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1 Introduction

Models of polymer solutions based on kinetic theory can usually be described
in two formally equivalent ways: via stochastic differential equations or via
deterministic Fokker-Planck (FP) equations for the configuration distribution
function (cdf). FP-based numerical methods are a competitive alternative to
stochastic techniques for the simulation of complex flows of viscoelastic fluids
described by dumbbell models or single segment reptation theories, as evi-
denced in [8,9,19,20]. An important factor in the affordability of the methods
described in the cited papers has been the time-splitting employed for the
solution of the cdf whereby two half-time steps are performed, correspond-
ing to a solution in configuration space and a solution in physical space (the
flow domain). In [8,9] the authors used a spectral method to solve for the cdf
of FENE dumbbells in a dilute solution and convincingly demonstrated the
huge CPU savings that could be realized over equally accurate simulations
using the Brownian configuration fields method [18,27]. In [19] Lozinski and
Chauviere introduced for the same model a fast solver based upon a rotation
operator applied to all terms in the configuration step and this led to yet
greater savings in CPU time relative to stochastic methods. That significant
computational savings over stochastic methods could also be achieved for sin-
gle segment reptation models was evidenced by Lozinski et al. [20] in 2003,
where simulations were done using a model due to Ottinger [17,26] for both
start-up homogeneous flows as well as flow past a confined cylinder.

A discussion of earlier work by Warner [32] and Fan [12-16] using the FP
equation for dumbbell models, mostly for viscometric flows, may be found
in the introductory paragraphs of [8] and [20]. Much more recently, the MIT
group [1,24,30] has solved the FP equation for multibead-rod models and the
Doi model for mono-domain liquid crystalline polymers using a discontinuous
Galerkin method in physical space and a Daubechies wavelet basis in config-
uration space. Given the often highly localized character of the cdf in strong
shear and extensional flows its representation in terms of wavelets may be an
attractive option in terms of cost and accuracy.

All the papers cited above share a common feature: the fluctuations of the
centres of mass of the polymer molecules over particle paths of the solvent are
neglected, and this is manifested in the absence of the diffusive term in phys-
ical space in the FP equations. Thus, the FP equations used in these papers
coincide formally with that developed originally for homogeneous flows (see,
for example, [6,28]). The significance of diffusive terms in physical space was
underlined for the first time in the literature (to the authors’ knowledge) by El-
Kareh and Leal in [11]. Although an in-depth assessment of the importance of
physical diffusive terms in constitutive models for flows in domains of macro-
scopic size large compared to molecular length scales is still to be done (but



see a brief discussion in the paragraphs immediately preceding Section 2.1),
the diffusive term is certainly non-negligible when the characteristic size of the
flow domain is comparable to the molecular size. The present paper, then, is
an attempt to use the numerical solution to an appropriate non-homogeneous
FP equation to calculate the elastic stress for a FENE dumbbell fluid in such
a non-homogeneous flow. We make the usual assumption of equilibration in
momentum space when computing the form of the time-smoothed Brownian
force and the bead-motion contribution to the Cauchy stress. However, no
assumption of constant Vv, either globally (homogeneous flow) or even over
the length scale of a polymer molecule (local homogeneity), is made.

The presence of a diffusion term in physical space implies the need for the pre-
scription of physical boundary conditions on the cdf, which gives the distribu-
tion of the dumbbells’ configurations at different points of the fluid. Following
Biller and Petruccione [5] we consider solid boundaries as purely repulsive walls
with no bead flux. In the present paper we only consider two-dimensional flows
and restrict, for simplicity, the dumbbells to lie in the flow plane. Although
this assumption cannot be substantiated on physical grounds, we note that
for a simple shear flow, at least, little difference can be observed between the
predicted values for the stresses irrespective of whether polymer configura-
tion space is assumed to be two-dimensional (a disc) or three-dimensional (a
sphere) [9]. Our results may be extended without undue difficulty (although
at greater computational cost) to higher dimensions.

Among other formulations for non-homogeneous flows of polymer solutions we
may cite the body-tensor continuum formalism of Ottinger [25], the two-fluid
Hamiltonian model of Mavrantzas and Beris [1,21] and the kinetic theory of
Bhave et al. [4] that has been recently corrected and expanded upon by Cur-
tiss and Bird [10]. The theory of Bhave et al. starts from the FP equation
for Hookean dumbbells. Then, a number of approximations are used to obtain
constitutive equations for the polymer number density and the stress tensor. In
an illuminating paper dating from 1994, Beris and Mavrantzas [3] performed
a detailed comparison of the three approaches mentioned above. Although the
body-tensor continuum formalism of Ottinger [25] and the two-fluid Hamil-
tonian model of Mavrantzas and Beris [1,21] predicted the same equation for
the polymer number density, the kinetic theory of Bhave et al. [4] led to the
addition of an extra term in this equation. Beris and Mavrantzas identified
the difficulty with the approach of Bhave et al. as being due to their retention
only of the linear terms in a Taylor series expansion of the cdf in their expres-
sion for the polymer species concentration. The damaging consequences of
this inconsistent approximation could be avoided by rederiving the mass flux
equation using the force balance equation and by using a Taylor expansion
for the cdf up to and including second-order terms. The resulting equation for
the polymer number density was now the same as in the analyses of Ottinger
and Mavrantzas and Beris. Neglect of second and higher-order terms in the



velocity gradient could be shown to lead to the same stress evolution equation
under all three formulations. Note that no explicit equation for the polymer
number density is required in this paper since we work throughout with the
cdf 1. The polymer number density may be calculated, however, at any time
by integrating ) over configuration space (see (16)).

The paper is organized as follows:

In Section 2 we recall the non-homogeneous FP equation for a dumbbell model
and discuss the boundary conditions that will be prescribed for the cdf in the
sequel. Explicit formulas for the different contributions to the Cauchy stress
tensor are elucidated, where proper account is taken of the presence of physical
boundaries. In Sections 2.1 - 2.3 weak forms of the FP equation are established,
the stress calculator is explained and we discuss the discretization of the weak
problem statement.

In Section 3 we illustrate the application of the theory of the previous sec-
tion for the weakest unsteady non-homogeneous flow that exists: start-up non-
homogeneous planar Poiseuille flow. Results are presented for a FENE fluid at
different values of the ratio of molecular and macroscopic flow length scales. In
generalization of an earlier result of Brunn and Grisafi [7] for Hookean dumb-
bells, we show that the equilibrium stress field is anisotropic, the first normal
stress difference always being non-negative throughout the flow domain. In
Section 3.2 the discretized equations in time and both physical and configu-
ration space are developed in detail and the proposed numerical scheme then
validated in the succeeding two subsections. In the first of these our theoretical
predictions for the stress field in equilibrium are verified numerically. In the
second, computations are shown to be in excellent quantitative agreement with
a Brownian dynamics simulation. Comparable levels of accuracy between the
two approaches (stochastic and deterministic) reveal a strong cost advantage
in favour of the Fokker-Planck-based method proposed here. The main flow
features are qualitatively the same as those seen by Brunn and Grisafi [7] and
Petruccione and Biller [29] for the special cases of dumbbells having Hookean
and weakly non-linear spring laws: polymer migration towards the channel
centre, velocity and stress boundary layers in the vicinity of the channel walls
and flattening of the velocity profile near the centreline.

We conclude the paper with some comments on the desirability of full chain
simulations in a layer one polymer molecule distance from a solid boundary.
These simulations are, however, deferred to a later paper.



2 A Fokker-Planck equation for non-homogeneous flows

In this paper we will consider the non-homogeneous flow of a dilute solution
of FENE dumbbells in a Newtonian solvent. We denote the position vectors
of the two beads in a dumbbell relative to some fixed origin by r; and ry, and
R=r,—r; and r, = %(rl + ry) therefore denote, respectively, a dumbbell
end-to-end vector and the position vector of the dumbbell’s centre of mass.

Let F(R) denote the intermolecular spring force, v(r;) (i = 1,2) the solvent
(possibly time-dependent) velocity at the position of the ith dumbbell bead
and ( a friction coefficient. Then the non-homogeneous FP equation for the
cdf ¢p = 1(ry,re,t) may be written

0 0 1
o (G e
0 1 kT 0 kT 02

In terms of the independent variables r. and R the FP equation (1) may be
rewritten as

e 9 <2kTawc 2F (R)*

ot oR, ( OR + C + (v(r. —R/2) — v(r, + R/2))1/)C>
0 (kT o° B (v(r. — R/2) + v(r. + R/2))1/)C> |
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where we define ¢°(r., R, t) = ¢(r.—R/2,r.+R/2,t). We note in passing that
the usual homogeneous flow assumption of constant Vv everywhere allows one
to write v(r, — R/2) — v(r.+ R/2) = —Vv(r.)R and to assume the existence
of a solution 1) independent of r.. Thus only the terms on the first line of the
right-hand side of (2) appear in the homogeneous flow FP equation with a
divergence-free velocity.

In order to assess the relative importance of different terms in (2) we introduce
a characteristic macroscopic length scale L and a characteristic flow speed V.
Then dimensionless variables R*, r’, v*, t* may be introduced as follows:

R' =R/l, t' =r./L, v =v/V, t* =t/(L)V), (3)

where Iy = /kT/H is the expected magnitude of one component of the end-
to-end vector of a Hookean dumbbell at equilibrium. We then define a non-
dimensional maximum dumbbell extensibility Vb as Vb = R; .. and a char-
acteristic relaxation time in the usual way as A = (/4H. Two dimensionless



groups that play an important role (especially expressed as a ratio) are the
Deborah number De and the Péclet number Pe. These are defined in the
present context as

De = \V/L, Pe = 2(LV/kT. (4)

The Péclet number measures the importance of convective fluxes to diffusive
fluxes in the polymeric molecules. With the dimensionless variables and groups
introduced above, Eqn. (2) may be written as

Dy 9 [ 1 dve . 1 ‘ ‘
Dt R <2De o+ apet RV (vire = R/2) = vire £ R/2))0 )
1 a2,¢c
+ Pe Or2’ ®)

where, for convenience, we have dropped the asterisks on the non-dimensionalized
variables and % denotes the material derivative

D 0 (vice—R/2)+v(r.+R/2) 0

Di ot 5 or.

(6)

Under the non-dimensionalization described above the intermolecular spring
force is written

F(R) = . (7)

We note from (5) that the diffusion term in real space has a coefficient 2De/Pe =
I2/(4L?) times the magnitude of that of the diffusion term in configuration
space. The ratio De/Pe has been interpreted by Bhave et al. [4] as repre-
senting the ratio of a diffusive length scale to a characteristic length scale of
the macroscopic flow. This ratio is usually very small in real polymer systems
(O(107°) to O(10°7) when L ~ 1 cm [4]). The principal difference between
stress and number density predictions based on the solution to (5) and those
arising from the usual homogeneous flow FENE model are only to be seen
in thin boundary layers. This is unsurprising since it is precisely near physi-
cal boundaries that a dumbbell is restricted in the configurations that it may
adopt and the usual homogeneous flow assumption is most easily seen to be vi-
olated. The usual FENE model may thus be advocated for most polymer flows,
where macroscopic length scales are much greater than the typical molecular
length.

We recall that El-Kareh and Leal [11] expressed the hope that the retention
of diffusion in real space could increase the stability of numerical methods,
however small the diffusivity coefficient was. However, numerical experiments
[31] reveal that for effective stabilization much larger diffusivity coefficients
than those predicted by the kinetic theory are required.



2.1 Boundary conditions and weak problem statement

We denote from now on the flow domain by €2 and assume that the boundary
[' = 00 is an impenetrable wall. Following Biller and Petruccione [5,29], a no
flux condition < r; > -n = 0 on [' with normal vector n is applied to the
averaged bead velocity < 1; > (i = 1,2). Assuming that v(r;) -n = 0 on
I, the velocity-space averaged force balance equations for the dumbbell beads
lead to

0
( Ta—rw+F( j)¢>-n:0f0rrief‘, (8)
and this may be re-expressed in the following form:
oY° oY° . B R
[arci2<aR+ﬁF(R)¢>]-n—O,forrC:E:EEF. 9)

Multiplying (2) throughout by a test function ¢ = ¢“(r., R), integrating over
all (r., R)-space such that r. £ R/2 € Q and using integration by parts in
configuration space, we have

// (o) ch"p IRir+ [ C / (v(re + R/2) — v(r. — R/2)) - 22 oedRar,

OoR
2kT 0v¢ 2
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2kT8wc 2 AN
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where I'*(r.) are the parts of the boundary of
D(r.) ={R:|R| < Rumax} [ {R:r. £ R/2 € Q},
on which r.+R/2 € I' and we have used the configuration boundary condition

Y = p° =0 for |R| = Rpax. Appealing to the boundary condition (9) we see
that the weak form (10) may be further expressed as

[ Lo o R [ [ (vlrt B2 = vl - Rj2) - S iR,
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We shall return to consider the discretization of the weak form (11) in Section
2.3.

2.2 Stress tensor

Taking an arbitrary line in the (two-dimensional) dumbbell solution we con-
sider the contribution to the elastic stress tensor at a point P with position
vector r due to (a) the spring tension in dumbbells straddling the line at P
and (b) changes in momentum brought about by beads passing through the
line at P. Thus, denoting the total Cauchy stress tensor at P at time t by
o(r,t) we decompose o into the sum

o=0"+0"+o", (12)

where o° denotes the solvent contribution, ¢ the spring tension contribution
and o the bead motion contribution. Expressions for these contributions in
the case of non-homogeneous flows (see the book of Bird et al. [6]) are

o = —pl + 5%, (13)

oei)= [ [ 10 RE(R)JS(r + (s — 1/2)R, R, ) ds dR, (1)

e o (r,t) = —2n(r, t)kT1, (15)
where n(r,t) = /R V°(r + R/2,R, 1) dR, (16)

is the polymer number density. In writing the integrals appearing in (14) and

Fig. 1. Computation of *.

(16) we assume that ¢ is set to zero for “forbidden” configurations i.e., those



that mean that a bead leaves the flow domain. The integration with respect
to R can be thus performed over the whole of R2.

In (13) p is a pressure contribution from the solvent, 7 is the solvent viscosity
and 4 is the rate-of-strain tensor Vv + Vv’. (16) takes into account our
assumption that the mass is concentrated at the beads of the dumbbells. (14)
is slightly different from the equivalent formula of Bird et al. (see Eq.(13.3-5)
of [6]) and takes account of the fact that ¢ depends upon r.. As shown in Fig.
1, as the parameter s varies from 0 to 1 all dumbbells having end-to-end vector
R and straddling the line at the point with position vector r are accounted
for: from those with bead “2” having position vector r (s = 0) to those with
bead “1” lying on the line (s = 1). If n is a unit normal vector to the line
then R - ny“(r + (s — 1/2)R, R, t)ds is the expected number of dumbbells
with end-to-end vector R whose centres of mass lie in a parallelogram of unit
length, of height R - nds and located at a distance (s — 1/2)R - n from the
line.

As in [6] the bead motion contribution o® gives rise to an extra pressure term
where equilibration in momentum space has been assumed in the derivation of
(15). Note, unlike in [6], however, that the number density n is not, in general,
constant.

2.3  Discretization in physical space and time and solution algorithm

Referring now to the second integral on the right-hand side of (11) and as
discussed in previous work [9,19], preservation of the finiteness of the product
F1¢ on the parts of the configuration space boundary R = v/b that lie within
the flow domain may be easily achieved by introducing a factorization of ¢ of
the form

wc(rc7 R7 t) = ws(R)a(rc7 R7 t)’ (17)
where ¢4(R) = (1 - R’;i)s for some s > 1, and rewriting the problem (11)

in terms of the new variable a. This approach has been found [9,19] to be
much more effective than simply setting 1) equal to zero on the boundary of
configuration space.

For a two-dimensional problem (we can easily generalize to three dimensions)
we will discretize the weak problem (11) by collocating in physical space and
employing a Galerkin spectral method in configuration space. What is done
in this paper is formally equivalent to introducing a test function

¢ = ¢f = 0(r — i), (R)ou(R), (18)

where 0 is a delta function, ry, is the position vector of the (k,[)th point in some
collocation grid covering the interior physical flow domain and oy; an (as yet)



arbitrary function whose support is D(rg;). In each D(ry;), a suitably defined
set Yy, of Lagrangian interpolants on a Gauss-Lobatto-Legendre (GLL) grid
adapted to D(ry;) will be used for the test and trial functions in configuration
space.

Allowing At to denote a time step and «a}, € 3, an approximation to a(ry;, R, nAt),
where a has been introduced in (17), we may use an Euler method for (11)
with an implicit treatment of the operators in configuration space and an
explicit treatment for those in physical space:

n+1 n
Qg — Oy
—_ dR

+/ oy V)R o) (¢5'ou) dR

i,
aR(”l

o (B ) i) )

o [ () ] o |
0 TR

* /D(rkz)(VV(rkl)R - V(rkl * R/Q) - V(rkl B R/Q)) a?.:{, (wsakl) (wglakl) dR

Vo € X,
(19)

where (+)}; denotes a suitable approximation to the quantity in parentheses at
t = nAt and r = ry;. Note that the velocity difference v(ry +R/2) — v(ry —
R/2) is approximated in the implicit treatment of operators in configuration
space by Vv(ry)R. This allows us to use the fast solver for the FP equation
introduced in [19]. The error entailed by this approximation is compensated
by the term with (Vv (ry)R —v(ry+R/2) 4+ v(ry—R/2)) in the explicit part
of (19). The last term is usually very small hence it should not affect heavily
the overall stability of the scheme. A Gauss-Lobatto quadrature formula is
to be used in this paper for the evaluation of the integrals over D(rg;). The
computation of the partial derivatives of o in physical space appearing on the
right-hand side of (19) is normally performed by taking a weighted sum of
physical nodal values of «. Therefore a double sum - for the quadrature rule
and the difference formulae required for the physical derivatives - is needed and
care must be taken to ensure that each term in the double sum makes sense i.e.
no attempt is made to evaluate a nodal value o7, (say) of o at a quadrature
point in configuration space which is outside D(ry,). No such difficulty is
encountered for discretizations where the cdf is assumed to be independent of
r. (homogeneous flow) since of course in this case configuration space is, by
assumption, the same for all physical points.

10



Details of the above discretizations and solution algorithm in the case of a
simple test problem are provided in the next section.

3 Example: Start-up non-homogeneous planar Poiseuille flow.

We now wish to apply the method described in the foregoing section to non-
homogeneous start-up planar Poiseuille flow of a FENE fluid. The flow geom-
etry is shown in Fig. 2(a) and consists of two plates y = +d between which a
dilute polymer solution flows under a constant pressure gradient. We will com-
pute a solution of the form ¢¢ = ¢°(y, R, t), v = (v,(y,t),0), p = —Px+p(y, t)
where P is the negative imposed streamwise pressure gradient. The equation
of conservation of momentum can be written then as

ov 0% 00¢
T _p ) T Ty 20
~ c K
@ _ aayy 8ayy, 1)
dy Oy 0Oy
where p is the fluid density. The last equation can be integrated to give the
full form of the pressure p = —Px + 05/;/ + agﬁ + const.
@
L

Fig. 2. (a) Flow between two parallel walls and Gauss collocation grid, (b) configu-
ration spaces D(y) for two different values y; of y with superposed Gauss-Lobatto
grids

Previous simulations with non-homogeneous flow models have included the
use of a two-fluid Hamiltonian [21] in investigations of instabilities in cone-
and-plate and parallel plate rheometers [23] and of stress gradient-induced mi-
gration effects in the viscoelastic Taylor-Couette problem [1]. Rectilinear shear
flows of Hookean dumbbells have been studied by, amongst others, Bhave et

11



al. [4] using a finite difference method. Biller and Petruccione [5] used a Brow-
nian dynamics simulation for simple shear flow of dumbbells having both a
Hookean spring force law and a simple nonlinear modification to this force
law, obtained from the FENE spring force law for small values of dumbbell
extension R. The same technique was used by the authors to investigate non-
homogeneous pressure-driven flows of the same dumbbell solutions [29]. The
present work applies a new method (see Sections 2.1 and 2.3) to the planar
Poiseuille flow of dumbbells having a FENE force law without the same re-
striction on the magnitude of the extension R. The results therefore generalize
what has gone before. In addition, our equilibrium results in Section 3.1 for
the FENE fluid generalize earlier results by Brunn and Grisafi [7] for Hookean
dumbbells. In particular, we show analytically that the stress field at equilib-
rium is anisotropic with the first normal stress difference always non-negative.

3.1  Equilibrium: kinetic theory

In this subsection we summarize some new results from the kinetic theory of a
FENE dumbbell solution under equilibrium conditions in the channel shown
in Fig. 2(a). The results presented here generalize those of Brunn and Grisafi
[7] who considered Hookean dumbbells in equilibrium.

C

Writing the spring force contribution to the equilibrium stress tensor as o,

it may be shown (see Appendix A) that

d —
oC  _,C v

— kT /
cprE ey {R|<Rmax}ﬂ{Ry|>d|y}< |Ry|

> o(R) dR >0, (22)

where

ﬂ>/ , (23)

R2

max

bo(R)=C (1 -
is the equilibrium cdf for the homogeneous-flow FENE model and C is a
normalizing constant. The inequality in Eqn. (22) is strict provided |y| €
(d — Rmax, d). Hence the equilibrium stress field is anisotropic, as observed by

Brunn and Grisafi [7] for Hookean dumbbells.

Troubling as an anisotropic stress field at equilibrium may appear at first sight,
there is in fact no inconsistency between this and equilibrium conditions since

V- (o, +0k)=0. (24)

This result is derived in Appendix A.

12



3.2 Discretization and solution algorithm

3.2.1 Approzrimation of derivatives in physical space

For the simple case of a one-dimensional flow in a channel illustrated in Fig.
2(a) a discretization may be done relatively easily and efficiently. Since the
most interesting phenomena are near the boundaries y = 4d, we choose the
collocation points to be the Gauss-Legendre (GL) points y (k=1,---, Ngr)
(for some choice of the parameter Ng;,) mapped onto the interval (—d, d). Note
that this set of collocation points does not include the end points +d since the
cdf 1°(y, R, t) has no meaning for y lying on the boundary (configuration space
has zero two-dimensional measure there). Fig. 2(b) illustrates the configuration
spaces D(y) for two different choices of y.

We now seek approximations af of a(yx, R, t) at discrete times ¢, = nAt and
discrete physical points y; and satisfying the scheme (19), rewritten in this
case as

n—|—1_ n
(%;%) +Ak(042+1,0k)
t D)
kT (n (aa>" U) N kT <<a2a>” U)
- A y Ok - A o y Ok
¢ \"\oy )/, ry 26 \\0¥*/, D(y)
Ovy 0 N
 ((onton = s = vt R + 25 0R,) B ) vtn)
@ D(yy)
Yo, € Ek,
(25)

where ¥, denotes the discretization space in configuration space, (-, ) p(y,) the
L? inner product over D(yx), n, = sgn(y) and

2kT 0 2 0 _
o) = (% g () + PRy 5 (%0))

St (R () 050) (26

D(yy)

+

Using a first-order approximation for the derivative g—‘; in the boundary inte-

13



gral, we obtain

n—|—1 n
D(yr)

kT (agﬂ. —a} > kT <<62a>” )
=\ 3F % +5F a2 9k
¢ o reo 26\ ) by

e ((vntoe = s = vstn R + 220 R,) B ) vstn)

D(yy)

Yo, € Ek,
(27)

where j is —n,, so that yei; € (=|ykl, |yel) and hf = |yrs; — k|- In what
follows below hy will denote the step size |yx_; — Y|

Equation (27) is the scheme we shall use for our simulations. (g 3‘) still needs
to be specified. This discrete operator in physical space depends upon the
point of configuration space where it is applied. Indeed, if y;_; is defined and

R € D(yk—;), then we can use the standard central difference approximation:

<32a>”(R) 2 <a2’+j(R) —op(R) | of,(R) —OzZ(R)>.

ayr), " hy+hy hi hy

Otherwise, o} _ J(R) is not defined and we construct instead a first-order ap-
proximation for (yk, R, t,) using the boundary condition (8).

Remark: Although only first-order discretizations in physical space as de-
scribed above have been used for the numerical results to be presented in
Sections 3.3.2 and 3.3.3 this is for the sake of illustration and simplicity only.
Extension to second- and higher-order approximations to the first and second
derivatives of a with respect to y are entirely straightforward.

3.2.2  Discretization in configuration space

For each y; the corresponding configuration space is the intersection of the disc
R < /b and the rectangle (R,, R,) € (—v/b,V/b) x (—dy, d},) where dj, = 2(d —
|yk|). We introduce in this rectangle the GLL points (R%", Ri7), i =1,..., N},
jg=1,..., Nf, and then expand « in terms of a tensorized basis consisting
of Lagrange interpolating polynomials based upon these points. That is, we

write
Nk NE

Z Z zkak H]k(Ry)a (28)

=1 j=1
where the coefficients &}, are set to zero for polynomials corresponding to grid
points outside the disc, i.e. such that (R%*)? 4+ (Ri/)? > b. In other words, the
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discrete space ¥ to which both trial and test functions in configuration space
belong, is defined to consist of polynomials H} (R,)H}(R,) with 7, j such that
(REH)? + (R’Zj’j)2 < b. For the results presented in Section 3.3 we have chosen
for simplicity the number of points N* and Nf in the two directions equal to
some constant Ngrz, (say), independent of k.

We recall that the parameter s was set equal to 2 in [9,19] and that o was only
required to be bounded on R = v/b in these papers. However, in the present
approach « approximated by (28) is already approximately zero at R = Vb
so that the parameter s may be set equal to unity here.

The configuration step for a given y = y; may be performed efficiently and
the reader is referred to [19] for an explanation of the main ideas involved.

3.2.8 Computation of the polymer density n and elastic stress a©

Direct computation of a® by a discrete variant of (14) would involve the
interpolations of o between different configuration spaces D(yy). We found in
practice that better accuracy and stability could be achieved by an alternative
way of computation of o that does not involve such interpolations.

Instead of (14) we use its weak form:

/—dd oy, t)H (y)dy
- /dd /R/ RF(R)y(y + (s — 1/2)Ry, R, 1) H(y) dsdRdy
= /dd/RRF(R)wC(y,R, t) (/510 H(y—(s— 1/2)Ry)ds> dRdy, (29)

the test function H (y) here being set to 0 outside the interval (—d, d). We now
set H(y) equal to the i-th interpolating Lagrangian polynomial h;(y) based on
the physical collocation points {y;} (hi(y;) = d;;) and evaluate the integral in
(—d, d) by using the Gauss-Legendre quadrature rule with weights {w; }ro7.
We thus obtain an approximation for ¢ at the grid points

NegL Wi

o (yint) = 3k RF(R)ws(R)aZ/l

k=1 Wi /D(yx) 5=

. H(yr — (s — 1/2)R,) dsdR.

(30)
The same idea can be applied to the computation of the number density:

Nar

nt) =3 [ @i By dR. (1)

k=1 Wi
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3.8 Numerical results

The numerical results in this section will be presented in terms of the di-
mensionless ordinate y/d. A dimensionless streamwise velocity and polymer
number density may be defined as v,/(d/\) and n/ng,, respectively, where
Navg 1S the average polymer number density. Accordingly, the natural unit for
stresses and pressure is n4,,k7", and for the viscosity n4,kT'A. We choose the
following parameter set: v/b = 3, 1, = 0.2n4,ykTA. The dimensionless pressure
gradient P* = P/(n.,,kT) is set equal to 2 or 10. The number N¢;, of GL
collocation points in real space and the number Ng;; of GLL points in each
direction in configuration space vary between 16 and 30. The time step At is
set equal to 0.01\ for P* = 2 and to 0.0025\ for P* = 10. We consider only
zero Reynolds number flow.

After integration with respect to y, the inertialess momentum equation (20)
becomes

Ovy

Ns dy

where, in general, K is an unknown constant (although equal to zero for

symmetric velocity profiles v,). We approximate the velocity v, by using a

basis consisting of interpolating polynomials based on a GLL grid of Ngp, + 1

points. The discrete system for determining the approximation of the velocity

may then be obtained by collocating (32) at the points {yx}, k =1,..., Ngr,

and setting v, to zero at y = +d. We thus have Ngr + 2 equations for the
components of v, and K.

= —Py — afy + K, (32)

In the presentation of the results we shall make frequent reference to the
parameter ratio

lo 1 [kT

d d\/;’ (33)
which measures a characteristic equilibrium length scale for the dumbbell rel-
ative to the wall separation distance. Thus, the smaller the value of ly/d the
smaller the influence of the walls on the flow between them, except for an in-
creasingly thin boundary layer. Indeed, for ly/d = 0 the usual FENE solution
for plane Poiseuille flow is recaptured. An alternative way of viewing ly/d is

in its equivalent form (/8De/Pe where the Deborah number De and Péclet
number Pe have been introduced already in Section 2.

3.3.1 FEquilibrium

In Fig. 3 we provide numerical confirmation in the case ly/d = 0.1 that at
equilibrium ¢, is indeed greater than or equal to of, throughout the gap

between the plates y = +d. In Fig. 4 we plot a;; at equilibrium for values of
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varies strongly with y in the boundary

55 + o)\, is a constant, in confirmation of
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Fig. 5. Velocity v, for different ratios lo/d; Nor, = Narr = 24.
3.3.2  Planar start-up non-homogeneous Poiseuille flow: effect of varying ly/d

In Figs. 5-6 the profiles of the steady-state dimensionless velocity v, and of the
polymer number density n, calculated with an applied negative dimensionless
pressure gradient P* = 2 are shown for different values of ly/d. For ly/d =
0 (equivalent to the homogeneous flow FENE model) the polymer number
density is a constant. However, we observe that as [ /d increases from 0 to 1 the
wall effects become stronger and polymer migrates from the channel walls y =
+d towards the centre of the channel. As a consequence the velocity gradient
steepens near the walls in order to maintain the total shear stress and the
profile flattens near the channel centre since the total viscosity increases there.
These effects are also evident as we increase the applied pressure gradient P*
from 2 to 10 whilst fixing lp/d = 0.1. As well as the obvious increase in mass
flow rate (see Fig. 7) we see that by dividing each of the profile values by their
maximum value (see Fig. 8) the rescaled profiles are typical of those at lower
and higher shear rates in a shear-thinning fluid, the profile flattening near the
centreline for the higher pressure gradient. From Eqn. (14) it should be clear
that the spring tension contribution o® to the total Cauchy stress vanishes
at the boundaries y = +d since configurational space shrinks to a line (and
therefore to a region in two-dimensional space of measure zero!) From a micro-
mechanical point of view o“ must be zero at a solid wall since no dumbbells
can straddle this boundary. Thus, for [;/d > 0 boundary layers are to be seen
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Fig. 6. Polymer number density n for different ratios ly/d; Ngr = Ngrr, = 24.

in Figs. 9-11. As [y/d increases from 0 to 1 the number density of polymers in
the bulk flow also increases and leads to an increase in the magnitude of the
stress there relative to the homogeneous flow (constant n) case.

3.3.83  Planar start-up non-homogeneous Poiseuille flow: comparison between
deterministic and stochastic simulations

In Figs. 12 and 13 we show the results of testing the convergence of our
method with mesh refinement and compare our results with those obtained
with stochastic simulations as explained in [5,29]. For the stochastic simu-
lations we implemented an Euler method with an implicit treatment of the
spring force term using M pseudo-random realizations and an equispaced grid
in (—d,d) with Np points. All the simulations were performed over the time
interval (0,6A) with the time step At = 0.01\. All the results of stochastic
simulations were averaged over (4\,6)).

As can be seen from Figs. 12-13, excellent convergence is achieved for the

deterministic method with the grid Ng;, = Ngrr, = 20 and the stochastic
method with M = 2 x 10 and Np = 50 for ly/d = 0.1, there being no obvi-
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ous difference between the profiles of v, and n computed with either method.
Fig. 13 confirms the presence of significant noise in the results for the poly-
mer number density for the stochastic simulations with the smaller number of
pseudo-random realizations M = 2 x 10*. The same observation of noise has
been made for the stochastic computations of the stress tensor components,
although these results are not shown here. However, the stochastic method
with M = 2 x 10* requires CPU times larger than those needed for the de-
terministic simulations with Ng;, = Ngrr, = 16, which already demonstrate
good accuracy. If we compare the converged (in the eyeball norm) solutions,
the enormous cost advantage of the deterministic method over the stochastic
method is evident.

3.3.4  Planar start-up non-homogeneous Poiseuille flow: effect of varying b

In order to assess the impact on the flow field of varying the dimensionless
maximum dumbbell extensibility we have fixed P* = 2, [y/d = 0.2 and chosen
b =9 and 1 x 10 Numerical experiments for the present problem have indi-
cated that for values of b > 1 x 10° no visible change in the flow field occurs
and the intermolecular spring may then be considered to be Hookean (and the
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Fig. 10. Stress component ayC;/ for different ratios ly/d; Ngr = Ngrr = 24.

model thus that of an Oldroyd B fluid). The results were obtained using our
stochastic simulation method with A = 1 x 10% pseudo-random realizations
on an equispaced grid in (—d,d) having Np = 101 points and a time step
At = 0.0025). The data represented in Figs. 14 and 15 was generated by run-
ning the simulations over a time interval [0,50\] and averaging the velocity
and stress values over ¢ € [45\, 50A].

In Fig. 14 it may be seen that under the same pressure gradient the mass flow
rate of the FENE fluid is higher than for the Oldroyd B fluid, due to shear-
thinning effects. The unbounded extensibility of the Hookean intermolecular
springs of the Oldroyd B model results in elastic stresses that are higher than
for the finitely extensible model and this is evidenced in Fig. 15

4 Conclusions

In this paper we have introduced a new implementation of a high-order numer-
ical method based on the Fokker-Planck equation for non-homogeneous flows
of dilute polymer solutions. Results have been presented for the FENE model,
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both in non-homogeneous start-up planar Poiseuille flow and under equilib-
rium conditions for the same channel geometry. We have proved theoretically
in the case of equilibrium that the stress field is anisotropic but divergence-
free. The equilibrium results thus generalize those from some earlier work of
Brunn and Grisafi [7] for Hookean dumbbells. Numerical results confirm some
of our theoretical predictions for the stress field under equilibrium conditions.
The results for Poiseuille flow are in very close quantitative agreement with
a Brownian dynamics simulation and, for comparable levels of accuracy, are
far less CPU expensive. Shear-thinning and bounded intermolecular spring
extensibility in the FENE model have been shown, for a given pressure drop,
to result in higher flow rates and smaller elastic stresses than in the Hookean
case. Our results are in good qualitative agreement with the simulations of
Petruccione and Biller [29] for bounded non-homogeneous flow and in par-
ticular demonstrate polymer migration to the channel centre away from the
bounding walls and the development of steep velocity and stress boundary
gradients at the boundaries. Results collapse to those of the usual homoge-
neous flow FENE model for polymer dimensions sufficiently small compared
to the channel wall separation distance.

Finally, whereas we admit that it would be desirable from a micro-mechanical
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point of view to work with full FENE chains within distances of one poly-
mer length of a solid boundary, the present results should nevertheless be
considered to have qualitative value. Full chain simulations are deferred to a
follow-up paper.
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A Anisotropy of the stress field in equilibrium

Beginning with (10) in a no-flow situation, we see that the cdf ¢, satisfies

_ WTHE, 2\ .
°C / /Fi(m KT R TR eq> 'nw] dSdr,
2kT 81/};1 2 . 3g00
B /r /D(rc) (T R ZF(R) eq> IR dRdr,

kT e,
+o / C /D o o R (A1)

This has solution

 (rR) = P(R), if re £ R/2 € Q = (—00,00) X [—d, d], (A.2)

eq .
0, otherwise,

where

ho(R) =C (1 - Z|§|2 )bm, (A.3)

max

is the equilibrium cdf for the homogeneous-flow FENE model.

From (14) and (A.2) we may write the spring force contribution to the equi-
librium stress tensor as
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oG =[ [ F(R)RU(R) ds dR,
‘R|<Rmax

s=a(y,Ry)

= (B(y, Ry) — oy, R,)))F(R)Ryy(R) dR, (A.4)

‘R|<Rmax

where r = (x,y)” and limits a and 8 on s have been chosen to ensure that
r+(s—1/2)R e Q, ie. |y+ (s—1/2)R,| < d. It is straightforward to show
that

. d—
8y, R,) — aly, Ry) = min (1, ( . 'f')) | (A5)
y
Eqn. (A.4) may be rewritten as
0o (R)
c _ _ _
o-eq - kT |R\<Rmax (ﬁ(ya Ry) Oé(y, Ry))R 8R dR, (A6)
and, using integration by parts,
0
c _ i _
Oeq = kT R|< Rmax aR((ﬁ(yv Ry) a(yv Ry))RWO (R)dR (A7)
Hence,
0
c _ _
OGura ) =KT [ oo (Bly, Ry) 0y, Fy))Re) o (R) R,
=kT (B(y, Ry) — aly, Ry))vo(R) dR, (A.8)
|R‘<Rmax
and

o) =T [ S (B By) = o R)IR) do(R) dR. (A9

Note that

ORy _ 1 e
— ((B(y, Ry) — a(y, R,))R,) = { R, Lifd— |y |> Ry |
OR,

9 (d= =0, i
oo (G4 R,) =0,if d— |y |<| R, |

Hence, from (A.9)

(&
Ueq,yy (y

:kT/ Jo(R) dR, A10
) (IR] < R} ({| By <d— [y} o(R) (A.10)

and from (A.8) and (A.10) we see that

o¢ —6C kT

T ey /{R|<Rmax}ﬂ{Ry|>d|y}< |Ry|
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as stated in Eqn.(22).

As observed in Section 3.1 there is no contradiction between anisotropy in the
stress field and equilibrium conditions, since

V- (o, +0k)=0. (A.12)

The demonstration of this result is in two stages. First, and rather obviously,

Oeqay(y) = kT /R|<R 32 ((B(y, Ry) — a(y, R,))R,) 1 (R) dR. = 0.
o (A.13)

Secondly, the yy—component of the total equilibrium Cauchy stress is inde-
pendent of y. To see this, we introduce the integrals

I = /R|<Rm Jo(R) dR, (A.14)

and

I :/ Jo(R) dR. A5
27 JURI< B (I Ry 211} o(R) (A-15)

Then, we note that the integrand in (16) is non-zero only for R such that
r+R e Q ie y+ R, € (—d,d). Hence, we obtain in the case y > 0, for
example, that

K _9kT = —2kT R) dR, A.16
O eqay n(y) (R < R} (Vi 2y <t Yo(R) ( )

or, by the symmetry of ¢y(R),
of = 2kT(I, — I,/2).

eq,yy

Thus, we can use (A.10) to obtain

ol 4o =kT(I; — I) — 2kT (I, — I5/2)
= kT, (A.17)

and this is independent of .
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