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Exchange of Limits: Why Iterative Decoding Works

Satish Babu Korada and Rudiger Urbanke

Abstract—We consider communication over binary-input In order for the computation graphs of deptho form a
memoryless output-symmetric channels using low-densityaity-  tree, the number of iterations can not exceddg(n), where
check codes and message-passing decoding. The asymptolit ( . js 5 constant that only depends on the degree distribution.

the length) performance of such a combination for a fixed numier F lar d distributi . lid cho f
of iterations is given by density evolution. Letting the nunber of (For a(1,r)-regular degree distribution pair a valid choice o

iterations tend to infinity we get the density evolutionthreshold, ¢ IS ¢(1,1) = ﬁ [3].) In practice, this condition

the largest channel parameter so that the bit error probabiity is rarely fulfilled: standard blocklengths measure only he t

tends to zero as a function of the iterations. hundreds or thousands but the number of iterations that have
In practice we often work with short codes and perform a  pean ghserved to be useful in practice can easily exceed one

large number of iterations. It is therefore interesting to cnsider hundred.

what happens if in the standard analysis we exchange the orde - . . .
in which the blocklength and the number of iterations diverge Consider therefore the situation where we fix the block-

to infinity. In particular, we can ask whether both limits give the length but let the number of iterations tend to infinity. This

same threshold. . means, we consider the limit
Although empirical observations strongly suggest that the
exchange of limits is valid for all channel parameters, we limit lim E[P(G, ¢, 0)]. (3)
— 00

our discussion to channel parameters below the density ewol

tion threshold. Specifically, we show that under some suitdb Now take the blocklength to infinity, i.e., consider
technical conditions the bit error probability vanishes bdow the
density evolution threshold regardless of how the limit is &ken. lim hm E[Py(G, €, 0)]. (4)

n—o00 f— o0

Index Terms— LDPC, sparse graph code, density evolution What can we say about (4) and its relationship to (2)?

Consider the belief propagation (BP) algorithm. It was
shown by McEliece, Rodemich, and Cheng [4] that one can
A. Motivation construct specific graphs and noise realizations so thahése

Consider transmission over a binary-input memoryle§&ges on a specific edge either show a chaotic behavior (as a
output-symmetric (BMS) channel using a low-density paritfunction of iteration) or converge to limit cycles. In padiar,
check (LDPC) code and decoding via a message-passing (MP$ means that the messages do not converge as a function
algorithm. We refer the reader to [1] for an introductionbet Of the iteration. For a fixed length and a discrete channel, th
standard notation and an overview of the known results. It iimber of graphs and noise realizations is finite. Thergfore
well known that, for good choices of the degree distributioi for single graph and noise realization the messages do
and the MP decoder, one can achieve rates close to the gapdt®t converge as a function df then it is likely that also
of the channel with low decoding complexity [2]. limg—. E[F5(G, €, ¢)] does not converge as a function of

The standard analysis of iterative decoding systems assurtighless by some miracle the various non-converging parts ca
that the blocklength is large (tending to infinity) and that &el). Let us therefore considéim sup,_, ., E[F}(G, ¢, )] and
fixed number of iterations is performed. As a consequendén inf, ... E[P;(G,¢,£)]. What happens if we increase the
when decoding a given bit, the output of the decoder onBfocklength and considelim,, ... limsup,_, ., E[P(G, ¢, £)]
depends on a fixed-sized local neighborhood of this bit aisd tfand lim,, . liminf, . E[P,(G, €, £)]?
local neighborhood is tree-like. This local tree propemtylies ~ We restrict our present study to the exchange of libétow
that the messages arriving at nodes are conditionally indbe density threshold.e., suppose that the given combination
pendent, significantly simplifying the analysis. To detaven (of the channel family and the MP decoder) has a threshold in
the performance in this setting, we track the evolution @f ttthe following sense: for the given channel family charaeest
message densities as a function of the iteration. This peoc®Y the real valued parameterthere exists a threshold” so
is calleddensity evolutiofDE). Denote the bit probability of that for all0 < e < ¢"* the DE limit (2) is0, whereas for all
error of a codeG after ¢ iterations by P, (G, ¢, ¢), wheree is € > € itis strictly positive. We will show that under suitable

I. INTRODUCTION

the channel parameter. Then DE computes technical conditions the bit error probability also tendséro
) if we exchange the limits. This implies that the DE threshold
JLH(}OE[P’)(G’ e 0)]. @) is a meaningful and robust design parameter.
If we now perform more and more iterations then we get a
limiting performance corresponding to B. Summary of Main Result
lim lim E[P,(G,e,0)). @) Consider transmission over a BMS channel parametrized by
£—00 n—00 ¢, using an LDPCn, 1, r) ensemble and decoding via an MP

EPFL, School of Computer, & Communication Sciences, LansaCH- algorithm-_As_Sljme that the algorithm is symmetric in thn
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combination has a threshold and &t denote this threshold. II. SUFFICIENT CONDITIONS BASED ON EXPANSION
If € < " then under the conditions stated in Sections Il and ARGUMENTS

I, Burshtein and Miller were the first to realize that expansion

- arguments can be applied not only to the flipping algorithm
nlligo hﬁi}pE[PgP(G’ &) =0. but also to show that certain MP algorithms have a fixed error
correcting radius [5]. Although their results can be applie
Instead of considering just an exchange of limits one calirectly to our problem, we get stronger statements by using
consider joint limits where the iteration is an arbitrarytbuthe expansion in a slightly different manner.
increasing function of the blocklength, i.e., one can cdeisi
lim,, oo E[P}*(G, €, £(n))]. Our arguments extend to this case,

and one can show that . Definitions and Review

Definition 1 (Expansion)Let G be an element from

lim sup E[P)*(G, €, £(n))] = 0. LDPC(n,1,r).

e 1) Left Expander: The grapé is an(1,r, «, ) left expander
But for the sake of simplicity we restrict ourselves to thé for every subsed’ of at mostan variable nodes, the set of
standard exchange of limits discussed above. In the samie spfheck nodes that are connecteditads at leasty|V|1.
although some of the techniques and statements we disc@s&ight Expander: Letn = n:. The grapliG is an(1, r, o, 7)
extend directly to the irregular case, in order to keep tHight expanderif for every subsetC of at mostam check
exposition simple we restrict our discussion to the stamdaPodes, the set of variable nodes that are connectetisoat

regular ensemble LDP@, 1,1). leasty|C|r. _ _ _ O
Why are we using expansion arguments in the context of

standard LDPC ensembles? It is well known that such codes
C. Outline are good expanders with high probability [5].

Theorem 2 (Expansion of Random Graphs [5]et G be

We introduce two techniques that are useful in our conteXx,qsen uniformly at random from LDR@, 1, ). Let cyax
First, we consider expanders. More precisely, in Sectiomdl pa the positive solution of the equation o

show that for codes with sufficient expansion the exchange
of limits is valid below the DE threshold. The advantage of
using expansion is that the argument applies to a wide vyariet 1
of decoders. On the negative side, the argument can only ltet X' (1,r, «,~) denote the set of graphs
applied to ensembles with large variable-node degrees.

Why does expansion help in proving the desired result
and why do we need large variable-node degrees? Assufe 1 — L then aumay is strictly positive and forr < cynax
that a sufficient number of iterations has been performed
so that the number of still erroneous messages is relatively — P{G € X(1,r,a,7)} >1—O0(n~t0=0=b)  (5)
small. Consider further iterations. There are two reasohg w 1 . _

a message emitted by a variable node can be bad. This cal e =z We get the equivalent result for right expanders
due to the received value, or it can be due to a large numbe gfexchang-mg the roles af aqdr as well asn andm.
bad incoming messages. If the degree of the variable node iéo‘s explained before, the idea is to show that the error

large then the received value becomes less and less impor gbability goes to zero once the number of bad messages
(think of a node of degre@000 and a decoder with a finite ecomes smaller than a certain threshold. To make this more

number of messages; in this case the received value ﬁggcrete we need a proper definition of *good” message

only a limited influence on the outgoing message and tHi§/0Sets.

message is mostly determined by % incoming messages). Duﬁgrn'té%r;e?’réggognl\gezs%ii dsﬁ;etfgoge?x\?virgl’nlgssage
ol

1h2(a) - %hg(cwr) — ayrha(1/91) = 0.

{G € LDPC(n,1,r): G € (1,r,a,~) left expande}.

If we ignore therefore the received message then we see t

expansion helps since it can guarantee that only few nodgs abe'&M, _Iet B, 0<fB <1, be “SUCh tha;ﬁ(l_— 1) € N.

have many bad incoming messages; otherwise the set of no'éengOd pair of subsets oiM of “strength” 5 is a pair of

that has bad outgoing messages has too few neighbors in Owsets(Gv, Ge) so that

for the graph to be an expander. o if at leastg(l — 1) of the (1 — 1) incoming messages at
If the variable nodes have small degree, then the received 2 variable node belong tG, then the outgoing message

values play a significant role and can no longer be ignored. ©n the remainingdgeis in G.

Therefore, for small degrees expansion arguments do not if all the (r —1) incoming messages at a check node

suffice by themselves. In Section IIl we concentrate on the Pe€long toG. then the outgoing message on the remaining

casel = 3. This is the smallest degree that is meaningful for ~ €dgeis in G, . _

all the decoders that we consider and so one can think of ite if atleasts(1—1)+1 of all 1 incoming messages belong

as the most difficult general case. Except for the BEC, this (@ Gv, then thevariableis decoded correctly

case is not covered by a simple expansion argument and Ye denote the probability of the bad message/sgiG,, after

techniques are more involved. ¢ iterations of DE byp,g?Cr O



As we will see shortly, for many MP decoders of interestomee, pé:f,) =0 then
the setsG, and G. can be chosen to be equal. This is true

: S MP _
for all those MP decoders where the outgoing reliability at a i hﬁilp Eopc(n 1.0 " (G, €, 0)] = 0. ©)
check node is equal to the least reliability of all the incogi Proof: Here is the idea of the proof: we first run the

messages (we call them min-sum-type decoders). TheréfordylP algorithm for a fixed number of iterations such that the
all incoming messages are good (meaning they are correct &fiderror probability is sufficiently small, say. If the length
have sufficiently large reliability) then the outgoing mags n is sufficiently large then we can use DE to gage the number
is correct and also has sufficiently large reliability. The B of required iterations. Then, using the expansion proge i
decoder is an interesting case whefg # G.. For this the graph, we show that the probability of error stays close
decoder the reliability of the outgoing message at a chediendo p for any number of further iterations. In particular, we
is strictly smaller than the smallest reliability of all incomingshow that the error probability never exceegs wherec is a
messages. Therefore, we need to define th&'séb consist of constant, which only depends on the degree distribution and
messages of strictly higher reliability than the set of rages 3. Sincep can be chosen arbitrarily small, the claim follows.

in Gy. Here is the fine print. Define
Definition 4 (Good Nodes)We call a variable or check 1\ 1403 8<1 1
node “good” if all of its outgoing messages are good. All v= ( - E)T < (1 - i)' (7

other nodes are called “bad.” O . . .
Let 0 < a < amax(y), Whereamax () is the function defined
Example 5 (BEC and BP)if at least1 of the (1 — 1) in Theorem 2 Le;() _ a(1-pa-1) E’;ln)d let¢(p) be the number
messages entering a variable node is known then the outgoli ' 4

g : (0) ; (00) _
message is known and if at ledsbf the 1 messages enteringo? lterations such thapy,q < p. Sincepy,q = 0 andp > 0
a variable node is known then the variable itself is knowfliS IS Possible. Lef, (G, E, £) denote the fraction of messages
Further, if all of the(r — 1) incoming messages entering apelongmg to the bad set aftériterations. Let() denote the

check node are known then the outgoing message is knowRace of code and noise realizations. L€ ( denote the

We conclude thagoodis equivalent toknownand thats = subset

=g | o A={(6,E) C Q| P(G,E, {p)) < 2p}. (8)
As a second standard example we consider transmission )

over the BSCe) and decoding via the so-calleBallager From (the Concentration) Theorem 39 we know that

Algorithm B (GalB). P{(G,E) ¢ A} < 90— Knp® (9)
Definition 6 (Gallager Algorithm B):Messages are ele- ] N

ments of{=1}. The initial messages from the variable nodef@" Some strictly positive constadt’ = K (1,r, p). In words,

to the check nodes are the values received via the chanf@f. most (sufficiently large) graphs and noise realizatides

The decoding process proceeds in iterations with the fotigw €OT probability after a fixed number of iterations behaves
processing rules: close to the asymptotic ensemble. We now show that once

.the error probability is sufficiently small it never incress

Check-Node Processm_g: At a chegk node the outgoi gbstantially thereafter if the graph is an expander, igas
message along a particular edge is the product of t € how many iterations we still perform

incoming messages along all the remaining edges. Let Vo C be theinitial set of bad variabl des. M
Variable-Node Processing: At a variable node the out- et Vo € [n] be theinitial set of bad variable nodes. More

. : . recisely,V; is the set of all variable nodes that are bad in
going message along a part|cul_ar edge Is equal to eeé(p)—th iteration. We claim thatVy| < —=2—n. (This
majority _vote on the s_et of other incoming messages a|”sdbecause for a variable to send a bad #ﬁgs(éage it must have
the received value. Ties are resolved randomly. at leastl — (1 — 1) incoming bad messages.) As we just
¢ discussed, for most graphs and noise realizations thiseis th

Example 7 (BSC and GalB)Assume that the receivedcase. As a worst case we assume that all its outgoing edges
value (via the channel) is incorrect. In this case at leagte bad. Let the set of check nodes connectetfytde Cj.

[(1 —1)/2] 4+ 1 of the (1 — 1) incoming messages shouldThese are the only check nodes that potentially can send bad

be correct to ensure that the outgoing message is correatt. Imessages in the next iteration. Therefore, we €glthe initial
least[(1 —1)/2] + 2 of the 1 incoming messages are correctet ofbad check nodes. Clearly,

then the variable is decoded correctly. (In fact, it is sigfic

to have| (1 —1)/2| + 2 correct incoming messages to be able |Co| < 1[Vol- (10)

to decode correctly.) Thereforgpodis equivalent tocorrect  Consider a variable node and a fixed edgesnnected to it:
andj = % O the outgoing message alorgis determined by the received
value as well as by thél — 1) incoming messages along the
other(1 — 1) edges. Recall that if(1 — 1) of those messages
are good then the outgoing message along eglge good.
Theorem 8 (Expansion and Bit Error Probability): Therefore, if a variable node hg&1 — 1) + 1 good incoming
Consider an LDP(Q:,1,r) ensemble, transmission over anessages, theall outgoing messages are good. We conclude
BMS(e) channel, and a symmetric MP decoder. litbe that for a variable node to be bad at least3(1—1) incoming

the strength of the good message subsefi ¥ 1 and if for messages must be bad. Therefore, it should connect to &t leas

B. Expansion and Bit Error Probability



1 — (1 —1) bad check nodes. This leaves at mg&t — 1) <E[P"(G,E, £)1{crea} licexa,ray} T
edges that are connectedrtew check nodes. . P{G & X(1,1,0,7)} + P{(G,E) & A}.
We want to count the number of bad variables that are
created in any of the future iterations. For convenienceeonApply limsup,_, ., on both sides of the inequality. According
a variable becomes bad we will consider it to be bad for &P (14) the first term is bounded hy. For the second term,
future iterations. This implies that the set of bad varigbe Sincey < 1 — 1, we know from Theorem 2 that it is
non-decreasing. upper bounded by)(n~((="=1) For the third term we
Let us now bound the number of bad variable nodes by thgow from (9) that it is bounded bye %" for some
following process. The process proceeds in discrete stps.strictly positive constantX’ = K (1,r,p). Therefore, if we
each step, consider the set of variables that are not containédbsequently apply the limitm,, .., then we get
in V; but that are connected to at least- (1 — 1) check N P
nodes inC} (the set of “bad” check nodes)? If at )timﬁeno nh—>Holo hﬁijpE[PI’ (G,e.0)] < e
such variable exists stop the process. Otherwise, choose

Qhce this conclusion is valid for a < it follows
such variable at random and add itWa This gives us the set Yy < @ < Qmax

Vit1. We also add all neighbors of this variable ¢§. This that

gives us the sef; ;. By this we are adding the variable nodes lim limsup E[P}"(G, ¢, £)] = 0.

that can potentially become bad and the check nodes that can 0 oo

potentially send bad messagesifoand C; respectively. As u

discussed above, for a good variable to become bad it musExample 9 (BEC and BP)We know from Example 5 that

be connected to at leadt— 3(1 — 1) check nodes that are 3(1 — 1) = 1. If we apply the conditions of Theorem 8, we
connected to bad variable nodes. Therefore, at m@st- 1) see that we requiré/(1—1) < 1. Hence, the exchange of the
new check nodes are added in each step. Hence, if the prodisis is valid for 1 > 3. Of course, for the BEC the exchange

continues then of limits in this regime follows directly by the monotonigit
of the algorithm. O

Visr| = Ve[ + 1, (11) Example 10 (BSC and GalB)\e know from Example 7
|Crp1] < |Cel+ 51 —1). (12) thatf(1—1)= [(1—1)/2] + 1. From Theorem 8 it < ¢,
the limits can be exchangedif—1 > 1+ [(1—1)/2], i.e.,

By assumption, the graph is an element &{1,r, «, 7).
.. 2 _ a(l-1)(1-p)

Initially we have || < 1—6(1{—1)” = Sapa-n < an.

Therefore, as long ad| < an,

for 1 > 5. O

The key to applying expansion arguments to decoders with a
continuous alphabet is to ensure that the received valeasaar

V1|V;| < |Cyl, (13) Iongerdominantgnce DE has regched small e_rrorprobmiliti _
This can be achieved by ensuring that the input alphabet is

since C; contains all neighbors of;. Let T'" denote the smaller than the message alphabet.
stopping time of the process, i.e., the smallest time at whic Definition 11 (Bounded MP Decodersiven a MP de-
no new variable can be added t. We will now show that coder whose message passing alphabet is unbounded,ise., it

the stopping time is finite. We have equal toR, we associate to it houndedversion. Thebounded
) 13) 12) MP decoder with parametél € R*, denote it by MRPM), is
YL(Vol +1) = 71| Vi| < |Ci] < |Col +t6(1—1) identical to the standard MP decoder except that the réitiabi

(10) of the messages emitted by the check nodes is bound&fl to
< 1Vl + 141 — 1). before the messages are forwarded to the variable nodgs.
Solving fort this gives us Note that the Qutgoing messages from the check nod_es lie
in [—M, M] while the outgoing messages from the variable
< [Vo[1(1 —7) _ nodes can lie outside this range.
T 1-B8(1-1) Example 12 (MS{/), BP(M) Decoders): The MS M) de-
Therefore, coder and the BR\/) decoder are identical to the standard
min-sum (MS) and belief propagation (BP) decoder, except
M n=an, that the reliability of the messages emitted by the checlesod
M -p1-1) 1-p1-1) is bounded to)M before the messages are forwarded to the
(14) variable nodes. O
where in the one before last step we used the fact thatExample 13 (M&) Decoder): Consider an(l > 5,r) en-
Vol < %n. The whole derivation so far was basedemble and fix\/ = 5. Let the channel log-likelihoods belong
on the assumption thdl;| < an for 0 < ¢ < T. But as 10 [—1,1]. It is easy to check that in this case we can choose
we can see from the above equation, this condition is inde€d = G = [4,5] and that it has strength < 2. Therefore, if

T

| 2

[Vr| < + V| <

verified (V| is non-decreasing and| < an). the probability of outgoing messages from check nodes being
Putting all these things together, we get in [4,5] goes tol under DE, then according to Theorem 8 the
limits can be exchanged.
E[P" (G, €, 0)] =E[P" (G, E, £)(1{cpyeat + Li@rga})] For example, consider BSg§(and LDPGC5, 6) ensemble. It

<E[P)"(G,E,£)1{(crecay) + P{(G,E) & A}  is known for this channel and MS decoder the messages are



of the form#k log 1;5, for k € Z. Therefore we can restrict the From (the Concentration) Theorem 39 we know that

message space fwith the channel values mapped {e-1}. — Knp?

Now, if we consider MSY) decoder, the messages belong to P{(G,E) A} < 2e (16)
{=5,...,5}. For this decoder, we can show that the limits cagy, some strictly positive constardt = K (1,r, p).

be exchanged till the DE threshold 0f067. O Since 5% < 2y — 1 we can apply Theorem 36: if

Example 14 (BPL0) Decoder):Let 1 = 5 andr = 6 g ¢ x(1 r,a,+) and if the initial number of bad messages is
and fix M = 10. Let the channel log-likelihoods belong t0jess thane then all the messages will become good after a

[—3,3]. We claim that in this case the message subset paifficient number of iterations.

Gy = [9,10], G = [14,43] is good with strength = 3. This  pting all these things together, we get
can be seen as follows: If all the incoming messages to a check

node belong t@7., then the outgoing message is at les89,  E[Pg(G,¢,0)]

E[PE(G,E, £)(1icrea} + L{crgar)]

which is mapped down t®0. Suppose that at a variable node <E[PY(G,E, {)1{(cryeca}] + P{(G,E) & A}
at least3(= 4(1—1)) out of the4 incoming messages belong <E[P¥F(G,E, ()1 1 I+
to G,. In this case the reliability of the outgoing message is =—EB A B H(GE)eA) e (Lr.ay)}

at leastl4 = 3 x 9 — 10 — 3. The maximum reliability is P{G ¢ X1, r,0,7)) +P{(G,E) £ A}.
43. Moreover, if all the incoming messages belongipthen Apply limsup,_.__
the variable is decoded correctly. Therefore if the proligbi
of outgoing messages from check nodes beinin0] goes . 1 1 \e know from Theorem 2 that it is upper bounded
to 1 in the DE limit then from Theorem 8, the limits can beoy O(nf(mﬂ)q))_ For the third term we know from (16)
exchanged.

For example, consider BS€)(with channel log-likelihoods
restricted betweefi—-3, 3]. Fore < ﬁ the log-likelihoods
lie outside[—3,3] and hence they are mapped {&-3}. In

on both sides of the inequality. According
to Theorem 36 the first term 8. For the second term, since

that it is bounded byZe*K”?"2 for some strictly positive
constantX’ = K (1,r,p). Therefore, if we subsequently apply
the limit lim,, ., then we get

this case the limits can be exchanged till the DE threshold of lim limsup E[Pg (G, ¢, £)] = 0.

0.136. Note that this is what is done practice, since one has 0 f—oo

to work with bounded likelihoods. O u
Example 16 (BEC and BP)According to Theorem 8 we

C. Expansion and Block Error Probability requirel > 4. Hence, if1 > 4 then the block error probability

. . . . tends to zero below the BP threshold. O

In the previous section we considered the bit error proba- | d Gal lained i |

bility. We will now derive sufficient conditions for the bl&c Example 17 (BSC an GalBps explained in Example 7
X for the Gallager B algorithm over BS@(1—1) =1+ [(1—

error probability. Again we use expansion arguments but V\ﬁ/ﬂ. The above condition implies If—2 > 1+ [(1—1)/2]

proceed in a slightly different way. . .
Theorem 15 (Expansion and Block Error Probability): L'Geafé forl = 7 the block error probability goes to zero bzlow

Consider an LDP(,1,r) ensemble, transmission over a . . .

BMS(e) channel, and a symmetric MP decoder. I3ebe the Example 1.8 (M®) Decoder): Consider e.“‘(l. > 7,r) en-
1_9 . semble and fix\/ = 5. Let the channel log-likelihoods belong

strength of the good message subset3 I& ;=5 and if for

(0) 1 to [-1,1]. It is easy to check that in this case we can choose
somee, py,q = 0 then G, = G. = [4,5] and that it has strength < % Therefore, if
lim lim sup By ppe(n1.) (PR (G, €, £)] = 0. (15) the probability of outgoing messages from check nodes being
N = T ! in [4,5] goes tol under DE then according to Theorem 15
Proof: As in Theorem 8 we first perform a fixed numberthe block error probability tends 0

of iterations to bring down the bit error probability below a Exambple 19 (BPL0) Decoder):Let 1 — 7 andr — 8
desired level. We then use Theorem 36 to show that for a graph . ]?4 _ 1(() Tet)the chan)n.el log-likelihoods Eelong to
with sufficient expansion the MP algorithm decodes the whsfgl 11. We clair.n that in this case the message subset pair
block correctly once the bit error probability is sufficignt G T

]
o : . : . Gy = [9,10],G. = [15,59] is good with strength3 = 2.
small. This is very much in the spirit of Burshtein and M'”er'l'herefore if the probability of outgoing messages from ¢hec

[5]. ) nodes being in9, 10] goes tol in the DE limit then from
Define Theorem 15, the block error probability goes to zero. ¢
y= (1 _ l) (w) _ Theorem 8 has a stronger implication than Theorem 15
1 4 since it concerns thdlock error probability. Unfortunately,

Let0 < & < aumax (), Whereamax(v) is the function defined the required conditions are considerably more restrictie
in Theorem 2. Lep = 22=80-1) gnqg let¢(p) be the number conjecture that in fact the conditions of Theorem 15 can

21r . . .
of iterations such thapé?d < p. Let Q denote the space of pe weakened by considering several stages of the algorithm

code and noise realizations. LEX(G, E, ) denote the fraction jointly and that the required conditions are identical t@ th

. . . ones in Theorem 15.
of messages belonging to the bad set afteterations. Let . . Lo
A C Q denote the subset Conjecture 20 (Expansion and Block Error Probability):

Consider an LDP(:,1,r) ensemble, transmission over a
A={(G,E) C Q| P:(G,E, {(p)) < 2p}. BMS(e) channel, and a symmetric MP decoder. lgthe



the stren?th of the good message subseti € 1 and if for wheree'**® is the smallest parameterfor which a solution
)

somee, ppog = 0 then to the following fixed point equation exists i), ¢].
lim limsup E ppcn,1.r) [P5 (G, e, £)] =0. a7 [52] 1.1
{—o00 T =c Z ( ) )yk(l _ y)l—l—k
Ill. SUFFICIENT CONDITION BASED ONBIRTH-DEATH k=0

PROCESS !

. 1-1 k,1-1—k
In the previous section we relied solely on the expansionJrE Z < k )(1 —9'Y
of the graph to prove the validity of the limit exchange. As k=131+1
can be seen from the examples, for the decoders of interesﬁ_ Liyen (1 - 1) (6y
the theorems are only valid for higher degrees, letslsay5. 2 %
Practical codes however typically have small degrees.dseh (18)
cases expansion itself is not sufficient.
In morg detail, the proofs in the previous section have tv\)gherey N (_1 — o) .1' Fpr ”_‘? case ofi = 3,r)-regular
phases. In the first phase we run the MP algorithm for Son%\semble this equation simplifies to
fixed number of iterations to get the error probability down r=el—(1—z) 2 +el—(1—2)2Y),
to a small constant. In the second phase we prove that thgcussion: Note that the threshoitP®® introduced in the
error probability stays close t0 regardless of how many preceding lemma is in general slightly smaller than the DE
further iterations we perform and assuming pessimisicalihresholde>*®. We pose the extension of the result to channel

that all variables nodes have bad received values. ThiSVaueS up to the DE threshold as an interesting open prob'em_
too pessimistic an assumption for small degrees, where tgs likely to be difficult.

received value plays an important role. In this section, we
develop a method which takes the actual channel realization
into account.
Consider a MP decoder operating on a message alphabet
M C R. Further, fory € M, define|u| to be thereliability
of the message. This means that we define the reliability of
—u to be the same as the reliability pf 0.667 | ~ 006141 | ~ 001554 | ~ 001395
Most of the MP algorithms used in practice like GalB, BP, 0.7 ~0.05324 | ~0.01229 | ~0.01115
and MS, fall in the following category ahonotonedecoders. TABLE |
Definition 21 (Monotone MP DecodersWWe say that @ TuresHoLD VALUES FOR SOME DEGREE DISTRIBUTIONS WITH = 3.
symmetric MP decoder is monotone if the following con-
ditions are fulfilled. At variable nodes the processing sule
are monotone with respect to the natural order./of) for a
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rate 6Sha\ EGaIB ELGaIB

0.0 ~ 0.5 =~ 0.222 ~ 0.1705
0.25 ~ 0.2145 ~ 0.1068 = 0.0847
0.4 ~ 0.1461 =~ 0.06119 | ~ 0.0506
. =~ 0.11002 | ~ 0.0394 ~ 0.0336
0.5714 | ~ 0.08766 | ~ 0.02751 | =~ 0.02398
0.625 =~ 0.07245 | ~0.02027 | ~ 0.01795
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t
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fixed received value, the outgoing message is a non-denrpasi Bage EOS'; 5062240 EOLG;'SBW
function of the incoming messages. 0.2 ~01461 | ~00464 | ~ 0.0399

At check nodes the processing rules are monotone with
respect to the natural order on the reliabilities; the telity

0.333 ~ 0.11002 | =~ 0.0292 | =~ 0.0258
0.4286 | ~ 0.08766 | ~ 0.0200 | ~ 0.018

O © 00~ UK

: ; ; : 0.5 ~0.07245 | =~ 0.0146 | = 0.0133
of .the. outgoing message is a non-decreasing function of the 0556 | ~006141 | ~ 00111 | ~ 0.0102
reliabilities of the incoming messages. O 10 | 0.6 ~ 0.05324 | ~ 0.0087 | ~ 0.0081
Monotonicity is a useful property and it is also quite natura TABLE Il

A remaining dlfflCU'ty in anaIyZing these decoders is that a'tTHRESHOLD VALUES FOR SOME DEGREE DISTRIBUTIONS WITH = 4.
check nodes the monotonicity is with respect to the religbil
and not the message itself. We will see shortly how to get

around this problem. Example 23:Table | shows thresholds far = 3, r =
In what follows we mainly discuss the case of the Gal ... 10. For the(1 = 3,r = 6) degree distribution we have
algorithm andl = 3. The generalization to degrée> 4 is e ~ (.0336. This is slightly smaller than, but comparable
straightforward and it is discussed in Section IlI-H. Insthitg, ¢sa& ~ (.0394. O
section we furt_her give some examples of other monotonewe proceed by a sequence of simplifications, ensuring in
decoders to which the method can be extended. each step that the modified algorithm is an upper bound
_ _ on the original process. In Section IlI-B we simplify the
A. Main Result and Outline decoder by “linearizing” the processing rules at the check

Lemma 22 (Exchange of LimitsConsider  transmission nodes. In Section I1I-C we further upper bound the process by
over the BSC{ using random elements from th@,r)- considering the marking process associated with the degodi
regular ensemble and decoding by the GalB algorithm. @fgorithm. In Section IlI-D we construct a witness for the
€ < €% then marking process and derive bounds on the size of such a

- cals witness. In Section IlI-E we then show that, conditioned on
nlinéo hﬁgp]E[Pb (G,6,6)] =0, the witness, we can consider the channel realizationsdwutsi



the witness to be random and independent of the withessFrom the above lemma it suffices to prove the exchange of
In Section IlI-F we use an expansion argument to bound thmits for the linearized algorithm. Note that**® as defined
stopping time of the birth and death process associated withLemma 22 is the threshold of the LGalB algorithm. We
the marking process. Finally, in Section 11l-G we combinke alvill prove that for everyd < e < ¢°®® and everya > 0 there

previous statements to derive at our conclusion. exists amn(a, €) so thatlimsup,_, . E[P;%*®(G, €, £)] < « for
_ _ _ n > n(a,e). As we will see later, the monotonicity property
B. Linearized Gallager Algorithm B of LGalB considerably simplifies the analysis. But the price

We proceed as in Section II: FiR < e < ¢°® We paid for the simplification is that the technique works ordy f
prove that for everya > 0 there exists am(«,¢) so that €< €°® which is slightly smaller than the DE threshold.
limsup,_, ., E[Pf**(G, €, ¢)] < a for n > n(a, ).

Without loss of generality we can assume that the all-or@ Marking Process
codeworq was sent: We will make this assumption th.rou.ghoutR(,i,[her than analyzing the LGalB algorithm directly,
the remainder of this section. Therefore, the mesdagigni-
fies in the sequel aorrect message, whereasl implies that
the message igcorrect

For this setting, we define the followirlgnearizedversion
of the decoder.

we ana-
lyze the associateaharking processThis process is monotone
as a function of the iterations.

More precisely, we split the process into two phases: we
start with LGalB for/(p) iterations to get the error probability
belowp; we then continue the marking process associated with

Igefir:jition 23 éLineGar:zeq (Zalfl_3):'l'dhe Iirl;lelia\rize.d GarI]B de- 4 infinite number of further iterations of LGalB. This means
coder, denoted by LGalB, is defined as follows: at the vagially, .y e mark any variable that is bad in at least one iteration

node the computation rule is same as that of the GalB deco L ¢(p). Clearly, the union of all variables that are bad at

At the check node the outgoing message is the minimum &fleast one point in timé > £(p) is an upper bound on the

the incoming messages. . . o
: : : . . .., maximum number of variables that are bad at any specific
Discussion: The LGalB is not a practical decoding algor'th%stance in time y sp

but rather a convenient device for analysis; it is undeidtoo he standardscheduleof the LGalB is parallel, i.e., all

that we assume that the all-one codeword was transmitted an ming messages (at either variable or check nodes) are

that quantities like the error probability r_efer to the wdiles 1, ossed at the same time. This is the natural schedule for
defco?eqltas—l. E’y sgme abuse of notation, we neverthele% actual implementation. For the purpose of analysis it is
referto 1t as a decoder. _ convenient to consider aamsynchronouschedule.

The LGalB decoder is monotone also with respect to theHere is how the general asynchronous marking process
incoming messages at check nodes. Moreover, it satisfies HFSceeds We are given a graphand a noise realization
folll_owmg p;%pel_rg. IBis U Bound on Gal We are also given a set ofiarkededges. These marked edges

rae;nngn Eloisae reIZIizgfigrrE c:ﬁ]n sct);]rtina Bg;r of z% are directed, from variable node to check node. At the start
gd pes ’andyan we havePGa,'B G}}; N < gPLGaIB GE/ of the process mark the variable nodes that are connected

ges, ¥, e (.’ ) = Pe(GE, 1), to the marked edges. Declare all other variables and edges
wherefe(G,§7é) denotes .the fraction of erroneous MESSAYER unmarked Unmarked edges do not have a direction. The
aﬂerlﬁrgi:‘?tlcé:r]osngifdi(recgr?lengc'eration e a check-node stdyOcess proceeds in discrete steps. At each step we pick a

| . * alnLGal arked edge and we perform the processing described below.
followed by a vanable-r_mde step. L& denot_e the_ S€t \We continue until no more marked edges are left. Here are
of bad edges (edges with messagg) after the/-th iteration the processing rules:
of GalB and LGalB, respectively. LemgalB/LGaIB(B) denote the ¢ 1he marked edge goes from variable to check:
set of bad edges after one iteration assuming that thelinitia Let ¢ be the check node connecteddoDeclaree to be
°

such set is5. unmarkedbut mark all other edges connected ¢ orient
We use the following two facts: (i) The outgoing messages 9 . 0
these marked edges from check to variable;

for the LGalB decoder at variable/check nodes are monotone; ] _
if we decrease (with respect to the natural order o) T the marked edge goes from check to variable:

the input at a variable/check node then the output is eithers Let v be the connected variable node.vifhas agood
decreased or stays the same. l.eBif- /5, meaning that the associated channel realization amds unmarked then
messages i3’ can be obtained by decreasing some of the Markv and declares to be unmarked.

+1 messages 8 to —1, thenys>®(B) C %8 (B’). (i) For « Let v be the connected variable node.vihas an asso-
any set of input messages, the outgoing message of LGalB is Ciatedbad channe! ref';llization. or ifr has_ an associated
less than or equal to the message of the GalB decoder, i.e., 9oodchannel realization but isnarked (i) mark v and

Sa8(B) C yieas(B). all its outgoing edges; (ii) orient the edges from variable
For the proof, we proceed by induction. L8§ be the initial to check; (iii) unmarke.

set of bad edges. After the first iteration, from (ii) we get Let M(G,E,S) denote the set of marked variables assuming
B = g (By) C 4g%°(By) = Bi**®. To complete the proof that we start with the set of marked edg&sand that we

it is sufficient to show that37*® C B;**® implies B335 C run the asynchronous marking process. Udt(G,E,S) =
B$%. Using (i) and (ii) we haveB;SP = ¢**(B**°) 2 |M(G,E,S)|. As a special case, eV (G,E, ¢) denote the set

Y (BF®) 2 g (Bg™®) = By, and hence the lemma. m  of marked variables at the end of the process assuming that



the initial set of marked edges is the set of bad edges éafter If an edge enters a variable node that has an incorrect
rounds of LGalB. As beforeM (G,E, ¢) = |M(G,E,?)|. received value then add tlsenallest(according to some fixed

It is not hard to see that for an§/ > ¢, P;°®(G,¢,¢') < but arbitrary order on the set of edges) edge that carries an
M (G,E,¢)/n: for ¢/ = ¢ both processes start with the samécorrect incoming message to the witness and continue the
set of bad edges and both are operating on the same graptcess along this edge. The added edge is directed from
and noise realization. At the check-node side the procgssivariable node to check node. If an edge enters a variable
rules are identical. At the variable-node side both proegssode that has a correct received value then add both incoming
also behave in the same way if they encounter a variatddges to the witness and follow the process along both edges.
node with a bad channel realization. The difference lieha t(Note that in this case both of these edges must have carried
behavior when they encounter a variable node with a gobdd messages.) Again, both of these edges are directed from
channel realization. In such a case the outgoing messageVariable to check node. If an edge enters a check node then
the LGalB is bad only if there are two bad messages enteriogoose the smallest incoming edge that carries an incorrect
at the same time instanc&he asynchronous marking processnessage and add it to the witness. Continue the process along
algorithm declares the outgoing message to be bad if thehés edge. The added edge is directed from check to variable
are two incoming bad messages, even if the two messagesle. Continue the process until depthFig. 1 shows an
might correspond to different time instances as measured éxample forl = 3, r = 4, and/ = 3.
the parallel schedule. We conclude that {6 N

limsup B[P (G, ¢, 0)] < ~E[M(G,E, ).  (19)
n

{—00

D. Witness h=1

It remains to bound[M (G, E, ¢)]. Assume at first that we
take a random grap& and a random noise realizati@hand
that we start the marking process with a sufficiently small=2
randomset of marked edges (and not the set of bad edges -
after ¢ iterations of LGalB). In this case one can show that I
the number of marked nodes at the end of the process,is 3/,
with high probability not more than a constant multiple of
the size of the starting set. To prove this statement, we U= 1. Construction of the witness for a bad edgeThe dark variables
the fact that the graph, the noise, and the starting set cﬁgd%present channel errors.‘The part of the tree wlitik edges represent the
. . itness, thethick edges, including both dark and gray, represent the bad
are all independent. Therefore, the marking process bSha}ﬁ%ssages in the past iterations. The nunibér the left indicates the height
essentially like a birth and death process: we pick an edegfahe tree.
and we explore its neighborhood; with a certain probability
edge dies (if it enters a variable node with a correctly nemi . .
value) and with a certain probability the edge spawns so eD?”Ote the union of all witnesses for _aII edges_that are
children. As long as the expected number of new children _d in the¢-th !tera“o_” byW(G,E, (). We simply call |t_the
less thanl the process eventually dies with probability W|tne_ss The witness is a part of the graph. that_on Its own
Unfortunately our situation is more involved. After it- explains why the set of bad edges aftaterations is bad.
erations the starting set of marked edges is correlatedy bot How large is)V? The largert, the fewer bad edges we
with the graph as well as with the noise realization. Our aiXPect to see in iteratiod. On the other hand, the size of
therefore is to reduce this correlated case to the uncoealathe witness for each bad edge grows as a functio. dthe
case by a sequence of transformations. As a first step we sH¥wt lemma, whose proof can be found in Appendix B, asserts
how to get rid of the correlation with respect to the noisthat the first effect dominates and that the expected sia¢’of
realization. converges to zero as the number of iterations increases.
Consider a fixed graph. Assume that we have performed Lemma 26 (Size of WitnessEonsider the (3, r)-regular
¢ iterations of LGalB. For each edgethat is bad in theg-th ensemble. Fof < e < €*@®,
iteration we construct a “witness.” A witness feris a subset
of the computation tree of heighitwhere height is counted as |
the number of variable node levels) ferconsisting of paths Jim EE“W(G’ E. £)[] = 0e(1).
that carried bad messages in the past iterations. We cahstru Why do we construct a witness? It is intuitive that if we keep
the witness recursively starting with. Oriente from check the witness fixed but randomize the structure as well as the
node to variable node. At any point in time while construgtinreceived values on the remainder of the graph then the gituat
the witness associated withwe have a partial witness that isshould only get worse: already the witness itself explaihs a
a tree with oriented edges. The initial such partial witnisss the bad messages and hence any further bad channel values
e. One step in the construction consists of taking a leaf edgan only create more bad messages. In the next two sections
of the partial witness and to “grow it out” according to theve show that under some suitable technical conditions this
following rules. intuition is indeed correct.




E. Randomization {0,1}" because iff (E') = 1 then for allE” < E/, f(E”) = 1.
é:urther,g is an increasing if0, 1}’ since LGalB is monotone
in the number of channel errors. Sing’') < n, n—g is non-
Fegative and it is a decreasing function. Fot € {0,1}",
et |s| denote the number dfs in s ands V¢ ands At be as
defined in Appendix D. Then,

A witness W consists of two parts, (i) the graph structur
of W and (ii) the channel realizations of the variables/ih
We will often need to refer to either of these parts on the
own. By some abuse of notation we wri® also if we refer
only to the graph structure or only to the channel realizatio
The usage should be clear from the context. As an example, P{s}P{t} = €\S|+\t|(g)n/_\5|_|t\7
we write ) C G to |nd|ca_1te _that; contains)V as a subgraph Ps v £} = elslHtl=lsntl @y’ ~(sl +lel-lsnt)
and we write)V C E to indicate that the received values of )
all variables inVV agree with the values that these variables P{snt} = E‘SAtl(E)"/_lmt‘.

take on inE. .
Fix a graphG and a witnessV, W C G. Let &,y denote Therefore P{s}P{t} = P{sVt}P{sAt}. Applying the FKG
the set of all error realizationg that give rise toW, i.e., inequality in the form of Lemma 37 t¢ andn — g, we get

W(G,E,£) = W. Clearly, for allE € & we must have E[f(n —g)] = E[f|E[n — g].
W C E. In words, on the set of variables fixed by the withess =~
the errors are fixed by the witness itself. Therefore, théowasr This impliesE[fg] < E[f]E[g]. _ _ -
E that create this witness differ only @\ W. As a convention, e can now upper bound the right-hand side of (19). The
we define&sy =0 if W Z G. proof of the next lemma can be found in Appendix C.
Let &£, ,, denote the set of projections @,y onto the Lemma 28 (Markov Inequality)Consider the(l = 3,r)-
variables iNG\W. LetE’ € &,,,. Think of E’ as an element regular ensemble and transmission over the B$Q et (G, E)
of {0, 1}I¢\WI, where0 denotes a correct received value anfj€ chosen umforn;ly at random. Léte N and¢ > 0 so that
1 denotes an incorrect received value. In this W&y, is a E[IW(G,E, £)[] < 6*n. Then
subset of{0, 1}/6\WI, E[M(G,E, 0)]
This is important£y ,,, has structure. We claim that, if € Z
&y then& ,, also containg’ (as defined in Appendix D). —
More precisely, if the noise realizati®i € & ,,, gives rise to
the witness/V then converting any incorrect received value in _
E’ to a correct one will also give rise . This is true since - Back to Expansion
the LGalB algorithm is monotone, so that taking away some In the previous section we have shown that for a fixed graph
incorrectly received values can not increase the size of badand a given witnes$V, we can ignore the correlations
edges observed in théth iteration. But on the other hand,between the witness and thghannel valuesn G\W and
W itself ensures that the set of bad edges aftétlerations consider those channel values to be chosen independently. B
includes all the bad edges we saw originally. The proof of thhe graph structureof G\W is still correlated withWV. Let us
following lemma relies heavily on this property. now deal with this correlation and get a bound on the marking
Lemma 27 (Channel Randomizatiorjix G and let)V C  process for thosé that have an expansion close to the typical
G. Let Eg/[-] denote the expectation with respect to the channahe of the ensemble.

> P{GYP{E w}Ee [M (G, (W,E), W)] + bn.
W:W|<fn G

realizationsE’ in G\W. Then Consider the following random process, which we call the
, R-process. The process proceeds in discrete steps arstblbas
Ee/ [M (G, (W,E'), W)lizee; 3] (Cy, Sy, By, I,) attimet, where each component is an integer.

< Eg/ [M(G, (W,E’),W)]EE/[H{E/@G’W}]- (20) We initialize the process withCy, So, Bo, In) = (0, So, 0,0),
Discussion: Lemma 27 has the following important operationwhere Sy € N.
significance. If we divide both sides HE]E’[]I{E’€£G/ W}], the At each step we have two choices. We can either perform a
left-hand side is the expectation of marked variables, eheiegularstep or doundarystep. The effect of each step type on
the expectation is computed over all those channel reaimt the state(Ct, Sy, By, I;) is shown in Table IIl. If we choose
that give rise to the given witness’, whereas the right-hand @ regular step then, with probability an extensionstep is
side gives the expectation over all channel realizationsside €xecuted and, with probability; a pruning step is performed.
the witness) regardless whether they give rise/foor not. The choices of extension step versus pruning step are iid.
Clearly, the right-hand side is much easier to compute,esinc In our choice of step type we are restricted by the following:
the channel is now independent)f. The lemma states that,at any time during the process the state has to satisfy
if we assume that the channel outsitg is independently

chosen then we get an upper bound on the size of the marked 120 < Se+ Bt I, (21)
variables. wherey = 1 — 17” for some strictly positive numbey. Let

Proof: Let n’ = [G\W)|. Let P{-} be the probability T be the smallest tim¢ so thatS;, = 0. It is convenient to
measure associated withg [], i.e., P{E'} = ¢™&* ™, formally define the process for all by settingl; = Uy for

wheren; denotes the number of onestin Let f(E') denote ¢ > T.
the function Ligees ) and letg(E") denote the function Discussion: Here is the interpretation of the above pracess
M(G,(W,E),W). Note thatf is a decreasing function onWe are given a fixed grapé and a witness$V. The channel
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|G| S| B | I , , .
reguiarextend| 2 [ 2r =3 0 1 Suppose that the grap(hllséa right expander; i.eG <
1| r=3]| o] 1 X(1,r,a,7), wherey > 1 — +£° for some strictly positive).
| 8 —i 2 é This means that every collectigh of check nodes of size at
regular prune - . .
boundary 1l r—2|-11|1 mostam has at leasy|C|r connect.ed vana_lble qod_es._ Consider
0 2| -1 | 1 the state of the system at some timét this point in time we
TABLE Il haveC, check nodes. All these check nodes are “internal,” i.e.,
POSSIBLE STATE TRANSITIONSNOTE THAT THERE ARE SEVERAL all their neighboring variable nodes are either countedin _
POSSIBLE TRANSITIONS CORRESPONDING TO AREGULAR EXTEND’ sTep  OF /¢, O they are yet to be en‘?ountered by the process which
AS WELL AS A “BOUNDARY” STER AS EXPLAINED BELOW, THE cannot be more than the survivors $gt We know thatG is
TRANSITIONS INDICATED IN BOLD LETTERS DOMINATE THE OTHER an expander and suppose for now th}‘:;t_g am. Then we
TRANSITIONS IN THE SENSE OFDEFINITION 29. know that the number of connected variable neighbors must

be at leastyrCy, i.e., at any time during the process the state
should satisfy
realizations inG\)V are generated independently with proba- VG < Sp+ By + 1. (22)
bility of error e. We are interested in computing the expecteds claim that
number of marked variableBg [M (G, (W, E"), W)].

The components of the state vector have the following vyrCy < Sy + B+ I — (1 =) (23)
interpretation. By some further abuse of notation Wétrefer
now also to the variables contained)ifi. Let (W) denote
all the check nodes that neighb®Y. We start our process
with those edges connected A6()V) that do not connect to
W. The cardinality of this set is denoted By (where the “s”
stands forsurviving. In each step we take a single edge fro
this set of surviving edges and “grow it out.”

Let us discuss this process in more detail. When we “groll}
out” an edge we first visit the connected variable node. _ _

Suppose that this is the first time that the process visits thi G DS Sz =2+ B - 1)+ T+ 1),
variable node. We call this eegular step. The claim is proved by rewriting this inequality.

If the received value of this variable node is good then we From the above discussion we claim that for a givéh
stop the process along this edge. We add the variable to & G, where G € X(1,r,«,7v), as long asC; < am
boundaryset to make a mental note that we have seen thisen the marking process can be modeled as the R-process.
node exactly once. The boundary set has cardindlityWe The random variable/., is equal to the random variable
further subtract from S, to take into account that we finishedM (G, OV, E’), W) — W] of the marking process (we subtract
processing one of the “surviving” edges. the size of witness because we do not include it in the interna

If the received value is bad then we add this variable noderiables). For the actual marking process the decision of
to the internal variable nodes. The cardinality of this set isvhether a regular step or a boundary step is taken is forced
I;. This means that in this step we incredseby 1. Further, by the structure of the graph and our choice of which edge to
we expand the graph along the two outgoing edges, add tirew out. For the R-process the role of graph is taken by a
(at most) two connected check nodes to the set of interrsditategy A strategy is any (randomized) decision functién
check nodes (whose cardinality is denoted®y and add all that, based on the initial state and past decisions and mets0
the remaining edges that emanate from these check nodesl@oides whether a regular step or a boundary step is taken at
the set of surviving edges. This adds (at ma@st) — 1) new any point in time.
survivors, but we have to subtract the edge we started fromHere is the connection between the actual physical process
Therefore,S; is increased by at mo&tr — 3. and the R-process in more detail. Assume we are given a

So far we have assumed that we have not seen the variadplephG and a witnessV. We know the graph and therefore
node (that is connected to the edge which we grow out) befovee also know which edges of the graph are elements of the
Suppose now that, to the contrary, the variable is an elementviving set. Therefore, when we pick a survivor, we know
of the boundary. We know that in this case the received valire advance whether the step is a regular step or a boundary
is good, but we also know that the variable received anoth&ep. The noise realization, which is not known to us a priori
bad incoming message. Therefore, the variable will sendda bdetermines whether a regular step is a regular extend oreprun
outgoing message along its remaining edge. Hence, we metep. We see that each graph gives rise to a strategy. As fong a
this variable node from the boundary to the internal sets(ththe size of all revealed nodes is sufficiently small thiststyst
decrease®; by 1 and increases; by 1). Further, we grow out will be admissible since the expansion will be valid up testhi
the graph along the only remaining outgoing edge. This adgsint.
at most one new check node and at mostl outgoing edges  Since we are only interested in an upper bound on the
to the set of surviving edges. Discounting again the edge wamber of marked variables, we allow the R-process to use
started with, we add in total at most— 2 to S;. an arbitrarystrategy only limited by the condition (22). We

is a necessary condition to be able to perform a boundary step
at time ¢t. To see this, suppose we take a boundary step. If
you look at Table Il you will see that there are two possible
transitions. One can check that the transition stated inl bol
{etters gives the less restrictive condition. Let us themrebnly
focus on this case. The state after applying the boundaty sta
ust still fulfill (22). This means that we must have
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call a strategy which obeys (22) aamissiblestrategy. Since By definition this is true for = 0. But by construction of the
the actual physical process is also limited by (22) (under tleoupling, Sy — So = S} — S{, It — Ip = I} — I}, B — By =
condition that the graph is an expander and the process s~ B}, andC, — Cy = C] — . It follows that the left-hand
not grown beyond the size where the expansion is valid),stde in (24) is always at least as large as the right-hand side
suffices to derive upper bounds @/..] that is valid for all Therefore, if 7’ is admissible then so if'. [ |
choices of the strategy. From Table IIl we see that for regular extend and boundary
We relax one further restriction imposed by the actualteps there are several possible outcomes. For each of these
physical process in order to simplify our task. Again, thigyo two steps, there is a single outcome (highlighted in theefabl
increased[/]. In the marking process, we can only perfornivhose resulting state dominates those of the other outcomes
a boundary step if the boundary set is strictly positive.tileo  Since we are interested in an upper bound @n thanks to the
words, we require3; > 0 for a boundary step to be performedabove lemma, we can restrict our attention to these domigati

We lift this restriction for the R-process. steps.

Definition 29 (Ordering of StatesjThe state U =  Consider thegreedystrategy, call if 79. For this greedy
(C,S,B,I) dominates the statd/’ = (C',5',B',I'), strategy, whenever (23) is true we perform a boundary step.
denoted by > U" if Lemma 31 (Domination of the Greedy Processyr  a

@ =59, given initial statel/ = (Cy, Sy, By, In) and any admissible
@iy 1>1r, strategyF', we have
@iy S+B+I1—-~7rC>8"+B +1 —~r(C'.
0 E[l (U, F9)] > B[l (U, F)).

Lemma 30 (Monotonicity of,, with State): Consider the Proof: Again we construct a coupling between the
R-process with admissible strate@y and initial statelU’ = processegU, F) and (U, F9). As remarked above, for both
(c',8"B'.I'). Let U = (C,S,B,I) be an initial state processes we can assume that the state transitions aregbe on

which dominateslU’, i.e., U > U’. Then there exists anindicated in bold in Table Ill. The only randomness therefor
admissible strategy” so thatE[I.. (U, F)] > E[I(U’, F’)], resides in whether for a regular step the proces®ndsor
where I (U, F') denotesl,, assuming that the R-process iorunesand, possibly, in the randomness used for the strategy
initialized with U and that the process uses the stratégy  F. There is no randomness involved in any boundary steps.
Proof: Given U’ and the admissible strategi’ we The coupling consists in coupling for each regular sigp

construct the admissible strategyin the following way. The i ¢ N, the outcomes of these regular steps. In more detail, if
process with initial staté’ uses strategy™” but applies it to the for the process$U, F') thei-th regular step results in a pruning
pseudostateU’. Further, it updates its pseudo state accordingen the same occurs for theh regular step for the process
to the realization of the process and bases its future @essi (U, F9). By construction, for all regular steps the change of
on strategyF” applied to this evolving pseudo state. Call thes, I, B, andC is the same for both processes. Assume we
phase of the process until the pseudo state has redthed) measure “time” not in the absolute number of steps taken
the “initial” phase of the process. At that point th&, F)) but by the number of regular steps taken. Consider a process
process switches to any admissible strategy based on its 1&g F') and assume that this process is still “alive” at ‘time
state. To be concrete, assume that it usgseady strategyat Then its statd/; only depends on the realization of the random
this point. This means that the process performs a boundagyiables during the regular steps and on the total number of
step any time it is admissible. boundary steps taken, but it does not depend on the order of

In order to show the desired inequality on the expectatle steps taken.
values we couple the processes’, /') and (U, F). We  Since the procesd’, F9) has by definition done at least as
imagine that we run both processes in parallel and that thmany boundary steps as the procéssF) it further follows
experience exactly the same randomness (this refers to thgt if we compare the two processes at “tini€brresponding
randomness contained in the choice of the transitions dsaweltq ; regular steps then the number of survivors (and also the
any randomness which might be used by the strategy). Assufifnber of internal nodes) fdt/, F9) is at least as large as the
for the moment that strategy’ is admissible. number of survivors fo(U, F). Therefore, if at this time the

In the initial phase of the algorithm (until thé’, F")  process(U, F) is still alive then so is the proces#, F¥) and
process stops becausg = 0) the (U, F) process proceedsthe latter has at least as many accumulated internal variabl
in lock-step with the(U’, S") process. Sincesy > S and nodes as the former. This proves our claim. [
since S, — Sp = 5; — .9 it follows that 5, > Siin this initial ~ gince we are interested inpper bounding E[I.], it is
phase. This means that the proce€SsF') never stops before g fficient to boundE|[I (U, F9)], which is done in the next
the processU’, F). Further, Iy > I, I, — Io = I; = Iy, |emma. We use large deviation properties of the sub-ctitica
and /; is a non-decreasing function. It follows that for everysajton-Watson process. For the convenience of the reader we
realizationlo. (U, F) > Io(U’, F"). This implies,a fortiori, provide this estimate in Appendix E.
the claimed inequality on the expected values. Lemma 32 (Birth Death Process)et the initial state be

Let us now show that the protocdl is admissible. We ; _ (0, S0, 0, 0). Fix a strictly positives, 0 < § < -1, s0

: 1)
claim that for all € N that .52 € N and lety = 1 — 32 For all e < sy there

Si + By + I —vrCy > S, + B, + I} — vxC. (24) existconstants = ¢(1,r,¢,0), ¢ > 1,andc’ = ¢(1,r,¢,0) >
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0 so that and the greedy strategly. From Lemma 32 there exists a

B (U, ) S0} ' strictly positive constant’ such that
e’} 9 Z [&e])] S e*C o

Proof: Since condition (23) is satisfied in the beginning, P{Ioo(U, F9) > cSp} < €=,
the greedy R-process starts with some boundary steps. We . o B
claim that after exactly - | such boundary steps the condi- , bound onf)V| in the hypothesis implies that, =

— o i
tion (23) is for the first time no longer fulfilled. To see thiscg(r D] S. 3 From_ Table il we see that any time
: : . .. the number of internal variable nodes is increasedl e
ignore the integer constraint for a moment. At the beginni

ny )
- mber of check nodes increases by at miasiTherefore
of the process the condition (23) reatlsc Sy — (1 —4). After N : '
Sy . N I(U, F9) < ¢Sp implies thatCs, < 2¢Sy < am. This shows
=5 boundary steps this condition is transformed to that the expansion property is satisfied for the whole donati
S, S, of the process. Hencd,. (U, F?) is a valid upper bound for
7r1f§§S0+1_()6(r_2)_(1_6)7 M(G,(W,E/),W).
o , ) ) Let M (E") denoteM (G, (W,E'), W). Since M (E') counts
which is equivalentt® < —(1-4). We see that the inequality e jnitial )| < 2m variables present i along with the
is no longer fulfilled and it is easy to check that this is thg o variablesQCreated

first time that it is no longer fulfilled. o
After the initial boundary steps, the greedy strategy per- P{M(E') > am} < P{I(U,F9) > §m} <e ¢,
forms regular steps until exactllggT‘s regular extend steps are
performed and then follows it by exactly one boundary stepherefore,
This sequence is then repeated. (Note that by our assumption Eg [M(G, (W, E),W)]

129 ¢ N)
2(;'I'o see this, note that each regular extend step increases the < P{M(E') < am}am + P{M(E') > am}n
right-hand side of (22) bg(r — 1) and the left-hand side by < aln +(1- o a )n.
2(r — 1 — ¢). Further, each boundary step increases the left- Tor
hand side byr — 1 — ¢ and the right-hand side hy— 2. Since The lemma is proved by taking the limit — co. [ ]

L22(r—1-6)+(r—1-6) = 522(r — 1)+ (r —2), we see
that after one such sequence of fi regular extends steps .
followed by a boundary step the ;Ln%:quality is unchanged (u%‘ Putting It All Together
to an added constant). (A regular prune step does not chang¥ this section we prove Lemma 22 using the results
the condition (22).) developed in the previous sections.
Since the randomness is contained only in the regular step§of of Lemma 22Recall that we consider afl = 3,r)-
we can model the process as consisting of only regular stefggular ensemble and that< e < e-**.
To include the effect of boundary steps, we alter the outcomeFix 0 < § < 5zt and definey = 1 — 122, Let amax(7)
of the regular extend step as follows. From Table Ill notd th@e the constant defined in Theorem 2. Note thakx(v) is
for each regular extend step we increasdy 2r — 3 and/  strictly positive sincé is strictly positive.
by 1. We include the effect of boundary step by changing this Choose 0 < a < oamax(y). Let X(1,r,a,v) de-

to an increment oRr — 3 + (r — 2)2% for S and1 + 2, note the set of graphg§G € LDPC(n,1,r) : G €
for I, respectively. (1,1, «,) right expander. From Theorem 2 we know that

Now this process is a standard birth and death process.
’ ; ; g P{G & X} = 0,(1). (25)

Recall that we have < D) andd < T Hence, the
25

expected increase ifi at each step ig(2r — 3+ (r —2)=%). Let c = ¢(1,r,¢,0) be the coefficient appearing in Lemma
This is strictly less thanl. As discussed in more detail in32 and defing) = m(x. From Lemma 26 we know that
Appendix E, this shows that, except for an exponentiallylsmahere exists an iteratiof such that

probability, this process stops fo ¢S, for some appropriate 1 1,
constant: > 1. This proves our lemma since in each step we Jim —E[W(G,E, O)]] < 56 (26)
create at most + % internal variables. |

Using Lemma 32 we bound the number of variables mark
by the marking process as follows.

Lemma 33 (Upper Bound)et v = 1 — 1%5 for some
0<d< ﬁ Fix ¢ and W such thaty C G andG €
X(1,r,a,7). Letc = c(1,1,¢,6) be the constant appearing g[p/(q,E, ¢)]

in Lemma 32. If{WW| < —~F-an then
belx=1) < Y ) P{GIP{Ew}Er [M (G, (W,E), W)+

lim lEE/ [M (G, W,E),W)] < a}. Wi W[ <0n G:GEX |
n—oo N, r ,
Proof: Letm = 1n. The maximum number of surviving 'Z< GCZX P{G}P{&E w1 Ex [M (G, W, E), W)]+
edges coming out of the witne¥¥ is 3(r—1)|W]|. Let this be WilWl<on 6:6¢
Sp. Consider the R-process with initial state= (0, S, 0,0) on.

&gt n(0) be such that fon > n(6), E[|W(G,E, €)[] < 6°n.
Using Lemma 28, and splitting the expectation oxeand
its complement, we get
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Consider the first term. From Lemma 33 we know that MS decoder can be upper bounded by the errors of the LMS
1 decoder.
g [M (G, (W, E"), W)] < azn+ o(n). (27) Lemma 34 (MS{/) Decoder, BSC and > 3): Consider
d (1,r) ensemble and transmission over BECLet ¢™* be the

Consider the second term. Bound the expectatiombgn o)
annel parameter below wh@iﬁ M) = 1. If e < €™, then

remove the restriction on the size of the witness. This g|v§§

the bound lim hmsupE[P (G, ¢6,0)] =
> P{eIP{&win. Example 35 (LMS) and BSC): Consider communication
W GGgX using LDPGQ3,6) code over BSG{ and decoding using
Switch the two summations and use the fact that, for a giv&hS(2) algorithm. For this setup, the DE threshold(£)63.
G, eachE realization maps to only ong/. We get The linearized decoder of this algorithm hﬁg 1 for

€ < 0.031. Therefore from the Lemma 34 the limits can be

dOP{G} Y P{&w}= Y P{G}=P{c¢ X} exchanged for this.

G:CEX WWEG G:GZX The proof follows by showing results similar to Lemma
(25) on(1). (28) 26 and 33. Here we give a brief explanatiop for adapting the
proof to the case oM = 2 and1 = 3. For a givernp > 0, we
From (27) and (28) we conclude that far> n(0), first performé(p) iterations such thap!” vo1y S b We
1 start the marking process from all the edges with messages in
~E[M(G,E, 0)] {=M,...,M — 1} and their witness. In this case the witness
1 consists of edges which send messafed/,..., M — 1}.
< Z Z MG}P{EGW}(“; +0”(1>) To show that the size of the w?t\ﬁ{eess is going tc}) zero,
WilW|<6n GGeX consider the DE equations similar to those in Appendix B.
+ #a Let p)(x) denote a polynomial with non-negative coefficients
6e(r —1)r where the coefficient in front of* denotes the probability that
< <} 1 ) a + on(1) the message emitted by a variable node at iteratisny: and
- 6e(r — 1)r e that the witness (of deptf) for this edge has size Let ¢ ()

denote the equivalent quantity for messages emitted atkchec

If we now letn tend to infinity then we get ! -
nodes. Then the DE equations for this augmented system are

lim_ limsup E[P%(G, ¢, ()] < lim_ %E[M(G,E,é)] given by:
e 1 1 pl_l(:v) = ex, pfl(x) = ex,
= (E + M) C ) = e((q (2))? + 27 ( a5 (z))+
Since this conclusion is valid for any < o < amax(7) it e (24,2 (1) g, 2 (2) + 24 (2) g, () + (71 (2))?),
follows that pi(x) = ea?(2q2__21(1)q€_1( )+ 2% 1( 2)qy_1 )+
lim limsup E[P;*®(G, €, ()] = 0. [ | ex(2q (2)q, % () + 24— (2)g; ) (2)),
T e py (@) = ex((qy () + 24,7 (2)gf— (2))+
H. Extensions ex(2¢,2 (Vg % (2) + 2457 (@) () + (a1 (2)?),
1) GalB and1 > 4: Note that forl > 5 the result is pZQ(I) = 6172(‘1[—21(50)(QZ—I1 (z) +q2,1(:c) +QE_11(~’C)))
already implied by Theorer?. For 1 = 4 the proof is easily +ex(2¢)_1 (2)g 2 (@) + (¢4 () (g%, (2))?)
the way the size of e wimess f computed (Section 11D) e 11< D5 @) + (5@
and the analysis of the birth-death process (Section LlI-F) g 7 1 a i N1
2) MS and BSC:The proofs can also be extended to other’” () = | (- Z pe)” = (1= l;wplfl) )

decoders. For a given MP decoder, the idea is to define an
appropriatelinearizedversion of the decoder (LMP) and goUsing the hypothe5|p(°°)} = 1 and doing a similar analysis
through the whole machinery as done for GalB. as in Appendix B we can show that the size of the witness
For example, consider the MB() decoder and transmissionbehaves as,(1). In the corresponding birth-death process we
over BSC¢). The channel realizations are mapped{tol}. have to keep track of the size of the set of edges with messages
Let M € N, the message alphabetAd = {—M,...,M}.For in{-M,...,.M —1}.
transmission of the all-one codeword, tiveearizedversion of Similar results can be obtained for BH{} decoder, and
the decoder (LMSY/)) is defined as in Definition 24: i.e., atchannels with continuous outputs. But the analysis of these
the check node the outgoing message is the minimum of ttiecoders is more complicated because we have to deal with
incoming messages and the variable node rule is unchangeddnsities of messages.
One can check that the LMS algorithm defined above is3) MS M) and continuous channelConsider transmission
monotonic with respect to the input log-likelihoods at botthrough BMS channels with bounded output log-likelihoods
the variable and check nodes and the number of errors in tied decoding using M3{) decoder. For this setup it is
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tempting to conjecture that the proofs can be extended usimgist be connected to one more variabld3im 5,4, because

FKG inequalities for continuous lattices [6]. it is not connected td3,\5B,4+1 and thus cannot get a bad
message from3,\B,,1. For each variable i3, N B4, at
IV. CONCLUSION leastl— (I —1) edges must be bad messages and hence it can

We have shown two approaches for solving the probleﬁ?nneato atmodi—(1-1))/2+5(1-1) = 1/2+5(1-1)/2
check nodes. Therefore we have,

of limit exchange below the DE threshold. The first one;
based solely on the expansion property of the graph, helps |N(B,)| < 1|Bi\Bes1| + [T,

in proving the result for a large class of MP decoders but only 1481
if the degree is relatively large. To prove the result for era IN(Bo)| < 1|Be\Bes1] + TIHBg N Boga)- (30)
degrees one has to include the role of channel realizations. _

The second approach accomplishes this in some casesYfiNg equationg29) and(30), we get

this paper we only considered channel parameters below the 1+ Bt
DE threshold. But the regime above this threshold is equally V![Be+1 U Be| <U|B\Bey1| + TZNBZH N B
interesting. One important application of proving the exhe 4 B(1 = 1)|Bei\By|

of limits in this regime is the finite-length analysis via akag

approach [7] since the computation of the scaling pararseter VBe1 0 Bel +7[Be\Be1| + 71 Ber1\Be|

. . . .. 1—1
heavily depends on the fact that this exchange is perméssibl <IB\Beoa| + 1 +§ L |Bysr O B+
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APPENDIX )
B. Size of Witness

. . . _ Proof of Lemma 26Let G be a graph and leE be the
The following theorem is a modified version of a theorerHoise realization. Assume that we perfoiriterations. Let

by Burshtein and Miller [5] We (G, E, ¢) denote the witness of edge Then
Theorem 36 (Expansion)Consider an(1,r, «,~) left ex- e(G,E, () ge

pander. Assume that < § < 1 such that3(l — 1) € N and o
that 331 < 2 — 1. If at some iteratior? the number of bad E[W(G,E Ol < ZEHW&% (G,E, O)[] = n1E[[We, (. E, O)]].
variable nodes is less thafin then the MP algorithm will =1

A. Expansion Argument For Block Error Probability

decode successfully. It remains to compute the expected size of the witness for
Proof: Let B, denote the bad set in iteratidnWe claim the limit of » tending to infinity and a fixed. This can be
that accomplished by DE.
@ Let 2, denote the probability of an edge being in error
YUBe U Bysa] < N (BeU Begr)] according to DE. Letp,(xz) denote a polynomial with non-

(i) negative coefficients where the coefficient in front of
< N(Be)| + B(L—1)[Bes1\Be|.  (29) denotes the probability that the message emitted by a Variab
node at iteratiorf is bad and that the witness (of degihfor
this edge has sizé (i variable nodes). Let,(x) denote the
I_aquivalent guantity for messages emitted at check nodes. Th

Step (ii) follows from the fact that each variable By;1\B,
must be connected to at ledst- (I — 1) checks in the set
N (By) since otherwise this variable will be good and wo

be in B;11. Therefore the number of edges coming out o E equations for this augmented system are:

Bi4+1\Be that are not connecting t&/(5;) is at mosts(l — p1(z) = ex,
1)|Bes+1\Be|. Thus _the number of neighbors 8% 1\B, that pe(@) = €(2 — qo(1))qe(x)z + equ(x)?e,
are not already neighbors &, is at most3(l — 1)|B¢+1\Be|. (2)
Consider now step (i). This step follows in a straightfordvar qe(x) = pe_1(1) (1—(1—=pe_1(1)=h).
fashion from the expansion property since by assumption Pe-1
|Be| < =n so that|B, U Byy 1| < an. The initialization p;(x) = ex reflects the fact that with

Let 7" be the set of check nodes that are connectelf,ta  probabilitye a variable-to-check message is in error in iteration
By+1 but not connected t8,\B,,1. Suppose an edge from al and that its associated witness of deptleonsists only of
check node ifl" is carrying a bad message. Then this chedke attached variable (hence thp
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The recursion foi(z) is also straightforward. With prob- C. Randomization

ability 1 — (1 — p,_1(1))*"! at least one of ther — 1
incoming messages at a check node is bad, and in this ng%()f of Lemma 28We have

the distribution of the size of the attached witnes%@%.

Let us now look at the recursion fai(x). There are three E[M(G,E, 0)
contributions: (i) Suppose that the variable has a bad vedei = ZE[M(Gan W) Liw(een=w}]
value and that exactly one of the incoming edges is bad; this w
happens with probability2(1 — ¢¢(1))g,(1) and in this case = > P{G}Ee[M(G,E, W) 1 {y(c.e.)-w)]
the distritzu)tion of the size of the witness attached to this W.e
edge is2%  where the extrar accounts for the attached _
variable F‘{g(lfe_ (i) Suppose that the variable has a badvedei B WZGP{G}EE[M(G’ E W)L (eces ) :

value and that both incoming edges are bad; this happens with

probability eq¢(1)*, and in this case the distribution of the sizeeor all E € &y, the channel values oW are fixed to those
of the witness attached to this edge%. (iii) Finally, appearing in the witness which is also denoted/by Recall
suppose that the variable has a good received value and that &}, ,,, is the projection of¢;y on G\W andE’ € & ,,,.

both the incoming edges are bad; this happens with probabilirhe above expectation is equivalent to
€q:(1)? and in this case the distribution of the size of the

witness attached to this edgeﬂ%. Ee[M (G, W, E), W)L o e)egsm}] =
Note that we get standard DE by setting = 1, i.e., P(W)Eg [M (G, W,E ), W) Limeer . 3],
G, W

we havez, = p,(1). We want to show thap)(1) (this
is the expected size of the witness in the limit of infinitgyhere P(1V) is the probability of the channel values .

blocklengths) converges to zero as a functiorf .of This impliesP(W)P(&} 1) = P(E¢,w). Using (20) we bound
The augmented DE equation is difficult to handle. So let '
us first write down a scalar version that tracks the expected Ee [M (G, (W,E), W) Liweer 3]
ineg, — (=(1=p (1) ") L “w
value. Defines, = (D) . Then we get <P( é,w)]EE/ (M (G, (W, E'), W)].
pe(z) = €(2 — qu(1))Be—1pe—1(z)x + Eﬁgflpé—l(x)%f' Therefore,
Differentiate both sides with respect 10 This gives E[M(G,E, /)]
Py(x) =eBr-1(2 — qe(1)(p)_y (@) + pe-1(x)) <D P{GHP{Eow}Ee [M(G, (W, E), W)]
_ _ W,G
+ &8 1 (pe-1(x))? + €671 2p01 (2)pp_ (2). 7
< Y P{GIP{&w}Ee[M(G, (W,E), W)+
Now substitutex = 1. Recall thatzy = py(1) and define Wi |W|<0n,G
pe = py(1). Further, boun@ — ¢,(1) by 2 and 5, by (r — 1). Z P{GYP{Es o} Ex [M (G, (W, E), W)).
This gives the inequality Wi W0,
pe <2e(r — 1)pe—1 + 2¢(r — 1)ap 4 Consider the second term in the last line. Bound the expecta-
+é(r—1)2%22 | +2€(r — 1) %z 1pe_1. tion by n. This yields
We claim that/z, < p,. This is true since, is the probability Z P{G}P{& w}n.
of a bad message, wherepg is the expected size of the W:W|>6m,G
witness and the witness size is always at léabthe message . _
is bad. Therefore, If W ¢ G, then&; yy is empty. Therefore the above bound is
equivalent to
_be <2¢(r—1)+ 2¢(r — 1)xz*1
pe—1 , pe—1 no Y B[y Iees )]
+er — 122 4 2(r — 1)y wiwizen
pézl ) =n Y Ellpeeo-w
<2e(r — 1) + 26— L 4 3&(r — 1)220_1. WiWI>0n
14 = nP{|W(G,E,{)| > On}.

Now note thatz, tends to zero since < €°*°. Therefore, ) ) ] )
if 2¢(r — 1) < 1 thenpy/p,_1 < 1 for ¢ sufficiently large. BY assumptionE[W(G,E, £)|] < 6°n. The Markov inequality
The stability condition implies**** < 5-14;. Therefore, for therefore shows that

€ < €%, p, tends to zero exponentially fast for increasifig
[ | P{IW(G,E,¢)| > 6n} < 6. [ ]



D. FKG Inequality

Consider the Hamming spad®, 1}"™. For z,y € {0,1}"
define the following partial order: < y iff x; <y, for all 4.
Definez< as

r< ={y:ye{0,1}", y <a}, (31)
andx Vy andx Ay as
. 0 if Ty = Y; = O,
(xVy) = { 1 else (32)
o 1 if Ty = Y; = 1,
(@ Ay)i = { 0 else (33)

We say that a functiorf : {0,1}" — R is monotonically
increasing (decreasing) if(z) > f(y) wheneverz >y (z <

Y)-
Lemma 37 (FKG Inequality — [8])Let P{-} be a proba-
bility measure on{0, 1}" such that

Pla}Ply} < P{lzVytP{z Ay},

Let f andg be real-valued non-negative functions i 1}".
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Therefore,

s;() P{es Z?:l Y; > efas}

P{T > b} < P{Zb:ifi > —a}

Markov -

b
easE[esY]b _ eas((l _p)e—s +p€(%7l)s) )

; ; _pr1, B=1D)dA-p) i
First consider the case > p. Sets = m In T pramr w1h|ch

is strictly positive sincg: > p and3 > 1. Set =

where¢ > 0. With this choice we get 1=p=gr
u(1 —p) pl—p) —&p ==

P{T >0 .
= }S{N(l—P)—Ep(u(l—p)+g(1_p)) }

For ¢ = 0 the terms inside the square brackets.isf we take
the derivative of the expression inside the square brackets
to £ we get

—p ((u+€)(1 —P)) T, (90— p)
pA &\ p(l—p) —pg n(l—p) —&p
For & > 0 andu > p this is strictly negative which proves our
claim.

Now consider the casg < p. For ﬁ < pB < ﬁ the

If f andg are either both monotonically increasing or boti@bove still applies. Fop > £, the probability is0. This is

decreasing then

E[f(z)g(y)] > E[f(x)]E[g(y)]-

E. Birth and Death Process

because in each step we can add at njostl. Therefore, for
tzEa+1, Xy <a+ (GEa+1)(5—1) <. [

F. Concentration
Theorem 39 (Concentration Theorem [1][p. 222])et G,

Consider the following birth and death process. We staghosen uniformly at random from LDRE, \,p), be used

with Xo = a > 0. At stept, t € N, if X; 1 < 1 then we stop
the process and defing;, = X, for ¢’ > t. Otherwise we
decreaseX;_; by 1 and addY;, where the sequend&’; };>1
is iid. In this way, as long ax(; > 1,

X=Xy 1 —-14Y,.

M
This process is equivalent to the standard birth and deatﬁﬂp
process ifY; takes non-negative integer values. In this case,
the step described above corresponds to choosing a member

of the population which then creat&s off-springs and dies.
Let T denote the stopping time, i.€,= min{t : X; < 1}.
Lemma 38 (Birth-Death)Fix p € (0,1] and0 < u < 1.

Consider a birth and death process witlyj = ¢ € N and

u
p7
0,

so thatE[Y;] = p. Then, forfa € N,
P{T > fa} < e~ 2P

wherec(p, i, 3) > 0 for g > 1iu.

Proof: Let b = Ba. Note that

with probability p,

Y = . .
with probability 1 — p,

]P’{T > b} < P{Xb > 1} < P{Xb > 0}.
LetY; =Y, — 1. We have

b
X=Xy 1+ Y =Xp o+ Yo+ Y =at+) Vi
i=1

for transmission over a BM8) channel. Assume that the
decoder performg rounds of message-passing decoding and
let P)"*(G, ¢, ¢) denote the resulting bit error probability. Then,
for any givend > 0, there exists amv > 0, o = «(\, p, d),
such that

b P(G, 6,[) — ELDPC(n,)\,p) [PbMP(G, E,é)] | > 6} <e ",
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