
1. Introduction

With the growing complexity in consumer embed-
ded products, new trends envisage heterogeneous
Multi-Processor System-On-Chip (MPSoC) architec-

tures consisting of complex integrated components com-
municating with each other at very high-speed rates.
Nowadays, MPSoCs are increasingly complex, integrating a
larger and larger amount of processing cores [1]. Thus,
intercommunication requirements of complex MPSoCs will
not be feasible using a single shared bus or a hierarchy of
buses due to their poor scalability with system size.

To overcome these problems of scalability and com-
plexity, Network-On-Chips (NoCs) have been proposed as
a promising replacement for buses and dedicated inter-
connections in forthcoming nanometer-scale technologies

42 IEEE CIRCUITS AND SYSTEMS MAGAZINE 1531-636X/07/$25.00©2007 IEEE FOURTH QUARTER 2007

Nicolas Genko, David Atienza,
Giovanni De Micheli, and Luca Benini

Feature

Digital Object Identifier 10.1109/MCAS.2007.910029

Current Systems-On-Chip (SoC) execute applications that
demand extensive parallel processing; thus, the amount of
processors, memories and application-specific signal pro-
cessing cores is rapidly increasing. In these new Multi-
Processor SoCs, (MPSoCs) one of the most critical
elements regarding overall efficiency is on-chip intercon-
nections. Network-On-Chip (NoC) provides a structured
way of realizing interconnections on silicon, and obviate
the limitations of bus-based solutions. NoCs can have reg-
ular or ad hoc topologies and can be tuned by a large set of
parameters. Simulation and functional validation are
essential to assess the correctness and performance of
MPSoC architectures. We present a flexible hardware-soft-
ware emulation framework implemented on an FPGA that is
specially designed to suitably explore, evaluate and com-
pare a wide range of NoC solutions with a very limited
effort. Our experimental results show a speed-up of four
orders of magnitude with respect to cycle-accurate HDL
simulation, while retaining cycle accuracy and flexibility of
software simulators. Finally, we propose a validation flow
for MPSoCs based on our flexible NoC emulation frame-
work, which allows designers to explore and optimize a
range of solutions, as well as quickly characterize perform-
ance figures and identify possible limitations in their on-
chip interconnection architectures.

Abstract

© MASTER SERIES & JOHN FOX

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147935378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

because they possess better design predictability and
more modularity than traditional bus-based systems [2,
3]. However, NoC-based MPSoCs involve new and critical
design challenges, such as the design of network inter-
faces and protocols to provide reliable on-chip communi-
cation to transport the data of the cores. Also, the
selection of suitable custom topologies of switches for
the applications of the target MPSoC is critical to provide
the needed low-latency at the physical interconnection
layer to transport the data of the cores. All these chal-
lenges require a very time-consuming and error-prone
design and tuning process of on-chip interconnects to
design power-efficient and high-performance MPSoC.

In this article we present a combined hardware-
software NoC emulation framework, which shows how
flexible NoC emulation can be used as a powerful design
tool for tuning and functional validation of on-chip inter-
connections for MPSoCs. This emulation framework is
implemented onto a Field Programmable Gate Array
(FPGA) platform and has as one of its main novelties the
utilization of the FPGA as an active element in the emula-
tion control layer to speed up functional validation and to
add flexibility to the NoC configuration exploration,
instead of merely being the platform where the circuit is
prototyped, as emulation is typically used.

As an example of its possible application, we use
our framework to tune and validate the X-pipes NoC
architecture [4] for MPSoC designs. In this case, the
emulation framework is able to test actual physical
realizations of NoCs on silicon up to four orders of
magnitude faster than Hardware Description Language
(HDL) simulators (see Fig. 1), while preserving cycle
accuracy. In addition, we exploit the flexibility of our
emulation framework to define a procedure to rapidly
validate and tune the X-pipes NoC physical implemen-
tation characteristics (e.g.,
buffer size, topology of switches,
size of inter-switches links, etc.)
for real-life traffic patterns of
software applications that can be
executed in the target MPSoCs or
various software scenarios (e.g.,
bursts lengths, average on chip
communication load, etc).

From the simulation viewpoint,
to validate different architectural
alternatives reducing the cost of
synthesizable NoC design, several
cycle-accurate simulation frame-
works in VHDL or SystemC have

been proposed. Goosens, Siguenza-Tortosa et al. [8, 9]
use VHDL-based cycle-accurate models to evaluate the
latency, throughput and other features in mesh-based and
hierarchical NoC topologies. Bertozzi et al. [4] describe a
cycle-accurate SystemC-based modeling environment for
testing custom NoC topologies. These approaches are
flexible to perform NoC design exploration, but their sim-
ulations are up to four orders of magnitude slower com-
pared to our physical NoC emulation environment.
Therefore, cycle-accurate simulators cannot use real-life
traces to extensively evaluate the entire system under
test. Other simulation approaches have been proposed to
increase the speed of cycle-accurate simulation. Madsen
et al. [10] propose a SystemC-based simulation environ-
ment that models the effect of a real-time operating sys-

43FOURTH QUARTER 2007 IEEE CIRCUITS AND SYSTEMS MAGAZINE

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1
Verilog (Modelsim) SystemC (MPARM) NoC Emulation

Speed (Cycles/s)

Figure 1. Speed comparison NoC-MPSoC simulation versus emulation.

The benefits of FPGA-based prototyping for NoC-based design

have been outlined by several authors. Brebner et al [5] stud-

ied mesh-based topologies and packet-switching communication

mechanisms and provided circuit-level functional validation of

their designs onto FPGAs. Also, Marescaux, and Moraes et al.

[6, 7] ported their torus-based NoC architectures and designs of

switches/routers to FPGAs to validate their choices of packet

sizes and circuit-based switching modes based on HDL simula-

tions. These previous approaches can validate several NoC imple-

mentations features but none of them has exploited the concept

of FPGA emulation to propose an overall framework to enable

both fast MPSoC design space pruning at cycle-accurate level and

traffic effects validation with real-life inputs, as we propose in

this paper.

NOC PROTOTYPING HISTORY

Nicolas Genko, David Atienza, and Giovanni De Micheli are with LSI/EPFL, Lausanne, Switzerland, E-mail: {nicolas.genko, giovanni.demiche-
li, david.atienza}@epfl.ch. David Atienza is also with DACYA/UCM, Avda Complutense s/n, Madrid, Spain, E-mail: datienza@dacya.ucm.es.
Luca Benini is with the Department of Electronics and Computer Science, University of Bologna, Bologna, Italy,
E-mail: lbenini@deis.unibo.it.

tem on NoCs. Then Chan et al. [11] present a mixed
VHDL/SystemC implementation and simulation method-
ology, which employs a template router to support sever-
al interconnection networks. These previous approaches
enable a fast exploration of various features of NoCs, but
their level of accuracy is limited. Furthermore, their sim-
ulation speed is still lower than our proposed emulation
framework.

Finally, at high-level of abstraction, algorithms and
analytical models [2, 12] have been proposed to
achieve fast rough estimations of overall cost of NoCs
using graphs representations. Such analytical
approaches can be used in early stages of NoC devel-
opment to perform a first pruning of the design space,
but do not enable accurate architectural exploration
and functional validation.

2. NoC Emulation Framework
Our emulation framework is a combined hardware-soft-
ware platform (Fig. 2), which enables emulation of NoCs
at different levels of abstraction. It can emulate a network
of switches for internal validation of tuning of internal on-
chip interconnection features or a complete NoC at the
core interconnection protocol layer to explore the effects
of real-life traffic patterns (e.g., congestion or effects of
access bursts). It consists of two different layers. First,
the emulation platform is a hardware layer that includes
the network to be emulated, wraps it with the necessary
hardware components to inject and receive on-chip
requests (i.e., traffic generators and receptors) and pro-
vides a graphical interface to the host computer to moni-
tor the emulation by the user. Second, the software layer
is employed in our framework to initialize and control the
emulation process of a physical NoC implementation.
Consequently, as it is shown in Fig. 2, the emulation and
design exploration control layer for our NoC emulation
framework consists of both hardware and software ele-
ments. Thus, the additional hardware elements on the
FPGA are used to speed-up the emulation, while the soft-
ware elements are utilized to extend the versatility of the
platform for NoC exploration purposes.

To achieve a correct interaction between hardware and
software in the proposed hardware-software emulation
framework, we have developed an HDL-based component
that is accessible through a bus connection by a hard-core
processor (i.e., a PowerPC on the Xilinx Virtex-II Pro board
employed [13], as shown in Fig. 3), which executes a
C program containing the concrete configuration of the

44 IEEE CIRCUITS AND SYSTEMS MAGAZINE FOURTH QUARTER 2007

Monitor

IB 0 Emulation Platform

Control

Network
to be

Emulated
(Device
Under
Test)

H
ardw

are Layer

S
of

tw
ar

e
La

ye
r Power PC

C File
Compiled

O
P
B

OPB
to IB
Filter

IB 1

Traffic Generator

Traffic Receptor

To Control

E
m

ul
at

io
n

C
on

tro
l

La
ye

r

Figure 2. Overview of the proposed hardware/software NoC Emulation Framework.

Figure 3. Xilinx Virtex-II Pro Board.

system. This program consists of a sequence of write and
read operations into specific addresses of the system that
are interpreted by the hardware components to behave
according to the desired parameters. For instance, this
mechanism is used to configure additional hardware ele-
ments to extract statistics during NoC emulation. Then the
statistics are fetched by the processor and sent to a mon-
itor module, which provides the interface to show the
acquired statistics onto the screen of the host computer.

2.1 Hardware Architecture Overview
The hardware architecture of the emulation platform is
designed in a modular way. It enables the implementation
and emulation of multiple custom NoC topologies and
architectures. An overview of the NoC programmable emu-
lation architecture is depicted in Fig. 2 (Hardware layer).

This architecture consists of four elements to emulate
realistic NoCs: Traffic Generators (TGs), Traffic Receptors
(TRs), a control module, and a user-defined set of intercon-
nections between the components of the emulated NoC.

! Traffic Generators: TGs have three interfaces. The
first one connects them to the control processor of
the emulation framework (i.e., a PowerPC proces-
sor of the Virtex-II FPGA [13]) via an Internal Bus
(IB). The second one links them to the network to
be emulated, which can be a simple network of
switches or a complete NoC including an external
public protocol and a set of traffic patterns of the
applications that will be running on the target
MPSoC, which need to be tested. Finally, the third
one provides the interface to the control module
for synchronization purposes. Our framework
includes two types of TGs. The first type can gen-
erate different types of stochastic traffic and can be
programmed in software by the control processor
of the emulation. Fig. 4 shows an example of the
internal functional blocks of a stochastic TG. It

includes an interface in the bus of the control
processor of the emulation, which can write in the
memory-mapped register file to configure different
parameters to shape the generated 2-state Markov
chain stochastic traffic, such as, packet lengths,
random seeds or transition probabilities through a
Linear Feedback Shift Register (LFSR). The second
type generates traffic according to a trace (i.e., a
collection of core transactions coming from a real-
life application) sent to the TG in a continuous flow
by the control processor. Therefore, the two kinds
of TGs are radically different. On one hand, the sto-
chastic TG is programmed before the start of the
emulation and generates autonomously traffic
according to its model. On the other hand, the
trace-driven TG receives information in a continu-
ous flow at run time with packets descriptors com-
ing from the processor of the emulation platform.
Moreover, both types of TGs can be combined to
generate any variations of NoC traffic made of sto-
chastic (i.e., Gaussian, Poisson…) and real-life pat-
terns, just by using the software functions of the
control processor.
In case the emulation is carried out at the level of
the network of switches, the TG is directly plugged
to a link of a switch and generates flits according to
the inner network protocol. In the case of a com-
plete NoC emulation, the TG mimics the behavior
of a core and generates traffic compliant to the
public protocol provided by the emulated NoC.

! Traffic Receptors: Similarly to TGs, our TRs have
the same three interfaces, one to the processor, a
second one to the network to be emulated, and a
third one to the control module. We also have two
types of TRs. The first one generates overall sta-
tistics from the executed emulation in hardware.
For example, it can compute the average latency

45FOURTH QUARTER 2007 IEEE CIRCUITS AND SYSTEMS MAGAZINE

Bus

Bus
Interface

and
Address
Decoder

Bench of Registers

*

*

*

*

*

*

Pack Length High

Pack Length Low

LFSR 1 Seed

Int. Between Pack
High
Int. Between Pack
Low
LFSR 2 Seed

Rand Gen.

Rand Gen.

+

+

Packets
Generator

Network

Network Link

Data [0..N]
Req [0]
Replay [0]

Ack [0]
Ack Valid [0]

Interface

LFSR % (H.Bound-L.Bound)

Figure 4. Example of stochastic traffic generator.

of packets through the network thanks to a time
stamp embedded in the packet. We have used 13
bits for this time stamp, what means that we
expect the latency of packets to be less than 4
KCycles, but it is configurable by the user. The
second type of TR does not generate global statis-
tics, but a continuous flow of packet descriptors
with detailed statistics of a certain interval of the
emulation, which can then be analyzed by the
software running on the control processor to cre-
ate subsets of statistics for different emulation
time-frames. As with TGs, TRs can be included in
a simple network of switches or into a complete
NoC emulation. In the second case, the TRs
behave as slave cores (e.g., private or shared
memories) and can include user-configured laten-
cies to generate the different reply packets to the
current transactions.

! Control Module: The control module is in charge of
performing global synchronization operations, such
as reset, start or stopping the emulation. Thus, it
includes an interface for each included TG and TR to
communicate simultaneously with all the compo-
nents of the platform. The control processor can
assert the commands to the control module through
a write operation onto its memory address range.

2.2 Software Initialization of Emulated NoC
Hardware Architecture
A key element in the flexibility of the proposed frame-
work for exploration purposes is the use of software to
control the emulation parameters and process. For
example, we can configure the routing tables of TGs by
software. Also, the processor can read the generated sta-
tistics in the TRs (e.g., average latency of packets, con-
gestion in each link, etc) and modify their response
latencies by simply reading and writing in their memory
address ranges. To make the software part as general as
possible, we have implemented a set of functions to con-
figure the emulation settings and to assert run-time com-
mands (start, stop, reset, resume, etc.) in the framework
via software.

We distinguish three types of software functions:
! Hardware initialization functions: They are called

before the emulation of the device under test, and
are meant to initialize the value of the registers of
the hardware components (i.e., TG/TR and control
module). For instance, in the case of stochastic TGs,
these functions initialize their registers according to
the traffic pattern that the user wants to generate.

! Emulation control functions: These functions syn-
chronize the whole emulation process, by sending
global requests to the control module (e.g., start or

stop emulation), and send packets
descriptors to TGs at run-time.

! Statistic collection functions:
This type of functions is ded-
icated to read the statistics
generated by stochastic TRs
from their register files by
the control processor. In
addition, functions exist to
read the output traces com-
ing from trace-driven TRs,
which include the timing of
each packet among other
NoC-related information
(e.g., number of packets
receive, sizes of acknowl-
edge flits, etc.).

Thanks to the software func-
tions and the instantiation of a
superset of physical on-chip net-
works, it is possible to explore effi-
ciently many different NoC features
and prototype the behavior of
applications running into MPSoCs
without any time-consuming re-
synthesis process, as it is shown in
the next sections.

46 IEEE CIRCUITS AND SYSTEMS MAGAZINE FOURTH QUARTER 2007

Libraries

NoC
Components

Emulator
Components Hardware Synthesis

Software Compilation

3) C Code

Traffic
Modeling

Emulation
Parameters

1) NoC Topology
Description

2) Emulator
 Description

4) EDK

5) Emulation

6) Results

Figure 5. Overview of the emulation flow.

3. Emulation Flow:
Hardware/Software Interaction and Statistics Collection

Due to its mixed hardware/software structure, the global
emulation flow used in our framework (Fig. 5) includes
elements of the flows employed for both sides of the sys-
tem design spectrum: the definition of hardware setting
and synthesis, and the software coding and compilation.
The main element that we exploit to combine both sides
in an overall emulation system is the Embedded Develop-
ment Kit (EDK) tool. EDK supports the hardware integra-
tion of the NoC that we use [4], the synthesis of our
additional hardware components (see Section 2) and the
software compilation of our emulation software layer.
This tool is related to the FPGA used, which is a Xilinx
VirtexII Pro vp30 [13], but similar commercial tools from
other vendors exist if other boards are used instead.

As a first step, we define the hardware layer of the
platform. To this end, the user defines the network to be
emulated (step 1 in Fig. 5) and the types of TGs/TRs to
utilize. Then a control module compliant to the specific
TGs and TRs used is included. Since our library of hard-
ware components is already included in the EDK
libraries, gathering all the components or modifying the
current hardware emulation architecture requires only a
few minutes.

Next, we interconnect all hardware modules in the
framework with a shared bus such that they are acces-
sible by the control processor
(step 2 in Fig. 5). Then the initial-
ization software settings for the
current set of emulations are set
(step 3 in Fig. 5). For this part, the
user needs to configure the kind of
traffic and statistic collection to
extract from the emulation, accord-
ing to the hardware architecture
selected in the previous phase.
This software configuration phase
is not a very time-consuming effort
thanks to the defined functions (cf.
Section 2) that we have included in
the software libraries of EDK. Thus,
we avoid re-synthesis of the emula-
tion framework between different
emulations by including ranges of
memory addresses where the con-
trol processor can read or write to
configure the hardware platform
each emulation run. Thus, the
framework can autonomously per-
form several successive emula-
tions by defining a batch of
configurations in the C source file

of the control processor. Once the whole configuration
of the hardware/software elements is finished, the next
step of the emulation flow (number 4 in Fig. 5) is the syn-
thesis of the system. Then the emulation of the whole
system is performed (fully automatic or user-interac-
tive) as a fifth step of the emulation flow. The current
version runs cycle-accurate emulations of NoC designs
at 50 MHz on the FPGA device. Finally, either at run-time
or at the end of the batch of emulations (number 6 in
Fig. 5), the control processor collects the data and
processes it to show the acquired statistics on the ter-
minal window of the host computer.

4. Automatic NoC Parameters Exploration
We present now an iterative emulation procedure, which
enables exploration of NoC parameters in the context of
MPSoC design. In Fig. 6, we present the main steps that
compose the NoC tuning and validation process.

This flow starts by defining a set of parameters that
can be tuned for the particular NoC family that is tuned.
These parameters concern the instances of NoC hard-
ware components of the platform under test and the
types of traffic patterns that need to be tested in the soft-
ware configuration of the emulation platform. Examples
of the hardware features that can be tuned are the flit
width, the number of switches or the NoC topology, while
software elements that can be studied are the traffic load

47FOURTH QUARTER 2007 IEEE CIRCUITS AND SYSTEMS MAGAZINE

3) Configure SW with Batch of
NoC Configurations to Emulate

1) Select NoC Parameters
to Explore and Function Costs

2) Define HW Superset
NoC Architecture

6) Define New
 Exploration
 Range and
 Granularity

4) Emulate and Analyze
NoC Statistics

5) Check if
All Constraints Met,

End Batch?

7) Set of
Valid NoC

Configurations

Yes No

NoC Cores
Library

NoC Library
Architectural
Constraints

MPSoC
Traffic

Patterns

Design
Constraints

Figure 6. NoC features exploration procedure.

and the response time of slave devices. Note that the
large majority of these parameters are tunable by soft-
ware in our emulation platform to avoid expensive re-syn-
thesis. In the next step of our NoC tuning process (step 2),
a parameter preprocessing and metric definition cost is
performed to define the possible superset of hardware
NoC architectures that cover the exploration design
phase, while respecting the possible implementation con-
straints of the set of cores of the NoC under study (e.g.,
maximum switch or flit width sizes allowed in the NoC
family). At this point it is possible to apply a first static
exploration to reduce the possible configurations of NoCs
to be emulated, as proposed in [14], but this part is
beyond the scope of this paper. After the hardware of the
NoC superset to be emulated is set, in the next step of the
flow the batch of software configurations to explore is
defined (step 3).

In the following step of the flow the overall system is
emulated (step 4), and statistics of NoC behavior are
extracted and analyzed in the control processor (step 5).
Once the analysis phase has finished, the designer can
choose to repeat steps 3 and 4 if the desired constraints
and optimization goals have not been met, based on the
solutions found in the output set. For these iterations, the
designer can specify different strategies to refine the solu-
tions found in the batch of NoC configurations explored
(step 6) such as selecting solutions from the top and the
bottom of the design spectrum, and then emulating new
solutions at regular intervals between them to refine the
granularity of the exploration. Finally, the solutions of the
various set of emulations are available to the designer to
select the best performance-area-power solution for the
target MPSoC (step 7).

To illustrate this flow, consider for the sake of simplic-
ity the problem of tuning only one parameter, namely, the
flit width of the network with a fixed congestion con-
straint of 10% in the worst case [15]. The flit width explo-
ration can be easily parameterized by software, by taking

as hardware superset the synthesis of a NoC with the
maximum flit width that can be taken into consideration
during the exploration, and configure the NoC to use only
a subset of the synthesized wires for smaller tests.

Following the architectural constraints of the NoC
and MPSoC we are emulating [4], the exploration gran-
ularity for the flit width can vary from 4 to 128 bits,
since 4 is the minimum allowed by the internal proto-
col of the network and 128 is the largest size needed for
a complete parallel transaction of the emulated pro-
cessing cores [14]. Thus, the design space is large and
it would be unfeasible to cover it with pure software
simulation or iterative exhaustive hardware re-synthe-
sis for the different configurations. Using our hardware
superset synthesis of 128-bit flit width, we vary the flit
width from 4 to 128 utilizing our currently default
implemented search method, namely, a dichotomic
search. This method exhibits good convergence and
stability properties in our experiments in NoC tuning,
as congestion decreases when the flit width increases
[14, 15]. Therefore, we divide the range in two equal
parts and configure in software the emulation of con-
figurations with 4, 66 and 128 bits. After this first set of
emulations, the control processor analyzes the results
and determines new bounds to explore the best con-
figuration by reducing the design space by half. Then it
automatically generates the software file for the new
batch of configurations of the emulation framework,
which reduces again the design space by half. There-
fore, after only 7 emulations (log2132), the flit width
configuration with minimal area, while respecting the
congestion constraint, is found.

In addition, we can apply this emulation-supported
exploration flow to tune several architectural NoC param-
eters in a multi-dimensional context, where different met-
rics (e.g., power, energy or area) and user-defined search
methods can be applied by modifying the software of the
control processor, and considering the largest superset of
on-chip hardware architecture. Similarly, the effect of dif-
ferent real-life traffic patterns in the NoC configuration
can be easily evaluated by modifying the control software
for the included TGs and TRs.

5. Applications and Experimental Results
In this section, we provide two examples of real-life appli-
cation of the proposed emulation framework and design
flow to tune on-chip interconnects of MPSoCs at different
abstraction levels. The first illustrates how to evaluate
the performance of a network of switches with different
internal NoC protocols, and the second shows the emula-
tion of a complete NoC to explore the convenient NI con-
figuration with respect to the traffic pattern of the
running application.

48 IEEE CIRCUITS AND SYSTEMS MAGAZINE FOURTH QUARTER 2007

TG TR TG TR

TG TRTG TR

Switch

Switch

Switch

Switch

Switch

Switch

Mesh 2×3

Figure 7. Topology for Application I.

5.1 Application I:
Emulation of a Network of Switches
The first application presented of the proposed NoC emu-
lation framework is the emulation of a network of X-pipes
switches [4, 15]. In this experiment we have used an NoC
topology of 6 16-bit switches in a 2 × 3 mesh configura-
tion (depicted in Fig. 7), and we have placed stochastic
TGs/TRs at each corner of the topology. Table 1 outlines
that this platform uses 53% of the employed FPGA board.
We have evaluated network performance and congestion
level with different burst traffic patterns implemented
using a two-state Markov chain (i.e., On/Off states) and
we swept the probability to transit from one state to
another using the software of the control processor. This
implementation of the stochastic traffic required only few
minutes to be configured and can already provide sys-
tems designers with a clear overview of how the network
reacts in different working conditions.

With this experimental setup, we have extracted
statistics about the amount of non-acknowledged flits
in TGs (i.e., flits delayed because of network conges-
tion), the average latency of packets, and the total run-
time for different traffic patterns with a constant
amount of packets. Additionally, we have measured
the degree of congestion in the network with a global
congestion counter. This congestion counter is the
metric used in this example to apply the exploration
procedure presented in the previous section. In this
case, it is shown how our procedure can reach an opti-
mum for a given congestion constraint, which is meas-
ured by the average latency of packets. We have fixed
a latency constraint of 19 clock cycles, and explored
with our flow different configurations of the number of
flits per packet (L) and the number of packets per
burst. Fig. 8 shows how the presented flow explores
this design space. Our constraints from the underlying
NoC architecture [4] initially determine that for L > 15
our topology cannot respect our latency constraint for
all possible interconnections, and the use of less than
5 flits per packet would not be able to include the
incoming data from the processing cores of the run-
ning multimedia application in one transaction. Thus,
our framework explores the range L = 5..15, and gives
as outcome to the designer the possible range of solu-
tions between L = 10..14 packets per burst, as valid
values for the desired latency constraint.

Additionally, the results shown in Fig. 8 give additional
pieces of information about how the shape of the traffic
affects the average latency of packets. It shows that the aver-
age latency of packets through the network of switches
increases linearly with the number of packets bursts at the
beginning, but after a certain amount of bursts it reaches a
saturation value (i.e., 15 > L > 13). This type of analyses is

very relevant for on-chip designers to test their switches
implementations with different NoC topologies, similarly as
for the flit width parameter explored in the previous section.

5.2 Application II:
Emulation of Complete NoC Architectures
Our second application is the emulation of a full NoC,
which includes a network of switches and the respective
NIs implementing the public interface available to the
external processing cores. In this case, the included
TGs/TRs are Open Core Protocol (OCP)-compliant, accord-
ing to the default interconnect standard supported by the
emulated Xpipes NoC [4]. However, other internal/external
protocols can be added in a few days using the available
skeletons of TGs/TRs.

In this case, the internal NoC architecture is fixed and
the main exploration and validation element is the behav-

49FOURTH QUARTER 2007 IEEE CIRCUITS AND SYSTEMS MAGAZINE

L=15

L=9

L=5

22

20

18

16

14

12

10

8
2 4 6 8

Number of Packets per Burst
12 14 16

A
ve

ra
ge

 L
at

en
cy

 (C
lk

)

L = Number of Flits per Packet

10

L=10..14

Figure 8. Experimental results obtained with Application I.

Device Architecture Number of Slices FPGA (%)

Stochastic TG 719 7.8

Trace-Driven TG 652 7.0

Stochastic TR 371 4.0

Trace-Driven TR 690 7.4

Control Module 18 0.2

Network of Switches 7387 53

Complete NoC 7914 57

Table 1.
Implementation figures of our emulation framework
on a Virtex-II Pro VP30 FPGA.

ior at the external protocol level, from the traffic pattern
viewpoint, of the MPSoC applications running on this
architecture. This kind of analyses is very important to
designer to anticipate over-designed or highly saturated
NoCs in the presence of running applications different
than the originally targeted. We have tested the behavior
of a 2 × 2 mesh NoC interconnecting 8 cores (for 4 pro-
cessing cores and 4 memory cores), which are emulated
by including one TG and one TR connected to each
switch, as shown in Fig. 9. This NoC-based architecture
uses 57% of the FPGA board (see Table 1).

The master TGs receive memory transaction
descriptors at run-time from the control processor,
which were extracted from real-life traces of several
multimedia applications [14]. The slave TRs analyze
such traffic and reply to the master’s requests. At the
same time, they store a continuous stream of statistics
in regular intervals of 1M cycles that can be read by the
control processor.

The statistics extracted from this application of our
NoC emulation framework are depicted in Table 2, where
the main parameter is the instant OCP workload. Its vari-

ations are related to the features of multimedia applica-
tions running at each moment in time.

Our results show the effective latency of packets for
the different OCP loads generated by the application,
allowing system designers to evaluate if the acknowl-
edgment ratio or packets correctly received within a
certain fixed latency (an indication of the level of con-
gestion in the network), which is defined as 14 clock
cycles in this experiment, is sufficient for the running
application. As Table 2 shows, for these NoC configu-
rations with high OCP loads, the acknowledgment ratio
decreases to 70% due to network congestion. More-
over, the continuous traces of statistics from TRs can
provide a fine-grained analysis of latencies of different
OCP transactions (read and write operations). This
analysis shows that in this network implementation,
congestion affects more read than write operations, as
there is no support implemented in Xpipes for splitting
read operations. Thus, the presented emulation frame-
work can provide NoC designers indications of possi-
ble architectural improvements for different domains
of MPSoC applications.

Conclusions
One of the most critical elements in new complex
MPSoC designs is the realization of the interconnec-
tions between the different cores of the system. To
this end, the NoC paradigm has been proposed as a
very recent and promising method to reduce the
complexity of integrating on-chip tens of cores. How-
ever, NoC physical design for MPSoC creates a new
set of challenging issues, such as, the definition of
suitable topologies or low-latency protocols develop-
ment, which are heavily influenced by the traffic gen-
erated by each type of MPSoC. Thus, it is necessary
to develop complete frameworks to validate and
effectively test different physical NoC implementa-
tions. In this article, we have presented a flexible
hardware-software emulation framework implement-
ed on an FPGA, which is targeted to implement and
validate a wide range of NoC solutions with a very
limited effort from the designer’s viewpoint. Its appli-
cation on an exploration flow of NoC characteristics
at the physical level has illustrated that it enables a
very fast tuning process of NoCs for target MPSoCs.
Furthermore, it is a powerful tool for NoC designers
to identify possible limitations of their on-chip inter-
connection architectures.

Acknowledgments
This work is partially supported by the Swiss FNS
Research Grant 20021-109450/1 and the Spanish Govern-
ment Research Grant TIN2005-5619.

50 IEEE CIRCUITS AND SYSTEMS MAGAZINE FOURTH QUARTER 2007

OCP Load Average Latency (Clk) Acknowledgment

(%) Read Write Overall Ratio (%)

50.5 41 21 31 91

58.3 41 21 31 91

62.8 41 21 31 91

69.3 51 25 38 78

78.9 55 27 41 75

88.1 57 29 43 70

Table 2.
Experimental results for Application II.

TG TG

TR

TR

TRNI

NI NI

TG TGNI

NITR NI TRNI

NI

NI

Switch Switch

Switch Switch

Mesh 2×2

Figure 9. Topology for Application II.

References
[1] A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips. Morgan
Kaufmann, Elsevier, 2005.
[2] G. De Micheli, L. Benini et al., Networks on Chip, Morgan Kauffman,
2006.
[3] W. Dally, B. Towles, Principles and Practices of Interconnection Net-
works. NoC. Morgan Kauffman, 2004.
[4] D. Bertozzi, et al., “NoC synthesis flow for customized domain spe-
cific multiprocessor systems-on-chip,” Trans on Parallel and Distributed
Systems, 2005.
[5] G. Brebner and D. Levi, “Networking on chip with platform fpgas,” in
Proc. FPT, 2003.
[6] T. Marescaux et al., “Networks on chip as hardware components of an
os for reconfigurable systems,” in Proc. of FPL, 2003.
[7] F. Moraes et al., “Hermes: an infrastructure for low area overhead
packet-switching NoC.,” Integration-VLSI Journal, 2004.
[8] K. Goossens, et al., “The Aethereal network on chip: Concepts, archi-
tectures and implementations,” in IEEE Design and Test of Computers,
2005.
[9] D. Siguenza-Tortosa et al., “VHDL-based simulation environment for
Proteo noc.,” in Proc. HLDVT Workshop, 2002.
[10] J. Madsen, S. Mahadevan, et al., “NoC modeling for system-level mul-
tiprocessor simulation,” in Proc. RTSS, 2003.
[11] J. Chan et al., “Nocgen:a template based reuse methodology for NoC
architecture,” in Proc. ICVLSI, 2004.
[12] W. Hang-Sheng, et al., “Orion: a power-performance simulator for
interconnect. Networks,” in Proc. MICRO, 2002.
[13] Xilinx Corporation. Xilinx Virtex-II Pro FPGA and EDK. Available:
http://www.xilinx.com, 2005.
[14] N. Genko, D. Atienza, et al., “A complete network-on-chip emulation
framework,” in Proc. DATE, 2005.
[15] S. Murali et al., “Designing application-specific networks on chips
with floorplan information,” in Proc. ICCAD, 2006.

Nicolas Genko is a Ph.D. candidate at
Ecole Polytechnique Fédérale de Lau-
sanne (EPFL). In 2004, he was visiting
researcher at Stanford University and
graduated from Institut Supérieur d’Elec-
tronique de Paris (ISEP). His research
interests include emulation of complex

systems on FPGA with emphasis on thermal issues and on-
chip communication infrastructures.

David Atienza received the M.S. degree
in Computer Science in 2001 and the
European Ph.D. degree in Computer Sci-
ence from Complutense University of
Madrid (UCM), Spain, and Inter-Univer-
sity Micro-Electronics Center (IMEC),
Belgium, in 2005. Currently he is Post-

Doctoral Researcher at the Integrated Systems Labora-
tory (LSI) in EPFL, Switzerland. He also holds the
position of Associate Professor at the Computer Archi-
tecture and Automation Department (DACYA) of UCM.
His research interests focus on the definition of flexible
emulation frameworks to explore thermal management
techniques for MPSoCs, NoC interconnection design,
dynamic memory management and low-power design of
embedded systems. In these fields, he is author of more
than 80 publications in prestigious journals and at inter-

national conferences, including, IEEE Micro, ACM
TODAES, IEEE T-VLSI Systems, Integration—The VLSI
Journal, IEEE/ACM DATE, IEEE/ACM DAC, etc. Also he is
part of the Technical Program Committee of the
IEEE/ACM DATE, IEEE ICCAD, IEEE GLSVLSI and IEEE
VLSI-SoC conferences.

Giovanni De Micheli is Professor and
Director of the Integrated Systems Centre
at EPF Lausanne, Switzerland, and Presi-
dent of the Scientific Committee of CSEM,
Neuchatel, Switzerland. Previously, he
was Professor of Electrical Engineering at
Stanford University. He is author of: Syn-

thesis and Optimization of Digital Circuits, McGraw-Hill,
1994, co-author and/or co-editor of six other books and of
over 300 technical articles. He is a Fellow of ACM and IEEE.
Prof. De Micheli is the recipient of the 2003 IEEE Emanuel
Piore Award for contributions to computer-aided synthesis
of digital systems. He received the 1987 D. Pederson Award
for the best paper on the IEEE Transactions on CAD/ICAS,
two Best Paper Awards at the Design Automation Confer-
ence, in 1983 and in 1993, and a Best Paper Award at the
DATE Conference in 2005. His research interests include
several aspects of design technologies for integrated cir-
cuits and systems, such as synthesis, hardware/software
codesign and low-power design, as well as systems on het-
erogeneous platforms including electrical, optical, micro-
mechanical and biological components.

Luca Benini received the B.S. degree
(summa cum laude) in electrical engineer-
ing from the University of Bologna, Italy, in
1991, and the M.S. and Ph.D. degrees in
electrical engineering from Stanford Uni-
versity in 1994 and 1997, respectively. He
is currently a Full Professor in the Depart-

ment of Electronics and Computer Science in the Universi-
ty of Bologna. He also holds a visiting professor position at
EPFL. Dr. Benini’s research interests are in all aspects of
computer-aided design of digital circuits, with special
emphasis on low-power applications, and in the design of
portable systems. On these topics, he published more than
200 papers in international conferences and journals, and
he is co-author of three books.

Dr. Benini is a member of the technical program com-
mittee for several technical conferences, including the
Design Automation Conference (DAC), the International
Symposium on Low Power Design (ISLPED) and the
International Symposium on Hardware-Software Code-
sign (CODES/ISSS). He has been the Program Chair of the
2005 Design, Automation and Test in Europe (DATE)
Conference.

51FOURTH QUARTER 2007 IEEE CIRCUITS AND SYSTEMS MAGAZINE

