
1

Exchange of Limits: Why Iterative Decoding Works
Satish Babu Korada and Rüdiger Urbanke

Abstract— We consider communication over binary-input
memoryless output-symmetric channels using low-density parity-
check codes and message-passing decoding. The asymptotic (in
the length) performance of such a combination for a fixed number
of iterations is given by density evolution. Letting the number of
iterations tend to infinity we get the density evolutionthreshold,
the largest channel parameter so that the bit error probability
tends to zero as a function of the iterations.

In practice we often work with short codes and perform a
large number of iterations. It is therefore interesting to consider
what happens if in the standard analysis we exchange the order
in which the blocklength and the number of iterations diverge
to infinity. In particular, we can ask whether both limits giv e the
same threshold.

Although empirical observations strongly suggest that the
exchange of limits is valid for all channel parameters, we limit
our discussion to channel parameters below the density evolu-
tion threshold. Specifically, we show that under some suitable
technical conditions the bit error probability vanishes below the
density evolution threshold regardless of how the limit is taken.

Index Terms— LDPC, sparse graph code, density evolution

I. I NTRODUCTION

A. Motivation

Consider transmission over a binary-input memoryless
output-symmetric (BMS) channel using a low-density parity-
check (LDPC) code and decoding via a message-passing (MP)
algorithm. We refer the reader to [1] for an introduction to the
standard notation and an overview of the known results. It is
well known that, for good choices of the degree distribution
and the MP decoder, one can achieve rates close to the capacity
of the channel with low decoding complexity [2].

The standard analysis of iterative decoding systems assumes
that the blocklength is large (tending to infinity) and that a
fixed number of iterations is performed. As a consequence,
when decoding a given bit, the output of the decoder only
depends on a fixed-sized local neighborhood of this bit and this
local neighborhood is tree-like. This local tree property implies
that the messages arriving at nodes are conditionally inde-
pendent, significantly simplifying the analysis. To determine
the performance in this setting, we track the evolution of the
message densities as a function of the iteration. This process
is calleddensity evolution(DE). Denote the bit probability of
error of a codeG after ℓ iterations byPb(G, ǫ, ℓ), whereǫ is
the channel parameter. Then DE computes

lim
n→∞

E[Pb(G, ǫ, ℓ)]. (1)

If we now perform more and more iterations then we get a
limiting performance corresponding to

lim
ℓ→∞

lim
n→∞

E[Pb(G, ǫ, ℓ)]. (2)

EPFL, School of Computer, & Communication Sciences, Lausanne, CH-
1015, Switzerland,{satish.korada, ruediger.urbanke}@epfl.ch.

In order for the computation graphs of depthℓ to form a
tree, the number of iterations can not exceedc log(n), where
c is a constant that only depends on the degree distribution.
(For a(l, r)-regular degree distribution pair a valid choice of
c is c(l, r) = 2

log(l−1)(r−1) , [3].) In practice, this condition
is rarely fulfilled: standard blocklengths measure only in the
hundreds or thousands but the number of iterations that have
been observed to be useful in practice can easily exceed one
hundred.

Consider therefore the situation where we fix the block-
length but let the number of iterations tend to infinity. This
means, we consider the limit

lim
ℓ→∞

E[Pb(G, ǫ, ℓ)]. (3)

Now take the blocklength to infinity, i.e., consider

lim
n→∞

lim
ℓ→∞

E[Pb(G, ǫ, ℓ)]. (4)

What can we say about (4) and its relationship to (2)?
Consider the belief propagation (BP) algorithm. It was

shown by McEliece, Rodemich, and Cheng [4] that one can
construct specific graphs and noise realizations so that themes-
sages on a specific edge either show a chaotic behavior (as a
function of iteration) or converge to limit cycles. In particular,
this means that the messages do not converge as a function
of the iteration. For a fixed length and a discrete channel, the
number of graphs and noise realizations is finite. Therefore,
if for single graph and noise realization the messages do
not converge as a function ofℓ, then it is likely that also
limℓ→∞ E[Pb(G, ǫ, ℓ)] does not converge as a function ofn
(unless by some miracle the various non-converging parts can-
cel). Let us therefore considerlim supℓ→∞ E[Pb(G, ǫ, ℓ)] and
lim infℓ→∞ E[Pb(G, ǫ, ℓ)]. What happens if we increase the
blocklength and considerlimn→∞ lim supℓ→∞ E[Pb(G, ǫ, ℓ)]
and limn→∞ lim infℓ→∞ E[Pb(G, ǫ, ℓ)]?

We restrict our present study to the exchange of limitsbelow
the density threshold. I.e., suppose that the given combination
(of the channel family and the MP decoder) has a threshold in
the following sense: for the given channel family characterized
by the real valued parameterǫ there exists a thresholdǫMP so
that for all 0 ≤ ǫ < ǫMP the DE limit (2) is0, whereas for all
ǫ > ǫMP it is strictly positive. We will show that under suitable
technical conditions the bit error probability also tends to zero
if we exchange the limits. This implies that the DE threshold
is a meaningful and robust design parameter.

B. Summary of Main Result

Consider transmission over a BMS channel parametrized by
ǫ, using an LDPC(n, l, r) ensemble and decoding via an MP
algorithm. Assume that the algorithm is symmetric in the sense
of [1][Definition 4.81, p. 209]. Moreover, assume that this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147934991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

combination has a threshold and letǫMP denote this threshold.
If ǫ < ǫMP then under the conditions stated in Sections II and
III,

lim
n→∞

lim sup
ℓ→∞

E[P MP
b (G, ǫ, ℓ)] = 0.

Instead of considering just an exchange of limits one can
consider joint limits where the iteration is an arbitrary but
increasing function of the blocklength, i.e., one can consider
limn→∞ E[P MP

b (G, ǫ, ℓ(n))]. Our arguments extend to this case
and one can show that

lim sup
n→∞

E[P MP
b (G, ǫ, ℓ(n))] = 0.

But for the sake of simplicity we restrict ourselves to the
standard exchange of limits discussed above. In the same spirit,
although some of the techniques and statements we discuss
extend directly to the irregular case, in order to keep the
exposition simple we restrict our discussion to the standard
regular ensemble LDPC(n, l, r).

C. Outline

We introduce two techniques that are useful in our context.
First, we consider expanders. More precisely, in Section IIwe
show that for codes with sufficient expansion the exchange
of limits is valid below the DE threshold. The advantage of
using expansion is that the argument applies to a wide variety
of decoders. On the negative side, the argument can only be
applied to ensembles with large variable-node degrees.

Why does expansion help in proving the desired result
and why do we need large variable-node degrees? Assume
that a sufficient number of iterations has been performed
so that the number of still erroneous messages is relatively
small. Consider further iterations. There are two reasons why
a message emitted by a variable node can be bad. This can be
due to the received value, or it can be due to a large number of
bad incoming messages. If the degree of the variable node is
large then the received value becomes less and less important
(think of a node of degree1000 and a decoder with a finite
number of messages; in this case the received value has
only a limited influence on the outgoing message and this
message is mostly determined by the999 incoming messages).
If we ignore therefore the received message then we see that
expansion helps since it can guarantee that only few nodes
have many bad incoming messages; otherwise the set of nodes
that has bad outgoing messages has too few neighbors in order
for the graph to be an expander.

If the variable nodes have small degree, then the received
values play a significant role and can no longer be ignored.
Therefore, for small degrees expansion arguments do not
suffice by themselves. In Section III we concentrate on the
casel = 3. This is the smallest degree that is meaningful for
all the decoders that we consider and so one can think of it
as the most difficult general case. Except for the BEC, this
case is not covered by a simple expansion argument and the
techniques are more involved.

II. SUFFICIENT CONDITIONS BASED ON EXPANSION

ARGUMENTS

Burshtein and Miller were the first to realize that expansion
arguments can be applied not only to the flipping algorithm
but also to show that certain MP algorithms have a fixed error
correcting radius [5]. Although their results can be applied
directly to our problem, we get stronger statements by using
the expansion in a slightly different manner.

A. Definitions and Review

Definition 1 (Expansion):Let G be an element from
LDPC(n, l, r).
1) Left Expander: The graphG is an(l, r, α, γ) left expander
if for every subsetV of at mostαn variable nodes, the set of
check nodes that are connected toV is at leastγ|V|l.
2) Right Expander: Letm = n l

r
. The graphG is an(l, r, α, γ)

right expanderif for every subsetC of at mostαm check
nodes, the set of variable nodes that are connected toC is at
leastγ|C|r. ♦

Why are we using expansion arguments in the context of
standard LDPC ensembles? It is well known that such codes
are good expanders with high probability [5].

Theorem 2 (Expansion of Random Graphs [5]):Let G be
chosen uniformly at random from LDPC(n, l, r). Let αmax

be the positive solution of the equation

l− 1

l
h2(α) −

l

r
h2(αγr) − αγrh2(1/γr) = 0.

Let X (l, r, α, γ) denote the set of graphs

{G ∈ LDPC(n, l, r) : G ∈ (l, r, α, γ) left expander}.

If γ < 1 − 1
l

thenαmax is strictly positive and forα < αmax

P{G ∈ X (l, r, α, γ)} ≥ 1 −O(n−(l(1−γ)−1)). (5)

Let m = n l

r
. We get the equivalent result for right expanders

by exchanging the roles ofl andr as well asn andm.
As explained before, the idea is to show that the error

probability goes to zero once the number of bad messages
becomes smaller than a certain threshold. To make this more
concrete we need a proper definition of “good” message
subsets.

Definition 3 (Good Message Subsets):For a fixed (l, r)-
regular ensemble and a fixed MP decoder with message
alphabetM, let β, 0 < β ≤ 1, be such thatβ(l − 1) ∈ N.
A “good” pair of subsets ofM of “strength” β is a pair of
subsets(Gv, Gc) so that

• if at leastβ(l − 1) of the (l − 1) incoming messages at
a variable node belong toGv then the outgoing message
on the remainingedgeis in Gc

• if all the (r − 1) incoming messages at a check node
belong toGc then the outgoing message on the remaining
edgeis in Gv

• if at leastβ(l−1)+1 of all l incoming messages belong
to Gv, then thevariable is decoded correctly

We denote the probability of the bad message setM\Gv after
ℓ iterations of DE byp(ℓ)

bad. ♦

3

As we will see shortly, for many MP decoders of interest
the setsGv andGc can be chosen to be equal. This is true
for all those MP decoders where the outgoing reliability at a
check node is equal to the least reliability of all the incoming
messages (we call them min-sum-type decoders). Therefore,if
all incoming messages are good (meaning they are correct and
have sufficiently large reliability) then the outgoing message
is correct and also has sufficiently large reliability. The BP
decoder is an interesting case whereGv 6= Gc. For this
decoder the reliability of the outgoing message at a check node
is strictly smaller than the smallest reliability of all incoming
messages. Therefore, we need to define the setGc to consist of
messages of strictly higher reliability than the set of messages
in Gv.

Definition 4 (Good Nodes):We call a variable or check
node “good” if all of its outgoing messages are good. All
other nodes are called “bad.” ♦

Example 5 (BEC and BP):If at least 1 of the (l − 1)
messages entering a variable node is known then the outgoing
message is known and if at least1 of thel messages entering
a variable node is known then the variable itself is known.
Further, if all of the(r − 1) incoming messages entering a
check node are known then the outgoing message is known.
We conclude thatgood is equivalent toknownand thatβ =

1
l−1 . ♦

As a second standard example we consider transmission
over the BSC(ǫ) and decoding via the so-calledGallager
Algorithm B (GalB).

Definition 6 (Gallager Algorithm B):Messages are ele-
ments of{±1}. The initial messages from the variable nodes
to the check nodes are the values received via the channel.
The decoding process proceeds in iterations with the following
processing rules:

Check-Node Processing: At a check node the outgoing
message along a particular edge is the product of the
incoming messages along all the remaining edges.
Variable-Node Processing: At a variable node the out-
going message along a particular edge is equal to the
majority vote on the set of other incoming messages and
the received value. Ties are resolved randomly.

♦

Example 7 (BSC and GalB):Assume that the received
value (via the channel) is incorrect. In this case at least
⌈(l − 1)/2⌉ + 1 of the (l − 1) incoming messages should
be correct to ensure that the outgoing message is correct. Ifat
least⌈(l− 1)/2⌉+ 2 of the l incoming messages are correct
then the variable is decoded correctly. (In fact, it is sufficient
to have⌊(l− 1)/2⌋+2 correct incoming messages to be able
to decode correctly.) Therefore,good is equivalent tocorrect
andβ = ⌈(l−1)/2⌉+1

l−1 . ♦

B. Expansion and Bit Error Probability

Theorem 8 (Expansion and Bit Error Probability):
Consider an LDPC(n, l, r) ensemble, transmission over a
BMS(ǫ) channel, and a symmetric MP decoder. Letβ be
the strength of the good message subset. Ifβ < 1 and if for

someǫ, p(∞)
bad = 0 then

lim
n→∞

lim sup
ℓ→∞

ELDPC(n,l,r)[P
MP
b (G, ǫ, ℓ)] = 0. (6)

Proof: Here is the idea of the proof: we first run the
MP algorithm for a fixed number of iterations such that the
bit error probability is sufficiently small, sayp. If the length
n is sufficiently large then we can use DE to gage the number
of required iterations. Then, using the expansion properties of
the graph, we show that the probability of error stays close
to p for any number of further iterations. In particular, we
show that the error probability never exceedscp, wherec is a
constant, which only depends on the degree distribution and
β. Sincep can be chosen arbitrarily small, the claim follows.

Here is the fine print. Define

γ =
(

1 −
1

l

)1 + β

2

β<1
<

(

1 −
1

l

)

. (7)

Let 0 < α < αmax(γ), whereαmax(γ) is the function defined
in Theorem 2. Letp = α(1−β)(l−1)

4 and letℓ(p) be the number
of iterations such thatp(ℓ)

bad ≤ p. Sincep(∞)
bad = 0 and p > 0

this is possible. LetPe(G, E, ℓ) denote the fraction of messages
belonging to the bad set afterℓ iterations. LetΩ denote the
space of code and noise realizations. LetA ⊆ Ω denote the
subset

A = {(G, E) ⊆ Ω |Pe(G, E, ℓ(p)) ≤ 2p}. (8)

From (the Concentration) Theorem 39 we know that

P{(G, E) 6∈ A} ≤ 2e−Knp2

(9)

for some strictly positive constantK = K(l, r, p). In words,
for most (sufficiently large) graphs and noise realizationsthe
error probability after a fixed number of iterations behaves
close to the asymptotic ensemble. We now show that once
the error probability is sufficiently small it never increases
substantially thereafter if the graph is an expander, regardless
of how many iterations we still perform.

Let V0 ⊆ [n] be theinitial set of bad variable nodes. More
precisely,V0 is the set of all variable nodes that are bad in
the ℓ(p)-th iteration. We claim that|V0| ≤

2p
l−β(l−1)n. (This

is because for a variable to send a bad message it must have
at leastl − β(l − 1) incoming bad messages.) As we just
discussed, for most graphs and noise realizations this is the
case. As a worst case we assume that all its outgoing edges
are bad. Let the set of check nodes connected toV0 be C0.
These are the only check nodes that potentially can send bad
messages in the next iteration. Therefore, we callC0 the initial
set ofbad check nodes. Clearly,

|C0| ≤ l|V0|. (10)

Consider a variable node and a fixed edgee connected to it:
the outgoing message alonge is determined by the received
value as well as by the(l− 1) incoming messages along the
other(l− 1) edges. Recall that ifβ(l− 1) of those messages
are good then the outgoing message along edgee is good.
Therefore, if a variable node hasβ(l− 1)+ 1 good incoming
messages, thenall outgoing messages are good. We conclude
that for a variable node to be bad at leastl−β(l−1) incoming
messages must be bad. Therefore, it should connect to at least

4

l − β(l − 1) bad check nodes. This leaves at mostβ(l − 1)
edges that are connected tonewcheck nodes.

We want to count the number of bad variables that are
created in any of the future iterations. For convenience, once
a variable becomes bad we will consider it to be bad for all
future iterations. This implies that the set of bad variables is
non-decreasing.

Let us now bound the number of bad variable nodes by the
following process. The process proceeds in discrete steps.At
each stept, consider the set of variables that are not contained
in Vt but that are connected to at leastl − β(l − 1) check
nodes inCt (the set of “bad” check nodes). If at timet no
such variable exists stop the process. Otherwise, choose one
such variable at random and add it toVt. This gives us the set
Vt+1. We also add all neighbors of this variable toCt. This
gives us the setCt+1. By this we are adding the variable nodes
that can potentially become bad and the check nodes that can
potentially send bad messages toVt andCt respectively. As
discussed above, for a good variable to become bad it must
be connected to at leastl − β(l − 1) check nodes that are
connected to bad variable nodes. Therefore, at mostβ(l− 1)
new check nodes are added in each step. Hence, if the process
continues then

|Vt+1| = |Vt| + 1, (11)

|Ct+1| ≤ |Ct| + β(l − 1). (12)

By assumption, the graph is an element ofX (l, r, α, γ).
Initially we have |V0| ≤

2p
l−β(l−1)n = α(l−1)(1−β)

2(l−β(l−1)) n ≤ αn.
Therefore, as long as|Vt| ≤ αn,

γl|Vt| ≤ |Ct|, (13)

since Ct contains all neighbors ofVt. Let T denote the
stopping time of the process, i.e., the smallest time at which
no new variable can be added toVt. We will now show that
the stopping time is finite. We have

γl(|V0| + t)
(11)
= γl|Vt|

(13)
≤ |Ct|

(12)
≤ |C0| + tβ(l− 1)

(10)

≤ l|V0| + tβ(l − 1).

Solving for t this gives us

T ≤
|V0|l(1 − γ)

γl− β(l − 1)
.

Therefore,

|VT | ≤
|V0|l(1 − γ)

γl− β(l − 1)
+ |V0| ≤

2p

γl− β(l − 1)
n = αn,

(14)

where in the one before last step we used the fact that
|V0| ≤ 2p

l−β(l−1)n. The whole derivation so far was based
on the assumption that|Vt| ≤ αn for 0 ≤ t ≤ T . But as
we can see from the above equation, this condition is indeed
verified (|Vt| is non-decreasing and|VT | ≤ αn).

Putting all these things together, we get

E[P MP
b (G, ǫ, ℓ)] =E[P MP

b (G, E, ℓ)(1{(G,E)∈A} + 1{(G,E) 6∈A})]

≤E[P MP
b (G, E, ℓ)1{(G,E)∈A}] + P{(G, E) 6∈ A}

≤E[P MP
b (G, E, ℓ)1{(G,E)∈A}1{G∈X (l,r,α,γ)}]+

P{G 6∈ X (l, r, α, γ)} + P{(G, E) 6∈ A}.

Apply lim supℓ→∞ on both sides of the inequality. According
to (14) the first term is bounded byα. For the second term,
since γ < 1 − 1

l
, we know from Theorem 2 that it is

upper bounded byO(n−(l(1−γ)−1)). For the third term we
know from (9) that it is bounded by2e−Knp2

for some
strictly positive constantK = K(l, r, p). Therefore, if we
subsequently apply the limitlimn→∞ then we get

lim
n→∞

lim sup
ℓ→∞

E[P MP
b (G, ǫ, ℓ)] ≤ α.

Since this conclusion is valid for any0 < α ≤ αmax it follows
that

lim
n→∞

lim sup
ℓ→∞

E[P MP
b (G, ǫ, ℓ)] = 0.

Example 9 (BEC and BP):We know from Example 5 that
β(l − 1) = 1. If we apply the conditions of Theorem 8, we
see that we require1/(l−1) < 1. Hence, the exchange of the
limits is valid for l ≥ 3. Of course, for the BEC the exchange
of limits in this regime follows directly by the monotonicity
of the algorithm. ♦

Example 10 (BSC and GalB):We know from Example 7
thatβ(l− 1) = ⌈(l− 1)/2⌉+1. From Theorem 8 ifǫ < ǫGalB,
the limits can be exchanged ifl− 1 > 1 + ⌈(l − 1)/2⌉, i.e.,
for l ≥ 5. ♦

The key to applying expansion arguments to decoders with a
continuous alphabet is to ensure that the received values are no
longer dominant once DE has reached small error probabilities.
This can be achieved by ensuring that the input alphabet is
smaller than the message alphabet.

Definition 11 (Bounded MP Decoders):Given a MP de-
coder whose message passing alphabet is unbounded, i.e., itis
equal toR, we associate to it aboundedversion. Thebounded
MP decoder with parameterM ∈ R

+, denote it by MP(M), is
identical to the standard MP decoder except that the reliability
of the messages emitted by the check nodes is bounded toM
before the messages are forwarded to the variable nodes.♦

Note that the outgoing messages from the check nodes lie
in [−M,M] while the outgoing messages from the variable
nodes can lie outside this range.

Example 12 (MS(M), BP(M) Decoders):The MS(M) de-
coder and the BP(M) decoder are identical to the standard
min-sum (MS) and belief propagation (BP) decoder, except
that the reliability of the messages emitted by the check nodes
is bounded toM before the messages are forwarded to the
variable nodes. ♦

Example 13 (MS(5) Decoder): Consider an(l ≥ 5, r) en-
semble and fixM = 5. Let the channel log-likelihoods belong
to [−1, 1]. It is easy to check that in this case we can choose
Gv = Gc = [4, 5] and that it has strengthβ ≤ 3

4 . Therefore, if
the probability of outgoing messages from check nodes being
in [4, 5] goes to1 under DE, then according to Theorem 8 the
limits can be exchanged.

For example, consider BSC(ǫ) and LDPC(5, 6) ensemble. It
is known for this channel and MS decoder the messages are

5

of the formk log 1−ǫ
ǫ , for k ∈ Z. Therefore we can restrict the

message space toZ with the channel values mapped to{±1}.
Now, if we consider MS(5) decoder, the messages belong to
{−5, . . . , 5}. For this decoder, we can show that the limits can
be exchanged till the DE threshold of0.067. ♦

Example 14 (BP(10) Decoder): Let l = 5 and r = 6
and fix M = 10. Let the channel log-likelihoods belong to
[−3, 3]. We claim that in this case the message subset pair
Gv = [9, 10], Gc = [14, 43] is good with strengthβ = 3

4 . This
can be seen as follows: If all the incoming messages to a check
node belong toGc, then the outgoing message is at least12.39,
which is mapped down to10. Suppose that at a variable node
at least3(= β(l−1)) out of the4 incoming messages belong
to Gv. In this case the reliability of the outgoing message is
at least14 = 3 × 9 − 10 − 3. The maximum reliability is
43. Moreover, if all the incoming messages belong toGv then
the variable is decoded correctly. Therefore if the probability
of outgoing messages from check nodes being in[9, 10] goes
to 1 in the DE limit then from Theorem 8, the limits can be
exchanged.

For example, consider BSC(ǫ) with channel log-likelihoods
restricted between[−3, 3]. For ǫ < 1

1+e3 , the log-likelihoods
lie outside [−3, 3] and hence they are mapped to{±3}. In
this case the limits can be exchanged till the DE threshold of
0.136. Note that this is what is done practice, since one has
to work with bounded likelihoods. ♦

C. Expansion and Block Error Probability

In the previous section we considered the bit error proba-
bility. We will now derive sufficient conditions for the block
error probability. Again we use expansion arguments but we
proceed in a slightly different way.

Theorem 15 (Expansion and Block Error Probability):
Consider an LDPC(n, l, r) ensemble, transmission over a
BMS(ǫ) channel, and a symmetric MP decoder. Letβ be the
strength of the good message subset. Ifβ < l−2

l−1 and if for

someǫ, p(∞)
bad = 0 then

lim
n→∞

lim sup
ℓ→∞

ELDPC(n,l,r)[P
MP
B (G, ǫ, ℓ)] = 0. (15)

Proof: As in Theorem 8 we first perform a fixed number
of iterations to bring down the bit error probability below a
desired level. We then use Theorem 36 to show that for a graph
with sufficient expansion the MP algorithm decodes the whole
block correctly once the bit error probability is sufficiently
small. This is very much in the spirit of Burshtein and Miller
[5].

Define

γ =

(

1 −
1

l

) (

3 + β

4

)

.

Let 0 < α < αmax(γ), whereαmax(γ) is the function defined
in Theorem 2. Letp = α(l−β(l−1))

2lr and letℓ(p) be the number
of iterations such thatp(ℓ)

bad ≤ p. Let Ω denote the space of
code and noise realizations. LetPe(G, E, ℓ) denote the fraction
of messages belonging to the bad set afterℓ iterations. Let
A ⊆ Ω denote the subset

A = {(G, E) ⊆ Ω |Pe(G, E, ℓ(p)) ≤ 2p}.

From (the Concentration) Theorem 39 we know that

P{(G, E) 6∈ A} ≤ 2e−Knp2

(16)

for some strictly positive constantK = K(l, r, p).
Since β l−1

l
≤ 2γ − 1 we can apply Theorem 36: if

G ∈ X (l, r, α, γ) and if the initial number of bad messages is
less thanα

lr
then all the messages will become good after a

sufficient number of iterations.
Putting all these things together, we get

E[P MP
B (G, ǫ, ℓ)] =E[P MP

B (G, E, ℓ)(1{(G,E)∈A} + 1{(G,E) 6∈A})]

≤E[P MP
B (G, E, ℓ)1{(G,E)∈A}] + P{(G, E) 6∈ A}

≤E[P MP
B (G, E, ℓ)1{(G,E)∈A}1{G∈X (l,r,α,γ)}]+

P{G 6∈ X (l, r, α, γ)} + P{(G, E) 6∈ A}.

Apply lim supℓ→∞ on both sides of the inequality. According
to Theorem 36 the first term is0. For the second term, since
γ < 1− 1

l
, we know from Theorem 2 that it is upper bounded

by O(n−(l(1−γ)−1)). For the third term we know from (16)
that it is bounded by2e−Knp2

for some strictly positive
constantK = K(l, r, p). Therefore, if we subsequently apply
the limit limn→∞ then we get

lim
n→∞

lim sup
ℓ→∞

E[P MP
B (G, ǫ, ℓ)] = 0.

Example 16 (BEC and BP):According to Theorem 8 we
requirel ≥ 4. Hence, ifl ≥ 4 then the block error probability
tends to zero below the BP threshold. ♦

Example 17 (BSC and GalB):As explained in Example 7
for the Gallager B algorithm over BSC,β(l− 1) = 1+ ⌈(l−
1)/2⌉. The above condition implies ifl−2 > 1+⌈(l−1)/2⌉,
i.e., for l ≥ 7 the block error probability goes to zero below
ǫGalB. ♦

Example 18 (MS(5) Decoder): Consider an(l ≥ 7, r) en-
semble and fixM = 5. Let the channel log-likelihoods belong
to [−1, 1]. It is easy to check that in this case we can choose
Gv = Gc = [4, 5] and that it has strengthβ ≤ 2

3 . Therefore, if
the probability of outgoing messages from check nodes being
in [4, 5] goes to1 under DE then according to Theorem 15
the block error probability tends to0. ♦

Example 19 (BP(10) Decoder): Let l = 7 and r = 8
and fix M = 10. Let the channel log-likelihoods belong to
[−1, 1]. We claim that in this case the message subset pair
Gv = [9, 10], Gc = [15, 59] is good with strengthβ = 2

3 .
Therefore if the probability of outgoing messages from check
nodes being in[9, 10] goes to1 in the DE limit then from
Theorem 15, the block error probability goes to zero. ♦

Theorem 8 has a stronger implication than Theorem 15
since it concerns theblock error probability. Unfortunately,
the required conditions are considerably more restrictive. We
conjecture that in fact the conditions of Theorem 15 can
be weakened by considering several stages of the algorithm
jointly and that the required conditions are identical to the
ones in Theorem 15.

Conjecture 20 (Expansion and Block Error Probability):
Consider an LDPC(n, l, r) ensemble, transmission over a
BMS(ǫ) channel, and a symmetric MP decoder. Letβ be

6

the strength of the good message subset. Ifβ < 1 and if for
someǫ, p(∞)

bad = 0 then

lim
n→∞

lim sup
ℓ→∞

ELDPC(n,l,r)[P
MP
B (G, ǫ, ℓ)] = 0. (17)

III. SUFFICIENT CONDITION BASED ON BIRTH-DEATH

PROCESS

In the previous section we relied solely on the expansion
of the graph to prove the validity of the limit exchange. As
can be seen from the examples, for the decoders of interest
the theorems are only valid for higher degrees, lets sayl ≥ 5.
Practical codes however typically have small degrees. In these
cases expansion itself is not sufficient.

In more detail, the proofs in the previous section have two
phases. In the first phase we run the MP algorithm for some
fixed number of iterations to get the error probability down
to a small constant. In the second phase we prove that the
error probability stays close to0 regardless of how many
further iterations we perform and assuming pessimistically
that all variables nodes have bad received values. This is
too pessimistic an assumption for small degrees, where the
received value plays an important role. In this section, we
develop a method which takes the actual channel realization
into account.

Consider a MP decoder operating on a message alphabet
M ⊆ R. Further, forµ ∈ M, define|µ| to be thereliability
of the message. This means that we define the reliability of
−µ to be the same as the reliability ofµ.

Most of the MP algorithms used in practice like GalB, BP,
and MS, fall in the following category ofmonotonedecoders.

Definition 21 (Monotone MP Decoders):We say that a
symmetric MP decoder is monotone if the following con-
ditions are fulfilled. At variable nodes the processing rules
are monotone with respect to the natural order onM; for a
fixed received value, the outgoing message is a non-decreasing
function of the incoming messages.

At check nodes the processing rules are monotone with
respect to the natural order on the reliabilities; the reliability
of the outgoing message is a non-decreasing function of the
reliabilities of the incoming messages. ♦

Monotonicity is a useful property and it is also quite natural.
A remaining difficulty in analyzing these decoders is that at
check nodes the monotonicity is with respect to the reliability
and not the message itself. We will see shortly how to get
around this problem.

In what follows we mainly discuss the case of the GalB
algorithm andl = 3. The generalization to degreel ≥ 4 is
straightforward and it is discussed in Section III-H. In this
section we further give some examples of other monotone
decoders to which the method can be extended.

A. Main Result and Outline

Lemma 22 (Exchange of Limits):Consider transmission
over the BSC(ǫ) using random elements from the(l, r)-
regular ensemble and decoding by the GalB algorithm. If
ǫ < ǫLGalB then

lim
n→∞

lim sup
ℓ→∞

E[P GalB
b (G, ǫ, ℓ)] = 0,

where ǫLGalB is the smallest parameterǫ for which a solution
to the following fixed point equation exists in(0, ǫ].

x = ǫ

⌊ l−1
2 ⌋

∑

k=0

(

l− 1

k

)

yk(1 − y)l−1−k

+ ǭ

l−1
∑

k=⌊ l

2 ⌋+1

(

l− 1

k

)

(1 − y)kyl−1−k

+
1{ l

2∈N}

2

(

l− 1
l

2

)

(

ǫy
l

2 (1 − y)
l

2−1 + ǭ(1 − y)
l

2 (y)
l

2−1
)

,

(18)

where y = (1 − x)r−1. For the case of (l = 3, r)-regular
ensemble this equation simplifies to

x = ǭ(1 − (1 − x)r−1)2 + ǫ(1 − (1 − x)2(r−1)).
Discussion: Note that the thresholdǫLGalB introduced in the
preceding lemma is in general slightly smaller than the DE
thresholdǫGalB. We pose the extension of the result to channel
values up to the DE threshold as an interesting open problem.
It is likely to be difficult.

r rate ǫSha ǫGalB ǫLGalB

3 0.0 ≈ 0.5 ≈ 0.222 ≈ 0.1705

4 0.25 ≈ 0.2145 ≈ 0.1068 ≈ 0.0847

5 0.4 ≈ 0.1461 ≈ 0.06119 ≈ 0.0506

6 0.5 ≈ 0.11002 ≈ 0.0394 ≈ 0.0336

7 0.5714 ≈ 0.08766 ≈ 0.02751 ≈ 0.02398

8 0.625 ≈ 0.07245 ≈ 0.02027 ≈ 0.01795

9 0.667 ≈ 0.06141 ≈ 0.01554 ≈ 0.01395

10 0.7 ≈ 0.05324 ≈ 0.01229 ≈ 0.01115

TABLE I

THRESHOLD VALUES FOR SOME DEGREE DISTRIBUTIONS WITHl = 3.

r rate ǫSha ǫGalB ǫLGalB

4 0.0 ≈ 0.5 ≈ 0.0840 ≈ 0.0697

5 0.2 ≈ 0.1461 ≈ 0.0464 ≈ 0.0399

6 0.333 ≈ 0.11002 ≈ 0.0292 ≈ 0.0258

7 0.4286 ≈ 0.08766 ≈ 0.0200 ≈ 0.018

8 0.5 ≈ 0.07245 ≈ 0.0146 ≈ 0.0133

9 0.556 ≈ 0.06141 ≈ 0.0111 ≈ 0.0102

10 0.6 ≈ 0.05324 ≈ 0.0087 ≈ 0.0081

TABLE II

THRESHOLD VALUES FOR SOME DEGREE DISTRIBUTIONS WITHl = 4.

Example 23:Table I shows thresholds forl = 3, r =
3, · · · , 10. For the(l = 3, r = 6) degree distribution we have
ǫLGalB ≈ 0.0336. This is slightly smaller than, but comparable
to, ǫGalB ≈ 0.0394. ♦

We proceed by a sequence of simplifications, ensuring in
each step that the modified algorithm is an upper bound
on the original process. In Section III-B we simplify the
decoder by “linearizing” the processing rules at the check
nodes. In Section III-C we further upper bound the process by
considering the marking process associated with the decoding
algorithm. In Section III-D we construct a witness for the
marking process and derive bounds on the size of such a
witness. In Section III-E we then show that, conditioned on
the witness, we can consider the channel realizations outside

7

the witness to be random and independent of the witness.
In Section III-F we use an expansion argument to bound the
stopping time of the birth and death process associated with
the marking process. Finally, in Section III-G we combine all
previous statements to derive at our conclusion.

B. Linearized Gallager Algorithm B

We proceed as in Section II: Fix0 ≤ ǫ < ǫLGalB. We
prove that for everyα > 0 there exists ann(α, ǫ) so that
lim supℓ→∞ E[P GalB

b (G, ǫ, ℓ)] < α for n ≥ n(α, ǫ).
Without loss of generality we can assume that the all-one

codeword was sent. We will make this assumption throughout
the remainder of this section. Therefore, the message1 signi-
fies in the sequel acorrect message, whereas−1 implies that
the message isincorrect.

For this setting, we define the followinglinearizedversion
of the decoder.

Definition 24 (Linearized GalB):The linearized GalB de-
coder, denoted by LGalB, is defined as follows: at the variable
node the computation rule is same as that of the GalB decoder.
At the check node the outgoing message is the minimum of
the incoming messages.
Discussion: The LGalB is not a practical decoding algorithm
but rather a convenient device for analysis; it is understood
that we assume that the all-one codeword was transmitted and
that quantities like the error probability refer to the variables
decoded as−1. By some abuse of notation, we nevertheless
refer to it as a decoder.

The LGalB decoder is monotone also with respect to the
incoming messages at check nodes. Moreover, it satisfies the
following property.

Lemma 25 (LGalB is Upper Bound on GalB):For any
graph G, any noise realizationE, any starting set of “bad”
edges, and anyℓ, we haveP GalB

e
(G, E, ℓ) ≤ P LGalB

e
(G, E, ℓ),

wherePe(G, E, ℓ) denotes the fraction of erroneous messages
after ℓ iterations of decoding.

Proof: Consider one iteration, i.e., a check-node step
followed by a variable-node step. LetBGalB/LGalB

ℓ denote the set
of bad edges (edges with message−1) after theℓ-th iteration
of GalB and LGalB, respectively. LetψGalB/LGalB

E
(B) denote the

set of bad edges after one iteration assuming that the initial
such set isB.

We use the following two facts: (i) The outgoing messages
for the LGalB decoder at variable/check nodes are monotone;
if we decrease (with respect to the natural order onM)
the input at a variable/check node then the output is either
decreased or stays the same. I.e., ifB ⊆ B′, meaning that the
messages inB′ can be obtained by decreasing some of the
+1 messages inB to −1, thenψLGalB

E
(B) ⊆ ψLGalB

E
(B′). (ii) For

any set of input messages, the outgoing message of LGalB is
less than or equal to the message of the GalB decoder, i.e.,
ψGalB
E

(B) ⊆ ψLGalB
E

(B).
For the proof, we proceed by induction. LetB0 be the initial

set of bad edges. After the first iteration, from (ii) we get
BGalB

1 = ψGalB
E

(B0) ⊆ ψLGalB
E

(B0) = BLGalB
1 . To complete the proof

it is sufficient to show thatBGalB
ℓ ⊆ BLGalB

ℓ implies BGalB
ℓ+1 ⊆

BLGalB
ℓ+1 . Using (i) and (ii) we haveBLGalB

ℓ+1 = ψLGalB
E

(BLGalB
ℓ) ⊇

ψLGalB
E

(BGalB
ℓ) ⊇ ψGalB

E
(BGalB

ℓ) = BGalB
ℓ+1 and hence the lemma.

From the above lemma it suffices to prove the exchange of
limits for the linearized algorithm. Note thatǫLGalB as defined
in Lemma 22 is the threshold of the LGalB algorithm. We
will prove that for every0 ≤ ǫ < ǫLGalB and everyα > 0 there
exists ann(α, ǫ) so thatlim supℓ→∞ E[P LGalB

b (G, ǫ, ℓ)] < α for
n ≥ n(α, ǫ). As we will see later, the monotonicity property
of LGalB considerably simplifies the analysis. But the price
paid for the simplification is that the technique works only for
ǫ < ǫLGalB, which is slightly smaller than the DE threshold.

C. Marking Process

Rather than analyzing the LGalB algorithm directly, we ana-
lyze the associatedmarking process. This process is monotone
as a function of the iterations.

More precisely, we split the process into two phases: we
start with LGalB forℓ(p) iterations to get the error probability
belowp; we then continue the marking process associated with
an infinite number of further iterations of LGalB. This means
that we mark any variable that is bad in at least one iteration
ℓ ≥ ℓ(p). Clearly, the union of all variables that are bad at
at least one point in timeℓ ≥ ℓ(p) is an upper bound on the
maximum number of variables that are bad at any specific
instance in time.

The standardscheduleof the LGalB is parallel, i.e., all
incoming messages (at either variable or check nodes) are
processed at the same time. This is the natural schedule for
an actual implementation. For the purpose of analysis it is
convenient to consider anasynchronousschedule.

Here is how the general asynchronous marking process
proceeds. We are given a graphG and a noise realizationE.
We are also given a set ofmarkededges. These marked edges
are directed, from variable node to check node. At the start
of the process mark the variable nodes that are connected
to the marked edges. Declare all other variables and edges
as unmarked. Unmarked edges do not have a direction. The
process proceeds in discrete steps. At each step we pick a
marked edge and we perform the processing described below.
We continue until no more marked edges are left. Here are
the processing rules:
If the marked edgee goes from variable to check:

• Let c be the check node connected toe. Declaree to be
unmarkedbut markall other edges connected toc; orient
these marked edges from check to variable;

If the marked edgee goes from check to variable:
• Let v be the connected variable node. Ifv has agood

associated channel realization andv is unmarked then
mark v and declaree to be unmarked.

• Let v be the connected variable node. Ifv has an asso-
ciatedbad channel realization or ifv has an associated
good channel realization but ismarked: (i) mark v and
all its outgoing edges; (ii) orient the edges from variable
to check; (iii) unmarke.

Let M(G, E,S) denote the set of marked variables assuming
that we start with the set of marked edgesS and that we
run the asynchronous marking process. LetM(G, E,S) =
|M(G, E,S)|. As a special case, letM(G, E, ℓ) denote the set
of marked variables at the end of the process assuming that

8

the initial set of marked edges is the set of bad edges afterℓ
rounds of LGalB. As before,M(G, E, ℓ) = |M(G, E, ℓ)|.

It is not hard to see that for anyℓ′ ≥ ℓ, P LGalB
b (G, ǫ, ℓ′) ≤

M(G, E, ℓ)/n: for ℓ′ = ℓ both processes start with the same
set of bad edges and both are operating on the same graph
and noise realization. At the check-node side the processing
rules are identical. At the variable-node side both processes
also behave in the same way if they encounter a variable
node with a bad channel realization. The difference lies in the
behavior when they encounter a variable node with a good
channel realization. In such a case the outgoing message for
the LGalB is bad only if there are two bad messages entering
at the same time instance. The asynchronous marking process
algorithm declares the outgoing message to be bad if there
are two incoming bad messages, even if the two messages
might correspond to different time instances as measured by
the parallel schedule. We conclude that forℓ′ ∈ N

lim sup
ℓ→∞

E[P LGalB
b (G, ǫ, ℓ)] ≤

1

n
E[M(G, E, ℓ′)]. (19)

D. Witness

It remains to boundE[M(G, E, ℓ)]. Assume at first that we
take a random graphG and a random noise realizationE and
that we start the marking process with a sufficiently small
random set of marked edges (and not the set of bad edges
after ℓ iterations of LGalB). In this case one can show that
the number of marked nodes at the end of the process is
with high probability not more than a constant multiple of
the size of the starting set. To prove this statement, we use
the fact that the graph, the noise, and the starting set of edges
are all independent. Therefore, the marking process behaves
essentially like a birth and death process: we pick an edge
and we explore its neighborhood; with a certain probabilitythe
edge dies (if it enters a variable node with a correctly received
value) and with a certain probability the edge spawns some
children. As long as the expected number of new children is
less than1 the process eventually dies with probability1.

Unfortunately our situation is more involved. Afterℓ it-
erations the starting set of marked edges is correlated, both
with the graph as well as with the noise realization. Our aim
therefore is to reduce this correlated case to the uncorrelated
case by a sequence of transformations. As a first step we show
how to get rid of the correlation with respect to the noise
realization.

Consider a fixed graphG. Assume that we have performed
ℓ iterations of LGalB. For each edgee that is bad in theℓ-th
iteration we construct a “witness.” A witness fore is a subset
of the computation tree of heightℓ (where height is counted as
the number of variable node levels) fore consisting of paths
that carried bad messages in the past iterations. We construct
the witness recursively starting withe. Orient e from check
node to variable node. At any point in time while constructing
the witness associated withe we have a partial witness that is
a tree with oriented edges. The initial such partial witnessis
e. One step in the construction consists of taking a leaf edge
of the partial witness and to “grow it out” according to the
following rules.

If an edge enters a variable node that has an incorrect
received value then add thesmallest(according to some fixed
but arbitrary order on the set of edges) edge that carries an
incorrect incoming message to the witness and continue the
process along this edge. The added edge is directed from
variable node to check node. If an edge enters a variable
node that has a correct received value then add both incoming
edges to the witness and follow the process along both edges.
(Note that in this case both of these edges must have carried
bad messages.) Again, both of these edges are directed from
variable to check node. If an edge enters a check node then
choose the smallest incoming edge that carries an incorrect
message and add it to the witness. Continue the process along
this edge. The added edge is directed from check to variable
node. Continue the process until depthℓ. Fig. 1 shows an
example forl = 3, r = 4, andℓ = 3.

e

h = 1

h = 2

h = 3

Fig. 1. Construction of the witness for a bad edgee. The dark variables
represent channel errors. The part of the tree withdark edges represent the
witness, thethick edges, including both dark and gray, represent the bad
messages in the past iterations. The numberh in the left indicates the height
of the tree.

Denote the union of all witnesses for all edges that are
bad in theℓ-th iteration byW(G, E, ℓ). We simply call it the
witness. The witness is a part of the graph that on its own
explains why the set of bad edges afterℓ iterations is bad.

How large isW? The largerℓ, the fewer bad edges we
expect to see in iterationℓ. On the other hand, the size of
the witness for each bad edge grows as a function ofℓ. The
next lemma, whose proof can be found in Appendix B, asserts
that the first effect dominates and that the expected size ofW
converges to zero as the number of iterations increases.

Lemma 26 (Size of Witness):Consider the (3, r)-regular
ensemble. For0 ≤ ǫ < ǫLGalB,

lim
n→∞

1

n
E[|W(G, E, ℓ)|] = oℓ(1).

Why do we construct a witness? It is intuitive that if we keep
the witness fixed but randomize the structure as well as the
received values on the remainder of the graph then the situation
should only get worse: already the witness itself explains all
the bad messages and hence any further bad channel values
can only create more bad messages. In the next two sections
we show that under some suitable technical conditions this
intuition is indeed correct.

9

E. Randomization

A witnessW consists of two parts, (i) the graph structure
of W and (ii) the channel realizations of the variables inW .
We will often need to refer to either of these parts on their
own. By some abuse of notation we writeW also if we refer
only to the graph structure or only to the channel realizations.
The usage should be clear from the context. As an example,
we writeW ⊆ G to indicate thatG containsW as a subgraph
and we writeW ⊆ E to indicate that the received values of
all variables inW agree with the values that these variables
take on inE.

Fix a graphG and a witnessW , W ⊆ G. Let EG,W denote
the set of all error realizationsE that give rise toW , i.e.,
W(G, E, ℓ) = W . Clearly, for all E ∈ EG,W we must have
W ⊆ E. In words, on the set of variables fixed by the witness
the errors are fixed by the witness itself. Therefore, the various
E that create this witness differ only onG\W . As a convention,
we defineEG,W = ∅ if W 6⊆ G.

Let E ′
G,W denote the set of projections ofEG,W onto the

variables inG\W . Let E′ ∈ E ′
G,W . Think of E′ as an element

of {0, 1}|G\W|, where0 denotes a correct received value and
1 denotes an incorrect received value. In this way,E ′

G,W is a
subset of{0, 1}|G\W|.

This is important:E ′
G,W has structure. We claim that, ifE′ ∈

E ′
G,W thenE ′

G,W also containsE′≤ (as defined in Appendix D).
More precisely, if the noise realizationE′ ∈ E ′

G,W gives rise to
the witnessW then converting any incorrect received value in
E
′ to a correct one will also give rise toW . This is true since

the LGalB algorithm is monotone, so that taking away some
incorrectly received values can not increase the size of bad
edges observed in theℓ-th iteration. But on the other hand,
W itself ensures that the set of bad edges afterℓ iterations
includes all the bad edges we saw originally. The proof of the
following lemma relies heavily on this property.

Lemma 27 (Channel Randomization):Fix G and letW ⊆
G. Let EE′ [·] denote the expectation with respect to the channel
realizationsE′ in G\W . Then

EE′ [M(G, (W , E′),W)1{E′∈E′

G,W
}]

≤ EE′ [M(G, (W , E′),W)]EE′ [1{E′∈E′

G,W}]. (20)
Discussion: Lemma 27 has the following important operational
significance. If we divide both sides byEE′ [1{E′∈E′

G,W
}], the

left-hand side is the expectation of marked variables, where
the expectation is computed over all those channel realizations
that give rise to the given witnessW , whereas the right-hand
side gives the expectation over all channel realizations (outside
the witness) regardless whether they give rise toW or not.
Clearly, the right-hand side is much easier to compute, since
the channel is now independent ofW . The lemma states that,
if we assume that the channel outsideW is independently
chosen then we get an upper bound on the size of the marked
variables.

Proof: Let n′ = |G\W|. Let P{·} be the probability
measure associated withEE′ [·], i.e., P{E′} = ǫn1 ǭn

′−n1 ,
wheren1 denotes the number of ones inE′. Let f(E′) denote
the function1{E′∈E′

G,W
}, and let g(E′) denote the function

M(G, (W , E′),W). Note thatf is a decreasing function on

{0, 1}n′

because iff(E′) = 1 then for allE′′ ≤ E
′, f(E′′) = 1.

Further,g is an increasing in{0, 1}n′

since LGalB is monotone
in the number of channel errors. Sinceg(E′) ≤ n, n−g is non-
negative and it is a decreasing function. Fors, t ∈ {0, 1}n′

,
let |s| denote the number of1s in s ands ∨ t ands ∧ t be as
defined in Appendix D. Then,

P{s}P{t} = ǫ|s|+|t|(ǭ)n′−|s|−|t|,

P{s ∨ t} = ǫ|s|+|t|−|s∧t|(ǭ)n′−(|s|+|t|−|s∧t|),

P{s ∧ t} = ǫ|s∧t|(ǭ)n′−|s∧t|.

Therefore,P{s}P{t} = P{s∨t}P{s∧t}. Applying the FKG
inequality in the form of Lemma 37 tof andn− g, we get

E[f(n− g)] ≥ E[f]E[n− g].

This impliesE[fg] ≤ E[f]E[g].
We can now upper bound the right-hand side of (19). The

proof of the next lemma can be found in Appendix C.
Lemma 28 (Markov Inequality):Consider the(l = 3, r)-

regular ensemble and transmission over the BSC(ǫ). Let (G, E)
be chosen uniformly at random. Letℓ ∈ N andθ > 0 so that
E[|W(G, E, ℓ)|] ≤ θ2n. Then

E[M(G, E, ℓ)]

≤
∑

W:|W|≤θn

∑

G

P{G}P{EG,W}EE′ [M(G, (W , E′),W)] + θn.

F. Back to Expansion

In the previous section we have shown that for a fixed graph
G, and a given witnessW , we can ignore the correlations
between the witness and thechannel valuesin G\W and
consider those channel values to be chosen independently. But
the graph structureof G\W is still correlated withW . Let us
now deal with this correlation and get a bound on the marking
process for thoseG that have an expansion close to the typical
one of the ensemble.

Consider the following random process, which we call the
R-process. The process proceeds in discrete steps and hasstate
(Ct, St, Bt, It) at time t, where each component is an integer.
We initialize the process with(C0, S0, B0, I0) = (0, S0, 0, 0),
whereS0 ∈ N.

At each step we have two choices. We can either perform a
regularstep or aboundarystep. The effect of each step type on
the state(Ct, St, Bt, It) is shown in Table III. If we choose
a regular step then, with probabilityǫ, an extensionstep is
executed and, with probabilitȳǫ, a pruningstep is performed.
The choices of extension step versus pruning step are iid.

In our choice of step type we are restricted by the following:
at any time during the process the state has to satisfy

γrCt ≤ St +Bt + It, (21)

whereγ = 1 − 1+δ
r

for some strictly positive numberδ. Let
T be the smallest timet so thatSt = 0. It is convenient to
formally define the process for allt by settingUt = UT for
t ≥ T .

Discussion: Here is the interpretation of the above process.
We are given a fixed graphG and a witnessW . The channel

10

Ct St Bt It

regular extend 2 2r− 3 0 1

1 r− 3 0 1

0 −3 0 1

regular prune 0 −1 1 0

boundary 1 r− 2 −1 1

0 −2 −1 1

TABLE III

POSSIBLE STATE TRANSITIONS. NOTE THAT THERE ARE SEVERAL

POSSIBLE TRANSITIONS CORRESPONDING TO A“ REGULAR EXTEND” STEP

AS WELL AS A “ BOUNDARY” STEP. AS EXPLAINED BELOW, THE

TRANSITIONS INDICATED IN BOLD LETTERS DOMINATE THE OTHER

TRANSITIONS IN THE SENSE OFDEFINITION 29.

realizations inG\W are generated independently with proba-
bility of error ǫ. We are interested in computing the expected
number of marked variablesEE′ [M(G, (W , E′),W)].

The components of the state vector have the following
interpretation. By some further abuse of notation, letW refer
now also to the variables contained inW . Let N (W) denote
all the check nodes that neighborW . We start our process
with those edges connected toN (W) that do not connect to
W . The cardinality of this set is denoted byS0 (where the “s”
stands forsurviving). In each step we take a single edge from
this set of surviving edges and “grow it out.”

Let us discuss this process in more detail. When we “grow
out” an edge we first visit the connected variable node.
Suppose that this is the first time that the process visits this
variable node. We call this aregular step.

If the received value of this variable node is good then we
stop the process along this edge. We add the variable to the
boundaryset to make a mental note that we have seen this
node exactly once. The boundary set has cardinalityBt. We
further subtract1 from St to take into account that we finished
processing one of the “surviving” edges.

If the received value is bad then we add this variable node
to the internal variable nodes. The cardinality of this set is
It. This means that in this step we increaseIt by 1. Further,
we expand the graph along the two outgoing edges, add the
(at most) two connected check nodes to the set of internal
check nodes (whose cardinality is denoted byCt) and add all
the remaining edges that emanate from these check nodes to
the set of surviving edges. This adds (at most)2(r− 1) new
survivors, but we have to subtract the edge we started from.
Therefore,St is increased by at most2r− 3.

So far we have assumed that we have not seen the variable
node (that is connected to the edge which we grow out) before.
Suppose now that, to the contrary, the variable is an element
of the boundary. We know that in this case the received value
is good, but we also know that the variable received another
bad incoming message. Therefore, the variable will send a bad
outgoing message along its remaining edge. Hence, we move
this variable node from the boundary to the internal set (this
decreasesBt by 1 and increasesIt by 1). Further, we grow out
the graph along the only remaining outgoing edge. This adds
at most one new check node and at mostr−1 outgoing edges
to the set of surviving edges. Discounting again the edge we
started with, we add in total at mostr− 2 to St.

Suppose that the graphG is a right expander; i.e.,G ∈
X (l, r, α, γ), whereγ ≥ 1− 1+δ

r
for some strictly positiveδ.

This means that every collectionC of check nodes of size at
mostαm has at leastγ|C|r connected variable nodes. Consider
the state of the system at some timet. At this point in time we
haveCt check nodes. All these check nodes are “internal,” i.e.,
all their neighboring variable nodes are either counted inVt

or It, or they are yet to be encountered by the process which
cannot be more than the survivors setSt. We know thatG is
an expander and suppose for now thatCt ≤ αm. Then we
know that the number of connected variable neighbors must
be at leastγrCt, i.e., at any time during the process the state
should satisfy

γrCt ≤ St +Bt + It. (22)

We claim that

γrCt ≤ St +Bt + It − (1 − δ) (23)

is a necessary condition to be able to perform a boundary step
at time t. To see this, suppose we take a boundary step. If
you look at Table III you will see that there are two possible
transitions. One can check that the transition stated in bold
letters gives the less restrictive condition. Let us therefore only
focus on this case. The state after applying the boundary state
must still fulfill (22). This means that we must have

γr(Ct + 1) ≤ (St + r− 2) + (Bt − 1) + (It + 1).

The claim is proved by rewriting this inequality.
From the above discussion we claim that for a givenW

and G, where G ∈ X (l, r, α, γ), as long asCt ≤ αm
then the marking process can be modeled as the R-process.
The random variableI∞ is equal to the random variable
M(G, (W , E′),W)− |W| of the marking process (we subtract
the size of witness because we do not include it in the internal
variables). For the actual marking process the decision of
whether a regular step or a boundary step is taken is forced
by the structure of the graph and our choice of which edge to
grow out. For the R-process the role of graph is taken by a
strategy. A strategy is any (randomized) decision functionF
that, based on the initial state and past decisions and outcomes,
decides whether a regular step or a boundary step is taken at
any point in time.

Here is the connection between the actual physical process
and the R-process in more detail. Assume we are given a
graphG and a witnessW . We know the graph and therefore
we also know which edges of the graph are elements of the
surviving set. Therefore, when we pick a survivor, we know
in advance whether the step is a regular step or a boundary
step. The noise realization, which is not known to us a priori,
determines whether a regular step is a regular extend or prune
step. We see that each graph gives rise to a strategy. As long as
the size of all revealed nodes is sufficiently small this strategy
will be admissible since the expansion will be valid up to this
point.

Since we are only interested in an upper bound on the
number of marked variables, we allow the R-process to use
an arbitrarystrategy, only limited by the condition (22). We

11

call a strategy which obeys (22) anadmissiblestrategy. Since
the actual physical process is also limited by (22) (under the
condition that the graph is an expander and the process has
not grown beyond the size where the expansion is valid), it
suffices to derive upper bounds onE[I∞] that is valid for all
choices of the strategy.

We relax one further restriction imposed by the actual
physical process in order to simplify our task. Again, this only
increasesE[I∞]. In the marking process, we can only perform
a boundary step if the boundary set is strictly positive. In other
words, we requireBt > 0 for a boundary step to be performed.
We lift this restriction for the R-process.

Definition 29 (Ordering of States):The state U ≡
(C, S,B, I) dominates the stateU ′ ≡ (C′, S′, B′, I ′),
denoted byU ≥ U ′ if

(i) S ≥ S′,
(ii) I ≥ I ′,
(iii) S +B + I − γrC ≥ S′ +B′ + I ′ − γrC′.

♦

Lemma 30 (Monotonicity ofI∞ with State): Consider the
R-process with admissible strategyF ′ and initial stateU ′ ≡
(C′, S′, B′, I ′). Let U ≡ (C, S,B, I) be an initial state
which dominatesU ′, i.e., U ≥ U ′. Then there exists an
admissible strategyF so thatE[I∞(U,F)] ≥ E[I∞(U ′, F ′)],
whereI∞(U,F) denotesI∞ assuming that the R-process is
initialized with U and that the process uses the strategyF .

Proof: Given U ′ and the admissible strategyF ′ we
construct the admissible strategyF in the following way. The
process with initial stateU uses strategyF ′ but applies it to the
pseudostateU ′. Further, it updates its pseudo state according
to the realization of the process and bases its future decisions
on strategyF ′ applied to this evolving pseudo state. Call the
phase of the process until the pseudo state has reachedS′ = 0
the “initial” phase of the process. At that point the(U,F)
process switches to any admissible strategy based on its real
state. To be concrete, assume that it uses agreedy strategyat
this point. This means that the process performs a boundary
step any time it is admissible.

In order to show the desired inequality on the expected
values we couple the processes(U ′, F ′) and (U,F). We
imagine that we run both processes in parallel and that they
experience exactly the same randomness (this refers to the
randomness contained in the choice of the transitions as well as
any randomness which might be used by the strategy). Assume
for the moment that strategyF is admissible.

In the initial phase of the algorithm (until the(U ′, F ′)
process stops becauseS′

t = 0) the (U,F) process proceeds
in lock-step with the(U ′, S′) process. SinceS0 ≥ S′

0 and
sinceSt − S0 = S′

t −S′
0 it follows thatSt ≥ S′

t in this initial
phase. This means that the process(U,F) never stops before
the process(U ′, F ′). Further,I0 ≥ I ′0, It − I0 = I ′t − I ′0,
and It is a non-decreasing function. It follows that for every
realizationI∞(U,F) ≥ I∞(U ′, F ′). This implies,a fortiori,
the claimed inequality on the expected values.

Let us now show that the protocolF is admissible. We
claim that for allt ∈ N

St +Bt + It − γrCt ≥ S′
t +B′

t + I ′t − γrC′
t. (24)

By definition this is true fort = 0. But by construction of the
coupling,St − S0 = S′

t − S′
0, It − I0 = I ′t − I ′0, Bt − B0 =

B′
t−B

′
0, andCt −C0 = C′

t −C
′
0. It follows that the left-hand

side in (24) is always at least as large as the right-hand side.
Therefore, ifF ′ is admissible then so isF .

From Table III we see that for regular extend and boundary
steps there are several possible outcomes. For each of these
two steps, there is a single outcome (highlighted in the table)
whose resulting state dominates those of the other outcomes.
Since we are interested in an upper bound onI∞, thanks to the
above lemma, we can restrict our attention to these dominating
steps.

Consider thegreedystrategy, call ifF g. For this greedy
strategy, whenever (23) is true we perform a boundary step.

Lemma 31 (Domination of the Greedy Process):For a
given initial stateU = (C0, S0, B0, I0) and any admissible
strategyF , we have

E[I∞(U,F g)] ≥ E[I∞(U,F)].

Proof: Again we construct a coupling between the
processes(U,F) and (U,F g). As remarked above, for both
processes we can assume that the state transitions are the ones
indicated in bold in Table III. The only randomness therefore
resides in whether for a regular step the processextendsor
prunesand, possibly, in the randomness used for the strategy
F . There is no randomness involved in any boundary steps.
The coupling consists in coupling for each regular stepi,
i ∈ N, the outcomes of these regular steps. In more detail, if
for the process(U,F) the i-th regular step results in a pruning
then the same occurs for thei-th regular step for the process
(U,F g). By construction, for all regular steps the change of
S, I, B, andC is the same for both processes. Assume we
measure “time” not in the absolute number of steps taken
but by the number of regular steps taken. Consider a process
(U,F) and assume that this process is still “alive” at ‘timet.
Then its stateUt only depends on the realization of the random
variables during the regular steps and on the total number of
boundary steps taken, but it does not depend on the order of
the steps taken.

Since the process(U,F g) has by definition done at least as
many boundary steps as the process(U,F) it further follows
that if we compare the two processes at “time”i corresponding
to i regular steps then the number of survivors (and also the
number of internal nodes) for(U,F g) is at least as large as the
number of survivors for(U,F). Therefore, if at this time the
process(U,F) is still alive then so is the process(U,F g) and
the latter has at least as many accumulated internal variable
nodes as the former. This proves our claim.

Since we are interested inupper bounding E[I∞], it is
sufficient to boundE[I∞(U,F g)], which is done in the next
lemma. We use large deviation properties of the sub-critical
Galton-Watson process. For the convenience of the reader we
provide this estimate in Appendix E.

Lemma 32 (Birth Death Process):Let the initial state be
U = (0, S0, 0, 0). Fix a strictly positiveδ, 0 < δ < 1

2(r−1) , so

that 1−δ
2δ ∈ N and letγ = 1 − 1+δ

r
. For all ǫ < 1

2(r−1) there
exist constantsc = c(l, r, ǫ, δ), c > 1, andc′ = c′(l, r, ǫ, δ) >

12

0 so that

P{I∞(U,F g) ≥ cS0} ≤ e−c′S0 .

Proof: Since condition (23) is satisfied in the beginning,
the greedy R-process starts with some boundary steps. We
claim that after exactly⌊ S0

1−δ ⌋ such boundary steps the condi-
tion (23) is for the first time no longer fulfilled. To see this,
ignore the integer constraint for a moment. At the beginning
of the process the condition (23) reads0 ≤ S0− (1−δ). After
S0

1−δ boundary steps this condition is transformed to

γr
S0

1 − δ
≤ S0 +

S0

1 − δ
(r− 2) − (1 − δ),

which is equivalent to0 ≤ −(1−δ). We see that the inequality
is no longer fulfilled and it is easy to check that this is the
first time that it is no longer fulfilled.

After the initial boundary steps, the greedy strategy per-
forms regular steps until exactly1−δ

2δ regular extend steps are
performed and then follows it by exactly one boundary step.
This sequence is then repeated. (Note that by our assumption
1−δ
2δ ∈ N.)

To see this, note that each regular extend step increases the
right-hand side of (22) by2(r− 1) and the left-hand side by
2(r − 1 − δ). Further, each boundary step increases the left-
hand side byr−1− δ and the right-hand side byr−2. Since
1−δ
2δ 2(r−1−δ)+(r−1−δ) = 1−δ

2δ 2(r−1)+(r−2), we see
that after one such sequence of first1−δ

2δ regular extends steps
followed by a boundary step the inequality is unchanged (up
to an added constant). (A regular prune step does not change
the condition (22).)

Since the randomness is contained only in the regular steps,
we can model the process as consisting of only regular steps.
To include the effect of boundary steps, we alter the outcome
of the regular extend step as follows. From Table III note that
for each regular extend step we increaseS by 2r − 3 and I
by 1. We include the effect of boundary step by changing this
to an increment of2r − 3 + (r − 2) 2δ

1−δ for S and 1 + 2δ
1−δ

for I, respectively.
Now this process is a standard birth and death process.

Recall that we haveǫ < 1
2(r−1) and δ < 1

2(r−1) . Hence, the

expected increase inS at each step isǫ(2r−3+(r−2) 2δ
1−δ).

This is strictly less than1. As discussed in more detail in
Appendix E, this shows that, except for an exponentially small
probability, this process stops fort ≤ cS0 for some appropriate
constantc > 1. This proves our lemma since in each step we
create at most1 + 2δ

1−δ internal variables.
Using Lemma 32 we bound the number of variables marked

by the marking process as follows.
Lemma 33 (Upper Bound):Let γ = 1 − 1+δ

r
for some

0 < δ < 1
2(r−1) . Fix G and W such thatW ⊆ G and G ∈

X (l, r, α, γ). Let c = c(l, r, ǫ, δ) be the constant appearing
in Lemma 32. If|W| ≤ l

6c(r−1)rαn then

lim
n→∞

1

n
EE′ [M(G, (W , E′),W)] ≤ α

l

r
.

Proof: Let m = l

r
n. The maximum number of surviving

edges coming out of the witnessW is 3(r−1)|W|. Let this be
S0. Consider the R-process with initial stateU = (0, S0, 0, 0)

and the greedy strategyF g. From Lemma 32 there exists a
strictly positive constantc′ such that

P{I∞(U,F g) ≥ cS0} ≤ e−c′S0 .

The bound on|W| in the hypothesis implies thatcS0 =
c3(r − 1)|W| ≤ α

2m. From Table III we see that any time
the number of internal variable nodes is increased by1 the
number of check nodes increases by at most2. Therefore,
I∞(U,F g) ≤ cS0 implies thatC∞ ≤ 2cS0 ≤ αm. This shows
that the expansion property is satisfied for the whole duration
of the process. Hence,I∞(U,F g) is a valid upper bound for
M(G, (W , E′),W).

Let M(E′) denoteM(G, (W , E′),W). SinceM(E′) counts
the initial |W| < α

2m variables present inW along with the
internal variables created,

P{M(E′) ≥ αm} ≤ P{I∞(U,F g) ≥
α

2
m} ≤ e−c′S0 .

Therefore,

EE′ [M(G, (W , E′),W)]

≤ P{M(E′) ≤ αm}αm+ P{M(E′) ≥ αm}n

≤ α
l

r
n+ (1 − e−

c′αln
2r)n.

The lemma is proved by taking the limitn→ ∞.

G. Putting It All Together

In this section we prove Lemma 22 using the results
developed in the previous sections.
Proof of Lemma 22.Recall that we consider an(l = 3, r)-
regular ensemble and that0 ≤ ǫ < ǫLGalB.

Fix 0 < δ < 1
2(r−1) and defineγ = 1 − 1+δ

r
. Let αmax(γ)

be the constant defined in Theorem 2. Note thatαmax(γ) is
strictly positive sinceδ is strictly positive.

Choose 0 < α < αmax(γ). Let X (l, r, α, γ) de-
note the set of graphs{G ∈ LDPC(n, l, r) : G ∈
(l, r, α, γ) right expander}. From Theorem 2 we know that

P{G 6∈ X} = on(1). (25)

Let c = c(l, r, ǫ, δ) be the coefficient appearing in Lemma
32 and defineθ = l

6c(r−1)rα. From Lemma 26 we know that
there exists an iterationℓ such that

lim
n→∞

1

n
E[|W(G, E, ℓ)|] ≤

1

2
θ2. (26)

Let n(θ) be such that forn ≥ n(θ), E[|W(G, E, ℓ)|] ≤ θ2n.
Using Lemma 28, and splitting the expectation overX and

its complement, we get

E[M(G, E, ℓ)]

≤
∑

W:|W|≤θn

∑

G:G∈X

P{G}P{EG,W}EE′ [M(G, (W , E′),W)]+

∑

W:|W|≤θn

∑

G:G 6∈X

P{G}P{EG,W}EE′ [M(G, (W , E′),W)]+

θn.

13

Consider the first term. From Lemma 33 we know that

EE′ [M(G, (W , E′),W)] ≤ α
l

r
n+ o(n). (27)

Consider the second term. Bound the expectation byn and
remove the restriction on the size of the witness. This gives
the bound

∑

W

∑

G:G 6∈X

P{G}P{EG,W}n.

Switch the two summations and use the fact that, for a given
G, eachE realization maps to only oneW . We get

∑

G:G 6∈X

P{G}
∑

W:W⊆G

P{EG,W} =
∑

G:G 6∈X

P{G} = P{G 6∈ X}

(25)
= on(1). (28)

From (27) and (28) we conclude that forn ≥ n(θ),

1

n
E[M(G, E, ℓ)]

≤
∑

W:|W|≤θn

∑

G:G∈X

P{G}P{EG,W}
(

α
l

r
+ on(1)

)

+
l

6c(r− 1)r
α

≤

(

l

r
+

l

6c(r− 1)r

)

α+ on(1).

If we now letn tend to infinity then we get

lim
n→∞

lim sup
ℓ→∞

E[P LGalB
b (G, ǫ, ℓ)] ≤ lim

n→∞

1

n
E[M(G, E, ℓ)]

≤

(

l

r
+

l

6c(r− 1)r

)

α.

Since this conclusion is valid for any0 < α ≤ αmax(γ) it
follows that

lim
n→∞

lim sup
ℓ→∞

E[P LGalB
b (G, ǫ, ℓ)] = 0. �

H. Extensions

1) GalB andl ≥ 4: Note that forl ≥ 5 the result is
already implied by Theorem??. For l = 4 the proof is easily
adapted from the one forl = 3. The only difference lies in
the way the size of the witness is computed (Section III-D)
and the analysis of the birth-death process (Section III-F).

2) MS and BSC:The proofs can also be extended to other
decoders. For a given MP decoder, the idea is to define an
appropriatelinearizedversion of the decoder (LMP) and go
through the whole machinery as done for GalB.

For example, consider the MS(M) decoder and transmission
over BSC(ǫ). The channel realizations are mapped to{±1}.
LetM ∈ N, the message alphabet isM = {−M, . . . ,M}. For
transmission of the all-one codeword, thelinearizedversion of
the decoder (LMS(M)) is defined as in Definition 24: i.e., at
the check node the outgoing message is the minimum of the
incoming messages and the variable node rule is unchanged.

One can check that the LMS algorithm defined above is
monotonic with respect to the input log-likelihoods at both
the variable and check nodes and the number of errors in the

MS decoder can be upper bounded by the errors of the LMS
decoder.

Lemma 34 (MS(M) Decoder, BSC andl ≥ 3): Consider
(l, r) ensemble and transmission over BSC(ǫ). Let ǫLMS be the
channel parameter below whichp(∞)

{M} = 1. If ǫ < ǫLMS, then

lim
n→∞

lim sup
ℓ→∞

E[P MS
b (G, ǫ, ℓ)] = 0

Example 35 (LMS(2) and BSC):Consider communication
using LDPC(3, 6) code over BSC(ǫ) and decoding using
MS(2) algorithm. For this setup, the DE threshold is0.063.
The linearized decoder of this algorithm hasp(∞)

{2} = 1 for
ǫ < 0.031. Therefore from the Lemma 34 the limits can be
exchanged for thisǫ.

The proof follows by showing results similar to Lemma
26 and 33. Here we give a brief explanation for adapting the
proof to the case ofM = 2 andl = 3. For a givenp > 0, we
first performℓ(p) iterations such thatp(ℓ)

{−M,...,M−1} ≤ p. We
start the marking process from all the edges with messages in
{−M, . . . ,M − 1} and their witness. In this case the witness
consists of edges which send messages{−M, . . . ,M − 1}.

To show that the size of the witness is going to zero,
consider the DE equations similar to those in Appendix B.
Let pµ

ℓ (x) denote a polynomial with non-negative coefficients
where the coefficient in front ofxi denotes the probability that
the message emitted by a variable node at iterationℓ is µ and
that the witness (of depthℓ) for this edge has sizei. Let qµ

ℓ (x)
denote the equivalent quantity for messages emitted at check
nodes. Then the DE equations for this augmented system are
given by:

p−1
1 (x) = ǫx, p+1

1 (x) = ǭx,

p+1
ℓ (x) = ǫx((q+1

ℓ−1(x))
2 + 2q+2

ℓ−1(1)q0ℓ−1(x))+

ǭx(2q+2
ℓ−1(1)q−2

ℓ−1(x) + 2q+1
ℓ−1(x)q

−1
ℓ−1(x) + (q0ℓ−1(x))

2),

p0
ℓ(x) = ǫx(2q+2

ℓ−1(1)q−1
ℓ−1(x) + 2q+1

ℓ−1(x)q
0
ℓ−1)+

ǭx(2q+1
ℓ−1(x)q

−2
ℓ−1(x) + 2q0ℓ−1(x)q

−1
ℓ−1(x)),

p−1
ℓ (x) = ǭx((q−1

ℓ−1(x))
2 + 2q−2

ℓ−1(x)q
0
ℓ−1(x))+

ǫx(2q+2
ℓ−1(1)q−2

ℓ−1(x) + 2q+1
ℓ−1(x)q

−1
ℓ−1(x) + (q0ℓ−1(x))

2),

p−2
ℓ (x) = ǫx2(q−2

ℓ−1(x)(q
+1
ℓ−1(x) + q0ℓ−1(x) + q−1

ℓ−1(x)))

+ ǫx(2q0ℓ−1(x)q
−1
ℓ−1(x) + (q−1

ℓ−1(x))
2(q−2

ℓ−1(x))
2)

+ ǭx(2q−1
ℓ−1(x)q

−2
ℓ−1(x) + (q−2

ℓ−1(x))
2),

qµ
ℓ (x) =

pµ
ℓ−1(x)

pµ
ℓ−1(1)

((1 −

µ−1
∑

i=−M

pi
ℓ−1)

r−1 − (1 −

µ
∑

i=−M

pi
ℓ−1)

r−1)

Using the hypothesisp(∞)
{M} = 1 and doing a similar analysis

as in Appendix B we can show that the size of the witness
behaves asoℓ(1). In the corresponding birth-death process we
have to keep track of the size of the set of edges with messages
in {−M, . . . ,M − 1}.

Similar results can be obtained for BP(M) decoder, and
channels with continuous outputs. But the analysis of these
decoders is more complicated because we have to deal with
densities of messages.

3) MS(M) and continuous channel:Consider transmission
through BMS channels with bounded output log-likelihoods
and decoding using MS(M) decoder. For this setup it is

14

tempting to conjecture that the proofs can be extended using
FKG inequalities for continuous lattices [6].

IV. CONCLUSION

We have shown two approaches for solving the problem
of limit exchange below the DE threshold. The first one,
based solely on the expansion property of the graph, helps
in proving the result for a large class of MP decoders but only
if the degree is relatively large. To prove the result for smaller
degrees one has to include the role of channel realizations.
The second approach accomplishes this in some cases. In
this paper we only considered channel parameters below the
DE threshold. But the regime above this threshold is equally
interesting. One important application of proving the exchange
of limits in this regime is the finite-length analysis via a scaling
approach [7] since the computation of the scaling parameters
heavily depends on the fact that this exchange is permissible.

ACKNOWLEDGMENT

We would like to thank A. Montanari for suggesting to
directly apply the FKG inequalities in the proof of Lemma 27
instead of the original more elaborate construction. The work
presented in this paper is partially supported by the National
Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported
by the Swiss National Science Foundation under grant number
5005-67322.

APPENDIX

A. Expansion Argument For Block Error Probability

The following theorem is a modified version of a theorem
by Burshtein and Miller [5].

Theorem 36 (Expansion):Consider an(l, r, α, γ) left ex-
pander. Assume that0 ≤ β ≤ 1 such thatβ(l − 1) ∈ N and
thatβ l−1

l
≤ 2γ − 1. If at some iterationℓ the number of bad

variable nodes is less thanα
lr
n then the MP algorithm will

decode successfully.
Proof: Let Bℓ denote the bad set in iterationℓ. We claim

that

γl|Bℓ ∪ Bℓ+1|
(i)

≤ |N (Bℓ ∪ Bℓ+1)|

(ii)

≤ |N (Bℓ)| + β(l − 1)|Bℓ+1\Bℓ|. (29)

Step (ii) follows from the fact that each variable inBℓ+1\Bℓ

must be connected to at leastl − β(l − 1) checks in the set
N (Bℓ) since otherwise this variable will be good and wont
be in Bℓ+1. Therefore the number of edges coming out of
Bℓ+1\Bℓ that are not connecting toN (Bℓ) is at mostβ(l −
1)|Bℓ+1\Bℓ|. Thus the number of neighbors ofBℓ+1\Bℓ that
are not already neighbors ofBℓ is at mostβ(l− 1)|Bℓ+1\Bℓ|.

Consider now step (i). This step follows in a straightforward
fashion from the expansion property since by assumption
|Bℓ| ≤

α
lr
n so that|Bℓ ∪ Bℓ+1| < αn.

Let T be the set of check nodes that are connected toBℓ ∩
Bℓ+1 but not connected toBℓ\Bℓ+1. Suppose an edge from a
check node inT is carrying a bad message. Then this check

must be connected to one more variable inBℓ ∩Bℓ+1 because
it is not connected toBℓ\Bℓ+1 and thus cannot get a bad
message fromBℓ\Bℓ+1. For each variable inBℓ ∩ Bℓ+1, at
leastl−β(l−1) edges must be bad messages and hence it can
connect to at most(l−β(l−1))/2+β(l−1) = l/2+β(l−1)/2
check nodes. Therefore we have,

|N (Bℓ)| ≤ l|Bℓ\Bℓ+1| + |T |,

|N (Bℓ)| ≤ l|Bℓ\Bℓ+1| +
1 + β l−1

l

2
l|Bℓ ∩ Bℓ+1|. (30)

Using equations(29) and (30), we get

γl|Bℓ+1 ∪ Bℓ| ≤l|Bℓ\Bℓ+1| +
1 + β l−1

l

2
l|Bℓ+1 ∩ Bℓ|

+ β(l − 1)|Bℓ+1\Bℓ|

γ|Bℓ+1 ∩ Bℓ| + γ|Bℓ\Bℓ+1| + γ|Bℓ+1\Bℓ|

≤|Bℓ\Bℓ+1| +
1 + β l−1

l

2
|Bℓ+1 ∩ Bℓ|+

β
l − 1

l
|Bℓ+1\Bℓ|

|Bℓ+1\Bℓ| ≤
(1 − γ)

γ − β l−1
l

|Bℓ\Bℓ+1|+

1 + β l−1
l − 2γ

2(γ − β l−1
l)

|Bℓ ∩ Bℓ+1|

The coefficient of the first term in RHS is less than1 and
the coefficient of the second term is negative and hence
|Bℓ+1\Bℓ| < |Bℓ\Bℓ+1|

B. Size of Witness

Proof of Lemma 26.Let G be a graph and letE be the
noise realization. Assume that we performℓ iterations. Let
We(G, E, ℓ) denote the witness of edgee. Then

E[|W(G, E, ℓ)|] ≤
ln
∑

i=1

E[|Wei
(G, E, ℓ)|] = nlE[|We1(G, E, ℓ)|].

It remains to compute the expected size of the witness for
the limit of n tending to infinity and a fixedℓ. This can be
accomplished by DE.

Let xℓ denote the probability of an edge being in error
according to DE. Letpℓ(x) denote a polynomial with non-
negative coefficients where the coefficient in front ofxi

denotes the probability that the message emitted by a variable
node at iterationℓ is bad and that the witness (of depthℓ) for
this edge has sizei (i variable nodes). Letqℓ(x) denote the
equivalent quantity for messages emitted at check nodes. The
DE equations for this augmented system are:

p1(x) = ǫx,

pℓ(x) = ǫ(2 − qℓ(1))qℓ(x)x + ǭqℓ(x)
2x,

qℓ(x) =
pℓ−1(x)

pℓ−1(1)
(1 − (1 − pℓ−1(1))r−1).

The initialization p1(x) = ǫx reflects the fact that with
probabilityǫ a variable-to-check message is in error in iteration
1 and that its associated witness of depth1 consists only of
the attached variable (hence thex).

15

The recursion forqℓ(x) is also straightforward. With prob-
ability 1 − (1 − pℓ−1(1))r−1 at least one of ther − 1
incoming messages at a check node is bad, and in this case
the distribution of the size of the attached witness ispℓ−1(x)

pℓ−1(1)
.

Let us now look at the recursion forpℓ(x). There are three
contributions: (i) Suppose that the variable has a bad received
value and that exactly one of the incoming edges is bad; this
happens with probabilityǫ2(1 − qℓ(1))qℓ(1) and in this case
the distribution of the size of the witness attached to this
edge is qℓ(x)x

qℓ(1)
, where the extrax accounts for the attached

variable node. (ii) Suppose that the variable has a bad received
value and that both incoming edges are bad; this happens with
probabilityǫqℓ(1)2, and in this case the distribution of the size
of the witness attached to this edge isqℓ(x)x

qℓ(1)
. (iii) Finally,

suppose that the variable has a good received value and that
both the incoming edges are bad; this happens with probability
ǭqℓ(1)2 and in this case the distribution of the size of the
witness attached to this edge isqℓ(x)2x

qℓ(1)2
.

Note that we get standard DE by settingx = 1, i.e.,
we havexℓ = pℓ(1). We want to show thatp′ℓ(1) (this
is the expected size of the witness in the limit of infinite
blocklengths) converges to zero as a function ofℓ.

The augmented DE equation is difficult to handle. So let
us first write down a scalar version that tracks the expected
value. Defineβℓ = (1−(1−pℓ(1))

r−1)
pℓ(1)

. Then we get

pℓ(x) = ǫ(2 − qℓ(1))βℓ−1pℓ−1(x)x + ǭβ2
ℓ−1pℓ−1(x)

2x.

Differentiate both sides with respect tox. This gives

p′ℓ(x) =ǫβℓ−1(2 − qℓ(1))(p′ℓ−1(x)x + pℓ−1(x))

+ ǭβ2
ℓ−1(pℓ−1(x))

2 + ǭβ2
ℓ−12pℓ−1(x)p

′
ℓ−1(x)x.

Now substitutex = 1. Recall thatxℓ = pℓ(1) and define
pℓ = p′ℓ(1). Further, bound2− qℓ(1) by 2 andβℓ by (r− 1).
This gives the inequality

pℓ ≤2ǫ(r− 1)pℓ−1 + 2ǫ(r− 1)xℓ−1

+ ǭ(r − 1)2x2
ℓ−1 + 2ǭ(r− 1)2xℓ−1pℓ−1.

We claim thatℓxℓ ≤ pℓ. This is true sincexℓ is the probability
of a bad message, whereaspℓ is the expected size of the
witness and the witness size is always at leastℓ if the message
is bad. Therefore,

pℓ

pℓ−1
≤2ǫ(r− 1) + 2ǫ(r− 1)

xℓ−1

pℓ−1

+ ǭ(r− 1)2
x2

ℓ−1

pℓ−1
+ 2ǭ(r − 1)2xℓ−1

≤2ǫ(r− 1) + 2ǫ
(r− 1)

ℓ
+ 3ǭ(r− 1)2xℓ−1.

Now note thatxℓ tends to zero sinceǫ < ǫLGalB. Therefore,
if 2ǫ(r − 1) < 1 then pℓ/pℓ−1 < 1 for ℓ sufficiently large.
The stability condition impliesǫLGalB < 1

2(r−1) . Therefore, for
ǫ < ǫLGalB, pℓ tends to zero exponentially fast for increasingℓ.
�

C. Randomization

Proof of Lemma 28.We have

E[M(G, E, ℓ)]

=
∑

W

E[M(G, E,W)1{W(G,E,ℓ)=W}]

=
∑

W,G

P{G}EE[M(G, E,W)1{W(G,E,ℓ)=W}]

=
∑

W,G

P{G}EE[M(G, E,W)1{E∈EG,W}].

For all E ∈ EG,W , the channel values onW are fixed to those
appearing in the witness which is also denoted byW . Recall
that E ′

G,W is the projection ofEG,W on G\W andE′ ∈ E ′
G,W .

The above expectation is equivalent to

EE[M(G, (W , E′),W)1{(W,E′)∈EG,W}] =

P(W)EE′ [M(G, (W , E′),W)1{E′∈E′

G,W
}],

whereP(W) is the probability of the channel values onW .
This impliesP(W)P(E ′

G,W) = P(EG,W). Using (20) we bound

EE′ [M(G, (W , E′),W)1{E′∈E′

G,W}]

≤ P(E ′
G,W)EE′ [M(G, (W , E′),W)].

Therefore,

E[M(G, E, ℓ)]

≤
∑

W,G

P{G}P{EG,W}EE′ [M(G, (W , E′),W)]

≤
∑

W:|W|≤θn,G

P{G}P{EG,W}EE′ [M(G, (W , E′),W)]+

∑

W:|W|≥θn,G

P{G}P{EG,W}EE′ [M(G, (W , E′),W)].

Consider the second term in the last line. Bound the expecta-
tion by n. This yields

∑

W:|W|≥θn,G

P{G}P{EG,W}n.

If W 6⊆ G, thenEG,W is empty. Therefore the above bound is
equivalent to

n
∑

W:|W|≥θn

E[1{W⊆G}1{E∈EG,W}]

= n
∑

W:|W|≥θn

E[1{W(G,E,ℓ)=W}]

= nP{|W(G, E, ℓ)| ≥ θn}.

By assumption,E[|W(G, E, ℓ)|] ≤ θ2n. The Markov inequality
therefore shows that

P{|W(G, E, ℓ)| ≥ θn} ≤ θ. �

16

D. FKG Inequality

Consider the Hamming space{0, 1}n. For x, y ∈ {0, 1}n

define the following partial order:x ≤ y iff xi ≤ yi for all i.
Definex≤ as

x≤ = {y : y ∈ {0, 1}n, y ≤ x}, (31)

andx ∨ y andx ∧ y as

(x ∨ y)i =

{

0 if xi = yi = 0,
1 else,

(32)

(x ∧ y)i =

{

1 if xi = yi = 1,
0 else.

(33)

We say that a functionf : {0, 1}n → R is monotonically
increasing (decreasing) iff(x) ≥ f(y) wheneverx ≥ y (x ≤
y).

Lemma 37 (FKG Inequality – [8]):Let P{·} be a proba-
bility measure on{0, 1}n such that

P{x}P{y} ≤ P{x ∨ y}P{x ∧ y}.

Let f andg be real-valued non-negative functions on{0, 1}n.
If f and g are either both monotonically increasing or both
decreasing then

E[f(x)g(y)] ≥ E[f(x)]E[g(y)].

E. Birth and Death Process

Consider the following birth and death process. We start
with X0 = a > 0. At stept, t ∈ N, if Xt−1 < 1 then we stop
the process and defineXt′ = Xt′−1 for t′ > t. Otherwise we
decreaseXt−1 by 1 and addYt, where the sequence{Yt}t≥1

is iid. In this way, as long asXt−1 ≥ 1,

Xt = Xt−1 − 1 + Yt.

This process is equivalent to the standard birth and death
process ifYt takes non-negative integer values. In this case,
the step described above corresponds to choosing a member
of the population which then createsYt off-springs and dies.

Let T denote the stopping time, i.e.,T = min{t : Xt < 1}.
Lemma 38 (Birth-Death):Fix p ∈ (0, 1] and 0 < µ < 1.

Consider a birth and death process withX0 = a ∈ N and

Yi =

{

µ
p , with probability p,

0, with probability 1 − p,

so thatE[Yi] = µ. Then, forβa ∈ N,

P{T > βa} ≤ e−ac(p,µ,β)

wherec(p, µ, β) > 0 for β > 1
1−µ .

Proof: Let b = βa. Note that

P{T > b} ≤ P{Xb ≥ 1} ≤ P{Xb ≥ 0}.

Let Ỹt = Yt − 1. We have

Xb = Xb−1 + Ỹb = Xb−2 + Ỹb−1 + Ỹb = a+

b
∑

i=1

Ỹi.

Therefore,

P{T > b} ≤ P

{

b
∑

i=1

Ỹi ≥ −a
}

s>0
= P

{

es
Pb

i=1 Ỹi ≥ e−as
}

Markov
≤ eas

E[esỸ]b = eas
(

(1 − p)e−s + pe(
µ
p
−1)s

)b

.

First consider the caseµ ≥ p. Sets = p
µ ln (β−1)(1−p)

p+β(µ−p) , which
is strictly positive sinceµ ≥ p andβ > 1

1−µ . Setβ = 1
1−µ−ξ ,

whereξ > 0. With this choice we get

P{T > b} ≤
[µ(1 − p)

µ(1 − p) − ξp

(µ(1 − p) − ξp

µ(1 − p) + ξ(1 − p)

)

p(µ+ξ)
µ

]b

.

For ξ = 0 the terms inside the square brackets is1. If we take
the derivative of the expression inside the square bracketswrt
to ξ we get

−p

µ+ ξ

((µ+ ξ)(1 − p)

µ(1 − p) − pξ

)1− p(µ+ξ)
µ

log
(µ+ ξ)(1 − p)

µ(1 − p) − ξp
.

For ξ > 0 andµ > p this is strictly negative which proves our
claim.

Now consider the caseµ < p. For 1
1−µ < β < p

p−µ the
above still applies. Forβ ≥ p

p−µ , the probability is0. This is
because in each step we can add at mostµ

p −1. Therefore, for
t ≥ p

p−µa+ 1, Xt ≤ a+ (p
p−µa+ 1)(µ

p − 1) < 0.

F. Concentration

Theorem 39 (Concentration Theorem [1][p. 222]):Let G,
chosen uniformly at random from LDPC(n, λ, ρ), be used
for transmission over a BMS(ǫ) channel. Assume that the
decoder performsℓ rounds of message-passing decoding and
let P MP

b (G, ǫ, ℓ) denote the resulting bit error probability. Then,
for any givenδ > 0, there exists anα > 0, α = α(λ, ρ, δ),
such that

P{|P MP
b (G, ǫ, ℓ)− ELDPC(n,λ,ρ) [P MP

b (G, ǫ, ℓ)] | > δ} ≤ e−αn.

REFERENCES

[1] T. Richardson and R. Urbanke,Modern Coding Theory. Cambridge
University Press, 2008.

[2] S.-Y. Chung, G. D. Forney, Jr., T. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045dB of the
Shannon limit,”IEEE Communications Letters, vol. 5, no. 2, pp. 58–60,
Feb. 2001.

[3] R. G. Gallager, “Low-density parity-check codes,”IRE Transactions on
Inform. Theory, vol. 8, pp. 21–28, jan 1962.

[4] R. J. McEliece, E. Rodemich, and J.-F. Cheng, “The turbo decision
algorithm,” in Proc. of the Allerton Conf. on Commun., Control, and
Computing, Monticello, IL, USA, 1995.

[5] D. Burshtein and G. Miller, “Expander graph arguments for message-
passing algorithms,”IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 782–
790, Feb. 2001.

[6] C. J. Preston, “A generalization of the FKG inequalities,” Commun. math.
Phys., vol. 36, pp. 233–241, 1974.

[7] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke,“Finite-length
scaling for iteratively decoded LDPC ensembles,” inProc. of the Allerton
Conf. on Commun., Control, and Computing, Monticello, IL, USA, Oct.
2003.

[8] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, “Correlation inequalities
on some partially ordered sets,”Commun. math. Phys., vol. 22, pp. 89–
103, 1971.

