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Abstract

In this paper we consider modifications of two kinetic models for concentrated poly-
mer solutions and melts: the simplified uniform (SU) version of a thermodynamically
admissible single segment reptation model by Ottinger [H.-C. ()ttinger, J. Rheol.
43 (1999) 1461-1493, and J. Fang et al., J. Rheol. 44 (2000) 1293-1317] and the
encapsulated FENE dumbbell (EFD) model [R. B. Bird and J. R. Deaguiar, J.
Non-Newtonian Fluid Mech. 13 (1983) 149-160]. The two modified models incorpo-
rate double reptation, convective constraint release (CCR), and chain stretching. In
the modified SU model, orientation and stretching are still modelled in a decoupled
way, while in the case of the modified EFD model they are modelled in a coupled
way. Quantitative comparisons are made for a number of shear and extensional flows
between the predictions of the modified EFD model with those of the SU model, the
modified SU model, the original EFD model and a recent simple constitutive model
by Marrucci and Ianniruberto [G. Marrucci and G. Ianniruberto, Phil. Trans. R.
Soc. Lond. A 361 (2003) 677-687]. The models’ predictions are also tested against
experimental data for entangled polystyrene solutions.

For steady simple shear flow it is shown that good quantitative agreement with
experimental data using physically realistic parameters requires that orientation
and stretching be modelled in a coupled way. In particular, predictions with the
modified SU model of the steady shear viscometric functions are only accurate with
a maximum chain stretch ratio parameter an order of magnitude smaller than is
required by the polymer chemistry. The use of the modified EFD model with realistic
model parameters leads to better overall fits in all cases with the experimental data
than either variant of the SU model or the Marrucci-lanniruberto model.
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1 Introduction

A widely applied class of molecular-based models for concentrated polymer
solutions and polymer melts is based on the reptation picture [5] and the
theory of Doi and Edwards [9]. The Doi-Edwards (DE) theory for the rheolog-
ical behavior of entangled polymers successfully predicts the response to large
step-shear strains but fails to predict other nonlinear shear properties, such as
the steady-state viscosity, for which the theory gives the prediction of excessive
shear thinning. This negative feature leads directly to an intrinsic instability
for moderately fast shear flows and has long prevented use of the DE con-
stitutive equation in numerical simulations of complex flows. Many attempts
have been made in recent years to improve the situation. Several physical
effects have been found to be important for more realistic modelling of nonlin-
ear properties of entangled polymers. These are chain stretching [26,38,29,30],
double reptation [39,6,31], convective constraint release (CCR) [25,17], and
convective conformation renewal (CCR2) due to flow-induced lengthening of
tube segments [18,19]. In addition, avoiding the independent alignment ap-
proximation (IAA) leads to improved results [8,7,9,24,35]. A short summary
of these effects can be found in [11]. In many works, CCR and CCR2 are
found to be critical for predicting the correct shape of the shear stress curve
and removing the inconvenient features of the DE model.

Despite these conceptual breakthroughs, it has proved difficult to develop a
complete theory on a coarse-grained level. Mead et al. [28] have developed the
“contour-variable” theory that incorporates all the well-established phenom-
ena in rather complicated coupled integral-differential equations. Schieber and
co-workers [13—-15] have proposed a full-chain stochastic approach suitable for
computer simulations, with the advantage of including all the plausible phys-
ical ideas in a natural way. Very recently, a new thermodynamically admissi-
ble reptation model [34] has been developed under the guidance of a general
equation for the nonequilibrium reversible-irreversible coupling (GENERIC),
a framework for nonequilibrium thermodynamics [12,36,33]. A detailed eval-
uation of the recommended “uniform” model on a simplified level (referred
to hereafter as the SU model, in which no use is made of the ingredient of
anisotropic tube cross sections) has been given for shear and extensional flows
by stochastic simulations [11]. The SU model incorporates chain stretching,
double reptation and CCR whilst avoiding TAA. It is able to describe quali-
tatively all the nonlinear rheological properties of linear entangled polymers
and is highly competitive with the two alternative molecular-based models (the
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contour-variable theory and the full-chain simulation model) cited above. No-
tably, the SU model is a thermodynamically consistent single-segment theory
which has only four structural degrees of freedom. However, for the steady-
state shear stress curve, it still predicts a negative value for the rate of change
of shear stress with shear rate over intermediate values of the latter, which
means that the intrinsic instability remains. As with the models of Mead et
al. [28] and Schieber and co-workers [13—-15] mentioned above, at high shear
rates the steady-state extinction angle approaches zero rather than a non-zero
plateau.

In two recent papers Marrucci and Ianniruberto [19,20] proposed models fea-
turing separate evolution equations for the average tube orientation tensor S
and the average stretch ratio A. The first of these papers [19], a single-mode
constitutive theory known as the double-convection-reptation (DCR) model
could account for CCR and chain stretch. The model of the second paper
[20] extended that of [19] to a multi-mode situation and included chain-end
fluctuations. However, it was observed by Wapperom et al. [42] that at high
shear rates (larger than the reciprocal Rouse time) the models could manifest
shear-thickening and large chain stretch. Marrucci and Tanniruberto [27] at-
tributed this anomalous response to the decoupling of the equations for S and
A and proposed a simple coupled differential constitutive equation which, it
was claimed, would overcome the difficulties described above. This has been
substantiated numerically in a very recent paper by Wapperom and Keunings
[43]: although the behaviour of the decoupled [19] and coupled [27] models in
steady and transient shear and uniaxial extensional flows is very similar and in
qualitative agreement with experimental data [2,3], the coupled model avoids
the anomalous shear-thickening behaviour of its decoupled cousin. Following
Bhatacharjee et al. [2] and Wapperom and Keunings [43] we refer to the cou-
pled model of Marrucci and Tanniruberto henceforth as the coupled DCR-CS
model.

In this paper (see Sections 2.2 and 2.3), we consider modifications to both
the SU model of Ottinger [34] and the encapsulated FENE dumbbell model
of Bird and Deaguiar [4]. In the SU model, the effects of constraint release
(double reptation and CCR) are introduced through the diffusion term for
the orientation of inner chain segments. In the modified model proposed in
the present paper, the diffusion term is reformulated to account, additionally,
for CCR2 and thereby respect the new physical insight on CCR proposed by
Tanniruberto and Marrucci [19]. A stretching relaxation time dependent upon
the velocity gradient due to CCR effects is also introduced. As will become
plain in the presentation of the numerical results in Section 3.1, the modi-
fied SU model is able to more faithfully predict the viscometric functions for
steady simple shear flow than the original SU model. However, since the mod-
ified SU model still employs a decoupling approximation for orientation and
stretch, to get quantitative agreement with the shear data the maximum chain



stretch ratio has to be chosen an order of magnitude smaller than the value
determined on the basis of the polymer chemistry. In an effort to develop a
model featuring full coupling between orientation and stretching we introduce
in Section 2.3 a modification to the encapsulated FENE dumbbell model of
Bird and Deaguiar [4]. CCR and CCR2 are now accounted for through a re-
definition of the characteristic relaxation time Ay and anisotropy parameter
o which appear in the original model. Results of using the new model with
realistic parameter values are presented in Sections 3.1 - 3.4. The inconvenient
impact on the parameter choice of decoupling orientation and stretch are now
removed and in all the flows considered quantitative (Sections 3.1 and 3.3)
and qualitative (Sections 3.2 and 3.4) agreement with experimental data rep-
resents an improvement over the two variants of the SU model and the coupled
DCR-CS model mentioned in the preceding paragraphs.

2 Description of the models

2.1 A coupled constitutive equation by Marrucci and Ianniruberto [27] (cou-
pled DCR-CS model)

Let Q denote the end-to-end vector of a subchain between consecutive entan-
glements and let us introduce the quantity

(QQ)

A = p

: (1)

where a is the length of a segment under equilibrium conditions. Marrucci and
Tanniruberto [27] proposed the following evolution equation for A:
dA f

1
=k-A+A- T——(A——tA)
o K + K . 3r 0

1

TR

(ftrA —1)a4, (2)

where the orientational relaxation time 7 satisfies
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is the finite extensibility factor in the spring force F in a segment. 7; and
Tr in (3) denote, respectively, the reptation time and the Rouse time and in
(4) b is the maximum value of ¢trA. The parameter 5 appearing in (3) is a
numerical parameter of order unity and measuring CCR effectiveness [17]. We
note in (2) that the first two terms on the right-hand side represent the rate of



change of A under affine deformation, whereas the third and fourth groups of
terms are concerned with orientation and stretch relaxation. In the expression
(3) for the orientational relaxation time, 7 is allowed to vary with shear rate.
Thus from (3) we see that for slow flows (trA ~ 1), 7 & 74/2, this being the
disengagement time due to reptation and constraint release. For fast flows,
the CCR mechanism sweeps away constraints and reduces the orientational
time yet further. From (3) 7 may be seen to approach the Rouse time 75 for
irA>1.

The stress 7 for the coupled DCR-CS model is given by
T=GfA, (5)

where G' = 3v1kgT and v, is the segment density.
2.2 Modified SU model

In order to describe the stochastic effects involved in the dynamics of the
primitive chain and the relaxation mechanisms in the SU model, we introduce
a configurational distribution function which, for nonhomogeneous flows, de-
pends on the space coordinates r. Well-established configurational variables
appearing in the configurational distribution function of reptation models are
a unit vector u and a label s € [0, 1], where u specifies the orientation of the
tube segment or the chain segment inside at the position s of the primitive
chain. The values s = 0 and s = 1 correspond to the chain ends, and we as-
sume that s varies proportionally to the contour length measured from one of
the chain ends. We will keep this labelling rule, including the values 0 and 1 at
the chain ends, even in the presence of chain stretching. To this end, we here
consider the configurational distribution function ¢ (u, s, r, ). At any position
r and time £, we hence have a probability density in the configurational vari-
ables u and s which gives the joint probability for finding a tube segment at
the position s and with the orientation u. We choose the normalization condi-
tion fol [d3uds = 1, independent of position r and time ¢, for the probability
density ¢ with ¢ > 0.

In the original DE model, chain stretching was neglected. It has long been
recognized that chain stretching is important at high shear rates (comparable
to the reciprocal of the Rouse relaxation time of the molecule), in extensional
flows, and for understanding very rapid double step-strain deformations. With
the notation of Eqn. (1) let A = vtr A denote the ratio between the contour
length of the primitive chain and its length at equilibrium. Instead of incorpo-
rating A into the list of arguments of the configurational distribution function
and considering the contour length fluctuation effect, it is kept as a separate
and deterministic variable in the SU model (see [34,10] for the reasons).



After determining all the state variables, the model has been formulated within
the GENERIC framework by using its “building blocks” step by step, as for
the SU model [34,10]. In the following, we summarize the final time-evolution
equations for the structural variables and draw attention to the modifications
brought to bear on the original SU model.

The equation for the chain contour length stretching and relaxation reads

D\ . . :
E = A= )\convect + )\dissipa (6)
where D/Dt is the material time derivative, and the total stretching rate is

split into convective and dissipative contributions,

).‘convect =AK: S, (7)
and L eV
: C
iy = —— My ),
)\dzsszp T 37 ()‘ ) (8)

In Eq. (7), k is the transpose of the velocity gradient tensor and S is the
symmetric second moment orientation tensor defined by

S = /()lfuuw(u,s,r,t)d?’uds. 9)

In Eq. (8), Z is the number of entanglement segments per chain, 7, is the
characteristic stretching time, and ¢(\) is an effective spring coefficient [11,10]

3ZN(A+1)
c(A) = oz, — A7)

maxr

(10)

The parameter \,,,; here is the maximum possible stretching ratio of the chain
contour length.

The Fokker-Planck (FP) equation for the configurational distribution function
takes the form

81/)_ a uu 8 .
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).\dissip 1 821/) 0 uu 0
— —D[1—-—— ) — 11
A v+ 7214 082 e lu|? 8u¢}’ (11)
where the drift velocity
. 1 1\ .
Stot = _X <S - 5) )\dissip; (12)

and D is an orientational diffusivity coefficient (see [11] or [23] for more de-
tails). The drift velocity for s means that there is a rescaling of this position



label for the tube segment only when the chain contour length relaxes in the
tube. The first term on the right-hand side of Eq. (11) represents the stan-
dard corotational behavior of the unit orientation vector u, the third term
(creation/destruction term) compensates for configurations lost or gained at
the boundaries. The terms involving second-order derivatives in Eq. (11) are
of irreversible nature and express the erratic reptational motion along the
chain contour (second-order derivative with respect to s with reptation time
74) and constraint releases (second-order derivative with respect to u with the
diffusion coefficient D) respectively.

So far, the model presented is formally the same as the SU model. Next, we
will introduce two modifications.

The modified expression for D is D = 1/(67.7s) where

1
Teff = Max (maﬁz) ; (13)

H = H (k) is the Heaviside step function and

A
k=Kk:S——. 14
RS (14)

The diffusion coefficient D, defined using Eq. (13), accounts for double rep-
tation (through 7;) and CCR (through k), as previously explained in the SU
model [11]. The factor 5; appearing in Eq. (13) allows CCR2 to be represented
in the same manner as for CCR and 1k H (k) determines the effective orienta-
tion relaxation rate caused by constraint releases. We note that in addition to
the double reptation and CCR terms in (13) there is a third term proportional
to the Rouse time 7p. Without such a term the orientational relaxation time
would tend to zero in the limit of very fast flows. The additional term is an
irreducible friction term expressing the fact that once the topological contri-
bution to the chain friction is swept away the orientational relaxation time
of the now unentangled chain drops to the Rouse time 7 (see the papers of
Tanniruberto and Marrucci [19,20]). Eq. (13) describes a monotonic variation
of D from 1/(674) to 1/(67g) due to CCR and the argument just mentioned.

In opposition to the point of view expressed by some in the literature [19,20],
we here argue that a similar physical mechanism also applies to chain length
relaxation. That is, 7, should also vary with CCR from the value at equilib-
rium under constraint to the value corresponding to a somehow unconstrained
Rouse chain, because of the fast removal of constraints. Hence we propose

TRO

1
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where Tgq is the primary Rouse time at equilibrium and the factor £, has the
same role as 3y, i.e. fokH (k) is the effective stretching relaxation rate caused
by constraint releases. We choose 7;/7p = 3Z and 74/7py = Z consistent
with the fact that at equilibrium (entangled case) stretch relaxation is simply
along the contour path of the chain and thus essentially one-dimensional,
whereas the assumption underlying the choice of the pre-factor 3 in the original
Doi-Edwards choice of 3Z for the reptation to Rouse time ratio was that
relaxation occurred in three dimensions [41]. Stretch relaxation therefore takes
place over a longer time under equilibrium conditions than in a fast flow, as
seems intuitively reasonable. Note that it has been usual in the literature (see,
for example, [11]) to choose a fixed ratio 74/7; = 3Z for the characteristic
reptation and stretching times.

The elastic stress 7 is related to the orientation tensor S in both the SU and
modified SU models by

0 A2 —1
T=5Gy |l - —=| S, (16)
1 — (A Amaz)
where G%, = %l/QkBT is the plateau modulus and v, is the segment density.

The modified SU model presented above accounts for reptation, double repta-
tion, CCR, CCR2, Rouse friction and chain stretching, whilst avoiding IAA.
The boundary conditions for the FP equation (11) and the expression for the
extra stress tensor (16) remain the same as for the SU model. The model is
thermodynamically admissible in the sense that it possesses the full structure
of GENERIC and satisfies all the required properties for the building blocks
therein [10]. The model has only four structural degrees of freedom, one from
the position labels s, two from the unit orientation vector u, and one from the
chain stretching . In addition to the plateau modulus G% and the reptation
time 74, the model has only four parameters (Z, Ayaz, 81, B2). We regard G
and 7,5 as the key adjustable parameters, f; and (3, are parameters of order
unity, while Z and A, are fixed by the chemistry of a particular polymer.

2.3 Modified encapsulated FENE dumbbell (EFD) model

In the derivation of the FP equation for the classical FENE dumbbell model,
appropriate only for modelling dilute polymer solutions, the hydrodynamic
drag force F (say) on bead i (i = 1,2) is taken to be directly proportional
to the difference between the velocity-space averaged bead velocity < r; >
and the solvent velocity v(r;), where r; denotes the position vector of bead i.
That is, we write the drag force as



where ¢ = (94 is an isotropic friction tensor and ( is the so-called friction
coefficient.

In a concentrated polymer solution or melt the motion of a molecule is re-
stricted by the presence of other molecules and it is appropriate under these
circumstances that the hydrodynamic drag should be anisotropic. Let Q be
the dumbbell end-to-end vector and u = Q/@Q a unit vector in the direction of
Q. Then the Fokker-Planck equation for the original EFD model [4] without
considering the anisotropy of Brownian motion is

op 9 o1 0, e
5 =90 [n QY — 201 - FOy — 2k, TC¢ GQ] (18)
where ¢ is now an anisotropic friction tensor given by
¢=¢( (uu +o71(6 - uu)) , (19)
having inverse
¢'=¢"(uu+o(d —uu)), (20)
and HQ
F() = 5 21
1 - Q2/Qma:1: ( )

is the usual FENE spring law. We note that when the parameter 0 = 1 the
friction tensor is isotropic and that when ¢ < 1 the molecule experiences
greater resistance to movement in a direction normal to the connector vector

Q.

We now introduce a dimensionless end-to-end vector

Q- Q/\/’”TT (22)

and write the Fokker-Planck equation (18) in dimensionless form (dropping
the asterisks) as

0 ) -
- Q. k- Qy — (U

O
Q

where Ay = (/(4H) is a characteristic relaxation time and the non-dimensional
force law appearing in (23) is given by

ea/(-9)

where the dimensionless maximum spring extensibility b is defined by

——[uu+o(d —uu)l - (23)

1
2\g

b= (25)
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Let us introduce 75 = 2\ and D = o/(2\y). Then the It6 stochastic differ-
ential equation corresponding to (23) (see [32], for example) is

dQ = {n Q- Lp@ 4 (3 — 2D> E} dt + [\/zuu+ V2D(8 —uu)| - dW.
TS S Q TS
(26)

The new encapsulated dumbbell model that we propose in this paper involves
a modification to the two parameters 74 and D that appear in Eqn. (26) and
a change of significance for the vector u which henceforth represents a unit
vector tangential to a segment backbone in a chain of Z (say) segments. We
write D = 1/(67.7s) where the expression that we use for 7.ss is

1
€ = o o LT/ N ’ 27
Teff max(%—i—ﬁlkH(k) TR> (27)
where H = H (k) is the Heaviside step function with
(@)
k =k :(uu) — —. (28)
(@)

The expression (27) for 7.7, bears a strong resemblance to that in (13). How-
ever, we note that in the modified SU model (as in the original SU model)
reptation of the probe chain is modelled by the dynamics of the variable s,
whereas in the modified EFD and the coupled DCR-CS models both reptation
and double reptation are modelled directly through the effective orientation
relaxation time 7.sr. The consequence of the different modelling of reptation
in the three models is that a term 2/7, is required in (3) and (27) but only a
term 1/74 in (13).

We note in (27) that 7.¢f is independent of £ for & < 0. This is because
negative £ means that the tube-chain relative motion is inverted and we con-
sider that the tube is not destroyed by this expansion-like motion. When the
tube-chain relative motion is inverted as just described, chains are expelled
at the ends of their tubes and are thus free to renew their orientation. In the
original and modified SU models (see Sec. 2.2), this orientation renewal is au-
tomatically included through the drift and creation/destruction terms in Eqn.
(11) together with the boundary conditions at the chain ends. If we wanted to
model this effect through the effective relaxation time in (27) we could simply
use the absolute value | k | instead of kH (k), similar to what is done in the
decoupled DCR-CS model of Tanniruberto and Marrucci [19]. However, even
with this modification in place only a small quantitative difference in the shear
stress for the reversing double-step strain flow experiment described in Sec.
3.4, could be observed.

We here argue that 7, should also vary with CCR from the value at equilib-
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rium under constraint to the value corresponding to a somehow unconstrained
Rouse chain, because of the fast removal of constraints. Hence we propose

= ! 29
Ts = mMax L+ngH(k)’TR (29)

TRO

where Tgg is the primary Rouse time at equilibrium, and as explained in Sec-
tion 2.2, we choose 74/7r = 3Z and 74/Tro = Z consistent with the fact that
at equilibrium (entangled case) stretch relaxation is simply along the contour
path of the chain and thus essentially one-dimensional, whereas the assump-
tion underlying the choice of the pre-factor 3 in the original Doi-Edwards
choice of 37 for the reptation to Rouse time ratio was that relaxation oc-
curred in three dimensions [41].

Finally, the polymeric stress is given by

where G = v3kgT is an elastic modulus and v3 denotes the segment density.

2.4  Choice of equivalent parameters for the coupled DCR-CS, modified SU
and modified EFD models

The parameters 74, G and G appearing in Eqns. (3), (5), (13), (16), (27) and
(30) are chosen in such a way that the cross-over point of the respective steady
shear stress and first normal stress difference curves is predicted to be equal
to that from the experimental data. As will be noted in the next section, this
procedure leads to broadly similar choices of 7, when two models are being
used to simulate the same fluid, although the corresponding moduli G' and
GY% may differ greatly.

Two parameters require a careful choice to ensure equivalence in the different
models when the same fluid is being simulated: the Rouse time 75 (see Eqns.
(3), (13) and (27)) and the non-dimensional maximum finite extensibility pa-
rameter b (see Eqns. (4), (10)(where b = A2 ) and (25)). A fair comparison
of results between the modified EFD model and the coupled DCR-CS model
requires that the Rouse time for the latter be chosen equal to a half of the
value that would be taken for the decoupled DCR-CS model: see Wapperom
and Keunings [43] for a discussion of this point. In the present context, this
also means that we should choose 7z for the coupled DCR-CS model to be a
half of that used for the modified EFD model when a comparison of results is

being performed.
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The extensibility parameter b in the three models is not the same due to the
different definitions used for the maximum stretch ratio of a chain segment.
The relationship between the b (= bpcor, say) parameter used in the coupled
DCR-CS model and that of the modified EFD model (b = bgrp, say) is

M)
bpcr = brrp X ;; ) (31)

where a is the equilibrium length of a chain segment in the EFD model. Con-
veniently, it may be shown that the equilibrium probability density function
1eq(Q) for the EFD models (original and modified) is the same as that for the
standard FENE model and is thus given

berp/2
¢eq =C (1 - Q2 ) 5 (32)

bE‘FD

where C'is a normalizing constant and the notation in (32) is the same as in
Sec. 2.3. From the relation (31) it may be shown after a few manipulations
and using spherical polar coordinates that

f\/m 4(1 . TZ/bEFD brrp/2 dr

b =b
EFD DCR X f\/m (1 _ TQ/bEF

=bpcr X bprp X

)
n)
)
)

berp/2’

U
Uu
B ,1+bE‘FD
= bpcr X bprp X (2 ;

B(Z’ 14+ bE‘FD
= bEFD = 3bDCR — 5, (33)

where, in (33) B(m,n) = % (m > 0,n > 0) denotes the Beta function.

We note that A2 (SU model) is the same as bpcr-

max

3 Numerical results

For the results presented in Fig. 1 we used a Fokker-Planck-based high-order
numerical method, the details of which may be found in [23]. For all other
results in this Section a Brownian dynamics simulation was used with between
10* and 10° configurations and time step sizes At chosen so that the strain in
all flows considered per time step never exceeded 0.02. For small deformation
rates the maximum time step size was set at 4 x 10~*. Further details of our
Brownian dynamics method may be gleaned from [11].
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3.1 SU model, modified SU model and modified EFD model: steady shear flow

The results of comparing the predictions of the SU model and the modified SU
model with experimental data for steady simple shear flow are presented in
Fig. 1. In this figure the steady-state values of the shear stress 7., and the first
normal stress difference | are plotted as functions of the shear rate 7. The
experimental data used for comparison are taken from the thesis of Kahvand
[21]. The test fluid is a solution in tricresyl phosphate of nearly monodisperse
polystyrene with a molecular weight M, of 1.9 x 10° (polydispersity index of
1.2) and a polymer density of 0.135g/cm?. The average number of entangle-
ments (Z) of the fluid is estimated to be 10. In [11] Z was taken equal to 7
with 441 Kuhn steps per entanglement. Hence, we here estimate the number
of Kuhn steps per entanglement to be 7 x 441/10 = 308.7. The maximum
chain stretching ratio (Apnax) of the fluid is equal to the square root of the
number of Kuhn steps per entanglement according to the theory in [11] and
is thus estimated in the present paper to be 17.6.

As explained in Sec. 2.4 the parameters 74, G% and G in the SU and EFD
models are chosen in such a way that the cross-over point of the steady shear
stress and first normal stress difference curves is predicted correctly. For the
two SU models, we then obtain 7, = 15s and G% = 1160 Pa. With a value
of Anaz = 17.6 both the predictions of the original SU model and those of
the modified SU model leave something to be desired. Firstly, the SU model
predicts a slight decrease in the shear stress over a range of shear rates that
extends from roughly ¥ ~ 0.2s7! to 4 ~ 2s~!, which is inconsistent with the
data and indicates an instability. Then, although good for low shear rates,
the modified SU model predicts a sharp increase in the shear stress and first
normal stress difference for 4 > 10s~!, way above what has been measured
experimentally. This increase corresponds to unrealistic shear thickening, sim-
ilar to what has been observed with the decoupled DCR-CS model [19] by
Wapperom et al. [42]. However, we found that a much smaller value (1.75)
of A\nae gives more realistic predictions at high shear rates. The predictions
of the shear stress by the modified SU model with the smaller value of A,,..
are now in much better agreement with the experimental data over the whole
range of shear rates and the first normal stress difference increases gradually
with shear rate, consistent with the experimental data. We note in passing
that a similar reduction in \,,,, brought about only a marginal improvement
in the predictions of the original SU model. The same need for A, smaller
than the theoretically determined value was documented by Ianniruberto and
Marrucci [19] in their comparisons of shear data with the experimental results
of Bercea et al. [1] for a semi-dilute solution of PMMA in toluene.

For all the fact that we have registered an improvement in the predictive
capacities of the modified SU model by taking A, = 1.75, this situation is far
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Fig. 1. Steady-state values of shear stress 7., and first normal stress difference N; as
functions of shear rate 4. Shown are the predictions of the SU model, the modified
SU model and experimental data [21].

from ideal. Numerical evidence that the need for an unphysically small value of
Amaz finds its origin in the decoupling of Eqn. (6) for the chain stretch A from
Eqn. (11) is presented in Fig. 2. Here, with the fully coupled modified EFD
model a much larger stretching of the chain contour length (b =3\2,,, — 5 ~

924) is possible whilst faithfully predicting the viscometric functions over the
entire range of shear rates.

3.2 Modified EFD model: start-up shear flow

In Figs. 3 and 4 we examine the predicted growth of the normalized shear stress
and first normal stress difference for start-up shear flow. The experimental data
(denoted by symbols in the two figures) are for the same fluid as in Section 3.1
and the results are taken from the thesis of Kahvand [21]. The modified EFD
model parameters remain the same as in the previous section. The modified
EFD model overpredicts the 7, overshoot (see Fig. 3) at the highest shear
rate ¥ = 10s~" and underpredicts that of N (see Fig. 4). Reference should be
made to Figs. 2-4 of [11] for a comparison of the performance of the modified
EFD model against that of the SU model [34], the model of Hua et al. [15]
and the model of Mead et al. [28]. We note that both the models of Hua et
al. [15] and Mead et al. [28] also overpredict the 7, overshoot at ¥ = 10s*
and that the modified EFD model does a better job at approximating the NV;
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Modified EFD Model
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G=1500Pa, t,;=13.5s, N
b=924, 8 =0.5, B,=2

10 4

Stress (Pa)
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Fig. 2. Steady-state values of shear stress 7,, and first normal stress difference Ny

as functions of shear rate 4. Shown are the predictions of the modified EFD model
and experimental data [21].

Modified EFD Model

Shear rate (s%)

Normalized shear stress

t(s)

Fig. 3. Transient growth of normalized shear stress as a function of time under
start-up shear flow at several shear rates predicted by the modified EFD model
(curves) and experiments [21] (symbols).

overshoot at this shear rate than the SU model. We see from Fig. 4 that an
overshoot in 7., occurs even at v = 1 and thus we concur with the observation
made in [11] that an overshoot in N; occurs at a higher shear rate than that
in 7. At § = 10s~! the peak value of N; is attained later than that of Tay-
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Fig. 4. Transient growth of first normal stress difference as a function of time under
start-up shear flow at several shear rates predicted by the modified EFD model
(curves) and experiments [21] (symbols).

3.3 FEFD model, coupled DCR-CS model and modified EFD model: steady
shear flow and steady uniazxial extensional flow

In this subsection we discuss the extent of agreement with experimental data
of predictions of the coupled DCR-CS model and the modified EFD model for
steady simple shear flow and steady uniaxial extensional flow. In both flows
the fluid data comes from experimental measurements by Bhattacharjee et al.
[2,3] for a 10% solution of 3.9x10% molecular weight polystyrene in diethyl
phthalate. The number of entanglements in the solution was calculated to be
Z = 27.4 and the maximum stretching ratio of the chain contour length to be
Amaz = 13.6. The Rouse time was given by the authors as 7z = 0.282s and
therefore 7, = 3Z7r = 23.18s.

As with the results presented in Section 3.1 the reptation time 7,; and elastic
modulus GG used for the simulations shown in Figs. 5-10 were calculated to give
the correct crossover point for the shear stress and first normal stress differ-
ence. We observe that although the predicted reptation times for the coupled
DCR-~CS model (17s) and the modified EFD model (18s) are in reasonable
agreement, there is a factor of 2 difference between their respective elastic
moduli. For the modified EFD model and the coupled DCR-CS model Z was
taken equal to 20. Thus, in order to preserve the same total number of Kuhn
steps as given by Bhattacharjee et al. [2,3] the new number of Kuhn steps
per entanglement is calculated to be 27.4 x (13.6)%/20 =~ 253. In the coupled
DCR-CS model b = A2 and is therefore chosen equal to 253. For the EFD

max

model and modified EFD model, as explained in Sec. 2.4, b is taken to be
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3 x 253 — 5 = 754. With a value of 7, = 17s for the coupled DCR-CS model,
the correct 7 (see discussion in Sec. 2.4) is (1/2) x 74/3Z = 17/120 = 0.142s.
The Rouse time for the modified EFD model is 18/60 = 0.3s, thus close to
the estimated value of Bhattacharjee et al.

For the shear data the coupled DCR-CS model (Fig. 5) would seem to do a
reasonable job in predicting the shear stress. However, the model noticeably
underpredicts the first normal stress difference N; in the shear-rate range
4~ 0.1s7! to ¥ ~ 10s~!. By a careful selection of the friction anisotropy
parameter o the EFD model is able to furnish convincing quantitative agree-
ment with either the shear stress (¢ = 0.02) or first normal stress difference
(0 = 0.01) data (see Fig. 6). However, no single choice of o will do for both.
In contrast (Fig. 7), the modified EFD model gives excellent agreement with
the experimental shear flow results with a single choice of parameter set. In
Fig. 7 we have plotted three curves for both N; and 7,,. The dashed and dot-
ted curves in both cases have been generated with the simple choice 7, = 75
with two different values for §; (as indicated in the figure legend), in order
to investigate the effect on the predictive capabilities of the modified EFD
model of allowing 7, to vary (or not) with CCR. Although the choice (29) for
Ts gives superior results to those of simply choosing 7, = 7, the improvement
is, admittedly, only modest.

Despite the good agreement for the shear data the coupled DCR-CS model
fails to adequately match the uniaxial extensional data of Bhattacharjee et
al. for the same choice of model parameters. In Fig. 8 it may be seen that
the model significantly under-predicts the experimental data over the range
¢ ~ 0.1s7" to ¢ ~ 3s~'. Bhattacharjee et al. [3] have already noted the poor
performance of the Mead-Larson-Doi model [28] for this class of flows and
surmised that the failure may have been due to the non-inclusion of diffu-
sive constraint release and the corresponding dual constraint release version
of the CCR mechanism. The single-mode decoupled DCR-CS model of Tan-
niruberto and Marrucci [19] did rather better for extensional flow, despite the
shear-thickening behaviour at high shear rates for steady shear flow, noted
previously. The present performance of the coupled DCR-CS model in uniax-
ial extensional flow is therefore rather disappointing. From Fig. 9 it is clear
that the EFD model is unsatisfactory in its predictions for extension rates
¢ > 1s7'. The modified EFD model represents an improvement over the EFD
model and its stress difference curves in Fig. 10 are certainly closer to the
experimental data for extension rates é < 35! than either of the other mod-
els. The dotted curve in Fig. 10 was plotted by taking $; = 1 in Eqn. (27)
and 7, = Tg. The improvement registered by incorporating CCR into 7y is
noticeable but small.
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Fig. 5. Steady-state values of shear stress 7., and first normal stress difference Ny as
functions of shear rate 4. Shown are the predictions of the coupled DCR-CS model
and experimental data [2].
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Fig. 6. Steady-state values of shear stress 7., and first normal stress difference N; as
functions of shear rate 4. Shown are the predictions of the EFD model for different
values of the anisotropy parameter o and experimental data [2].

3.4 Modified EFD model and coupled DCR-CS model: reversing double-step
strain flow

In a double-step shear strain experiment a strain of Sy is imposed and then at
a time t,, (say) later a strain of Sy is imposed, giving a total strain of S; + S,.
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Modified EFD Model
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Fig. 7. Steady-state values of shear stress 7,, and first normal stress difference Ny
as functions of shear rate 4. Shown are the predictions of the modified EFD model

and experimental data [2]. The dashed and dotted curves were generated with the
choice of By as shown and 75 = 7p.
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Fig. 8. Steady-state values of the first normal stress difference 7, — 7y, in uniaxial
extensional flow. Shown are the predictions of the coupled DCR-CS model and
experimental data [3].

In Figs. 11 and 12 we show the results for the normalized shear stress and
for different values of t¢,,/74 of a reversing double-step strain, where S; = 4
and Sy = —2. The model parameters are the same as those of the previous
subsection. Although we do not quantitatively compare the coupled DCR-CS
model and modified EFD model results with those from experiments (to do so,
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Fig. 9. Steady-state values of the first normal stress difference 7, — 7y, in uniaxial
extensional flow. Shown are the predictions of the EFD model and experimental
data [3].
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Fig. 10. Steady-state values of the first normal stress difference 7., — 7, in uniaxial
extensional flow. Shown are the predictions of the modified EFD model and exper-
imental data [3]. The dotted curve was generated with the choice of 8; = 1 and
Ts = TR-

with some hope of agreement, would probably require a multi-mode model) a
glance at the experimental results of Venerus and Kahvand [40] for a 12wt%
solution of polystyrene in tricresyl phosphate for the same strains S; and S
(see Figs. 8 and 9 of [40]) indicate that the expected 7., overshoot for t, /74
sufficiently small fails to materialize in Fig. 11 for the coupled DCR-CS model.
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Fig. 11. Relaxation of the normalized shear stress following a reversing double-step
strain. Shown are the predictions of the coupled DCR-CS model for differing values
of the scaled inter-strain time t,,/74.

Modified EFD Model
81=4 aftertW 82=-2

-1.0 T T TTTTT T L | T Tt
0.01 0.1 1 10

(t-t )/x,

Fig. 12. Relaxation of the normalized shear stress following a reversing double-step
strain. Shown are the predictions of the modified EFD model for differing values of
the scaled inter-strain time t,,/74.

Qualitatively, then, the modified EFD model returns superior results to those
of the coupled DCR-CS model for reversing double step-strain flow.
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4 Conclusions

In this paper we have presented modifications to two models in the literature
that describe entangled linear polymers. Firstly, the SU model of Ottinger [34]
has been modified to include the effect of irreducible Rouse friction. Second,
the EFD model of Bird and Deaguiar [4] has been modified to take into account
CCR and irreducible Rouse friction.

Although both modified models are able to quantitatively describe experi-
mental data in steady shear flows, the coupling of orientation and stretch has
been shown to be important in the modified EFD model since this permits
the use of realistic values of the maximum stretch ratio. It has been shown
that the modified EFD model can, additionally, quantitatively predict rheo-
logical properties in steady uniaxial extensional flow and qualitatively capture
the transient behaviour of a real concentrated polymer solution in start-up of
simple shearing flow and in the reversing double step-strain experiment. When
compared with the coupled model of Marrucci and Tanniruberto [27] the modi-
fied EFD model is overall quantitatively better at describing the data in steady
simple shear flow and uniaxial extensional flow and is qualitatively better in
capturing transient behaviour in a reversing double step-strain experiment.
Since the modified EFD model is based on a single segment theory and has
only 3 degrees of freedom it is a good candidate for complex flow simulations
with CONNFFESSIT [22], the Brownian configuration fields method [16,37]
or Fokker-Planck-based numerical methods [23].
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