.

Figure 5.3 summarizes the interaction energy of the intercalation process evaluated at different inter-

moiety displacements∆x in increments of 1 Å. The maximal interaction is, as expected, found at the

fully inserted configuration∆x = 0 Å, and a large well depth, defined asEint(∆x = 5)−Eint(∆x = 0),

of roughly 20 kcal/mol is observed. At∆x = 5 Å, Eint is still very attractive. The DCACP-BLYPEint

has been calculated with the isolated moieties assuming the same geometries as found in the respective

optimized ellipticine–d(CG)2 complexes. In accommodating the ellipticine molecule, DNA is known

to unwind and lengthen [142]; therefore, one can expect a large deformation energy upon intercalation.

Geometry optimization on the corresponding intercalator-free 4-nucleobase complex, however, shows

little change in energy compared with the ones calculated using geometries taken from the optimized

ellipticine–d(CG)2 complexes, indicating the presence of a local minimum with large inter-base separa-

tion. This data is supported by the fact that base pairs found at the ends of a DNA segment tend to be

more distorted with littleπ–π interaction. Our results show that the intercalation process is energetically

favorable and that intercalating ellipticine at such position should not cause a large initial loss ofπ–π

stacking. This may serve as an alternative explanation as to why ellipticine prefers the d(CpG)2 inter-
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B-DNA ∆x = 0 Å ∆x = 5 Å Ellipticine

LUMO LUMO LUMO LUMO
2.28 2.19 1.55 -2.09

HOMO-1 HOMO HOMO-1 HOMO
-0.19 0.01 -0.66 -4.65

HOMO-4 HOMO-2 HOMO-4
-0.43 -0.48 -0.84

HOMO-3 HOMO-6
-0.56 -0.92

Figure 5.4: Graphical representation of the KS orbitals in the ellipticine–d(CG)2 complex. Only orbitals
localized on the base or ellipticine are depicted. The corresponding energy (eV) is listed beneath.

calation site as reported in Ref. [142]. The binding site preference of ellipticine observed in Ref. [142]

could be more related to the sequence position than to the nature of the base. The use of larger DNA

fragments or a fragment where d(CpG)2 is not located at the extremities may be necessary for a proper

evaluation of the sequence-dependent binding preference for intercalators. To evaluate the effect of

DCACPs, single-point energy calculations with the DCACP-BLYP optimized geometries for∆x = 0 Å

and∆x = 5 Å haven been carried out using the BLYP functional alone. For∆x = 0 Å, the resulting

interaction energy is repulsive (18.4 kcal/mol) whereas for∆x = 5 Å the complex is slightly stable

(-3.3 kcal/mol). The use of DCACPs is thus fundamental to obtain even a qualitatively correct picture

of ellipticine’s intercalation properties.

To complement the study on the effects of ellipticine binding on DNA’s electronic structure, few
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selected KS orbitals of interest and their energy are presented in Figure 5.4. Since the orbitals on the

phosphate groups do not mix with the bases nor the intercalator, we choose to present orbitals localized

on the bases or the intercalator only. Upon intercalation, the characteristics of the frontier orbitals change

significantly: the highest occupied molecular orbital (HOMO) of the fully intercalated complex is now

localized on the intercalator, ellipticine, and the lowest unoccupied molecular orbital (LUMO) has the

same characteristics as in the non-intercalated B-DNA but now with a small mixing (binding in nature)

to the LUMO of ellipticine. Furthermore, the energy of the ellipticine HOMO has risen by almost 5

eV upon intercalation. These changes in the electronic structure should have a pronounced influence

on the electron/charge transfer properties of DNA, which is of great interest for DNA wire and DNA

repair studies [147, 148], to name just a few. Nevertheless, it should be emphasized that the current

model has been simulated at anhydrous condition with no counter-ions for the phosphate backbone. The

results should thus be interpreted with caution and future studies based on more realistic models should

be carried out to verify its validity.

5.4 Conclusions

We have carried out DFT DCACP-BLYP calculations to study interactions of aromatic heterocycle,

nucleobase, and intercalator–nucleobase complexes. We show that the DCACP approach is able to

describeπ–π interactions remarkably well in all systems studied, including neutral as well as positively

charged complexes. H-bonding is also well described; the binding geometries as well as interactions and

the deformation energies are both clearly improved compared with DFT BLYP. In addition, even with

the current implementation in which further optimization for computational efficiency is still possible,

for systems studied in this work, the computational overhead is increased by no more than 30%.

The 3-body energy in all investigated cases is<15% of the respective interaction energy. Fur-

thermore, H-bonds between the WC base pairs are deformed noticeably to achieve more favorable

multipole–charge interactions in all charged ellip–WC complexes. The interaction energy of ellipticine–

d(CG)2 complex when fully intercalated is estimated to be approximately 40 kcal/mol. Whenever

CCSD(T) references are available, the DCACP-BLYP estimates of interaction energies are closer to

the CCSD(T) values than MP2 methods, which is consistent with the fact that all DCACPs used in this

study apart from the hydrogen DCACP have been calibrated against CCSD(T) references. In short, the
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availability of a library for most commonly encountered elements in biological systems [76] render the

DCACP approach a practical way to achieve higher accuracy without incurring a prohibitive computa-

tional penalty. More realistic DFT-based quantum mechanical/molecular mechanical calculations [149]

of intercalator–DNA complexes solvated in water or a protein environment can now be envisaged.
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Chapter 6

Weak Interactions in Biomacromolecules

Abstract

Interaction energies of the biomolecules in the JSCH-2005 database are calculated with density func-

tional theory using the exchange-correlation functional BLYP augmented with dispersion-corrected

atom-centered potentials. The results are in excellent agreement with extrapolated CCSD(T) complete

basis set limit references with unsigned mean errors of less than 1.6 kcal/mol. Geometry optimizations

all reach stable configurations that are close to the MP2-optimized geometries.

63
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6.1 Introduction

Weak interactions such as hydrogen bonding (H-bonding) and London dispersion forces are key in-

teractions for biological systems; they are believed to contribute significantly to the stability as well

as conformational variability of many biomacromolecules and their interactions with each other or the

environment.

Unfortunately, a proper description of dispersion forces requires an accurate treatment of electron

correlation effects; high-levelab initio methods such as coupled-cluster theory with large basis sets

or quantum Monte Carlo provide proper descriptions, but they are computationally too demanding for

systems larger than tens of atoms.

In principle, Kohn–Sham density functional theory (KS-DFT) [7, 8], whose computational cost is

much lower than that of conventional correlated methods, allows for accurate calculations of dispersion

forces if the exact exchange-correlation functional were known. Yet with many of the most commonly

used exchange-correlation functionals such as the local density approximation or generalized gradient

approximations, DFT is unable to properly account for these forces [12, 13, 23]. Developing possible

cures for this deficiency of DFT has been the focus of many recent works [27–33]. Nevertheless, to be

generally applicable to a wide range of chemically and biologically interesting systems such as nucleic

acids and proteins, the scheme needs to be system independent (i.e., highly transferable) and computa-

tionally tractable.

Dispersion-corrected atom-centered potentials (DCACPs) [34], which represent the effect of dis-

persion forces via electronic potentials centered at the nuclear positions, are characterized by a par-

ticularly high transferability. They have been successfully applied to various systems in both gas and

condensed phases without increasing the computational cost significantly [76,90,91,150]. Nevertheless,

a systematic evaluation of their performance against some well-established benchmark of biologically

importance is still missing.

Recently, high-levelab initio interaction energies of more than 100 nucleobase and amino acid com-

plexes have been collected and published under the acronym JSCH-2005 [135]. Both MP2-geometry-

optimized and experimental (crystal and NMR solvent) geometries are considered and the interaction

energies are obtained by extrapolating the MP2 results to complete basis set (CBS) limit which are then

augmented with CCSD(T) correction terms evaluated with smaller basis sets (6-31G∗∗ and cc-pVDZ).
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This collection forms an extensive benchmark set for testing the performance of less rigorous but more

computationally efficient methods on complexes of biological relevance.

Here, we present DFT calculations for all the molecules in the JSCH-2005 database using the BLYP

functional [17, 18] augmented with DCACPs in order to provide a more systematic validation of this

recently introduced approach.

6.2 Computational Details

All DFT calculations have been carried out using the CPMD code [93], pseudopotentials of Troullier

and Martins [51], and a plane wave cutoff of 75 Ry in a253 Å3 cubic cell under periodic boundary

conditions (isolated cell [100] for the amino acid pairs). DCACPs for hydrogen, carbon, nitrogen,

oxygen, and sulfur have been taken from Refs. [76] and [151]; no DCACP has been applied on fluorine.

We choose to use the BLYP functional [17, 18] in this study; however, any other exchange-correlation

functional can equally well be employed in combination with the appropriately parameterized DCACPs

with a (slightly) varying degree of transferability [76].

To be on equal ground with the JSCH-2005 database, we have, in general, followed the same proce-

dure as Ref. [135] in considering geometry optimizations for some complexes, while for others, experi-

mental geometries have been used. For complexes labeled OG in Ref. [135], we have evaluated the inter-

action energies of the optimized complexes with respect to the optimized monomers (the intramolecular

deformation energy is thus taken into account). The only exceptions are complexes labeled CC1–CC14

whose interaction energies have been calculated at fixed monomer separations to scan the interaction en-

ergy curves. In particular, complexes CC1–CC4 map the twist dependence of the stacking interactions

for undisplaced dimers whereas complexes CC5–CC7 and CC8–CC13 show the mutual displacement

of parallel and anti-parallel dimers. Interaction energies for these complexes (CC1–CC14) and the com-

plexes labeled EG have been computed from single-point energy calculations based on the reference

structures. In addition, pure BLYP calculations have been carried out on all EG and CC1–CC14 com-

plexes to evaluate the contribution of DCACPs to the interaction energy (D = EDCACP
int − EBLYP

int ).

An alternative solution to remedy the deficiency of current density functionals in describing disper-

sion forces is to explicitly include empirical pairwise inter-atomic potentials of theC6R
−6 form in the

total energy (DFT-D) [16,23,30,72]. This involves parameterization of theC6 coefficients and defining
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appropriate damping functions; furthermore, the electronic structure is left uncorrected. For the sake

of comparison, results calculated using DFT-D with the BLYP functional (BLYP-D) [144] are included

whenever deemed necessary.

6.3 Results and Discussion

Calculations using BLYP augmented with DCACPs (abbreviated as DCACP from now on) are in ex-

cellent agreement with the reference data for all ranges of noncovalently bound complexes in the

database. These results demonstrate that DCACPs not only quantitatively correct the BLYP descrip-

tion of dispersion-bound complexes but also improve the one of H-bonded complexes (Tables 6.1 – 6.4,

abbreviation used are the same as in Ref. [135]).

Before making further comparison, we would like to stress that both the benchmark and the DCACP

calculations do not suffer from the basis set superposition error (BSSE) since the former has been ex-

trapolated to the CBS limit and the latter has been carried out using plane wave instead of localized basis

sets. On the other hand, the BLYP-D results from Ref. [144] have been computed with TZV(2d,2p) basis

sets without correcting for BSSEs. Previous studies show that BSSEs for TZV(2d,2p) or TZV(2df,2pd)

basis sets give an non-negligible positive contribution within 10-20% of the binding energy [30, 152].

Furthermore, theπ–π stacked complexes tend to have slightly higher BSSE contribution than the H-

bonded complexes. With this in mind, comparisons to the BSSE-uncorrected BLYP-D results should be

made with caution.

For instance, on the first sight, the average unsigned mean errors show that BLYP-D gives a slightly

better agreement with the reference apart from the H-bonded complexes [H-bonded: 0.69 (DCACP),

0.76 (BLYP-D); interstrand: 0.44 (DCACP), 0.29 (BLYP-D); stacked: 1.51 (DCACP), 0.53 (BLYP-

D); amino acids: 1.44 (DCACP), 1.52 (BLYP-D); all in kcal/mol]. YetD computed from the DCACP

results agrees well with the ones estimated by BLYP-D [144]; the averageD evaluated from the DCACP

and BLYP-D calculations differ only by 0.47, 0.07, -0.16, and 0.66 kcal/mol in the respective class of

H-bonded bases, interstrand bases, stacked bases, and amino acids complexes. In addition, we do not

expect the plane wave cutoff to influenceD to any significant extent; as a test, calculations with both 75

and 150 Ry for the UUst complex give identical values (D = 8.07 kcal/mol). Considered that for most

complexes, the differences between the dispersion-corrected DFT results (be it BLYP-D or DCACP) and
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Table 6.1: Interaction energies (kcal/mol) of the H-bonded base pairs.
Complex BLYP DCACP Benchmark Error −D

Optimized geometry
G· · ·C WC − −28.15 −28.80 0.65 −
mG· · ·mC WC − −27.94 −28.50 0.56 −
A· · ·T WC − −15.28 −15.43 0.15 −
mA· · ·mT H − −16.33 −16.27 −0.06 −
8oG· · ·C WC pl − −29.26 −29.40 0.14 −
I· · ·C WC pl − −21.60 −22.70 1.10 −
G· · ·U wobble − −15.99 −16.10 0.11 −
CCH+ − −46.58 −46.50 −0.08 −
U· · ·U Calcutta pl − −9.46 −9.80 0.34 −
U· · ·U pl − −12.33 −12.60 0.27 −
6tG· · ·C WC pl − −26.53 −25.50 −1.03 −
A· · ·4tU WC − −14.05 −13.20 −0.85 −
2-aminoA· · ·T − −18.17 −17.60 −0.57 −
2-aminoA· · ·T pl − −18.29 −17.30 −0.99 −
A· · ·F − −4.46 −4.90 0.44 −
G· · ·4tU − −15.44 −15.90 0.46 −
G· · ·2tU − −13.96 −14.60 0.64 −
A· · ·C pl − −16.28 −15.90 −0.38 −
G· · ·G pl − −18.91 −18.40 −0.51 −
G· · ·6tG pl − −19.71 −19.00 −0.71 −
6tG· · ·G pl − −20.22 −19.60 −0.62 −
G· · ·A 1 − −17.36 −17.50 0.14 −
G· · ·A 1 pl − −16.76 −16.10 −0.66 −
G· · ·A 2 − −12.33 −10.90 −1.43 −
G· · ·A 2 pl − −11.78 −10.50 −1.28 −
G· · ·A 3 − −16.77 −16.80 0.03 −
G· · ·A 4 − −13.04 −12.10 −0.94 −
A· · ·A 1 pl − −13.64 −13.10 −0.54 −
A· · ·A 2 pl − −13.04 −12.30 −0.74 −
A· · ·A 3 pl − −11.50 −10.90 −0.60 −
8oG· · ·G − −18.39 −19.60 1.21 −
2tU· · ·2tU pl − −11.03 −11.60 0.57 −

Experimental geometry
A· · ·T WC −11.35 −15.82 −16.40 0.58 4.47
G· · ·C WC∗ −27.30 −32.82 −35.80 2.98 5.52
A· · ·T WC −12.93 −17.39 −18.40 1.01 4.46
G· · ·A HB −7.94 −12.89 −11.30 −1.59 4.95
C· · ·G WC −25.04 −30.50 −30.70 0.20 5.46
G· · ·C WC −24.93 −30.34 −31.40 1.06 5.41
Error= EDCACP

int − EBenchmark
int ,D = EDCACP

int − EBLYP
int .
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Table 6.2: Interaction energies (kcal/mol) of the interstrand base pairs.
Complex BLYP DCACP Benchmark Error −D
GG0/3.36 CGis036 −1.37 −3.47 −3.68 0.21 2.10
GG0/3.36 GCis036 7.94 −2.50 −4.82 2.32 10.44
AA20/3.05 ATis2005 −0.15 −2.06 −2.34 0.37 1.91
AA20/3.05 TAis2005 5.91 −3.76 −2.16 −1.60 9.67
GC0/3.25 C//Cis 3.55 3.33 3.09 0.24 0.22
GC0/3.25 G//Gis 5.17 2.06 1.93 0.13 3.11
CG0/3.19 G//Gis 2.03 1.19 1.24 0.05 0.84
CG0/3.19 C//Cis 3.96 −3.24 −3.91 0.67 7.20
GA10/3.15 A//Cis 1.93 0.19 −0.31 0.50 1.74
GA10/3.15 T//Gis 2.14 1.07 0.58 0.49 1.07
AG08/3.19 T//Gis 2.52 −0.36 −0.47 0.11 2.88
AG08/3.19 A//Gis 1.61 −0.02 −0.18 0.16 1.63
TG03.19 A//Gis 2.04 −3.67 −4.22 0.55 5.71
TG03.19 T//Cis −0.47 −0.98 −1.15 0.17 0.51
GT10/3.15 T//Cis 0.98 0.69 0.30 0.39 0.29
GT10/3.15 A//Gis −0.57 −3.80 −4.06 0.26 3.23
AT10/3.26 T//Tis 1.86 1.16 0.88 0.28 0.70
AT10/3.26 A//Ais 1.59 −0.67 −0.92 0.25 2.26
TA08/3.16 A//Ais 4.20 −0.52 −1.55 1.03 4.72
TA08/3.16 T//Tis 1.48 1.11 0.70 0.41 0.37
AA0/3.24 A//Tis 0.00 −1.44 −1.71 0.27 1.44
AA0/3.24 T//Ais 0.09 −1.16 −1.30 0.14 1.25
A· · ·A IS 2.41 −0.37 −0.70 0.33 2.78
T· · ·T IS 1.99 1.25 1.00 0.25 0.74
G· · ·G IS 4.03 −3.93 −4.50 0.57 7.96
C· · ·C IS 2.71 1.30 1.40 0.10 1.41
A· · ·G IS −1.44 −4.51 −4.80 0.29 3.07
T· · ·C IS 0.67 0.30 −0.10 0.40 0.37
C· · ·A IS 0.48 −2.00 −3.00 1.00 2.48
G· · ·G IS −3.06 −5.06 −5.20 0.14 2.00
G· · ·G IS 5.48 0.94 0.80 0.14 4.54
C· · ·C IS 3.45 3.23 3.10 0.13 0.22
Error= EDCACP

int − EBenchmark
int ,D = EDCACP

int − EBLYP
int .
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Table 6.3: Interaction energies (kcal/mol) of the stacked base pairs.
Complex BLYP DCACP Benchmark Error −D

Optimized geometry
G· · ·C S − −15.27 −16.90 1.63 −
mG· · ·mC S − −14.65 −18.00 3.35 −
A· · ·T S − −9.48 −11.64 2.16 −
mA· · ·mT S − −11.81 −13.10 1.29 −

CC1–CC14 and experimental geometry
CC1 11.82 3.04 2.45 0.59 8.78
CC2 6.66 −2.60 −3.85 1.25 9.26
CC3 2.14 −7.19 −8.88 1.69 9.33
CC4 1.31 −7.98 −9.92 1.94 9.29
CC5 10.36 1.39 0.32 1.07 8.97
CC6 10.88 1.79 0.64 1.15 9.09
CC7 5.41 −0.76 −0.98 0.22 6.17
CC8 0.74 −7.51 −9.10 1.59 8.25
CC9 2.04 −7.18 −9.11 1.93 9.22
CC10 2.30 −6.73 −8.27 1.54 9.03
CC11 1.10 −7.56 −9.43 1.87 8.66
CC12 −1.18 −6.51 −7.43 0.92 5.33
CC13 0.75 −7.29 −8.80 1.51 8.04
CC14 2.05 −7.32 −9.11 1.79 9.37
AAst 3.97 −6.53 −8.58 2.05 10.50
GGst 1.24 −10.41 −12.67 2.26 11.65
ACst 1.78 −8.07 −10.22 2.15 9.85
GAst 2.08 −8.96 −11.38 2.42 11.04
CCst 0.82 −8.09 −10.02 1.93 8.91
AUst 2.14 −7.99 −9.79 1.80 10.13
GCst 0.73 −9.08 −10.60 1.52 9.81
CUst −0.02 −8.91 −10.42 1.51 8.89
UUst 1.63 −6.45 −7.46 1.01 8.08
GUst 0.11 −10.32 −12.09 1.77 10.43
GG0/3.36 GGs036 5.94 −1.33 −1.62 0.29 7.27
GG0/3.36 CCs036 −3.30 −4.27 −3.54 −0.73 7.57
AA20/3.05 AAs2005 6.75 −4.02 −6.06 2.04 10.77
AA20/3.05 TTs2005 0.50 −1.80 −4.18 2.38 2.30
GC0/3.25 G//Cs 1.87 −8.95 −10.80 1.85 10.82
CG0/3.19 G//Cs 0.37 −6.71 −7.88 1.17 7.08
GA10/3.15 A//Gs 4.79 −7.18 −9.14 1.96 11.97
GA10/3.15 T//Cs 3.95 −4.22 −4.69 0.47 8.17
AG08/3.19 A//Gs 2.86 −6.48 −7.58 1.10 9.34
AG08/3.19 T//Cs 2.07 −5.80 −6.07 0.27 7.87
TG03.19 T//Gs 2.53 −4.64 −5.67 1.03 7.17
TG03.19 A//Cs 4.16 −3.96 −4.96 1.00 8.12
GT10/3.15 T//Gs 7.50 −3.65 −4.96 1.31 11.15
GT10/3.15 A//Cs 5.54 −3.99 −5.44 1.45 9.53
AT10/3.26 A//Ts 4.31 −5.75 −6.64 0.89 10.06
TA08/3.16 A/Ts 10.52 −1.91 −6.07 4.16 12.43
AA0/3.24 A//As 5.88 −4.40 −6.25 1.85 10.28
AA0/3.24 T//Ts 6.50 −3.12 −3.86 0.74 9.62
A· · ·T S 5.11 −7.12 −8.10 0.98 12.23
G· · ·C S −1.22 −7.43 −7.90 0.47 6.21
A· · ·C S 5.27 −5.56 −6.70 1.14 10.83
T· · ·G S 5.44 −6.07 −6.20 0.13 11.51
G· · ·C S 3.64 −5.84 −7.70 1.86 9.48
A· · ·G S 6.05 −4.84 −6.50 1.66 10.89
C· · ·G S 0.36 −9.45 −12.40 2.95 9.81
G· · ·C S −0.11 −9.60 −11.60 2.00 9.49

Error= EDCACP
int − EBenchmark

int , D = EDCACP
int − EBLYP

int .
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Table 6.4: Interaction energies (kcal/mol) of the amino acid complexes.
Complex BLYP DCACP Benchmark Error −D
F30-K46 0.67 −2.95 −3.10 0.15 3.62
F30-L33 2.87 −4.85 −5.00 0.15 7.72
F30-Y13 1.17 −3.82 −3.90 0.08 4.99
F30-F49 1.48 −2.45 −3.30 0.85 3.93
F30-Y4 4.00 −4.65 −7.00 2.35 8.65
F49-C39 1.99 −1.90 −2.10 0.20 3.89
F49-C6 3.82 −4.42 −5.00 0.58 8.24
F49-K46 1.28 −4.31 −4.80 0.49 5.59
F49-V5 3.20 −5.97 −6.70 0.73 9.17
F49-Y37 1.31 −1.51 −2.50 0.99 2.82
F49-Y4 4.09 −3.24 −3.10 −0.14 7.33
F49-PB (Y4-V5) 1.17 −3.11 −2.80 −0.31 4.28
F49-PB (V5-C6) 1.04 −7.55 −8.20 0.65 8.59
E47-K6 (1IU5) −71.65 −78.52 −80.73 2.21 6.87
E49-K6 (1BQ9) −102.27 −108.84 −113.35 4.51 6.57
E54-K2 (1SMM) −89.83 −92.48 −88.29 −4.19 2.65
E50-K30 (1BRF) −61.27 −61.44 −60.36 −1.08 0.17
E50-K52 (1BRF) −86.35 −93.87 −97.14 3.27 7.52
E49-K6 (1BRF) −63.40 −69.78 −74.24 4.46 6.38
Error= EDCACP

int − EBenchmark
int ,D = EDCACP

int − EBLYP
int .

the benchmark values are positive (i.e., both approaches tend to under-bind), DCACP should provide a

better description in, for example, the interstrand bases and amino acid complexes, after taking the

positive contribution of BSSEs in the BLYP-D results into account.

(a) A· · ·T (b) G· · ·C (c) mA· · ·mT (d) mG· · ·mC

Figure 6.1: The DCACP-optimized stacked base pairs (red) superimposed on the reference geometries
(blue, RI-MP2); the corresponding RMSDs per atom are (a) 0.09, (b) 0.50, (c) 0.16, and (d) 0.13 Å.

DCACP also predicts stable configurations for all geometry-optimized complexes, the root mean

square deviations (RMSDs) over all atoms (i.e., heavy atoms and hydrogen) between the DCACP-

optimized geometries and those of the reference OG complexes do not exceed 0.08 Å in all cases apart



6.4. Conclusions 71

from the stacked base pairs. The G· · ·C base pair has the highest RMSD – 0.50 Å – out of the four

stacked base pairs that are optimized; however, the stacked characteristics are still largely maintained,

and no motif change to either H-bonded or T-shaped configurations is observed (Fig. 6.1).

6.4 Conclusions

By testing against a well-established benchmark set, we have shown that the BLYP functional augmented

with DCACPs gives excellent estimates for interaction energies of important biological components

bound by different types of intermolecular forces; the unsigned mean errors in all classes are less than

1.6 kcal/mol compared with the bestab initio data available. Furthermore, geometry optimizations lead

to stable configurations close to the MP2 predictions. Since the addition of DCACPs does not increase

the computational cost dramatically, it serves as a good compromise between efficiency and accuracy to

be employed inab initio molecular dynamics.
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Chapter 7

Importance of van der Waals Interactions

in Liquid Water

Abstract

We presentab initio molecular dynamics studies on liquid water using dispersion-corrected density func-

tional theory (DFT) by describing van der Waals interactions via dispersion-corrected atom-centered

potentials or empirical van der Waals corrections. Our results show that the inclusion of van der Waals

interactions leads to a much softer water structure and higher mobility in contrast to the almost-glassy be-

havior predicted by DFT-BLYP. The results obtained with dispersion-corrected atom-centered potentials

are especially encouraging; properties such as radial distribution functions are in excellent agreement

with the experiments, and the self-diffusion coefficients increase threefold as compared with the BLYP

prediction. This work thus demonstrates, from anab initio point of view, the clear necessity of properly

described van der Waals interactions in liquid water simulations.

73
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7.1 Introduction

Water is the solvent of life; its ubiquity in our environment, its anomalous properties, and its indispens-

able presence in most biological, chemical, and environmental processes render water the most studied

liquid by experiments and computer simulations. Much effort has been devoted to develop a micro-

scopic understanding of the properties of liquid water; however, owing to the complex hydrogen bond

(H-bond) network and the intricate interplay of several intermolecular forces, an accurate description

remains a challenge [153, 154]. A consensus on the radial structure has been achieved only recently

from independent X-ray and neutron scattering experiments [155]. On the other hand, the long-held no-

tion of 4-fold coordinated water molecules [156] has lately been questioned, and the existence of newly

proposed configurations with H-bonded chains or large rings of water molecules embedded in a weakly

H-bonded disordered network [157] is the subject of a heated debate [158].

Complementary to experiments, computer simulations have played an equal, and sometimes pivotal,

role in quantitative characterizations and in advancing qualitative understandings of water at ambient

and non-ambient conditions. Well-established empirical force fields based on two-body interactions are

able to reproduce properties of water in a wide range of temperatures and pressures [153]. Many of

them, however, are parameterized against experimental data, calling into question their predictive power

for situations differing largely from the reference system. Moreover, since many-body effects are repre-

sented in an effective way by modifying the two-body interaction terms, a direct physical interpretation

of the simulated phenomena at the molecular level is sometimes not straightforward. The neglect of

cooperative effects can also be problematic [159–162]. The latter can be included to a certain extent

by parameterizing many-body potentials againstab initio potential energy surfaces of small water clus-

ters [163,164], but the inability to describe reactions and the transferability to vastly different conditions

remain questionable.

Ab initio molecular dynamics simulations (AIMD), on the other hand, are free from these short-

comings and give an unbiased picture of water in different environments. Atomic forces are computed

directly from first-principles electronic structure calculations, normally density functional theory (DFT)

with generalized gradient approximation (GGA) or hybrid exchange-correlation functionals. This ap-

proach is more computationally demanding by comparison but also potentially more predictive. Features

difficult to describe with force fields such as electronic polarization effects or bond breaking/forming
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events are treated self-consistently; X-ray scattering parameters can be obtained directly from the elec-

tron density [165], avoiding the ambiguities and errors of inversion to real-space functions in reciprocal

space. Accurate assessments of the parameters used in AIMD simulations of water, however, indicate

that the performance is very sensitive to the particular choice of functional [166] and basis sets [167].

GGA water is over-structured and diffuses one magnitude more slowly than experiments; hybrid func-

tionals improve the predictions slightly (Ref. [168] and references therein). Including nuclear quantum

effects in AIMD should soften the radial structures further [169–171], despite one contrasting study that

actually shows a strengthened radial structure [172].

H-bonding interactions have long been recognized as the major force in determining the spatial

patterns and the dynamics of water [173–175]. It has also been argued that the nature of water stems

from the competition between H-bond and van der Waals (vdW) interactions [176, 177]. For instance,

water can be seen as a dynamic, rapidly changing mixture of tetrahedral ice Ih-like and denser ice II-

like structures, with the former thought to be favored by H-bonding while dispersion forces prevail in

the latter [177]. Any biased preference from theory on either H-bonding or vdW interactions will thus

affect the simulated properties to a large extent. The influence of vdW interactions has been probed by

empirical potentials [176, 178], yet no AIMD simulations have been carried out to specifically address

this question. Simulations, even in the case when they disagree with experiment data, can provide

important clues as to what essential physics has been left out. DFT, in principle, is exact; but because of

the approximate nature of exchange-correlation functionals in practical calculations, some fundamental

issues remain open. The BLYP functional [17,18] for which dispersion forces are completely absent [12,

23] can serve as a perfect candidate to reveal effects brought about by the subtle imbalance between these

two intermolecular interactions.

In this study, dispersion-corrected atom-centered potentials (DCACPs) [34, 76] and empirical vdW

corrections [30, 179] are employed as two pragmatic ways to describe vdW interactions within DFT-

BLYP. The concept of DCACPs, which represent these weak forces in the form of atom-centered elec-

tronic potentials, has shown encouraging results on their overall performance and transferability across

different chemical environments [76,90–92]; however, in addition to dispersion forces, DCACPs can be

correcting other missing intermolecular interactions such as exchange or induction. Therefore, we also

apply the empirical vdW corrections in which dispersion forces at long range are recovered by explicitly
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including empirical inter-atomic potentials of theC6R−6 form in the total energy. These results are

discussed in parallel with the ones obtained from the DCACP approach.

7.2 Computational Details

DFT calculations have been carried out using the CPMD code [93], the BLYP and B3LYP [44] func-

tionals, Goedecker-Teter-Hutter pseudopotentials [52], and a plane wave cutoff of 125 Ry. Parameters

for DCACPs and empirical vdW corrections have been taken from Refs. [76] and [179], respectively.

The geometries of the water clusters have been optimized in an isolated cubic203 Å3 cell against

gradient tolerances of10−5 and10−7 a.u. for nuclear and electronic degrees of freedom. The opti-

mized monomer geometry of each method is used to construct the dimer for the interaction energy

curves scanning various O–O distancesrOO. Reference at CCSD(T)/aug-cc-pVTZ level (counterpoise-

corrected [101] for the basis set superposition errors) has been computed with the GAUSSIAN 03 pack-

age [102].

The initial structure for the liquid simulations is from Ref. [180] [64 water molecules in a12.423 Å3

periodic box, corresponding to a (light water) density of 1 g/cm3]. The current standard of 56 – 64 water

molecules seems sufficient to eliminate the most obvious problems of finite size effects [155], except for

the determination of self-diffusion coefficientsD [167]. Hydrogens have been substituted by deuterium

to allow for a larger integration time step and to avoid significant nuclear quantum effects [181]. Car-

Parrinello molecular dynamics [55] simulations with a fictitious electron mass of 600 a.u. and a 4-

a.u. time step has been carried out in the NVE ensemble for 30 ps (velocity rescaling has been applied

at 335 K for the first 4 ps) with no thermostat on the electronic degree of freedom. Properties of water

have been collected after 10 ps of equilibration time.

Diffusion coefficientsD have been calculated from the slopes of the mean square displacement

curves using the Einstein relation2tD = 1
3〈|r(t)− r(0)|2〉. The motion of the center of mass has been

decoupled. The dipole moments have been evaluated from maximally localized Wannier functions [182,

183] every 96 fs within the 20-ps-long trajectory. The orientational autocorrelation functions are defined

asCµ
l=1,2(t) = 1/N

∑
i 〈Pl[cosθi(t)]〉 wherePl is the Legendre polynomial of orderl andθi(t) is the

angle made by the dipoles of water moleculei at timet and at time0.
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7.3 Results and Discussion

The effects of including vdW interactions are monitored by comparing the structural and dynami-

cal properties simulated with DCACP-augmented- (DCACP), the empirical-van-der-Waals-correction-

augmented- (BLYP-D), and the pure BLYP (BLYP) functionals. Since the simulations have been carried

out in the NVE ensemble, the average temperatures during the data collection period are slightly differ-

ent: 316 K (BLYP), 325 K (DCACP), and 343 K (BLYP-D).

7.3.1 Radial and angular distribution functions

T = Tavg T = 300 K
Method Tavg rmax gmax

OO rmin gmin
OO n gmax

OO gmin
OO

BLYP∗ [184] 300 2.77 2.90 3.3 0.6 4.1 2.90 0.6
BLYP 316 2.77 2.94 3.30 0.60 4.2 3.08 0.56
DCACP 325 2.79 2.67 3.38 0.85 4.6 2.90 0.78
BLYP-D 343 2.82 2.57 3.80 0.94 7.1 2.96 0.82
Neutron [156] 298 2.74 2.76 3.39 0.79 4.6 2.72 0.80
X-ray [185] 300 2.73 2.81 3.40 0.79 - 2.81 0.79
∗ simulations with a converged discrete variable representation basis set.

Table 7.1: Positions (Å) and heights of the first maximum and minimum of the oxygen-oxygen radial
distribution function and the calculated coordination numbern. The average temperature during the
simulationTavg (K) is also tabulated. The rescaledgmax

OO andgmin
OO are tabulated in the last two columns.

The oxygen-oxygen radial distribution function (gOO) calculated with the BLYP functional is over-

structured compared with the neutron scattering data. DCACP and BLYP-D, on the other hand, yield

much softergOO (see Figure 7.1 and Table 7.1). Nevertheless, part of these discrepancies originates from

the slightly different simulation temperatures. For a more systematic comparison, we have disentangled

the influence of temperature by rescaling the first maximum (gmax
OO ) and minimum (gmin

OO ) to their corre-

sponding heights at 300 K, assuming a linear dependence in this rather small temperature range investi-

gated1 [186]. The BLYPgOO retains its over-structuring characteristics even after rescaling, displaying

a stronger first peak and a much deeper first minimum with respect to both neutron scattering [156] and

X-ray [185] diffraction data;gmax
OO andgmin

OO of both DCACP and BLYP-D imply a much softer overall

structure, albeit still slightly more structured than experimental measurements. Including nuclear quan-

1By fitting the TIP4P-pol2 results [165] togOO/T = constant, we have obtained9.0 × 10−3 and2.7 × 10−3 as the
constant forgmax

OO andgmin
OO .
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Figure 7.1: Oxygen-oxygen (gOO) and oxygen-hydrogen (gOH) radial distribution functions obtained
from neutron diffraction data (Neutron) [156], and DCACP, BLYP-D, and BLYP simulations. The
corresponding (average) simulation temperatures are labeled in the legend.

tum effects viaab initio path integral molecular dynamics should soften the structure even further, as

suggested by previous works [169–171]. As a side note, comparing the normalized BLYPgOO from this

work with the one from converged discrete variable representation basis set simulations [167] shows

only a variation within the statistical error of the simulations, confirming the adequate choice of the

basis set in this work. The coordination numbern, obtained by integratinggOO up to the first minimum,

is also better described by DCACP. One may suspect this seeming improvement is brought about by the

temperature difference; however, the effect of temperature is much smaller than the difference observed

here. A wide range of classical force field simulations show that an increase of 53 K altersn by no more

than 0.2 [187].

Similar softening is observed in the oxygen-hydrogen radial distribution functiongOH (Figure 7.1,

lower graph); more importantly, the second intermolecular peaks calculated with DCACP and BLYP-D

are much higher than the first, in line with the neutron diffraction data.

Angular distributions of the H-bond-accepting and H-bond-donating water molecules serve as a di-

rect probe of (the activation barrier to) orientational flexibility. One such angleβ=∠H−O···O has been

measured experimentally [188]; the donor angleα=∠O−H···O and the acceptor angleθ=∠H···O−H are

also often used in literature. Distributions of these angles in the first solvation shell (taken as the first

intermolecular minimum ofgOH) are depicted in Figure 7.2. In general, DCACP and BLYP-D sim-
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Figure 7.2: Angular distributions (with bin size of 2◦) of BLYP, DCACP, and BLYP-D water simulations
sampled over 20 ps, together with the experimental data (Expt) forP (β) [188].

ulations obtain broader angular distributions with lower maximum than BLYP’s2, showing the same

trend as TIP4P-pol-2 [187], one of the most accurate force fields available for water.P (β) generated

with BLYP-D and DCACP agree better with experiment but significant deviations still persist; reaching

complete basis set limit [184] and including nuclear quantum effects [187] should further improve the

angular structures.

In summary, comparing the pure BLYP results with either the DCACP or the BLYP-D ones shows

that the inclusion of vdW interaction softens the structure of liquid water. This softening brings the

DCACP and BLYP-D results closer to experiment, and the DCACP results are especially encouraging.

Since the electronic configuration of a given water molecule depends on its environment through the

2Although the average simulation temperatures are not identical, previous studies have shown that the position of the
maximum and the overall shape ofP (α) andP (θ) are similar within this temperature range whereasP (β) is more sensitive
to the temperature [187].
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Figure 7.3: Mean square displacements (MSD) and self-diffusion coefficients (D) calculated from the
BLYP and DCACP runs.

electronic many-body effects, DCACPs – whose contributions to the total energy depend explicitly on

the wave function – take many-body effects implicitly into account and outperform the empirical vdW

corrections which are purely pairwise additive.

7.3.2 H-bond analysis and self-diffusion coefficients

A geometric definition,rOO < 3.5 Å and ∠OHO > 135◦, is used for H-bonding. BLYP data shows

a clear preference for 4-fold coordination (64 %). DCACP results, on the other hand, are much more

equally distributed, indicating a broader range of coordination numbers. To be precise, DCACP predicts

a 1:2 ratio instead of BLYP’s 1:3 ratio between 3- and 4-fold coordinations. Nevertheless, all methods

support the standard picture where each water is on average almost tetrahedrally coordinated; the aver-

age numbers of H-bonds per molecule obtained from BLYP, DCACP, and BLYP-D simulations are 3.76,

3.61, and 3.45, respectively.

As the average number of H-bonds per molecule has a direct impact onD and BLYP predicts,

on average, a slightly more coordinated water molecule than DCACP, we expect water simulated with

DCACP to be more diffused. The averageD calculated from DCACP simulation is indeed much larger,

0.21 (standard deviation of 0.023) Å2/ps, than the BLYP result [0.08 (0.010) Å2/ps] (see Figure 7.3).

For comparison, the experimental value for heavy water at45◦C is 0.30 Å2/ps [189].D, as mentioned
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Figure 7.4: (a) The orientational autocorrelation functionC1(t) as a function of timet. The parameters
obtained from fittingC1(t) to the stretched exponential areβ = 1.01, τa = 7.30 andβ = 0.85, τa =
3.83 for the BLYP and DCACP runs, respectively (A is fixed at 0.93); the SPC/E data are taken from
Ref. [191]. (b) Test of the time-temperature superposition principle. When the time is rescaled byτa,
the lines from different temperature should fall on a single curve.

before, is sensitive to the finite size effect. As a rough estimate, assuming a hypothetical experiment

were to be carried out on a periodic system of 64 water molecules, the ‘experimental’D at45◦C would

lower down to 0.21 Å2/ps instead (following the same train of thoughts as in Ref. [167]), coinciding

perfectly with theD predicted by DCACP.

7.3.3 Orientational correlation times and dipole moments

Typical single molecule relaxation processes have been examined by calculating the orientational auto-

correlation functionsCµ
l (t) for l = 1, 2 that have been fitted (between 0.5 and 8 ps) as simple exponential

decays with time constantsτ1 andτ2, respectively. The experimental values forτ1 andτ2 at 300 K are

4.76 and 1.92 ps [190]. Predictions by BLYP fall somewhat outside the experimental values whereas

DCACP results show much closer estimates;τ1, τ2 = 7.34, 3.97 (BLYP, 316 K) and 4.39, 2.52 (DCACP,

325 K), respectively.

To separate the temperature effect, we also compared ourCµ
1 (t) with the recent SPC/E simulations

at various temperatures [191]; to be in line with Ref. [191], we re-fitted the data to a stretched expo-

nentialA · exp[−(t/τa)β]. As shown in Figure 7.4, DCACP predictions compare well with the results

of classical simulations. BLYP, on the other hand, predictsCµ
1 (t) that falls between the SPC/E results
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at 260 and 300 K. In addition, the relaxation timeτa estimated from fitting the DCACP results for

0.1 < t < 9 ps verifies the time-temperature superposition principle of the mode coupling theory which

states thatCµ
1 (t) in theα-relaxation regime at different temperatures follow the same master curve if the

time is rescaled byτa [191]. The BLYP estimate deviates slightly from the master curve.

The average dipole moments evaluated from the BLYP and DCACP runs are 3.01 (standard deviation

0.28) and 2.91 (0.28) Debye, both close to the experimental value of 2.86 Debye [192]. It has been

demonstrated previously that DCACPs only induce a very small change in the electronic structure of

monomers, and multipole moments remain basically unaltered [76]. Here, the inclusion of DCACPs

influences the liquid structure, resulting in a slight improvement of the average dipole moment over

BLYP’s.

7.3.4 Cluster studies

Table 7.2 shows that the interaction energies of the optimized water dimer and trimer evaluated with

DCACP and BLYP-D have the smallest deviations with respect to high-level reference calculations.

(H2O)2 (H2O)3
Method rOO ∠OHO Eint rOO Eint

BLYP 292 171 -4.09 283 -13.11
DCACP 291 170 -5.19 281 -16.61
BLYP-D 291 170 -5.46 283 -16.97
B3LYP 291 172 -4.43 281 -13.90
Ref.a 291 175 -5.02 278 -15.90
a Dimer: bestab initio [193]
a Trimer: MP2 (extrapolated) [194]

Table 7.2: Structural parameters (rOO in pm, ∠OHO in degree) and the interaction energy (Eint,
kcal/mol) of the water dimer and the cyclic trimer. Recent quantum Monte Carlo calculations predicted
a dimerEint between -5.03 and -5.49 kcal/mol [195].

In liquid water, molecules are constantly in motion and do not have fixed positions and orientations.

Hence, any structures of the liquid must be described properly in terms of probabilities and averages;

configurations far from optimal H-bond arrangements can also contribute significantly. The interaction

energy curves of H-bonding- and vdW-dominant configurations shown in Figure 7.5 demonstrate that

both DCACP and BLYP-D improve the energetics, bringing the curves closer to the CCSD(T)/aug-cc-

pVTZ values.



7.4. Conclusions 83

Figure 7.5: Interaction energy curves of two configurations of the water dimer (shown on the upper right
hand corner) as a function ofrOO. For (a) the H-bonded dimer∠OHO is fixed at180◦. The interaction
energy (Eint) is defined asEfix

dimer−2 ·Eopt
mono; Efix

dimer andEopt
mono are energies of the fixed dimer at every

rOO and of the optimized monomer, respectively.

In short, including vdW interactions not only improves the optimized H-bond geometry, but other

configurations are also made more probable. The consequences are shown clearly in the structural and

dynamical properties of liquid water such as less structured/wider radial/angular distribution functions.

The approach of empirical vdW corrections is computationally more efficient than DCACPs at its

current implementation in which further optimization is still possible3. Nevertheless, DCACPs implic-

itly include many-body interactions, offering an advantage over the pairwise approach of empirical vdW

corrections, allowing one to achieve accuracy similar to the coupled-cluster calculations at much lower

computational overhead than the high-level correlated methods.

7.4 Conclusions

AIMD simulations have been instrumental in elucidating microscopic mechanisms in an accurate and

unbiased manner in various disciplines. Nevertheless, the predictive power depends heavily on the

accuracy of the chosen functional.

In this work, we have demonstrated that by curing the shortcomings of DFT-BLYP in describing

3A rough estimate puts the additional CPU time of DCACP and BLYP-D with respect to the pure BLYP calculation at 97%
and 41%, respectively. The CPU time is for one Car-Parrinello step in the liquid water simulation as set up in this study.
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vdW interactions, the structure of liquid water becomes much softer, and its dynamical properties are

much more liquid-like instead of the almost-glassy behavior predicted by the pure BLYP functional. The

self-diffusion coefficient, for example, is increased by almost 3-fold upon the inclusion of DCACPs. A

proper description of vdW interactions thus brings the simulated properties into closer agreement to

experiments. To best realize the agreement, however, other deficiencies of DFT-BLYP and nuclear

quantum effects should also be addressed.

As chemical and biological systems often have hydrophobic groups, a proper treatment of vdW

interactions in liquid water simulations have greater implications than simply improving properties of

bulk water. Even though the field of research on incorporating vdW interactions in functionals widely

employed in AIMD in a robust and efficient way is still very much in its infancy, it is an important

prerequisite to gain insights into many important phenomena such as the evaporation and hydration of

nanoparticles.



Chapter 8

Comparative Study of

Dispersion-Corrected BLYP and PBE

Water

Abstract

Ab initiomolecular dynamics simulations of liquid water have been carried out using dispersion-corrected

density functional theory. The absence of van der Waals interactions in standard DFT is treated by em-

ploying either dispersion-corrected atom-centered potentials or the empirical van der Waals corrections.

The dispersion-corrected BLYP simulations have previously been shown to give rise to highly mobile

liquid water which displays much softer structural properties. With the dispersion-corrected PBE func-

tional, however, the structural and dynamical properties either remain unchanged or become slightly

more glassy.

85
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8.1 Introduction

Water is without doubt one of the most important chemical substances known. Yet despite extensive

studies, describing its microscopic nature remains a challenge, owing mainly to the strength and the

directional nature of hydrogen bonds (H-bonds) which lead to complex cooperative phenomena. Indeed

as ever more sophisticated and novel experimental and theoretical techniques are applied to study liquid

water, it is becoming increasingly clear that this disparate information is only continuously heating the

debate rather than concluding it.

Owing to its favorable performance-to-cost ratio, the Kohn–Sham formalism of density functional

theory (DFT) [7, 8] has been one of the most popularab initio methods in the fields of condensed mat-

ter physics and material science. Accurate assessments of the parameters used inab initio molecular

dynamics (AIMD) simulations of water, however, indicate that the performance of DFT with general-

ized gradient approximation (GGA) exchange-correlation functionals in describing H-bonding is not yet

fully understood. DFT-GGA estimates interaction energies of the water clusters reasonably well [196],

but the predicted liquid water is over-structured, diffuses too slowly, and is less dense compared with

experimental results [166, 180, 187, 197]. Possible explanations to this discrepancy have been explored

in many works. Hybrid functionals offer slightly better predictions [168]; reaching complete basis set

(CBS) limit improves both structural and dynamical properties, but the deviations from experiment are

still noticeable [167, 184, 198]. In addition, including nuclear quantum effects should further soften the

radial structure [169–171].

Nevertheless, it is important to realize that interactions in liquid water are not simply due to H-

bonding but rather to a fine balance between H-bonding and the non-directional van der Waals (vdW)

interactions [176–178]. The deficiency of many approximated exchange-correlation functionals in de-

scribing vdW interactions will certainly contribute to the discrepancy mentioned above, and as demon-

strated in the previous chapter, incorporating these weak interactions in DFT-BLYP greatly softens the

structure of liquid water [150]. In addition, a proper description of vdW forces are also important

prerequisites to gain insights into the influence of hydrophobic effects on the structure and functions

of specific amino acids as well as material science problems such as water in zeolites or fluid flow in

carbon nanotubes.

Here we present Car-Parrinello molecular dynamics [55] studies on liquid water using the PBE
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functional [97] augmented with either dispersion-corrected atom-centered potentials (DCACPs) [34,76]

or empirical vdW corrections [30, 179]. Developing efficient calculations of vdW interactions in DFT

is still in its early stages and the two pragmatic schemes chosen here represent a good compromise

between efficiency and accuracy. The radial and angular distribution functions, local dipole moment,

diffusion coefficients, and orientational autocorrelation times of the simulated liquid water are reported.

Behaviors of water clusters are also investigated, offering clues as to how the improvement, if any, comes

about.

8.2 Computational Details

DFT calculations have been carried out using the CPMD code [93], analytic Goedecker-Teter-Hutter

pseudopotentials [52], a plane wave cutoff of 125 Ry, and the BLYP [17,18], B3LYP [44], and PBE [97]

functionals. DCACPs calibrated against high-levelab initio references [CCSD(T) and CI] and param-

eters for empirical van der Waals corrections have been taken from Refs. [76] and [179], respectively.

The geometries of the water monomer and clusters have been optimized in an isolated cubic cell mea-

suring20 Å on all sides against gradient tolerances of10−5 and10−7 a.u. for nuclear and electronic

degrees of freedom. Interaction energy surfaces of the dimer as a function of oxygen-oxygen distances

rOO and OD—HD · · ·OA angles∠OHO (see Figure 8.1) have been evaluated; the water dimer has been

constructed from the optimized monomers of respective methods. CCSD(T)/aug-cc-pVTZ calculations

have been carried out using the GAUSSIAN 03 package [102].

Figure 8.1: Graphical representation of the water dimer.

Simulations of the liquid state have been carried out in a cubic12.423 Å3 periodic box containing

64 water molecules. The starting configuration is from Ref. [180]. The mass of hydrogen has been

replaced with the one of deuterium to allow for a larger integration time step and to be able to compare

with experimental results with reduced nuclear quantum effects. Car-Parrinello molecular dynamics

simulations with a fictitious electron mass of 600 a.u. and a 4-a.u. time step have been carried out in the
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NVE ensemble (velocity rescaling has been applied at 335 K for the first 2-5 ps) for approximately 30 ps

including 10 ps of equilibration. No thermostat has been applied on the fictitious electronic degrees of

freedom. The dipole moments have been evaluated from maximally localized Wannier functions [182,

183] averaged over configurations taken at every 96 fs within the 20-ps-long trajectory.

Data from Chapter 7 are included whenever deemed necessary for detailed technical discussions

omitted previously and for the sake of easy comparisons.

8.3 Results and Discussion

The small time step and fictitious electron mass have allowed for long and stable simulations without

introducing a significant energy exchange between the ionic and electronic degrees of freedom (i.e., the

adiabatic separation is maintained throughout). No significant drift in potential energy is seen, and the

drifts in the fictitious electron kinetic energy over 30 ps for all runs are no more than 5×10−4 a.u. ps−1.

The ionic temperatures stabilize after the 10-ps equilibration time, showing no systematic drift during the

20-ps data-collection period; the average ionic temperature for each simulation is tabulated in Table 8.1

(each has a standard deviation of less than 20 K).

8.3.1 Radial and angular distribution functions
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Figure 8.2: Variation ofgmax
OO observed during the 30-ps NVE simulation. The values are obtained

from non-overlapping data blocks of 2 ps. Dashed lines indicate the average values over the whole
data-collection periods.
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T=Tavg T=298 K
Method Tavg rmax gmax

OO rmin gmin
OO n h µ gmax

OO gmin
OO

BLYP 316 2.77 2.94 3.30 0.60 4.2 3.72 3.013.10 0.55
dBLYP 325 2.79 2.67 3.38 0.85 4.6 3.59 2.912.91 0.77
PBE 317 2.72 3.16 3.26 0.43 3.9 3.80 3.123.33 0.38
dPBE 316 2.71 3.16 3.26 0.45 3.9 3.79 3.133.32 0.40
PBE-D 327 2.71 3.11 3.29 0.39 4.2 3.88 3.173.37 0.31
Neutron [156] 298 2.74 2.76 3.39 0.79 4.6 – – 2.76 0.79

Table 8.1: The average simulation temperature Tavg, characteristics of the oxygen-oxygen radial distri-
bution function (r in Å), the coordination numbern, the average number of H-bonds per water molecule
h, and the average dipole momentµ from different simulations. The temperature-rescaledgmax

OO and
gmin
OO are tabulated in the last two columns. BLYP and dBLYP data are taken from Ref. [150] apart from
h where a different definition is used here.

Radial distribution functions. NVE simulations have longer correlation time in radial distribution

functions than NVT simulations, and a simulation much longer than 10 ps is necessary to extract the

equilibrium properties with reasonable accuracy even if the system has been equilibrated for several

tens of ps [167]. Figure 8.2 illustrates thatgmax
OO obtained from non-overlapping windows of 2 ps show

no significant systematic drift and lie within±0.2 units to the average calculated from the last 20 ps of

trajectory. Nevertheless, the abrupt increase seen in the end of the BLYP simulation, even though still

within the statistical error, warrants a longer simulation time to confirm the stability of this simulation.
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Figure 8.3: Oxygen-oxygen (gOO) radial distribution functions obtained from neutron diffraction
data (Neutron) [156] and various methods (data for the BLYP associated simulations are taken from
Ref. [150]). The corresponding simulation temperatures are labeled in the legend.

Oxygen-oxygen radial distribution functions (gOO) evaluated from simulations with PBE, DCACP-
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augmented-PBE (dPBE), empirical-vdW-corrections-complemented-PBE (PBE-D), BLYP, and DCACP-

augmented-BLYP (dBLYP) are shown together with the neutron diffraction data [156] in Table 8.1 and

Figure 8.3. Since the simulations have been carried out in the NVE ensemble, the average temper-

atures are slightly different. For a fair comparison, we rescale thegmax
OO and gmin

OO with the relation

gOO/T = constant [186] (by fitting to TIP4P-pol2 results [165], we obtain the constant as9.0× 10−3

and2.7× 10−3 for gmax
OO andgmin

OO , respectively).

gOO generated from simulations that incorporate vdW interactions to DFT-GGAs via either DCACPs

or empirical vdW terms agree qualitatively: the liquid water turns less structured when BLYP is com-

plemented with either of the two schemes [150]; for dispersion-corrected PBE, however, bothgOO show

little change from the one predicted by PBE. One can even argue that adding empirical vdW terms to

PBE (i.e., PBE-D) actually makes situations slightly worse as seen from the temperature-scaledgmin
OO

andgmax
OO .

The coordination numbersn of dPBE and PBE (both 3.9) are also slightly lower than the BLYP one

(4.2) and deviate significantly from the dBLYP and experimental estimates (both are 4.6).

Angular distributions. Angular distributions of the H-bond accepting and donating water molecules

are important quantities for characterizing the flexibility of H-bonds; the donor angleα = ∠O−H···O and

the acceptor angleθ = ∠H···O−H serve as a direct probe of the orientational flexibility. Distributions of

these two angles [P (α) andP (θ)], together with the only experimentally measured angleβ=∠H−O···O

[P (β)] [188], in the first solvation shell (taken as the first intermolecular minimum ofgOH) are depicted

in Figure 8.4. All three distributions evaluated from the dPBE, PBE-D, and PBE runs seem identical

and are much sharper than distributions extracted from the dBLYP and BLYP data [150], reminiscent of

the similar effect afflictinggOO.

Positions of maxima are similar in all water models, differing by no more than10◦, and are consistent

with a slightly bent H-bond. Nevertheless, it is noticeable from the two distributionsP (α) andP (β)

that PBE-related methods have much narrower distributions than dBLYP, and the maxima are located

at angles close to a linear arrangement of H-bonds, indicating a preference over non-directional vdW

interactions for strongly directional H-bonding.
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Figure 8.4: Angular distributions of BLYP, dBLYP, PBE, dPBE, and PBE-D water simulations sampled
over 20 ps, together with the experimental data (Expt) ofP (β) [188].

8.3.2 Orientational autocorrelation times and dipole moments

The orientational autocorrelation functions are defined as

Cα
l=1,2(t) = 1/N

∑
i

〈Pl[cosθi(t)]〉

wherePl is the Legendre polynomial of orderl andθi(t) is the angle made by either the dipoles (α = µ)

or the OH vector (α = OH) of water moleculei at timet and at time0. τα
l are estimated by fittingCα

l (t)

between 0.5 and 9 ps to a mono-exponential decay and the results are tabulated in Table 8.2. All PBE

methods (PBE, dPBE, and PBE-D) grossly overestimate the orientational correlation times, opposite to

the reasonable behavior displayed by BLYP-related methods (the dBLYP estimate is within the experi-

mental range, and the BLYP result falls only slightly outside). Yet the ratio ofτµ
1 /τ

µ
2 predicted by dPBE
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Tavg D τµ
1 τµ

2 τOH
1 τOH

2 τµ
1 /τ

µ
2 τOH

1 /τOH
2

BLYP 316 0.08(1) 7.34 3.97 9.78 4.92 1.85 1.99
dBLYP 325 0.21(2) 4.39 2.52 5.39 2.40 1.74 2.24
PBE 317 0.04(1) 16.6 8.02 21.96 10.44 2.07 2.10
dPBE 316 0.03(1) 22.93 9.83 26.81 11.89 2.33 2.25
PBE-D 327 0.03(1) 24.11 10.47 25.58 13.83 2.30 1.85
Expt ∗ 0.30 4.76 1.92 2-7.5 1.7-2.6 2.48 –
∗ D at 318K [189],τα

l all at 300 K [190,207–212].

Table 8.2: Dynamical properties of liquid water, including the self-diffusion coefficientD (Å2/ps) and
the orientational correlation timesτα

l (ps), calculated from various simulations.

is the closest to experiment. Incidentally, the average dipole moments evaluated from PBE, dPBE, and

PBE-D simulations are all greater than the corresponding values from the BLYP and dBLYP runs, but

none deviates significantly from the experimental measurement of 2.86 Debye [192] (Table 8.1).

The ratioτOH
1 /τOH

2 are reported in Table 8.2. Comparing with values from the fully diffusive

model [173] and the extended jump model [199] suggests that the reorientation mechanism predicted

here follows more closely the jump mechanism, in agreement with recent classical and quantum force

field calculations [200].

8.3.3 Self-diffusion coefficients

The distinct properties of water can be ascribed largely to the strength and the directional nature of H-

bonds which has a direct influence on the self-diffusion coefficientD. In Table 8.1, the average number

of H-bonds is listed using the same H-bond definition as in Ref. [201]. Even though the number varies

from 3.6 to 3.9, none of them challenges the concept that liquid water is tetrahedrally coordinated, one

of the disputes concerning liquid water [157,158,202,203].

One should bear in mind thatD is an elusive quantity to measurein silico; it is sensitive to the

protocol of AIMD simulations, such as the length of equilibration as well as the production runs, the

pseudopotential type, and the basis set size [167,168,180,187,204–206]. Furthermore, the system size

of 64 water molecules is prone to finite size effects, as discussed in Chapter 7.

D are calculated from the slopes of the mean square displacement (MSD) curves using the Einstein

relation,2tD = 1
3〈|r(t) − r(0)|2〉. For cleaner statistics, the MSD curves from a series of overlapping

data blocks (with lengths equal to half of the total simulation time, the starting configuration of each

block is separated from those of neighboring ones by 0.001 ps) are averaged.D estimated from the



8.3. Results and Discussion 93

dPBE, PBE-D, and PBE runs (3×10−3, 3×10−3, and 4×10−3Å2/ps) are only half of the value predicted

by BLYP (8×10−3Å2/ps) [150] and far below the experimental value (see Table 8.2) even after taking the

finite size effects into account, in line with the over-structured radial and angular distribution functions.

8.3.4 Clusters

While characteristics of liquid water remain controversial, the gas-phase water cluster community has

provided detailed experimental and theoretical pictures of the behavior of small water clusters. From

Table 8.3, one can see that all methods, bar BLYP and B3LYP, tend to over-bind compared with MP2

results at CBS limit (MP2/CBS) [213]. Surprisingly, PBE gives the best results even though the liquid

water is grossly over-structured. As a side note, the differences between interaction energies predicted

in this study and Ref. [196], which employed aug-cc-pV5Z basis set, are less than 0.1 kcal/mol in all

available clusters/functionals, validating the choice of wave function cutoff for the liquid water simula-

tions.

dimer trimer tetramer pentamer hexamer
cyclic cyclic cyclic cage prism cyclic

Eint eint Eint eint Eint eint Eint eint Eint eint Eint eint Eint eint
BLYP -4.09 -4.09 -13.11 -4.37 (7) -24.14 -6.04 (48) -32.02 -6.40 (56) -37.34 -4.67 (14) -37.37 -4.15 (2) -39.53 -6.59 (61)
dBLYP -5.19 -5.19 -16.61 -5.54 (7) -29.71 -7.43 (43) -38.79 -7.76 (50) -49.65 -6.21 (20) -49.95 -5.55 (7) -47.29 -7.88 (52)
BLYP-D -5.46 -5.46 -16.99 -5.66 (4) -30.19 -7.55 (38) -39.54 -7.91 (45) -51.15 -6.39 (17) -51.69 -5.74 (5) -48.52 -8.09 (48)
B3LYP -4.41 -4.41 -13.87 -4.62 (5) -25.15 -6.29 (43) -33.31 -6.66 (51) -39.87 -4.98 (13) -39.57 -4.90 (0) -41.22 -6.87 (56)
PBE -5.06 -5.06 -16.09 -5.36 (6) -29.04 -7.26 (43) -38.40 -7.68 (52) -46.56 -5.82 (15) -46.48 -5.16 (2) -47.41 -7.90 (56)
dPBE -5.20 -5.20 -16.70 -5.57 (7) -29.96 -7.49 (44) -39.51 -7.90 (52) -48.03 -6.00 (15) -47.95 -5.33 (3) -48.75 -8.13 (56)
MP2/CBS -4.98 -4.98 -15.83 -5.28 (6) -27.63 -6.91 (39) -36.3 -7.26 (46) -45.8 -5.74 (15) -45.9 -5.10 (2) -44.8 -7.5 (50)

Table 8.3: Total interaction energy (Eint, kcal/mol) and interaction energy per H-bond (eint, kcal/mol)
of optimized water clusters from dimer up to hexamer. The number in the parenthesis is the percent-
age increase ineint of various clusters with respect to that of the dimer. MP2/CBS reference is taken
from [213].

The number in the parenthesis is the percentage increase in the interaction energy per H-bondeint

with respect to that in the dimer,i.e., the absolute % enhancement. The absolute % enhancements

predicted are correct to within 10% of the MP2/CBS results and follow the same trend:eint increases

from dimer to pentamer but decreases when going to the cage and prism configurations of the hexamer.

The agreement, however, exhibits a strong variation among the clusters; for examples, all methods bar

dBLYP and BLYP-D predict over 35% and 50% decrease ineint going from pentamer to the cage and

prism configurations of the hexamer. dBLYP (30% and 42%) agree most closely to the MP2 values

(31% and 44%); however, it fares worse when comparing the relative % enhancement from trimer to

either of the hexamers.
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Figure 8.5: Boltzmann-weighted difference between interaction energies of the water dimer calculated
with four DFT methods (BLYP, dBLYP, PBE and dPBE) and CCSD(T)/aug-cc-pVTZ (not counterpoise-
corrected) method as a function ofrOO and∠OHO.

Although DFT-GGAs, in general, predict H-bonding quite well, their poor descriptions on the an-

gular dependence of the interaction energy surfaces have been reported, probably due to the missing

dispersion interaction [214, 215]. Figure 8.5 shows the Boltzmann-weighted difference1 between the

interaction energies calculated with the four DFT approaches (BLYP, dBLYP, PBE, and dPBE) and

CCSD(T)/aug-cc-pVTZ (basis set superposition errors not corrected) as a function ofrOO and∠OHO.

Similar to the results of the optimized clusters, BLYP has the highest Boltzmann-weighted difference

among the four, followed by PBE, dPBE, and dBLYP. Surprisingly though, the performance of BLYP is

insensitive to changes in∠OHO, unlike the two PBE approaches where there is a pronounced angular de-

pendence, especially atrOO < 3.2 Å. dBLYP displays an even better angular dependence which slightly

worsens at longerrOO but is still on the same scale, if not better, as other approaches. In addition, if one

1∆ = exp[−(ECCSD(T) − E
CCSD(T)
min )/kT ] · (EDFT − ECCSD(T)), kT is chosen to be 600.
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traces the diagonal path, going from shortrOO and small∠OHO (mainly H-bonding) to largerOO and

∠OHO (vdW-dominant), the Boltzmann-weighted differences of PBE and dPBE increase along the way,

in great contrast to the trend observed for BLYP and dBLYP.

The salient angular dependence of PBE and dPBE atrOO close to the first maximum and mini-

mum of thegOO (Table 8.1) is liable to introduce a significant bias towards one particular configuration

over the other, in this case, directional H-bonded dimer over non-directional vdW-bound complexes.

This may explain why even though the equilibrium interaction energies are better predicted by PBE and

dPBE, BLYP with its large deviation in interaction energies still manages to capture properties of liquid

water closer to experiments than both of them. With its superior performance on interaction energies,

especially around the region of interest, dBLYP is expected to (and does) give the best prediction on

liquid water.

Improving the description of vdW interactions in BLYP makes the probability of sampling non H-

bonded complexes, which are otherwise too repulsive energetically, closer to reality. This improvement

manifest itself in the liquid simulation, leading to much softer water that is highly mobile.

In contrast, the geometry-optimized clusters and the dimer interaction energy surfaces estimated

with PBE already show very good agreement with high-level references [MP2/CBS or CCSD(T)/aug-cc-

pVTZ level of theory]. When it comes to predict the properties of liquid water, however, the performance

is rather dismal: PBE water, as shown by the radial and angular distribution functions, is too structured

and all dynamical properties investigated are too slow, even more so than the BLYP water. Augmenting

PBE with either DCACPs or empirical vdW corrections change the interaction energy surfaces of the

water dimer and the equilibrium energies of the water clusters to a very small extent, similar to the

minimum influence it exerts on liquid simulations.

As discussed in Chapter 4, BLYP in which dispersion interactions are entirely absent predicts repul-

sive interaction energies for all vdW-dominated complexes such as rare-gas and hydrogen dimers [12,

13, 15, 19–21]. PBE, on the other hand, is rather system-dependent and shows spurious interactions for

some dispersion-bound systems: for example, the interaction energy of (H2)2, the calibration system for

hydrogen DCACP, estimated by PBE is over-binding with respect to the full CI reference; for (CO2)2,

it is weakly bound. In consequence, DCACPs complementing BLYP always provide an attractive cor-
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rection to the underlying functional, in line with the idea of a dispersion-motivated correction. The

DCACP parameters for PBE, however, can be repulsive (hydrogen and helium) or attractive (carbon,

nitrogen, oxygen,etc.). In addition, the strong angular dependence in the difference between the inter-

action energy predicted by PBE and high-level calculations cannot be efficiently corrected for by simply

adding the empirical vdW corrections that are purely radial-dependent or DCACPs whose effects are

only weakly angular-dependent.

8.4 Conclusions

As a natural continuation of Chapter 7, we have carried out AIMD simulations on liquid water using pure

and dispersion-corrected density functional theory combined with the PBE functional. Two empirical

approaches, DCACPs and van der Waals corrections, are employed to compensate for the ill description

of vdW interactions in DFT-GGAs.

All structural and dynamical results point to a much more glass-like liquid water with PBE, even

when compared with the already over-structured BLYP. In addition, unlike with BLYP in which the

addition of either DCACPs or empirical vdW corrections leads to superior interaction energies for water

clusters and a softer liquid structure, augmenting PBE with either of the two does not seem to cure the

discrepancy, if not to enhance the structure even more.

Nevertheless, we are still convinced that a proper treatment of vdW interactions is essential in liquid

water simulations, not only for a better description of its properties but more importantly, for studying

the many phenomena occurring in wet environment such as hydrophobicity. Yet the ‘spurious’ behavior

of PBE in treating dispersion forces renders the corresponding DCACPs less transferable than the ones

for BLYP or BP where the contribution of DCACPs is much more clear-cut.
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London dispersion forces play a crucial role in many phenomena and processes in chemical and

biological systems such as physisorption and molecular recognition. Yet KS-DFT combined with

many popular approximated exchange-correlation functionals fails to capture these non-local long-range

forces. This thesis aims to contribute to the active field of research on curing this deficiency, in partic-

ular, we focus on the recently introduced approach of DCACPs that model the effects of these weak

forces via atom-electron potentials instead of the usual atom-atom potentials of theR−6 form.

A library of DCACPs for rare-gas atoms, hydrogen, carbon, nitrogen and oxygen to be used with

BLYP, BP and PBE are calibrated against CCSD(T) or full CI references of small vdW complexes.

The values of DCACP parameters depend heavily on the performance of the underlying exchange-

correlation functionals. Since PBE provides spurious interactions for some vdW complexes, DCACPs

complementing PBE can be either attractive or repulsive depending on the element in question. On the

other hand, for BP and BLYP in which dispersion interactions are entirely absent, DCACPs are always

attractive, in line with the dispersion-motivated corrections. As a consequence, the latter combinations,

in our view, are preferable over the occasional superior performance of DCACP-PBE due to the more

clean-cut interpretations they offer.

By augmenting the BLYP functional with the corresponding DCACPs,π − π interactions between

the intercalator and aromatic biomolecules are predicted remarkably well in all systems studied, includ-

ing neutral as well as positively charged complexes. When tested against a well-established benchmark

suite of noncovalently bound nucleic acids and amino acids, unsigned mean errors of<1.6 kcal/mol

compared with the bestab initio data available are obtained. The overall descriptions for systems that

are bound predominantly by interactions other than dispersion forces are also, in general, further im-

proved with DCACPs. In summary, the results demonstrate that the effect of dispersion forces can be

well described with DCACP-augmented DFT-GGA without introducing any significant distortions on

intramolecular geometries or electronic structures. Furthermore, they indicate that DCACPs display a

strong transferability to systems other than the calibration ones,i.e., once calibrated, the DCACP for a

specific element can be applied in different chemical environments with comparable accuracy.

Chemical insights to the role vdW interactions play are also gained. For example, H-bonded base

pairs are deformed noticeably to achieve more favorable multipole–charge interactions in all charged

nucleobase–intercalator complexes. The intercalation process in the ellipticine–d(CG)2 complex is en-
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ergetically favorable – the stabilization energy when fully intercalated is estimated to be approximately

40 kcal/mol. By curing the shortcomings of DFT-BLYP in describing vdW interactions, the struc-

ture of liquid water becomes much softer, and its dynamical properties are much more liquid-like; the

self-diffusion coefficient, for example, is increased by almost threefold. A proper description of vdW

interactions thus brings the simulated properties in closer agreement to experiments, showing that even

interactions as weak as dispersion forces may significantly influence the structural and dynamical prop-

erties of systems believed to be held together by much stronger interactions. Surprisingly, the PBE

functional whose description of water clusters is one of the closest to the bestab initio estimates, fails to

reach the same level of accuracy when it comes to the liquid state. Including either DCACPs or empirical

vdW terms has negligible effects, probably due to the problem of transferability mentioned above.

Owing to the relative infancy of the DCACP approach, there are still plenty of questions left to

be addressed in this field; for instance, the performance on chemical reactions, such as the prediction

of reaction barriers, remains to be tested. In addition, DCACPs do not give the asymptoticR−6 tail,

characteristic of the interaction energy of two systems with no permanent multipole moment. Tests

on many different systems have nevertheless shown that the shape of the interaction profile is closely

reproduced within distances up to 5 Å. The introduction of the midpoint term in the penalty functional

is the first step taken for an improved long-range behavior, but a systematic way to include the correct

asymptotic tail should be sought out for applications sensitive to dispersion interactions at the long-

range limit,e.g., small-angle scattering of rare gases in molecular beams; one possibility is to include

more` in the expansion of DCACPs. Perhaps the most important of all is to develop a rigorous physical

interpretation of this approach based on fundamental principles.

AIMD simulations that utilize DFT for solving electronic structures have been instrumental in elu-

cidating microscopic mechanisms in an accurate and unbiased manner in various disciplines. Their

predictive power, however, depends strongly on the accuracy of the chosen exchange-correlation func-

tional. We show that DCACPs allow one to achieve accuracy similar to coupled-cluster calculations with

much lower computational overhead. Because DCACPs are electronic potentials, their contributions to

the total energy depend explicitly on the wave function; many-body interactions are therefore implicitly

included, offering an advantage over the pairwise approach of empirical vdW corrections that is less de-

manding in computer resources. Adopting this approach in AIMD simulations or DFT-based quantum
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mechanical/molecular mechanical calculations are relatively straightforward owing to the availability

of the easy-to-use library for many common elements in biochemical systems. With its efficiency and

proven robustness, we hope that it will be widely used and contribute to the fields of biochemistry and

biophysics, allowing for novel applications such as adsorption on surfaces, investigating reactions in

environments whereπ − π interactions are paramount, or generating new classical force fields for the

description of DNA-intercalator interactions.
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Appendix

Convert DCACPs into the format adapted by Troullier-Martins pseudopotentials

The ionic pseudopotential operator is

V̂ PP
ion (r) = V PP

ion,local(r) +
∑

l

Vsemilocal,l(r)P̂l

whereV PP
ion,local(r) is the local potential;

Vsemilocal,l(r)P̂l = ∆Vl(r) = V PP
ion,l(r)− V PP

ion,local(r)

is the semi-local potential for the angular momentum componentl, andP̂l projects out thelth angular

momentum component from the wave function. The semi-local form can be transformed into a non-local

one using the procedure suggested by Kleinman and Bylander (KB) [49]:

V KB
nonlocal,l

(
r, r′

)
=

l∑
m=−l

Ylm (r̂)
|∆Vl (r)φl (r)〉 〈∆Vl (r′)φl (r′)|
〈φl (r′′) |∆Vl (r′′)| φl (r′′)〉

Ylm

(
r̂′

)

whereφl(r) is the atomic reference pseudo wave function andYlm the spherical harmonics.

DCACPs are of the same analytical form as the non-local part of the pseudopotentials developed by

Goedecker, Teter, and Hutter [52]:

vDCACP
(
r, r′

)
=

l∑
m=−l

Ylm (r̂) pl1 (r)σ1pl1

(
r′

)
Ylm

(
r̂′

)
.
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To cast DCACPs in the Troullier-Martins format, one can thus write

pl1 (r)σ1pl1

(
r′

)
=
|∆Vl (r)φl (r)〉 〈∆Vl (r′)φl (r′)|
〈φl (r′′) |∆Vl (r′′)| φl (r′′)〉

.

If we chose∆Vl (r) to be constant, then

pl1 (r)σ1pl1

(
r′

)
= φl (r)

∆Vl

〈φl (r′′) |φl (r′′)〉
φl

(
r′

)
;

pl1 (r) = φl (r) ,

σ1 =
∆Vl

〈φl (r′′) |φl (r′′)〉
,

pl1 (r) =

√
2rlexp

(
− r2

2r2
l

)
r
l+3/2
l

√
Γ(l + 3/2)

,

Γ denotes the gamma function.

Since the projector satisfies the normalisation condition:

∫ ∞

0
pl1 (r) pl1 (r) r2dr = 1.

We have to write in the Troullier-Martins pseudopotential file (as in the CPMD code)

• the “wave function”:r pl1

• the “potential”:σ1〈φl| φl〉+ Vloc (r) → σ1 + Vloc (r)
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