
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur informaticien diplômé EPF
de nationalité suisse et originaire de Bavois (VD)

acceptée sur proposition du jury:

Prof. B. Moret, président du jury
Prof. I. Smith, Dr B. Raphael, directeurs de thèse

Prof. B. Faltings, rapporteur 
Prof. P. Struss, rapporteur 
Dr E. Viennet, rapporteur 

Data Mining Methodologies for Supporting 
Engineers during System Identification

Sandro Saitta

THÈSE NO 4056 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 15 mai 2008

À LA FACULTÉ DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT

LABORATOIRE D'INFORMATIQUE ET DE MÉCANIQUE APPLIQUÉES À LA CONSTRUCTION

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2008





 
 
 
 
 
 
 
 
 

 
 
 
 

ی                                                                                                                                                                        ୀنا ی  ل ز৯د نا   ૼ ر ਛ ঢ ࣅ     

 
   

 
 
 
 



 



i

Acknowledgments

This work was funded by the Swiss National Science Foundation under grant #200020-109257.

My first acknowledgment goes to my co-advisor, Prof. Ian Smith, who was present during

my PhD for guiding my work. He also was a valuable person for explaining to me crucial aspects

of thesis work. Benny Raphael, my other co-advisor and an Assistant Prof. at the National

University of Singapore, followed my thesis from the very beginning to the end. Working in

an autonomous manner during four years is not always straightforward. When I faced an

obstacle, Benny was always there to help me. I will always remember a sentence he wrote to

me: “Remember, you can make something good come out of everything if you do it in the right

spirit”. Prakash Kripakaran, a Post doc. researcher at EPFL, is also the kind of person that

you only meet once in your life. I think my work would never have reached the present state

without his help. I had a lot of fruitful discussions with him regarding difficult issues in my

research. Instead of only giving a simple answer, Prakash always suggested a new way to face a

particular problem. François Fleuret, a researcher at IDIAP, is an expert in machine learning.

I had a lot of general discussions with him about data mining and it was really good food for

thought. He is also the first person who made me understand what research really is about. I

also thank examiners for their time and interest in my work: Prof. Boi Faltings (EPFL), Prof.
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Abstract

Data alone are worth almost nothing. While data collection is increasing exponentially world-

wide, a clear distinction between retrieving data and obtaining knowledge has to be made. Data

are retrieved while measuring phenomena or gathering facts. Knowledge refers to data patterns

and trends that are useful for decision making. Data interpretation creates a challenge that is

particularly present in system identification, where thousands of models may explain a given

set of measurements. Manually interpreting such data is not reliable. One solution is to use

data mining. This thesis thus proposes an integration of techniques from data mining, a field of

research where the aim is to find knowledge from data, into an existing multiple-model system

identification methodology.

It is shown that, within a framework for decision support, data mining techniques constitute a

valuable tool for engineers performing system identification. For example, clustering techniques

group similar models together in order to guide subsequent decisions since they might indicate

possible states of a structure. A main issue concerns the number of clusters, which, usually, is

unknown.

For determining the correct number of clusters in data and estimating the quality of a cluster-

ing algorithm, a score function is proposed. The score function is a reliable index for estimating

the number of clusters in a given data set, thus increasing understanding of results. Further-

more, useful information for engineers who perform system identification is achieved through

the use of feature selection techniques. They allow selection of relevant parameters that explain

candidate models. The core algorithm is a feature selection strategy based on global search.

In addition to providing information about the candidate model space, data mining is found

to be a valuable tool for supporting decisions related to subsequent sensor placement. When in-

tegrated into a methodology for iterative sensor placement, clustering is found to provide useful

support through providing a rational basis for decisions related to subsequent sensor placement

on existing structures. Greedy and global search strategies should be selected according to the

context. Experiments show that whereas global search is more efficient for initial sensor place-

ment, a greedy strategy is more suitable for iterative sensor placement.

Keywords: data mining, machine learning, correlation, PCA, clustering, K-means, cluster

validity, feature selection, PGSL, SVM, system identification, decision support, sensor place-

ment, measurement system design.
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Résumé

Les données seules n’ont presque aucune valeur. Alors que la récolte de données augmente de

manière exponentielle à travers le monde, il est important de bien distinguer la récolte de données

de l’obtention de la connaissance. Les données sont récoltées en mesurant certains phénomènes

ou en rassemblant des faits. La connaissance, quant à elle, se réfère aux tendances présentes

dans les données qui permettent de prendre certaines décisions.

L’interprétation des données est un problème important dans le cadre de l’identification de

systèmes, un domaine qui consiste à trouver l’état d’une structure (représenté par des modèles)

à partir de mesures. En effet, lors de l’identification de systèmes, plusieurs milliers de modèles

peuvent expliquer un ensemble de mesures. Il n’est pas possible d’interpréter manuellement ces

modèles. Une solution est d’utiliser le data mining, un domaine de recherche qui a pour but

de trouver de la connaissance à partir des données. Cette thèse propose ainsi d’intégrer des

techniques de data mining dans une méthodologie existante d’identification de systèmes.

Cette thèse montre que l’aide à la décision, fournie par l’utilisation des techniques de data

mining, est précieuse pour les ingénieurs en charge de l’identification de systèmes. Par exemple,

le clustering permet de grouper les modèles similaires (représentant les différents états possibles

d’une structure) pour aider dans la prise de décisions. Le problème principal concerne le nombre

de clusters (groupes) qui est inconnu.

Pour estimer le nombre de clusters dans un ensemble de modèles, et juger de la qualité

de l’algorithme de clustering, un indice de validité est proposé. Cet indice de validité permet

d’estimer de manière fiable le nombre de clusters dans un ensemble de données. Dans le cas

de l’identification de systèmes, cet indice aide les ingénieurs à comprendre les résultats d’un

algorithme de clustering. De plus, une technique de sélection de paramètres (des modèles), com-

binant deux algorithmes existant, est développée. La technique proposée permet de sélectionner

un faible nombre de paramètres qui différencient les modèles représentant correctement la struc-

ture des autres modèles.

Les techniques de data mining sont aussi de précieux outils pour la prise de décisions con-

cernant l’ajout de capteurs. Lorsqu’il est integré dans une methodologie de placement de cap-

teurs, le clustering se trouve être un outil capable d’aider les ingénieurs à ajouter des capteurs

supplémentaires sur une structure existante. Les expériences effectuées montrent que le choix

de la stratégie de placement de capteurs dépend de l’utilisation du système de mesure.

Mots-clés: fouille de donnèes, apprentissage automatique, corrélation, analyse en com-

posantes principales, groupement de données, sélection de paramètres, identification de système,

aide à la décision, placement de capteurs.
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Notation

cov(x, y) Covariance between variable x and y

corr(x, y) Correlation between variable x and y

x Mean of vector x

sij Covariance between pi and pj

pi Parameter i

AT Transpose of matrix A

d(xi, xj) Euclidean distance between xi and xj

ε Error which is calculated as the difference between predictions γi and

measurements mi

τ Threshold value evaluated from measurement and modeling errors in the

identification process

mi Measurement at i

γi Prediction at i

emeas Measurement error (difference between real and measured quantities in a

single measurement)

emod Modeling error (difference between the prediction of a given model and that

of the model that accurately represents the real behavior)

e1 Error due to the discrepancy between the behavior of the mathematical model

and that of the real structure

e2 Error due to the numerical computation of the solution of the partial

differential equations representing the mathematical model

e3 Error due to the assumptions that are made during the simulation of the

numerical model

d Dimensionality of a data set (also number of parameters)

n Number of points

ni Number of points in cluster ci

zi Centroid of cluster ci

k Number of clusters

α Empirical value for unique cluster detection

O(n) “Big O” notation for a complexity of the order of n

µ Mean

σ Standard deviation

bcd Between class distance

wcd Within class distance

K(xi, xj) Kernel function between xi and xj
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λi i-th Lagrange multiplier

C SVM tuning parameter representing the penalty of misclassifying training examples

Pi i-th probability

H(X) Entropy of variable X
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Chapter

1

Introduction

“The capacity of digital data storage worldwide has doubled every nine

months for at least a decade, at twice the rate predicted by Moore’s Law

for the growth of computing power during the same period.” (Fayyad and

Uthurusamy, 2002)

Overview

This chapter introduces the context of the thesis. It briefly describes related topics such as

data mining, system identification and sensor placement. The last section presents research

questions as well as the research methodology for achieving the objectives of this thesis.

1.1 Context

Data alone is worth almost nothing. While data is increasing exponentially, people in some

fields are “starving” for knowledge. In spite of this, the gap between data and knowledge may

be huge. These days, the meaning of the word data is often confused with knowledge. Knowledge

is obtained through the understanding of data. The amazing increase in data worldwide brings

several challenges. The more the amount of data, the more difficult it is to understand. It is

sometimes assumed that the increase of knowledge is proportional to the increase of data. The

reason for such an assertion might be the lack of appreciation of the difference between obtaining

and understanding data.

Increase of data is a challenge that is particularly present in engineering. The number of

sensors is increasing while costs are decreasing. In many domains, engineers are saturated with

data of many types. A good example of such a task is model-based diagnosis (de Kleer and

Williams, 1987) and system identification (Ljung, 1999). Recently, a new methodology (Robert-

1
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Nicoud, 2003) has been developed in which system identification is treated as a constraint

satisfaction problem (CSP) instead of the more traditional optimization problem. This approach

results in a set of several candidate models instead of a single model.

When there are many models, engineers need sophisticated tools to interpret them. Data

mining (Tan et al., 2006) may provide help. Data mining techniques are used for the task

of identifying characteristics of candidate models. Better system identification is possible by

integrating data mining into the overall process. No work has been done on mining models.

More specifically, data mining techniques have never been used for identifying characteristics of

candidate models that explain observations (Chapter 2 provides more details). The present work

is an attempt to fill this knowledge gap by developing an overall methodology for multiple-model

system identification that integrates data mining to provide support for engineers.

1.2 Data Mining

Data mining techniques are becoming important in the context of the increasing trend in data

worldwide as explained in Section 1.1. There are more and more sensors capturing changes in

our environment and our infrastructure. Therefore, a growing challenge involves determining

the meaning of data. As written in Piatetsky-Shapiro (2007), “[...] as long as the world keeps

producing data of all kinds [...] at an ever increasing rate, the demand for data mining will

continue to grow.”

Data mining is a field which is concerned with understanding data. In other words, the aim is

to look for patterns in data (Pal and Mitra, 2004). As this pattern may be very difficult to find,

it is sometimes compared to gold mining in rivers (Figure 1.1); gravel represents the enormous

amount of data and gold nuggets are the hidden patterns to find.

Although civil engineers were among the first of all traditional engineering disciplines to

use the power of computers five decades ago, they are now lagging behind other professions

in the use of advanced techniques such as data mining. Indeed, data mining techniques have

proven their efficiency in domains such as handwritten digit recognition, image and speech

recognition, DNA sequences, financial time series and web mining. Although data mining has

been used in engineering, most of this work takes advantage of the predictive abilities of data

mining methods. Very little work applies data mining techniques to tasks such as describing the

structure of data. Known to the author, there is no attempt to apply data mining to models in

system identification. This work is thus a new application for data mining.
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Figure 1.1: Data mining can be compared to gold mining in rivers.

1.3 System Identification

Several years after construction, structures may no longer fulfill their intended functions. As

written in Levy and Salvadori (2002), “It is the destiny of the man-made environment to vanish

[...]”. People outside of civil engineering domains have the misconception that civil engineers

know exactly how structures behave in service. The complexity of both the structures and the

materials involved make the understanding of exact structural behavior impossible. One way to

learn about the state of the structure, before it collapses or as frequently happens, it reaches a

stage where repair costs increase by orders of magnitude, is through diagnosis. When the goal

of diagnosis is to determine models that reasonably explain measured responses, the approach

is commonly known as system identification. Although system identification is closely related

to diagnosis, the focus of this work is on helping engineers identify the system, not diagnose it.

The aim is not to propose a way to repair the system as it is the case in diagnosis, rather to find

the state of the system (even if it is not damaged) in order to improve management of artifacts

that are expected to last more than one hundred years.

The goal of system identification is to determine the state of a system and values of system

parameters through comparisons of predicted with observed responses. Traditionally, this is

treated as an optimization problem in which the best combination of values of model parame-

ters are selected such that differences between model predictions and measurements are minimal.

Recent work has brought out the different types of errors that can occur in system identifica-
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tion processes (Robert-Nicoud, 2003). These errors make optimization in system identification

unreliable since the global optimum may not correspond to the true state of the system due

to compensating modeling and measurement errors. In such situations, treating the task as a

constraint satisfaction problem (CSP) is more appropriate (see Section 2.5). It is noted that

recent work proposes a distributed version of the constraint programming approach (Faltings,

2006).

Since measurements are indirect, the use of models is necessary. Even though a design model

may be the most appropriate for designing and analyzing the structure prior to construction,

it often cannot be used for system identification. This is usually because design models are

conservative. On the other hand, diagnosis models have to be as accurate as possible in order to

avoid wrong diagnoses. The current work is a combination of model based reasoning concepts

from computer science (de Kleer and Williams, 1987) and traditional model updating techniques

used in engineering (Ljung, 1999). A correct understanding of the output using such techniques

is an important challenge.

Difficulties associated with system identification are that since many model predictions might

match observations with certain limits, the best matching model may not be the correct model.

In this work, the reliability of identification is defined as the probability that the candidate

model(s) obtained through system identification corresponds to reality. Reliability is poor when

many models predict the similar responses at measured locations. Factors that affect the re-

liability of system identification have been studied in previous research (Robert-Nicoud et al.,

2004). The present work is an extension of this research and uses data mining techniques for a

better estimation of the reliability of identification.

1.4 Sensor Placement

A basic assumption of system identification is that there is a set of sensors measuring an ef-

fect. There are thousands of ways to measure physical phenomena in structures and many

new technologies are emerging. Although their development has been the result of significant

scientific effort, decisions related to the choice of measurement technology, specifications of

performance and positioning of measurement locations are often not based on systematic and

rational methodologies. While use of engineering experience and judgment may often result in

measurement systems that provide useful results, a poorly designed measurement system can

waste time and money.

When placing sensors on a structure, the analogy with medical diagnosis is relevant. People

usually go to the doctor for a diagnosis of their conditions. They want to know what is wrong. For

that, the doctor measures physiological parameters such as temperature and pulse rate. They try
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to infer causes from what is measured. The way doctors conduct the measurements is iterative.

Through asking patients questions, they formulate possibilities. From these possibilities they

measure temperature, for example. They iteratively measure symptoms and improve upon

possibilities so that they are most likely to match real causes of problems. This procedure

is very similar to sensor placement. Engineers place sensors, record measurements, formulate

possibilities and then place more sensors if needed. This is done iteratively until they think

they have enough information to identify the state of the system. However, the current lack of

a systematic methodology for placing sensors on structures means that sensor placement tasks

are usually very subjective.

1.5 Objectives

The primary goal of this work is to investigate the application of recent advances in data mining

to system identification. To fulfill this objective, a methodology that uses data mining methods

to support complex diagnostic tasks in engineering is proposed. Data mining techniques are

used for better understanding of candidate models. The applicability of data mining techniques

is further investigated for supporting iterative sensor placement in system identification.

This work is summarized with the following research questions:

To what extent can data mining techniques support engineers during system

identification tasks? How can these techniques be improved to enhance the

reliability of system identification?

These research goals are translated into the following objectives:

1. Provide support for system identification through data mining

Data mining techniques are used to identify characteristics of candidate models that ex-

plain observations. Aspects involved are to i) estimate the number of groups among

candidate models, ii) group them into clusters and iii) propose a methodology to select

relevant parameters that explain candidate models.

2. Design and implement a decision support system

Information obtained from objective 1 is used to integrate data mining into an overall

methodology for system identification. Research issues include i) developing a clustering

strategy to estimate possible states of a structure, ii) proposing an efficient way to display

multi-dimensional clusters and iii) integrating input from engineers within the iterative

methodology.
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3. Improve measurement system design using data mining techniques

Comparison of strategies for initial sensor placement are carried out. In addition to provid-

ing information for the engineer, data mining methods are used for iterative configuration

of measurement systems. Tasks involved in achieving this objective are to i) employ a

global search algorithm for initial sensor placement, ii) compare its performance to an ex-

isting greedy strategy, iii) support additional sensor placement through data mining and

iv) propose an efficient stopping criterion for the methodology.

4. Validate the methodology on a real engineering example

To demonstrate its capabilities on a real structure, the methodology is applied to the

Schwandbach Bridge, a famous bridge in Switzerland with historical importance.

Figure 1.2 shows the research methodology used to achieve these objectives. It can be used

as a guide for the reader. Research activities, validation data and parameters are described

throughout the thesis. A final discussion on this schema is given in Section 7.2.

The structure of this thesis is as follows. The next chapter reviews the relevant literature

and highlights supporting research as well as areas needing further work. Chapter 3 presents a

new cluster validity index. Chapter 4 introduces a new feature selection algorithm. The system

identification methodology integrating data mining techniques used in this work is presented

in Chapter 5. Sensor placement strategies are presented in Chapter 6. Finally, discussion of

conclusions and future challenges are described in the last chapter.
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Figure 1.2: Research methodology for this thesis.
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Chapter

2

Literature Review

“Computers have promised us a fountain of wisdom but delivered a flood

of data.” (Piatetsky-Shapiro, 1991)

Overview

In this chapter, the literature is reviewed to identify strengths and weaknesses in existing

research. Strengths provide foundations for this thesis. Weaknesses, including lack of work,

help establish the originality of the research objectives of this thesis. Topics that are studied

include data mining, clustering, feature selection, system identification and sensor placement.

Since data mining is the main area of research of this thesis, definitions of important terms

are provided.

2.1 From Data to Knowledge

As written in Dietterich (2003), “Machine learning is the study of methods for programming

computers to learn.” Machine learning (Langley, 1996; Flach, 2001) is an active artificial in-

telligence domain. In a similar way as statistics, the objective of machine learning is to find

relationships in data. The term learning is difficult to define precisely (Figure 2.1). Many re-

searchers have assigned different meanings to the term. One definition comes from Witten and

Frank (2005): “To get knowledge of by study, experience, or being taught”. The term learning

can be defined as in Ackoff (1989): “Learning takes place when one’s efficiency increases over

time or trial”. There are several types of machine learning algorithms (Mitchell, 1997). Their

usefulness depends on characteristics of the application.

Machine learning is a well established field since it has been successfully applied within a

range of domains such as market analysis (Ari, 2004), classifying DNA sequences (Simek et al.,

9
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Figure 2.1: The concept of machine learning. The human teaches the machine (i.e. the com-

puter) how to learn (M.C. Escher, Drawing Hands, 1948).

2004), handwriting recognition (Bahlmann et al., 2002), image recognition (Wilking and Roefer,

2004) and text categorization (Sebastiani, 2002). For a longer list of successful applications,

see Cristianini and Shawe-Taylor (2000). Flach (2001) proposes a personal review of important

books in machine learning. A comprehensive current state of the machine learning field is given

by Mitchell (2006).

The more data there are, the more difficult it is to analyze them and obtain useful knowledge

(Kantardzic and Zurada, 2005). As noted in Lavrac et al. (2004), data mining is different

from machine learning in terms of the main objectives of the whole data analysis process. The

greatest difference is that machine learning is more concerned with algorithms that find patterns,

whereas data mining focuses on the knowledge extraction process. As written in Dietterich

(2003), while machine learning is concerned with accuracy and effectiveness, data mining seeks

to find understandable patterns. The term data mining refers to mining knowledge from large

amounts of data (Han and Kamber, 2001). It is situated at the intersection of statistics, machine

learning and databases (see Figure 2.2). The general aim of data mining is to apply machine

learning algorithms to usually large data sets. In the real world, where data mining results

are used, data are often incomplete, noisy and larger than machine learning data sets (Frawley

et al., 1992).

According to Pal and Jain (2005), the origins of data mining date back to 1989, when

the IJCAI1 Workshop on knowledge discovery in databases (KDD) (Piatetsky-Shapiro, 1991)

took place. In statistics, the traditional paradigm is to first establish hypotheses on the data

and then test them. When data sets contain hundreds of attributes and more, this process

1International Joint Conference on Artificial Intelligence.
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Figure 2.2: Data mining is at the intersection of statistics, machine learning and databases.

Picture adapted from Tan et al. (2006).

becomes difficult and time consuming. With the increasing ability of computers to store and

process data in a reasonable time, approaches have evolved to test-and-hypothesize (Carbone,

2000). Data mining has emerged both from the machine learning and database communities in

the 1990’s. The original KDD conferences initiated many early data mining ideas. However,

the use of the term data mining, is much older. In medicine, Harris (1984) uses sequential

multiple logistic regression to determine the risks associated with angiocardiography. In this

work, the term data mining is used as a synonym for data exploration. Lovell (1983) wrote

a paper entitled “Data Mining” where these words are defined as a “a research paradigm that

masquerade under a variety of aliases”. In econometrics2, the term data mining has a somewhat

negative connotation (Smyth, 2000). The earliest paper found by the author that mentions data

mining is by Jorgenson et al. (1970). Data mining is defined as the process of “consideration

of a wide range of alternatives and selection of the one that fits best”. It is only in the early

1990’s that the term data mining was adopted by computer scientists with its current meaning.

A brief history of data mining is given in Smyth (2000).

Data mining methods can be grouped in three categories: supervised learning, reinforcement

learning and unsupervised learning. Supervised learning can be seen as learning with a teacher

that gives feedback for the learning task. This feedback is represented by a training set and

consists of examples with both input and output values. It is opposed to the test set, which is

the final set one want to test and that consists only of input values (the output is predicted).

2The field of developing and applying statistical methods in economics.



12 CHAPTER 2. LITERATURE REVIEW

Patterns in data can be automatically identified, validated on existing data and then used for

predictions with new data (Witten and Frank, 2005). In reinforcement learning, training data

contain partial information about the output. In unsupervised learning, no feedback is given

to the learning algorithm (i.e. no teacher). Particularities of this category are that trends are

directly inferred from the data set, thus no output is known for a given data set.

Several recent textbooks (Hand et al., 2001; Webb, 2002; Tan et al., 2006) cover the data

mining research area. Data mining is usually applied to tasks such as recognition of images

(Wilking and Roefer, 2004), characters (Sempere and Lopez, 2003) and speech (Zhou et al.,

2005). Data mining has also been successfully applied in domains such as crime pattern detection

(Nath, 2006), gene classification (Yuan et al., 2003), email classification (Aery and Chakravarthy,

2005) and collaborative filtering (Candillier et al., 2007). Several other applications of data

mining are briefly described in Langley and Simon (1995). Examples of application domains are

given in Frawley et al. (1992). Limitations are also under study, for example in the domain of

counterterrorim (Jonas and Haper, 2006). Valuable introductory texts about data mining are

Fayyad and Uthurusamy (2002), Witten and Frank (2005) and Tan et al. (2006). A framework

for fast application of data mining has been proposed by Menzies and Hu (2003). Known to the

author, data mining has never been applied as a knowledge extraction process for the task of

system identification.

Data mining is a very active research domain. This is evident from the recent creation of the

ACM3 Transactions on knowledge discovery from data (2007) and Statistical Analysis and Data

Mining (2008) even though several journals already exist in this field. Kriegel et al. (2007) give

a view of the future of data mining by presenting incoming challenges in this field. Nowadays,

data mining research is mostly influenced by practical problems coming from industry sectors

(Perner, 2006). As written in Langley and Simon (1995), “The ultimate test of machine learning

is its ability to produce systems that are used regularly in industry [...]”. This work is an example

of successful application of data mining methods in engineering (objective 4, Section 1.5).

2.2 Introduction to Existing Data Mining Techniques

2.2.1 Pearson’s Correlation

Visualization in a multi-dimensional space is not feasible for full-scale engineering tasks, when

the number of parameters p is more than 3. The simplest visualization strategy is to plot a

graph for each possible combination of parameters. For each parameter pair (pi, pj) there is

a two dimensional plot. Drawbacks are that this requires human intervention and that the

3Association for computing machinery.
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number of graphs increases with the square of the number of parameters p, thereby resulting

in a complexity of O(p2). A numerical method to search for these relationships is to use the

correlation measurement (Edwards, 1984). Correlation is a measure of linear association between

two random variables. It is derived from the covariance measure and is given by:

corr(x, y) =
cov(x, y)

√

var(x) · var(y)
(2.1)

where cov is the covariance and var the variances of the specified variables. The correlation

between two variables x and y corresponds to the link between them and can be written:

corr(x, y) =

n
∑

i=1

(xi − x)(yi − y)

[ n
∑

i=1

(xi − x)2
n

∑

i=1

(yi − y)2
]1/2

(2.2)

where n is the number of samples for which variables x and y are compared. The correlation

varies between -1 and 1. These bounds are reached when the association between x and y is

perfectly linear. If the correlation is zero, it means that the covariance is zero (Equation 2.1).

If this is the case, the two variables are assumed to be independent. Results of the application

of correlation to system identification are given in Section 5.3.4.

2.2.2 Principal Component Analysis (PCA)

As explained in Section 2.2.1, displaying multidimensional spaces is not straightforward. One

strategy to improve feasibility is to reduce the dimensionality of the space. One of the most

popular methods for reducing dimensionality is principal components analysis (PCA) (Smith,

2002; Davies and Fearn, 2005). PCA generates a new set of variables - called principal compo-

nents - that are linear combinations of the initial variables. The goal of PCA is to find a system

of principal components that are sorted in a manner that the first components can explain most

of the data.

In order for the data to be statistically comparable, they are first standardized to have a

zero mean and unit standard deviation. Otherwise it is unreliable since PCA is concerned with

explaining relative variations in parameter values. For each variable to have zero mean and unit

standard deviation, data are transformed according to the expression (xi − µi)/σi where µi is

the mean and σi the standard deviation of xi.

The starting point for using PCA is the correlation matrix of the data. As data are already

standardized, the covariance matrix is used. In this section, the term parameter refers to the
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parameter in it’s standardized form. To obtain the principal components, the covariance matrix

S is first constructed as follows:

S =















s11 s12 . . . s1p

s21 s22 . . . s2p

...
...

. . .
...

sp1 sp2 . . . spp















(2.3)

where sij is the covariance between the parameter pi and pj. The formula of the covariance

corresponds to the numerator of equation (2.2). Note that the special cases skk are equal to

the variance of k. The PCA method is based on the fact that the covariance matrix S can be

written as:

S = VLVT (2.4)

where L is a diagonal matrix containing the eigenvalues of S and the column of V contains

the eigenvectors of S (for more details see Jackson (1991)). The principal components, which

are linear combination of the initial variables, correspond to the eigenvectors of S and can be

represented as an orthogonal basis for the new space of the data. The principal components are

sorted in decreasing order according to how well they represent the variability of the data. Each

sample is transformed to a new dimensional space defined by selected principal components. The

main practical goal is usually to reduce the number of dimensions by choosing only the first two

or three principal components. Thus, the initial data are represented by a linear combination of

the initial parameters in a new and lower dimensional space. Results of the application of PCA

to system identification are given in Section 5.3.5.

2.3 Clustering and Cluster Validity

2.3.1 Clustering Techniques

One of the best known examples of unsupervised learning is clustering (Jain and Dubes, 1988;

Xu and Wunsch, 2005; Tan et al., 2006). The goal of clustering is to group data points that

are similar according to a chosen similarity metric (Euclidean distance is commonly used).

Clustering can also be used in combination with other techniques such as genetic algorithms

(Korkmaz et al., 2006). Clustering techniques have been applied in domains such as text mining

(SanJuan and Ibekwe-SanJuan, 2006), intrusion detection (Liu et al., 2004), DNA micro-arrays

(Garatti et al., 2007) and information exploration (Hearst, 2006). In these fields, as in many

others, the number of clusters is usually not known in advance.



2.3. CLUSTERING AND CLUSTER VALIDITY 15

Clustering techniques that are proposed in the literature, although considerable (Jain et al.,

2004), can be divided into four main categories (Halkidi et al., 2001): partitional clustering (for

example, K-means), hierarchical clustering (for example, BIRCH), density-based clustering (for

example, DBSCAN) and grid-based clustering (for example, STING). Although the mixture of

Gaussian approach can be mentioned, its computational complexity is too high to be used in

practice and approximation procedures are often needed (Cheung, 2005). Clustering is known as

a form of unsupervised learning, as well as numerical taxonomy and partitioning (Theodoridis

and Koutroumbas, 1999).

One of the most popular techniques for clustering is K-means (McQueen, 1967; Jain and

Dubes, 1988). Reasons for the popularity of this technique include the absence of drawbacks of

other types (Halkidi et al., 2001). For example, hierarchical clustering has a higher complexity

and density-based clustering algorithms often require tuning non-intuitive parameters. Finally,

density-based clustering algorithms do not always give clusters of good quality. Advantages of K-

means include computational efficiency and easy interpretation of results. K-means is certainly

the most widely used clustering algorithm in practice (Berkhin, 2002). K-means clustering

has been successfully applied in domains such as relational databases (Ordonez, 2006), gene

expression data (Chan et al., 2006) and decision support (Packhama et al., 2005).

The drawbacks of K-means include random choice of centroid locations at the start of the

algorithm, treatment of variables as numbers and the unknown number of clusters k. Impact

of the first drawback can be assessed through multiple runs or specific initialization methods

(Bradley and Fayyad, 1998). However, Pena et al. (1999) have reported that specific initialization

methods are not better than random centroids. The paper by Huang (1998) contains a possible

solution to the second drawback through the use of a matching dissimilarity measure to handle

categorical parameters. Concerning the third point, the number of clusters is an input parameter

that is fixed a priori in the standard K-means algorithm. One way to address this challenge

is through the use of cluster validity indices. As many other data mining algorithms, K-means

has reduced reliability when treating high-dimensional data because data sets are nearly always

too sparse. This is because the use of the Euclidean distance becomes meaningless in high-

dimensional sparse spaces (François, 2007). A solution involves combining K-means with feature

extraction methods such as principal component analysis (PCA) (Ding and He, 2004) and self-

organizing maps (SOM) (Vesanto and Alhoniemi, 2000).

For the purpose of grouping data, the K-means algorithm is used with adaptations (see

below). K-means evolves k crisp and hyper-spheroidal clusters in order to minimize their intra-

cluster distances, shown as the metric J in Equation 2.5:
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J =
k

∑

j=1

∑

xi∈cj

d(xi, zj)
2 (2.5)

where k is the number of clusters, xi the i-th data point and zj the centroid of cluster cj . The k

starting centroids are chosen randomly among all data points. The data set is then partitioned

according to the minimum squared distance. The cluster centers are iteratively updated by

computing the mean of the points belonging to the clusters. The process of partitioning and

updating is repeated until a stopping criterion is reached. This happens when either the cluster

centers or the value of the metric J in Equation 2.5 do not change over two consecutive iterations.

As stated in above, K-means has three main drawbacks. Two of them are taken into account.

First, to control the randomness of K-means, it is launched t = 20 times from kmin to kmax

clusters. A new validity index is used to estimate the number of clusters, which is an input to

K-means. Thus, at each iteration, an index value is computed. The minimum or maximum -

depending on the index - is chosen to be the most suitable number of clusters.

2.3.2 Cluster Validity

When performing clustering tasks, results should be treated with caution. Indeed, as noted

in Jain et al. (1999), clustering is a difficult subjective task. An impossibility theorem for

clustering has even been proposed. In Kleinberg (2002) it is shown that there is no clustering

function that satisfies a set of three properties (scale-invariance, richness and consistency). This

theorem can be relaxed for practical use of clustering algorithms. As written in Maulik and

Bandyopadhyay (2002), two important issues in clustering are i) determination of the number

of clusters present in the data and ii) evaluating how good is the clustering itself. These two

issues motivate research in the field of cluster validation. Validity indices are also useful for

estimating the quality of clusters. An example is given in Famili et al. (2004). Other important

challenges in clustering are fixing initial conditions (Salem and Nandi, 2005) and treating high

dimensional data sets (Li et al., 2003). Many cluster validation techniques are available (Bezdek

and Pal, 1998; Fraley and Raftery, 1998; Halkidi et al., 2001, 2002a,b). This evaluation can be

used to determine the most reliable number of clusters in a data set. Several indices have been

proposed in the literature (Bezdek and Pal, 1998; Halkidi et al., 2001; Wu and Chow, 2004; Kim

and Ramakrishna, 2005; Yang et al., 2006). These indices were evaluated through plotting them

to determine the number of clusters visually. Most of them have been compared with known

results (Kim and Ramakrishna, 2005; Brun et al., 2007). Selected validity indices are briefly

described below.

The Hubert statistic assesses how well the data fit a proposed crisp structure. The concept

behind the Hubert statistic is the correlation measure. Since calculation of the original index
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is computationally expensive, a modified index was proposed. In the modified Hubert statistic

(Theodoridis and Koutroumbas, 1999), a knee on the plot indicates a possible value for the

number of clusters. Finding this knee is somewhat subjective. The Dunn index (Dunn, 1974)

combines dissimilarity between clusters and their diameters to estimate the most reliable number

of clusters. The Dunn index is computationally expensive (O(n2)) and sensitive to noise (Halkidi

et al., 2001). An index based on a ratio of between and within scatter cluster matrices is proposed

by Calinski and Harabasz (1974). It is ranked among the best in Milligan and Cooper (1985).

The concepts of dispersion of a cluster and dissimilarity between clusters are used to compute the

Davies-Bouldin index (Davies and Bouldin, 1979) which has recently been reported to be among

the best (Kim and Ramakrishna, 2005). The Silhouette index (Kaufman and Rousseeuw, 1990)

uses average dissimilarity between points to show the structure of the data and consequently,

its possible clusters. As stated in Bolshakova and Azuaje (2003), the Silhouette index is most

suitable for estimating the first choice or the best partition.

The index proposed by Halkidi et al. (2000) is based on average scattering for clusters and

total separation between clusters. This index has to be tuned with a parameter that may vary

the clustering results for small number of clusters. The Maulik-Bandyopadhyay index (Maulik

and Bandyopadhyay, 2002) is related to the Dunn index and involves the tuning of a parameter.

Finally, the Geometric index (Lam and Yan, 2005) has been developed for handling clusters of

different densities and close clusters as well. A particular feature of this index is the use of the

eigen-axes lengths as a way of measuring the intra-cluster distance.

Much work has been done on stability-based methods for assessing cluster validity, where the

main idea is to cluster subsample of the original data set (Ben-Hur et al., 2002; Lange et al., 2004;

Greene and Cunningham, 2006). A relational visual cluster validity method is given in Ding

and Harrison (2007). However, these methods require a visual inspection of the results or are

computationally expensive or both. In Tibshirani and Walther (2005) the clustering problem

is viewed as a supervised one. They use the self-defined prediction strength to estimate the

number of clusters in a data set. Their method is highly complex and involves both hierarchical

and K-means clustering.

Most of these indices require the specification of at least two clusters. Although not often

studied by the data mining community, the single cluster case is important and is likely to

happen in practice. Most cluster validity methods have the drawback that they are undefined

for a single cluster Gordon (1996). Several other validity indices exist in the literature (Kothari

and Pitts, 1999; Pelleg and Moore, 2000; Lam and Yan, 2005). Some are computationally

expensive (i.e. higher than O(n)) (Halkidi et al., 2001) while others are unable to discover

the real number of clusters in all data sets (Kim and Ramakrishna, 2005). In Kyrgyzov et al.

(2007), kernel minimum description length (KMDL) is used for cluster validity. However, their
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method requires the tuning of an hyper-parameter. Although probability density functions

(PDF) are used in Sakai et al. (2007), their technique relies on a visual inspection of results.

The gap statistic (Tibshirani et al., 2000) compares the change of within cluster dispersion to an

appropriate null distribution. Although this index is defined for k = 1, the paper only focuses

on well separated clusters. The new validity index proposed in this work helps overcome such

limitations (objective 1, Section 1.5).

2.4 Feature Selection

2.4.1 Wrapper Approach

Feature selection (Liu and Motoda, 1998; Cakmakov and Bennani, 2002; Guyon et al., 2006)

is a method used to reduce the number of features before applying a data mining algorithm.

Irrelevant features may have negative effects on a prediction task. Moreover, the computational

complexity of a classification algorithm may suffer from the curse of dimensionality caused by

several features. When a data set has too many irrelevant variables and only a few examples,

overfitting is likely to occur (François, 2007). In addition, data are usually better characterized

using fewer variables (Cheng et al., 2007). As written in Cakmakov and Bennani (2002), “Iden-

tifying the common “core” characteristics of a set of objects that are representative of their class

is of enormous use in focusing the attention of a person or computer program”. However, in

practice several features are used to describe an effect. As written in Ackoff (1989), “the less a

phenomenon is understood, the more variables are required to explain it”. Feature selection has

been applied in fields such as multimedia database search (Evgeniou et al., 2003), image classi-

fication (Fleuret, 2004) and biometric recognition (Kumar and Zhang, 2005). A comprehensive

introduction to feature selection can be found in Guyon and Elisseeff (2003). It is noted that

feature selection can also be unsupervised (He et al., 2005; Guérif and Bennani, 2007).

Feature selection techniques (Dash and Liu, 1997) can be divided into three main categories

(Tan et al., 2006): embedded approaches (feature selection is part of the classification algorithm,

i.e. decision tree), filter approaches (features are selected before the classification algorithm is

used) and wrapper approaches (the classification algorithm is used as a black box to find the best

subset of attributes). Due to its very definition, embedded approaches are limited since they

only suit a particular classification algorithm. As noted in Molina et al. (2002), a relevant feature

is not necessarily relevant for a given classification algorithm. Filter methods, however, make

the assumption that the feature selection process is independent of the classification step. The

work done by Kohavi and Sommerfield (1995) recommends replacement of the filter approach by

wrappers. This usually provides better results, the price being higher computational complexity

(Weston et al., 2001). Although already known in statistics and pattern recognition (Blum and
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Langley, 1997), wrappers are new in the data mining community.

Since wrapper techniques treat the classification algorithm as a black box, any search strategy

can be used in combination (Kohavi and John, 1998). This makes wrapper approaches universal.

The accuracy of the classification algorithm may be used as the objective function of the search

strategy. As with any classification algorithm, wrapper feature selection techniques face the

overfitting problem that may happen while training. One way to reduce the overfitting problem

is to use a k-fold cross-validation strategy (Stone, 1974; Bradley and Fayyad, 1998; Hsu et al.,

2003). The training set is randomly divided into k different folds. Each fold is held out in

turn while the k − 1 remaining are used to train the classification algorithm. The classification

error rate is calculated on the validation fold. The classification algorithm is thus executed k

times on different training sets. Finally, the average of these k error rates is an approximation

of the generalization ability of the classification algorithm. Correlation coefficient and mutual

information are cheaper to evaluate than cross-validation. However, when the number of features

is high, they become difficult to evaluate (François, 2007). As mentioned by Kohavi and John

(1998), a wrapper approach such as the one used here need: i) a state space, ii) an initial state,

iii) a termination condition and iv) a search engine (see Section 4.3 for details).

Several search algorithms that select a subset of m features out of d exist in the literature

(Jain et al., 2000; Reunanen, 2006). Although exhaustive search is guaranteed to find the optimal

feature subset, it is not feasible when d is not small. The branch and bound procedure proposed

by Narendra and Fukunaga (1977) explores only a part of all possible feature combinations. It is

guaranteed to find the optimal feature subset in less time than needed for exhaustive search. Its

main drawback concerns the monotony assumption of the feature selection objective function.

That is, if a variable is added to the feature set, it should never decrease the value of the objective

function, which is not always the case (Zongker and Jain, 1996).

Individual ranking procedures are often called naive methods. The idea is to individually rank

each feature at a time, according to its prediction power. This technique is valid only if every

feature is independent, which is usually not the case in practice. Sequential forward selection

(SFS) starts with a single feature and iteratively adds a feature to increase the classification

criteria (Jain et al., 2000). Caruana and Freitag (1994) examine five hill-climbing procedures for

feature selection. The main limitation of all these methods is that they are greedy strategies.

Ideally, all possible subset of features should be considered. Combination of features can provide

relevant information that is not carried separately by these features. The best example is

the simple XOR problem, where two features taken separately may be irrelevant, while taken

together are very useful. In this case, a sequential search technique will never find this relevant

combination since none of the two variables are selected separately.

Sequential backward selection (SBS) starts with all features and iteratively remove a single
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feature to increase the classification accuracy (Jain et al., 2000). Although combination of

features are taken into account with this technique, a high number of computations are necessary

since it starts with the set of all features. This may not be feasible for very high dimensional

data set. The plus l take away r method combines the former two techniques by first applying

SFS for l features and then SBS for r features. Although this method seems promising, a

value for l and r have to be given by the user. Sequential forward floating search (SFFS) and

sequential backward floating search (SBFS) are generalization of the two former methods (Pudil

et al., 1994). In this case, l and r are determined automatically. However, these techniques are

still suboptimal procedures (Webb, 2002). Bins and Draper (2001) propose a feature selection

algorithm for data sets with very large number of features. However, their algorithm is complex

since it involves three different steps. Guérif and Bennani (2006) and Li et al. (2008) propose

to combine feature selection and clustering. Finally, Tenenhaus et al. (2007) is a good example

of a wrapper approach for feature selection.

2.4.2 Stochastic Methods

As written in Cakmakov and Bennani (2002), there are mainly two reasons to use stochastic

methods for feature selection. First, to avoid getting stuck in local minima and second to have

more chance to capture feature dependences. Using stochastic methods is intuitive since the

feature selection problem is exponential (Oh et al., 2004). An advantage of stochastic methods is

the avoidance of the monotonicity assumption made by sequential methods (Yang and Honavar,

1998). In Loughrey and Cunningham (2005), a search strategy using simulated annealing (SA) is

used for feature selection. Lin et al. (2006) propose to combine SA with support vector machine

(SVM) for feature selection and hyper-parameter optimization. Several studies have also been

carried out using genetic algorithms (GA) for feature selection (Vafaie and Imam, 1994; Yang

and Honavar, 1998; Raymer et al., 2000; Huang and Liu, 2006). Hybrid GA procedures have

been proposed as well (Oh et al., 2004; Huang et al., 2007). Both SA and GA have a wide

range of hyper-parameters to tune before obtaining convincing results (Liu and Chian, 1997;

Kudo and Sklansky, 2000; Oh et al., 2004). For SA, they are annealing schedule, number of

loops, initial temperature and transition rate. For GA, they are population size, crossover rate,

mutation rate and number of generations. If the tuning is not done correctly, this leads to poor

results.

PGSL is a direct search algorithm that employs global sampling to find the minimum of

a user defined objective function. PGSL has been successfully applied to optimization prob-

lems involving highly non-linear objective functions containing a large number of local minima

(Raphael and Smith, 2003a). It has proven its efficiency for structural control (Domer et al.,

2003), system identification (Robert-Nicoud et al., 2005a), configuration (Svanerudh et al., 2002)
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and leak detection (Raphael and Smith, 2005). PGSL has advantages over SA and GA regarding

hyper-parameter tuning (Domer et al., 2003). Only three parameters are fixed using a simple

guideline proposed in Raphael and Smith (2003a). Moreover, PGSL gives competitive results

when comparing to SA and GA (Raphael and Smith, 2003a; Domer et al., 2003; Raphael and

Smith, 2005). However, no work has been done on using PGSL for feature selection (objective

1, Section 1.5).

As explained above, wrapper feature selection combines a search strategy with a classification

algorithm. Among classification techniques, kernel methods (Boser et al., 1992; Cristianini and

Shawe-Taylor, 2000) have potential because they can detect more general relationships. Kernel

methods map data into a (generally) higher dimensional vector space in order to detect structure

in the data more easily. Kernel methods are generally well known thanks to the increasing

popularity of support vector machines (SVM) (Boser et al., 1992; Vapnik, 1995). SVM is a

kernel-based technique that can be used with such inner product information. SVM have been

successfully applied in domains such as text classification (Zhuang et al., 2005), face identification

(Fernandez and Viennet, 1999) and classification of gene expression data (Yuan et al., 2003).

SVM hyper-parameters can be found through grid search (Soares et al., 2004). Chapelle et al.

(2002) propose a gradient descent algorithm. In Luxburg et al. (2004), data compression is used

on the training labels for hyper-parameter selection. Although a hybrid Monte Carlo technique

is proposed in Gold and Sollich (2002), it is computationally expensive. As proposed in Fröhlich

et al. (2003) for GA, in the approach suggested in this thesis, selection of SVM hyper-parameters

is done throughout the feature selection process using PGSL. Finally, it has been observed that

SVM can suffer from irrelevant features (Barzilay and Brailovsky, 1999; Weston et al., 2001;

Rakotomamonjy, 2003).

As noted in François (2007), classification techniques such as ANN and SVM using a Gaussian

kernel consider each feature to have equal importance. For this reason, SVM may perform badly

when there are many irrelevant features (Weston et al., 2001). The literature contains several

applications of SVM to feature selection as well as feature selection for SVM (Hermes and

Buhmann, 2000). In Evgeniou et al. (2003), a variable is important if, when removed, the

separating boundary varies the most. This method is however applicable only when features

are independent. Guyon et al. (2002a,b) propose an algorithm based on SVM and recursive

feature elimination (RFE). Liu and Zheng (2006) use SVM for wrapper feature selection. Both

strategies use a greedy algorithm, iteratively adding/removing features. In Rakotomamonjy

(2003), although SVM is used for feature selection, the feature selection and learning process

are distinct. A sparse linear SVM algorithm that inherently performs variable selection is used in

Bi et al. (2003). Chen and Lin (2006) and Wu and Li (2006) also use SVM for feature selection.

These works either combines SVM with a filter approach or use particularities of SVM, avoiding
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its applicability with other classification algorithms. No work has been done on combining PGSL

and SVM for wrapper feature selection (objective 1, Section 1.5).

2.5 System Identification

2.5.1 Introduction

A systematic approach to interpretation of measurement data employs methodologies developed

in the field of system identification (Ljung, 1999). System identification involves determining

the state of a system and values of system parameters through comparisons of predicted and

observed responses. When the forms of relationships between observable quantities and sys-

tem parameters are known, regression techniques are useful for identifying system parameters.

However, these techniques are rarely applicable to structural engineering because closed form

relationships between system parameters and responses are often not available. Most structures

are analyzed using numerical methods. Strategies that compute the values of finite element

model parameters through matching predicted responses with measured values are called finite

element model updating or model calibration methods. Fully instantiated models that have

(continuous) values for all parameters are obtained through these procedures.

A survey of model updating procedures is given in Robert-Nicoud et al. (2005c). Many

previous studies propose methods for modifying stiffness coefficients that predict dynamic prop-

erties of structures, for example Friswell and Mottershead (1995). Such work is often aimed at

supporting evaluation of earthquake damaged structures (Chaudhary et al., 2000). Proposals

for interpretation of static measurements are few and they involved minimizing the difference

between measured and analytical quantities from a given finite element model (Liu and Chian,

1997; Reich and Park, 2001). The number of unknown variables is fixed. Models that have

varying numbers of degrees of freedom and consequently, different sets of variables are not ac-

commodated in such approaches. Note that model free monitoring exist (Posenato et al., 2006;

Lubasch et al., 2006). In the latter, however, the study is limited to load identification.

In conventional system identification, a suitable model is identified by matching measurement

data with model predictions. Model calibration involves minimization of the difference between

predictions and measurement data through identification of good values of model parameters.

This strategy is based on the assumption that the model that best fits the observations is the

most reliable model. This assumption is flawed; there are several factors that could cause the

best fit to be the wrong model.

Errors influence the reliability of system identification. Various types of errors may com-

pensate each other such that bad model predictions match measured values. The following

definitions are used in this description: measurement error (emeas) is the difference between
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real and measured quantities in a single measurement. Modeling error (emod) is the difference

between the prediction of a given model and that of the model that accurately represents the

real behavior. Modeling errors have three principal sources e1, e2 and e3 (Raphael and Smith,

2003b). Source e1 is the error due to the discrepancy between the behavior of the mathematical

model and that of the real structure. Source e2 is introduced during the numerical computation

of the solution of the partial differential equations representing the mathematical model. Source

e3 is the error due to the assumptions that are made during the simulation of the numerical

model. Typical assumptions are related to the choice of boundary conditions and model param-

eters such as material properties, for example E and I. All these errors as well as the abductive

aspect of the system identification task justify the use of a multiple model approach since many

models may have equal validity under these conditions.

2.5.2 Multiple Models

Compositional modeling is a framework for constructing adequate device models by compos-

ing model fragments selected from a model fragment library (Falkenhainer and Forbus, 1991).

Model fragments partially describe components and physical phenomena. A complete model is

created by combining a set of fragments that are compatible. For modeling the behavior of struc-

tures, fragments represent support conditions, material properties, geometric properties, nodes,

number of elements and loading. Assumptions are explicitly represented in model fragments so

that the model composition module generates only valid models that are compatible with the

assumptions chosen by users. Model composition makes it possible to search for models con-

taining varying numbers of degrees of freedom. There is no need to formulate an optimization

problem in which the number of variables is fixed a-priori. Models are automatically gener-

ated by combining model fragments and are analyzed by the finite element method in order to

compare their predictions with measurements.

In model-based diagnosis (de Kleer and Williams, 1987), a library of models can be used to

perform the diagnosis of a system (Struss, 2007). The core objective of model-based diagnosis

is to find candidate diagnoses that explain observations (de Kleer, 2006). Whereas in system

identification the aim is to find the state of the system (whether there is a fault or not), model-

based diagnosis objective is to diagnose the system, i.e. find the problem (Balakrishnan and

Honavar, 1998). However, diagnosis goes beyond the task of finding the problem. As written

in Struss (2007), “Diagnosis is only relevant if it supports a decision [...]”. Thus, the final aim

of diagnosis is not only to identify the problem, but also to find a possible remedy. Examples

of remedy are replacement of components, reconfiguration, etc. Examples of applications of

model-based diagnosis are automotive industry (Struss and Price, 2004), autonomous mobile

robots (Steinbauer and Wotawa, 2005) and software debugging (Köb and Wotawa, 2004).
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A possible way to perform fault diagnosis is through parameter estimation (Isermann, 1993).

Using static and dynamic process models as well as measurements, relationships and redun-

dancies are used to detect faults. A methodology based on parameter estimation is used to

generate analytical symptoms. Examples can be found in industrial robots (Freyermuth, 1991)

and grinding machines (Janik and Fuchs, 1991). The notion of analytical redundancy due to

measurements is used as well. For more details, see Section 7.4.6. In Krysander and Nyberg

(2002), consistency relations with highest diagnosis capability are used. For this, they use

the structural information to find sub-models which are then derived in consistency relations.

Finally, Darwiche (2000) studies the application of model-based diagnosis under real-world con-

straints. System identification is a complex process and can, for example, be supported by

qualitative reasoning-based approaches (Travé-Massuyès et al., 2003). However, in the latter, a

single model is iteratively updated. The paper by Addanki et al. (1991) introduces the concept

of graphs of models. However, in their work, models are generated manually and they work with

only one model at a time.

Traditionally, system identification is treated as an optimization problem in which the differ-

ence between model predictions and measurements is minimized. Values of model parameters

for which model responses best match measured data are determined by this approach. As

explained in Section 2.5.1, this approach is not reliable because different types of modeling and

measurement errors are present (Banan et al., 1994; Sanayei et al., 1997; Catbas et al., 2007).

Moreover, they can compensate each other such that the global minimum indicates models that

are far away from predictions of the model representing the correct state of the system (Robert-

Nicoud et al., 2005c). Therefore, instead of optimizing one model, a set of candidate models is

identified, such that their prediction errors lie below a certain threshold value.

A model is defined in Robert-Nicoud et al. (2005c) (and in this thesis) as a distinct set

of values for a set of parameters. The threshold is computed using an estimate of the upper

bound of errors due to modeling assumptions (emod) as well as measurements (emeas). The set of

candidate models is iteratively filtered using subsequent measurements for system identification.

This approach could generate either a unique model for the structure or a set of models which

are equally capable of representing the structure. This depends on parameters chosen for the

identification problem and errors.

Modeling assumptions define the parameters for the identification problem. The set of model

parameters may consist of quantities such as elastic modulus, connection stiffness and moment

of inertia. Each set of values for the model parameters corresponds to a model of the structure.

An objective function is used to evaluate the quality of candidate models. The objective function

E is defined as follows:



2.5. SYSTEM IDENTIFICATION 25

E =

{

ε if ε > τ
with ε =

√

∑

(mi − γi)2
0 if ε ≤ τ

(2.6)

ε is the error which is calculated as the difference between predictions γi and measurements

mi. τ is a threshold value evaluated from measurement and modeling errors in the identification

process. The set of models that have E = 0 form the set of candidate models for the structure.

An important aspect of the methodology is the use of a stochastic global search and op-

timization algorithm for the selection of a population of candidate models whose predictions

are close to measurements (Robert-Nicoud et al., 2000). Mathematical optimization techniques

that make use of derivatives and sensitivity equations are not used because search is performed

among sets of model classes that contain varying numbers of parameters and multiple local min-

ima have been observed in the search space. A stochastic global search algorithm called PGSL

(Raphael and Smith, 2003a) is used to minimize the cost function that evaluates the difference

between measurements and model predictions. It has been empirically observed that the num-

ber of evaluations of the objective function required by PGSL for finding the global minimum

does not increase as rapidly as other search techniques such as genetic algorithms (Raphael and

Smith, 2003a).

It was shown earlier that the location of the global minimum shifts in the presence of modeling

and measurement errors. Therefore, an accurate computation of the global minimum is not

necessary and in fact, could result in solutions that are far from reality. Hence the search task

is reformulated such that any solution whose objective function value lies below a threshold is

considered to be acceptable. A population of solutions is obtained by repeating search several

times. No work has been done on automatic analysis of these models. Data mining methods

can be used to better understand these models (objective 2, Section 1.5).

2.5.3 Data Mining for System Identification

Data mining has already been used in engineering (Grossman et al., 2001; Melhem and Cheng,

2003; Alonso et al., 2004). Examples of applications include oil production prediction (Nguyen

and Chan, 1999), joint damage assessment (Yun et al., 2001), traffic pattern recognition (Yan

et al., 2005) and composite joint behavior (Shirazi Kia et al., 2005). Soibelman and Kim (2002)

study data preparation, which is a crucial step before knowledge extraction. Machine learning

methods such as decision trees and neural networks have also been integrated in diagnosis

systems (Balakrishnan and Honavar, 1998). In Chantler et al. (1998), the use of machine learning

techniques is mentioned and their high training set size requirement noted. In Portinale et al.

(2004), case-based reasoning (CBR) is integrated in the context of diagnosis. However, these

studies focus on the prediction abilities of such algorithms.
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Some papers describing the use of machine learning applied to system identification have

already been published. However, they concern dynamic systems (Abad et al., 2002), consistency

based diagnosis (Alonso et al., 2004), automatic defect classification (McNamara et al., 2004) and

automated repair (Saunders et al., 2000). In Cattan and Mohammadi (1997), neural networks

are used to predict expert subjective ratings. The work by Chen et al. (2005a) focuses on the

data quality aspect of civil infrastructure data. Soft computing techniques have been applied

to infrastructure management (Flintsch and Chen, 2004). However, most of the soft computing

techniques use neural networks and thus are not meant for knowledge extraction.

Data mining is an active field in manufacturing as well (Harding et al., 2006), for example

in decision support. Koonce et al. (1997) use data mining, through decision trees, on industrial

data. Kusiak (2002) generate rules for a manufacturing problem. Lee and Park (2003) employ

data mining in the semiconductor manufacturing environment. Schnalzer et al. (2006) identify

bridge performance patterns using hierarchical clustering. However, they did not discuss the

number of clusters issue. No work has been done on applying data mining to models in system

identification (objective 2, Section 1.5).

A clustering technique such as K-means (Webb, 2002) can be useful. Even though clustering is

often proposed for various applications by the data mining community, it is not straightforward

and there are many open research issues (see Section 2.3.2). While there are well accepted

methods for evaluating predictive models such as cross-validation (Webb, 2002), clustering of

possible models has not been investigated and quantitative methods are not straightforward for

evaluating this task. The criterion for assessing the capability of algorithms is subjective and

dependent on the final goal of the knowledge discovery task.

Pearson’s correlation is a measure of the relationship between two variables (Edwards, 1984).

Studies using correlation include natural hazards prevention (Pulinets et al., 2004) and cache

replacement policies (Ari, 2004). To the knowledge of the author, correlation has never been

applied to multiple model system identification. Principal component analysis (PCA) (Jolliffe,

2002) generates a small set of principal components (linear combinations of variables) that ex-

plain most of the variability of the data. It has been successfully applied to dimension reduction

in financial time series (Lendasse et al., 2001) and micro-arrays data (Lexin and Hongzhe, 2004).

Hybrid data mining methods are proposed in the literature (Pan et al., 2005; Xu et al., 2005).

Most work combines data mining methods for better predictions. For example, Ding and He

(2004) propose a combination of PCA and K-means to improve the prediction accuracy. How-

ever, the visualization improvement is not taken into account. Self-organizing maps (SOM)

(Guérif and Bennani, 2007; Cabanes and Bennani, 2008) can also be used in combination with

K-means to reduce the dimensionality. In this case SOM transform the data usually in 2D. SOM

has several tuning parameters to fix such as the neighborhood function, the grid type and the
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learning rate. Finally, it is noted that displaying multidimensional clusters of models has never

been studied up to now (objective 2, Section 1.5).

2.6 Sensor Placement

2.6.1 Examples in Engineering

The use of sensors for structural health monitoring has been increasing exponentially. Large

numbers of sensors lead to enormous amounts of data (Brownjohn, 2007). Often, data are either

redundant or meaningless, thereby complicating data management. It is thus important to select

and place sensors so that maximum useful information is obtained. This process, which stands

upstream from data interpretation, is known as sensor placement.

Sensors are increasingly used worldwide for tasks such as model-based diagnosis (Struss, 2006)

and automatic control (Culler and Hong, 2004). The field of sensor configuration has emerged

recently and research concerning sensor networks is now emerging in parallel. Examples of the

interest in this field are the special issue of Communications of the ACM on wireless sensor

networks in 2004 and the publication of a new journal, ACM Transactions on Sensor Networks,

in 2005. Moreover, research evolves in managing these sensor networks mainly to satisfy growing

user needs (Mullen et al., 2006). Work on sensors is also carried out in areas such as multi-

sensor management (Xiong and Svensson, 2002). Reliability (Bagajewicz and Sanchez, 2000)

and uncertainty (Guratzsch and Mahadevan, 2006) are currently studied in system identification

as well as decision support systems (Sanchez-Marre et al., 2006).

One of the most concerned fields is civil engineering where measurements are rarely di-

rect. Models are needed to relate measurements to causal information. Applications areas in

this field include fault detection (Worden and Burrows, 2001), water networks (Robert-Nicoud

et al., 2005c) and health monitoring (Meo and Zumpano, 2005). Installation of sensors and

measurement campaigns are time-consuming tasks. This motivates the use of a framework for

automating the sensor placement process. Li et al. (2006) use norm based techniques to place

sensors. Parker et al. (2006) propose experimental validation of their genetic algorithm strat-

egy for sensor placement. In Schulte et al. (2006), a forward-backward selection algorithm is

envisaged for optimal sensor placement. Minimization of an information entropy criterion is

used in Papadimitriou et al. (2000) and Pareto optimal concept in Papadimitriou (2005). All

of these studies involved structural dynamics contents and have yet to be evaluated with static

measurement data.
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2.6.2 Sensor Placement for System Identification

One of the most important reasons for making measurements is system identification (Ljung,

1999), where the idea is to understand the behavior of a structure. In this case, the challenge is

to determine the true state of the structure according to measurements. System identification

can be model-based (see Section 2.5.2). Configuring a measurement system that best separates

candidate models is necessary for effective system identification. Different methods can be used

to measure the separation between predictions. For example, Robert-Nicoud et al. (2005b) uses

the notion of entropy. Variance is compared to entropy for the measure of model separability

and the entropy is found to be better. The expression used to calculate entropy is the Shan-

non’s entropy function (Shannon and Weaver, 1949). This expression comes from the field of

information theory and it formulates the disorder within a set. In our case, a set is an ensemble

of model predictions for a system identification task. The disorder, and therefore entropy, is at

maximum when model predictions show wide dispersion. At the best measurement locations,

model predictions should have maximum variation (Robert-Nicoud et al., 2005b).

Sensor placement is also an active area of research in fault diagnosis (Raghuraj et al., 1999;

Commault et al., 2006; Frisk and Krysander, 2007). A description of an approach for identifying

required measurements for performing diagnosis can be found in de Kleer and Williams (1987).

They use entropy as a measure of probabilities of candidate models in order to identify mea-

surements to be taken. However, their approach is part of a diagnosis methodology and requires

measurements from previous sensors in order to locate the next sensor. Raghuraj et al. (1999)

use a graph-based formulation for the sensor placement problem. In their work, however, they do

not find all minimal sensor sets that could diagnose the system. In Travé-Massuyès et al. (2006)

sensor placement is based on analytical redundancy relations (ARR). However, their strategy

has a high complexity due to the numbers of ARR. In Frisk and Krysander (2007), the sensor

placement problem is formulated as a graph theoretical problem. A fault f is detected if there

is an observation consistent with fault mode f and not consistent with no-fault mode. Sensors

are placed so that faults in different components are the best isolated. Theoretical proofs are

given in Krysander and Frisk (2007). These techniques are based on redundancy and therefore,

the number of sensors needed to diagnose the fault may be important.

Within the context of system identification, Robert-Nicoud et al. (2005b) place each sensor

according to a greedy algorithm. In greedy algorithms, strategies that accept a less attractive

alternative for a better overall solution do not exist. While finding an answer, the best imme-

diate, or local, solution is always selected. Although finding the overall, or globally, optimal

solution for some optimization problems, greedy algorithms may find non optimal solutions for

other problems.
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Unlike greedy algorithms, global search algorithms are intended to find the best solution

among all possible. Most popular global search algorithms are simulated annealing (SA) (Kirk-

patrick et al., 1983) and genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989). More recent

proposals include the repeated weighted boosting search (Chen et al., 2005b). The probabilistic

global search lausanne (PGSL) (see Section 2.5.2) is used. Only three search parameters need

to be tuned and performance has been shown to be as good or better than SA and GA (Raphael

and Smith, 2003a). Up to now, PGSL has never been used for sensor placement. In addition,

no comparison has been made between greedy and global search for sensor placement (objective

3, Section 1.5).

Data mining has already been used for sensor data management as well as for interpretation

in order to place sensors (Mani, 2003; Ailamaki et al., 2003; Faschingbauer and Scherer, 2007).

However, clustering is not used in these examples. Combination of both sensors and clustering

concepts has been found in the literature in several fields of research. In Banta and Abidi

(1996), a sensor placement strategy using clustering is used for acquisition of 3D models. The

aim, however, is to obtain closely packed clusters. In Younis et al. (2003), clustering is used

to partition sensor networks into clusters. Ideas of cluster compactness and separation are not

used. In Mukherjee and Memik (2006), the position of sensor is determined by sensor centers.

In this particular application, the number of clusters is known in advance. Kumar (2003) uses

clustering as a view for connected information space containing sensors. Although clusters of

sensors are studied, no work related to sensor placement is done. No work directly related to

using clustering for improving sensor placement has been found (objective 3, Section 1.5).

The use of data mining in addition to the iterative aspect of the methodology makes the inte-

gration of engineers in the process important. Firstly, data mining results have to be visualized.

Visualization is important for helping engineers make decisions. The objective is to represent

results obtained with data mining methods to engineers accurately and simply in order to carry

out system identification. Secondly, engineers need feedback from the system. That is to say,

the system must show the results in an easily understandable manner. This way, engineers can

understand them and consequently draw conclusions. Secondly, there is a need for engineers to

interact with the system in order to improve the system identification task (objective 2, Sec-

tion 1.5). The motivations for these needs, as mentioned in Stalker and Smith (2002), are that

usually engineers work with incomplete knowledge and problems that are context dependent.

2.7 Definitions

As written in Section 2.1, the goal of data mining is to transform data into knowledge. To

ensure clarity, terms such as data, information and knowledge are defined in this section. In
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this work, data mining is applied in civil engineering. Computer scientists (e.g. the author) and

civil engineers (users) have different terminologies. Certain words are specific to one field and

unknown to researchers in the other domain. The situation can even be worse with partially

known terminology: the same word can have two different meanings if it is read by a computer

scientist or a civil engineer. These issues are discussed in Section 2.7.2. This thesis also contains

several abbreviations. They are explained in Chapter 8.1.

2.7.1 Data, Information, Knowledge and Wisdom

The aim of data mining is to draw understandable knowledge from raw data. Behind these

notions of data and knowledge, a more complex hierarchy exists. This hierarchy originates

independently from knowledge management, design and information science (Sharma, 2005). In

knowledge management, the data information knowledge wisdom (DIKW) hierarchy or pyramid

has been initiated by Cleveland (1982), Zeleny (1987) and Ackoff (1989) separately. Figure 2.3

shows the pyramid representing the DIKW hierarchy.

Figure 2.3: Pyramid of the data information knowledge wisdom (DIKW) hierarchy.

Zeleny (1987) translates the different parts of the DIKW hierarchy respectively by know-

nothing, know-what, know-how and know-why. Ackoff (1989) proposes comprehensive definitions

for such terms (Bellinger et al., 2005). He writes that “[data] are products of observation”. It

simply exist and has no significance. Information, which is inferred from data, answers questions

such as who, what, where, when and how many. It consists of data linked together by relational

connections. Knowledge is know-how and is acquired through learning. Knowledge is a useful

collection of information. Ackoff (1989) proposes an additional layer named Understanding . It

represents the why and allows to synthesize new knowledge from previous one. Finally, Wisdom

is the ability to evaluate any choice. As written in Bellinger et al. (2005), “it asks questions
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to which there is no (easily-achievable) answer”. More details about these definitions are given

in Ackoff (1989). In the design domain, the DIKW hierarchy is found in Cooley (1987). In

information science, Cleveland (1982) mentions a hierarchy for information, knowledge and

wisdom. Figure 2.4 is an illustration of a part of this hierarchy.

Figure 2.4: Illustration of information, knowledge and wisdom. Originally published in THE

FUTURIST (1992). Used with permission from the World Future Society, 7910 Woodmont

Avenue, Suite 450, Bethesda, Maryland 20814. Telephone:301-656-8274; www.wfs.org.

According to Cleveland (1982), this hierarchy is mentioned for the first time by T.S. Eliot -

a poet - in 1934. The following quote is taken from Eliot (1934):

“Where is the Life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?”

It is noted that other hierarchies exist. For example, Raphael and Smith (2003b) propose a

simpler ontology. First, the notion of wisdom is not included. Second, information is defined

to include data and knowledge. With this representation, knowledge is a type of information,

along with data. Knowledge is defined as data that are linked together. Tuomi (1999) proposes

an inverted hierarchy, where data emerge only after information is obtained, which is the case

after obtaining knowledge. The author is also aware of the fact that definitions of these terms

can vary (Zins, 2007). This thesis is written with a computer science point of view. The author

agrees on the DIKW hierarchy and belongs to the people thinking that, for example, Information

Science should be named Knowledge Science (Zins, 2006). Therefore, concepts such as data and

knowledge are used with their meaning coming from the DIKW hierarchy. For more details,
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a comprehensive study of the meaning of these terms is done through the comparison of 130

definitions from the information science point of view (Zins, 2007). Spiegler (2003) has written

a precise description of data, information and knowledge and especially the connection between

them.

In mathematics and computer science, several expressions are used to define the knowledge

discovery process. In Frawley et al. (1992), it is defined as the “nontrivial extraction of implicit,

previously unknown, and potentially useful information from data”. The difference between data

mining and knowledge discovery is subtle. Data mining can be seen as the cause (what is done)

and knowledge discovery the effect (what is obtained) (Pal and Jain, 2005). A common term

used in the literature is machine learning. Distinctions between machine learning and data

mining are given in Section 2.1. Another expression often used is pattern recognition. Whereas

with pattern recognition the goal is usually known in advance (the question to be answered is

known), this is not the case with data mining (Pal and Jain, 2005). In data mining applications,

data are collected and interesting knowledge is thus inferred. In the remainder of this thesis,

the expression data mining is used.

2.7.2 Computer Scientists and Civil Engineers

From the data mining point of view, several engineering applications exist. Grossman et al.

(2001) describe a range of application of data mining to solve common engineering issues. Lan-

gley and Simon (1995) briefly describe applications of data mining for tasks such as diagnosis,

monitoring, forecasting and automation. From the civil engineering viewpoint, data mining is

an emerging field. Several papers using neural networks for civil engineering applications have

been published (Abudayyeh et al., 2006). A comprehensive study about application of data

mining to engineering problems has been done (Reich and Barai, 1999). Although most of the

terminology is distinct for these two fields, some words are used for different purposes. This

is the case with the word model which has a different meaning for civil engineers who perform

system identification from the meaning used by those in data mining.

In system identification, the term model often denotes a representation of a physical entity

that is used for simulation and analysis, for example, using a finite element software. A model

is defined as a set of values for given parameters. These parameters represent the system one

attempts to identify. A model thus contains values of system parameters (Robert-Nicoud et al.,

2005a). Examples of system identification models are given in Robert-Nicoud et al. (2005a).

More details about models can be found in Section 2.5. In data mining, algorithms usually build

models from input data sets. This model is then used for predictive or descriptive purposes.

Decision trees, neural networks and support vector machines are examples of such models. As

written in Tan et al. (2006), a “model generated by a learning algorithm should both fit the input
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data well and correctly predict the class label of records it has never seen before”. A model can

be seen as an expert (Witten and Frank, 2005). Thus, a data mining model in computer science,

has a completely different meaning from a system identification model in civil engineering. In

the remainder of this thesis, and since data mining will be integrated in a system identification

methodology, the word model refers to the system identification model.

2.8 Summary

Previous sections have shown strengths and weaknesses in the research field related to this work.

Regarding strengths, one can mention K-means, one of the most popular techniques for clus-

tering (Jain and Dubes, 1988). To estimate the correct number of clusters, several indices have

been proposed (Bezdek and Pal, 1998; Halkidi et al., 2001; Wu and Chow, 2004; Kim and Ra-

makrishna, 2005; Yang et al., 2006). Indices such as Davies-Bouldin (Davies and Bouldin, 1979)

and Calinski-Harabasz (Calinski and Harabasz, 1974) have recently been reported to be among

the best (Maulik and Bandyopadhyay, 2002; Kim and Ramakrishna, 2005). When selecting

relevant features, Kohavi and Sommerfield (1995) recommends to use wrapper approaches since

they usually provide better results. Support vector machines (SVM) have been successfully used

for wrapper feature selection (Liu and Zheng, 2006). Wrapper techniques using probabilistic ap-

proaches such as simulated annealing and genetic algorithms have been found to be the most

efficient (Oh et al., 2004; Huang et al., 2007). Probabilistic global search lausanne (PGSL) is a

global search algorithm that is competitive with genetic algorithms (Raphael and Smith, 2003a).

Robert-Nicoud (2003) proposed a methodology for generating multiple models for the system

identification task. Robert-Nicoud et al. (2005b) and Papadimitriou et al. (2000) used Shanon

entropy in a greedy algorithm for initial sensor placement.

Studies of previous work indicated several weaknesses. Thesis objectives (Section 1.5) are

indicated in parentheses:

• A multiple model system identification approach has been developed. However, it is limited

in interpreting models that are identified. Engineers have to examine candidate models

manually (objective 2).

• Although often used in engineering, data mining has never been applied to mine model

parameters in system identification. Most literature mentions the use of data mining for

predictive purposes rather than for descriptive goals (objective 2).

• In clustering, the number of clusters is usually not known in advance. Although sev-

eral cluster validity methods exist, they only work for certain data sets and are usually

undefined for a single cluster (objective 1).
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• Wrapper feature selection approaches are the most effective, for example when combining

a sequential search technique with support vector machines (SVM). However, sequential

search requires the assumption of monotonicity4. Other proposals, such as genetic algo-

rithm based approaches, need complex tuning of search parameters (objective 1).

• Most sensor placement strategies involve structural dynamics contexts. They have yet to be

evaluated with static measurement data. Furthermore, complete iterative methodologies

for sensor placement, integrating data mining as a decision support tool, and involving

engineers are rare (objective 3).

• Up to now, PGSL has not been used for sensor placement. In addition, no comparison

has been made between a greedy algorithm and global search (PGSL) for initial sensor

placement (objective 3).

• Most data mining studies focus on artificial benchmarks or, in the best case, on laboratory

tests. There are very few examples of successful applications of data mining on real

engineering examples (objective 4).

The above shortcomings are addressed in this thesis. Chapter 3 presents a new index for

finding the correct number of clusters in a data set. A new feature selection algorithm combining

SVM and PGSL is proposed in Chapter 4. Chapter 5 shows how to integrate data mining in

an overall methodology for system identification. A comparison between greedy algorithm and

global search (PGSL) is done in Chapter 6. A methodology for iterative sensor placement using

clustering is also introduced. Finally, conclusions and future work are given in the last chapter.

4This assumption means that adding new features never degrades the performance.



Chapter

3
A New Cluster Validity

Index

“While it is entertaining to find patterns in clouds, it is pointless and

perhaps embarrassing to find clusters in noise.” Tan et al. (2006)

Overview

This chapter presents the first contribution of this research, a new validity index for clustering.

This new index provides reliable estimates of the number of clusters in a data set. First,

existing selected validity indices are described for comparison with the proposed index. The

new index is then introduced and tested on benchmark data sets. Finally, limitations of the

new index are evaluated.

3.1 Existing Indices

Since it is not feasible to test every existing index, six validity indices that are suitable for hard

partitional clustering are used to compare results with those of the new validity index. These

indices serve as a basis for evaluating results from the proposed index on benchmark data sets.

Notation for these indices have been adapted to provide a coherent basis. The metric used on

the standardized data set is the Euclidean distance d(x, y). The Euclidean distance is chosen

since it is easily understood by non-specialists.

Dunn index: One of the oldest and most cited indices is proposed by Dunn (1974). The

Dunn index (DU) identifies clusters which are well separated and compact. The goal is therefore

to maximize the inter-cluster distance while minimizing the intra-cluster distance. The Dunn

index for k clusters is defined by Equation 3.1:

DUk = min
i=1,...,k

{

min
j=1+1,...,k

(

diss(ci, cj)

maxm=1,...,k diam(cm)

)}

(3.1)

35



36 CHAPTER 3. A NEW CLUSTER VALIDITY INDEX

where diss(ci, cj) = minx∈ci,y∈cj d(x, y) is the dissimilarity between clusters ci and cj and

diam(cm) = maxx,y∈cm d(x, y) is the intra-cluster function (or diameter) of the cluster. If Dunn

index is large, it means that compact and well separated clusters exist. Therefore, the maximum

is observed for k equal to the most probable number of clusters in the data set.

Calinski-Harabasz index: This index (Calinski and Harabasz, 1974) is based on a ratio

of between cluster scatter matrix (BCSM) and within cluster scatter matrix (WCSM). The

Calinski-Harabasz index (CH) is defined as follows:

CHk =
BCSM

k − 1
·

n − k

WCSM
(3.2)

where n is the total number of points and k the number of clusters. The BCSM is based on

the distance between clusters and is defined in Equation 3.3:

BCSM =
k

∑

i=1

ni · d(zi, ztot)
2 (3.3)

where zi is the center of cluster ci and ni, the number of points in ci. The WCSM is given

in Equation 3.4:

WCSM =
k

∑

i=1

∑

x∈ci

d(x, zi)
2 (3.4)

where x is a data point belonging to cluster ci. To obtain well separated and compact clusters,

BCSM is maximized and WCSM minimized. Therefore, the maximum value for CH indicates

a suitable partition for the data set.

Davies-Bouldin index: Similar to the Dunn index, Davies-Bouldin index (Davies and

Bouldin, 1979) identifies clusters which are far from each other and compact. The Davies-

Bouldin index (DB) is defined according to Equation 3.5:

DBk =
1

k

k
∑

i=1

max
j=1,...,k,i6=j

{

diam(ci) + diam(cj)

d(zi, zj)

}

(3.5)

where in this case, the diameter of a cluster is defined as in Equation 3.6:

diam(ci) =

√

√

√

√

1

ni

∑

x∈ci

d(x, zi)2 (3.6)

with ni the number of points and zi the centroid of cluster ci. Since the objective is to obtain

clusters with minimum intra-cluster distances, small values for DB are interesting. Therefore,

this index is minimized when looking for the best number of clusters.
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Silhouette index: The silhouette statistic (Kaufman and Rousseeuw, 1990) is another well

known way of estimating the number of groups in a data set. The silhouette index (SI) computes

for each point a width depending on its membership in any cluster. This silhouette width is

then an average over all observations. This leads to Equation 3.7:

SIk =
1

n

n
∑

i=1

(bi − ai)

max(ai, bi)
(3.7)

where n is the total number of points, ai is the average distance between point i and all

other points in its own cluster and bi is the minimum of the average dissimilarities between i

and points in other clusters. Finally, the partition with the highest SI is taken to be optimal.

Maulik-Bandyopadhyay index: A more recently developed index is named the I index

(Maulik and Bandyopadhyay, 2002). For consistency with other indices it is renamed MB. This

index, which is a combination of three terms, is given through Equation 3.8:

MBk =

(

1

k
·
E1

Ek
· Dk

)p

(3.8)

where the intra-cluster distance is defined by Ek =
∑k

i=1

∑

x∈ci
d(x, zi), E1 being the value

of Ek for k = 1 and the inter-cluster distance by Dk = maxk
i,j=1 d(zi, zj). As before, zi is the

center of cluster ci. The correct number of clusters is estimated by maximizing Equation 3.8.

According to Maulik and Bandyopadhyay (2002), p is chosen to be two.

Geometric index: The last index used for comparison is the Geometric index (Lam and

Yan, 2005). One of its advantages is its ability to accommodate data with clusters of different

densities as well as clusters that overlap. The geometric index (GE) is defined by Equation 3.9:

GEk = max
1≤r≤k

(

2
∑d

j=1

√

λjr

)2

min1≤q≤k,r 6=q d(zr, zq)
(3.9)

where d is the dimensionality of the data and λjr is the eigenvalue of the covariance matrix

from the data. While the numerator is the squared eigen-axis length, the denominator represents

the inter-cluster distance. The optimal solution is found by minimizing the index over the

number of clusters.

3.2 Score Function

A typical goal of clustering is to maximize the inter-cluster distance (separability) while min-

imizing the intra-cluster distance (compactness) over iterations. The index developed in this

work - called the score function (SF) - is based on these two concepts. This section gives details
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related to the way the SF has been developed and the ideas that have lead to its development.

The following definitions are used. Firstly, the Euclidean distance is used to measure to what

degree two data points are separated. Secondly, the size of the i-th cluster, ni, is given by the

number of points it contains.

Two concepts used in the proposed index are the “between class distance” (bcd), representing

the separability of clusters, and the “within class distance” (wcd) representing the compactness

of clusters. Three approaches are commonly used to measure the distance between two clusters:

single linkage, complete linkage and comparison of centroids. DU is based on single linkage

and has a complexity of O(n2). Although SI does not fit well into these three categories, its

computational complexity is the same as the first two. DB, MB and GE compare centroids. CH

follows the third approach since the distances of centroids from the overall mean of the data

are determined. The main advantage of using the distance from the overall mean of the data is

that the minimum and maximum are not used when comparing centroids. The minimum and

maximum are sensitive to outliers. In this work, the score function uses the third approach since

the first two have high computational costs (Halkidi et al., 2001). The bcd is given by Equation

3.10:

bcd =
1

nk

k
∑

i=1

d(zi, ztot)
2 · ni (3.10)

where n is the total number of data points, k is the number of clusters, zi its centroid of the

current cluster and ztot the centroid of all the data points. The main quantity in the bcd is the

distance between zi and ztot, d(zi, ztot). As in the CH index, each distance is weighted by the

cluster size ni to limit the influence of outliers. This has the effect to reduce the sensitivity to

noise. Like all other tested indices, n is used to avoid the sensitivity of bcd to the total number

of points. Finally, the value of k in the denominator is used to penalize the addition of new

clusters. Thus, bcd is reduced as k increases. In this way, the limit of one point per cluster is

avoided. The wcd is given by Equation 3.11:

wcd =
1

k

k
∑

i=1

√

√

√

√

1

ni

∑

x∈ci

d(x, zi)2 (3.11)

Computing values for wcd involves determining the distance between each point and the

centroid of its cluster. Again, ni is used for taking into account the size of clusters. The mean

is taken over the k clusters. A graphical representation of distances used in both Equation 3.10

and 3.11 can be found in Figure 3.1.

With Equations 3.10 and 3.11, bcd and wcd are independent of the number of data points.

The main idea, as stated in the beginning of this section, is to maximize Equation 3.10 while
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Figure 3.1: Graphical representations of bcd (left) and wcd (right).

minimizing Equation 3.11. Therefore, compact and well separated clusters are aimed at. This

can be done by maximizing the ratio of bcd and wcd, noted as the index, as shown in Equation

3.12:

Index =
bcd

wcd
(3.12)

Equation 3.12 has two difficulties. The first difficulty occurs when the clusters are perfect.

Here, the value of the index in Equation 3.11 is zero and the ratio of Equation 3.12 is indetermi-

nate. Therefore, the ratio cannot be used in this form in the case of perfect clusters. The second

difficulty occurs when there is only one cluster in the data. In this case, Equation 3.10 is zero

and thus the ratio of Equation 3.12 is zero. This is not desirable since it means that the single

cluster case is not comparable with other cases. A possible solution to these difficulties involves

the use of the exponential notation. Consequently, a new value for the index is proposed:

Index =
ebcd

ewcd
= ebcd−wcd (3.13)

A third difficulty is related to bounds. All other tested indices have no bounds. It is thus

difficult to appreciate the results of such indices. Since the “distance” to either perfect clusters

or no cluster at all is not known. The upper bound allows the examination of how close the

current clusters are to the perfect cluster case. The bounds for the index in Equation 3.13

are ]0,∞[. It is also desirable to avoid very large numbers for computational reasons. Again,

exponential notation is used. Avoiding all of these difficulties leads to the formula for the score

function (SF), defined by Equation 3.14:

SF = 1 −
1

eebcd−wcd (3.14)

Thus, Equation 3.14 is maximized to obtain the most reliable number of clusters. The score

function is now bounded by ]0,1[ and deals with the perfect cluster case and the single cluster
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case. The strength of the SF originates in part from the fact that it is built on ideas from several

indices. Since it is not based on minimum/maximum values, it is not influenced by outliers. The

size of clusters is taken into account in both bcd and wcd. The comparison of centroids is used in

the place of single or complete linkage. This avoids the computational complexity. The number

of clusters k is used to penalize the addition of clusters. Finally, the exponential notation is

used to both accommodate single and perfect cluster cases and to define bounds. As can be seen

through Equations 3.10 and 3.11, computational complexity is linear. If n is the number of data

points, the proposed score function has a complexity of O(n). Tests that have been conducted

with benchmark problems indicate that this function provides good results. This is the subject

of the next section.

3.3 Results

3.3.1 Number of clusters

In this subsection, there are two goals. The first goal is to test the score function on benchmark

data sets. The second goal is to compare results between indices. kmin and kmax are taken to

be respectively 2 and 10. If not explicitly stated, data sets used in this section are composed

of 1000 points in two dimensions. As written in Section 2.3.1, one drawback of K-means is the

random choice of centroid locations. To limit the impact of the problem, K-means is run several

times. This number is a compromise between better results and computational time needed.

After experimental tests, this value is chosen to be 20. Therefore, the best K-means result over

20 runs is taken. More details are given in Section 5.2.2.

Example 1 : In the first data set, Unbalanced, three clusters of different compactness are

present (see Figure 3.2a). Clusters of varying densities is an important issue (Chou et al., 2004).

Table 3.1 shows that, unlike other indices, Dunn is not able to correctly estimate the number

of clusters (three). This is due to the definition of the Dunn index. The diameter, for example,

can be affected by outliers since it is not based on a mean value.

Example 2 : The second data set, Overlapped, consists of three clusters. Two of these clusters

overlap (see Figure 3.2b). This data set is important since the ability to deal with overlapping

clusters is one of the best ways to compare indices (Bouguessa et al., 2006). Table 3.2 shows

the results for this data set. GE overestimates the number of clusters. A weakness of GE is to

be based on the minimum distance between two clusters. This leads to problems when dealing

with overlapping clusters. DU, DB and SI identify the two overlapping clusters as one cluster.

This is due to their dependence on a minimum or maximum value. This is not the case with

CH, MB and SF which correctly estimate the three clusters.

Example 3 : This data set, named Noisy, contains seven clusters with an additional noise. It
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Figure 3.2: Four artificial data sets, Unbalanced, Overlapped, Noisy and Subcluster.
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k 2 3 4 5 6 7 8 9 10

DU 0.056 0.036 0.022 0.014 0.017 0.008 0.009 0.007 0.010

CH 950.6 3453.3 2725.0 2455.3 2111.1 2214.6 1961.3 2160.6 2107.9

DB 0.800 0.457 0.697 0.688 0.784 0.762 0.852 0.846 0.819

SI 0.682 0.893 0.819 0.716 0.714 0.728 0.593 0.521 0.565

MB 2.746 7.600 6.245 5.106 4.986 4.236 3.819 3.971 3.618

GE 3.257 1.720 1.842 1.876 1.939 1.931 2.043 2.107 2.212

SF 0.489 0.648 0.627 0.617 0.603 0.595 0.593 0.584 0.584

Table 3.1: Results of the seven validity indices on the Unbalanced data set (example 1). The

best result on 20 runs is taken. The data set is shown in Figure 3.2a. Bold numbers show

maximum values for all indices except DB and GE, where minimum values are desired. This

indication is used for Tables 3.1 to 3.6. The correct number of clusters is k = 3.

k 2 3 4 5 6 7 8 9 10

DU 0.091 0.011 0.012 0.016 0.016 0.017 0.021 0.014 0.019

CH 1346.2 2497.6 2154.2 1996.0 1941.3 1887.3 1834.7 1772.8 1744.2

DB 0.543 0.562 0.653 0.809 0.784 0.766 0.767 0.753 0.731

SI 0.779 0.771 0.672 0.611 0.582 0.583 0.589 0.597 0.592

MB 4.426 5.520 4.646 3.800 3.208 2.827 2.592 2.374 2.061

GE 2.719 1.885 2.046 2.010 1.885 1.745 1.676 1.705 1.625

SF 0.577 0.636 0.612 0.593 0.588 0.582 0.579 0.577 0.576

Table 3.2: Results of the seven validity indices on the Overlapped data set (example 2). The

data set is shown in Figure 3.2b. The correct number of clusters is k = 3.



3.3. RESULTS 43

can be seen in Figure 3.2c. It is rarely the case that clusters appear clearly in real situations.

The data are often noisy and some indices are sensitive to noise as pointed out in Halkidi et al.

(2001). Table 3.3 contains the results for this specific data set. It can be seen that DU, CH, DB,

SI and MB overestimate the correct number of clusters. Presence of noise is too strong for these

indices to correctly estimate the number of clusters. Only GE and SF are able to determine the

seven clusters.

k 2 3 4 5 6 7 8 9 10

DU 0.038 0.038 0.064 0.070 0.077 0.077 0.067 0.075 0.081

CH 769.3 1018.6 1476.1 1722.4 2174.7 2849.9 3136.7 3201.4 3294.3

DB 1.108 0.700 0.608 0.500 0.457 0.465 0.440 0.481 0.486

SI 0.580 0.636 0.740 0.768 0.803 0.829 0.843 0.852 0.860

MB 1.640 1.744 3.069 3.845 5.457 7.370 7.937 7.136 6.148

GE 4.215 2.717 1.860 1.613 1.079 0.952 1.191 1.534 1.507

SF 0.419 0.513 0.567 0.590 0.604 0.612 0.605 0.601 0.601

Table 3.3: Results of the seven validity indices on the Noisy data set (example 3). The data set

is shown in Figure 3.2c. The correct number of clusters is k = 7.

Example 4 : The following data set, named Subcluster, contains five clusters, with two “pairs”.

It is visible in Figure 3.2d. It can happen in real-life that data sets contain clusters which are

closely grouped together. Existing indices developed for hard clustering may not be able to

deal with such situations. Table 3.4 presents the results for this data set. More details about

sub-cluster hierarchies can be found in Section 3.3.4.

k 2 3 4 5 6 7 8 9 10

DU 0.059 0.069 0.020 0.017 0.016 0.014 0.014 0.014 0.015

CH 979.3 2431.0 2647.7 3774.1 3351.0 3045.1 2833.7 2636.2 2550.7

DB 0.907 0.489 0.467 0.469 0.579 0.683 0.714 0.750 0.792

SI 0.657 0.841 0.821 0.810 0.735 0.729 0.677 0.635 0.661

MB 1.890 9.523 16.206 43.550 54.825 36.058 49.388 43.522 41.192

GE 3.793 1.235 1.147 1.122 1.510 1.435 1.525 1.570 1.658

SF 0.480 0.636 0.638 0.641 0.627 0.618 0.613 0.606 0.601

Table 3.4: Results of the seven validity indices on the Subcluster data set (example 4). The data

set is shown in Figure 3.2d. The correct number of clusters is k = 5.
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Example 5 : The next data set, named Wine, is a real-life data set (Merz and Murphy, 1996).

It is made of 178 points in 13 dimensions. Wine contains 3 clusters. Results of the seven indices

are given in Table 3.5. Here, CH, DB, SI and SF are able to discover the three clusters. While

MB underestimates the number of clusters, DU and GE over-estimate the correct value.

k 2 3 4 5 6 7 8 9 10

DU 0.160 0.232 0.232 0.210 0.190 0.235 0.212 0.239 0.234

CH 69.52 70.94 56.20 47.17 42.23 38.26 36.26 34.33 32.73

DB 1.505 1.257 1.501 1.481 1.402 1.421 1.307 1.423 1.425

SI 0.426 0.451 0.418 0.407 0.390 0.368 0.313 0.348 0.353

MB 5.689 5.391 3.546 3.445 2.682 2.008 1.893 1.733 1.380

GE 97.747 99.209 104.685 101.154 108.083 97.892 93.336 86.958 91.108

SF 0.269 0.385 0.314 0.324 0.253 0.240 0.231 0.233 0.242

Table 3.5: Results of the seven validity indices on the Wine data set (example 5). The data set

is made of 178 points in a 13 dimensions. The correct number of clusters is k = 3.

Example 6 : In this last example, the Cancer data set is used (Merz and Murphy, 1996). It

contains 569 points in 30 dimensions. Cancer is composed of 2 clusters and is a good example

of a problem in a relatively high dimensional space. Results are presented in Table 3.6. Three

indices, CH, SI and SF, are able to deal with these two clusters represented in 30 dimensional

space. DU, DB, MB and GE are not able to catch the trend due to either the cluster shapes or

the high dimensionality of the data.

k 2 3 4 5 6 7 8 9 10

DU 0.076 0.078 0.075 0.078 0.072 0.064 0.072 0.079 0.067

CH 267.7 197.1 159.0 140.4 128.8 118.6 109.7 103.3 98.1

DB 1.444 1.461 1.502 1.432 1.534 1.391 1.418 1.408 1.457

SI 0.519 0.492 0.441 0.427 0.279 0.257 0.259 0.244 0.228

MB 16.202 11.433 13.890 10.265 26.346 20.834 14.002 5.697 12.279

GE 2.599 2.497 2.426 2.558 2.946 2.546 2.231 2.273 2.215

SF 0.657 0.446 0.340 0.238 0.216 0.160 0.149 0.137 0.124

Table 3.6: Results of the seven validity indices on the Cancer data set (example 6). The data

set is made by 569 points represented in 30 dimensions. The correct number of clusters is k = 2.

Table 3.7 summarizes the results of the application of the seven indices to four artificial and
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two real-life data sets. SF is the only index performing well on all data sets. The closest index,

in term of good results, is CH. This is due to the similarity of the two equations. Both CH and

SF takes into account the number and size of clusters. Among all, CH and SF are the only two

indices to be based on a comparison of cluster centroid (zi) with overall centroid (ztot).

In our experiments, SF correctly identified the number of clusters in all six data sets. The SF

successfully processes the standard case with clusters of different size and compactness (Unbal-

anced), overlapped clusters (Overlapped), clusters with noise (Noisy), groups of clusters (Sub-

cluster) and multidimensional data (Wine and Cancer).

Data Sets DU CH DB SI MB GE SF

Unbalanced 2(X) 3(O) 3(O) 3(O) 3(O) 3(O) 3(O)

Overlapped 2(X) 3(O) 2(X) 2(X) 3(O) 10(X) 3(O)

Noisy 10(X) 10(X) 8(X) 10(X) 8(X) 7(O) 7(O)

Subcluster 3(X) 5(O) 4(X) 3(X) 6(X) 5(O) 5(O)

Wine 9(X) 3(O) 3(O) 3(O) 2(X) 9(X) 3(O)

Cancer 9(X) 2(O) 7(X) 2(O) 6(X) 10(X) 2(O)

Table 3.7: Estimated number of clusters for six data sets and seven validity indices. Notation

(O) and (X) respectively indicates when the correct number of clusters has been found or not.

To test the score function more completely, several other aspects are evaluated. For example,

properties of perfect clusters and sub-clusters are challenges. The single cluster case has to be

considered as well. Although not commonly studied in the literature, it may often happen in

practice. Recent research studies by others on clustering validity indices, have been limited to

cluster data from 2 to kmax clusters. Finally, a comparative study of all indices is done.

3.3.2 Perfect Clusters

The SF upper bound indicates the perfect cluster case. Proximity to this bound (1.0) is a

measure of closeness of data sets to perfect clusters. The next two data sets are used to test how

the SF deals with perfect clusters. The data sets Perfect3 and Perfect5 are made of 1000 points

in 2D and contain three and five clusters respectively which are nearly perfect (i.e. with a very

high compactness). Both data sets as well as their score function curve are given in Figure 3.3.

The correct number of clusters is identified in both situations. An interesting observation is

related to the maximum value for the SF. In the first case (0.854), the maximum is higher than

in the second one (0.772). This is due to the dependence of the SF on the number of clusters k.

This can be seen in Equations 3.10 and 3.11. More details of the influence of k can be found in
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Figure 3.3: Comparison between two data sets: Perfect3 and Perfect5 containing respectively

three and five clusters (top figures). Their respective score function curves is given as well

(bottom figures).
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Section 3.4.1. Finally, the SF gives an idea of how good clusters are through the proximity of

the value of the index to its upper bound of unity.

3.3.3 Single Cluster

Before attempting to identify a single cluster, the definition of a cluster is clarified. Several

definitions exist in the literature. A possible definition is given in Ling (1972). It states that

a cluster is considered to be “real” if it is significantly compact or isolated or both at the

same time. Concepts of compactness and isolation are based on two parameters that define

internal properties of a cluster. The main drawback of such definitions is that they are often

too restrictive; few data sets satisfy such criteria. Another way of testing for the existence of

a single cluster is the null hypothesis (Engelman and Hartigan, 1969). However, this test is

usually carried on univariate data.

An objective of the index, SF, is to accommodate the single cluster case. This case is not

usually treated by other indices. In this subsection, kmin and kmax are taken to be respectively

1 and 8. Plot of SF with respect to the number of clusters provide indications related to how

the single cluster case can be identified. Firstly, two situations may occur. Either the number

of clusters is clearly located with a global maximum (Figure 3.4, left) or the SF has no clear

global maximum (Figure 3.4, right).
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Figure 3.4: Difference of the SF trend with a data set containing three clusters (left) and single

cluster (right).

Since in the first situation, the number of clusters is identifiable, the challenge lies in the

second situation. In this case, there are two possibilities. They are: i) data forms a single

cluster and ii) the correct number of clusters is higher than kmax.
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In this paper, an empirical equation is proposed to distinguish between these two cases. For

this purpose, three new data sets are introduced: Single, which contains 1000 points in 2D

representing a single and spherical cluster, SingleN is the same cluster as Single plus added

noise and Single30 is a single cluster in a 30 dimensional space. It has been observed that in

the single cluster cases, the value of the SF when k = 2, denoted as SF2 is closer to the value

for k = 1 (SF1) than in other data sets. Therefore, the ratio between SF1 and SF2 is used as

an indicator of single cluster as shown in Equation 3.15.

SF1

SF2

≥ α (3.15)

where SF1 and SF2 are respectively the value for SF when k = 1 and k = 2. Results of this

indicator on artificial and real-life benchmark data sets are given in Table 3.8.

Data sets Indicator Data sets Indicator

Unbalanced 0.44 SingleN 1.28

Overlapped 0.37 Single30 0.60

Noisy 0.52 Wine 0.10

Subcluster 0.45 Cancer 0.01

Single 0.61

Table 3.8: Results of the indicator (SF1/SF2) for nine benchmark data sets. Bold numbers

indicate the single cluster cases.

According to Table 3.8, it is empirically stated that the data set is likely to contain a single

cluster if Equation 3.15 is satisfied with α ∼= 0.6. Only three data sets containing a single cluster

satisfy the condition in Equation 3.15.

3.3.4 Sub-clusters

Another case is the sub-cluster situation. This occurs when existing clusters can be seen as a

cluster hierarchy. If this information can be captured by the validity index, more information

about the structure of the data can be given to the user. The data set Subcluster in Figure

3.2d is an example of this situation. The index SF is compared with the previously mentioned

indices on this topic. Figure 3.5 shows the evolution of each validity index with respect to the

number of clusters.

In Figure 3.5, MB is not able to find the correct number of clusters (neither the sub-clusters,

nor the overall clusters). In the case of DU, only the overall three clusters are detected. The

reason is related to the distance measured between two clusters. Dunn uses the minimum
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Figure 3.5: Comparison of DU, CH, DB, SI, MB, GE and SF for the sub-cluster case of Figure

3.2d. DB and GE must be minimized.
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between points in two different clusters ci and cj . This strategy is limited in the case of the

Subcluster data set since clusters overlap. With SI, although the sub-cluster hierarchy is visible,

the recommended number of clusters is three. Finally, the indices that are able to find five

clusters and show a peak at three clusters are CH, DB, GE and SF.

3.3.5 Comparative Study

All of these indices are different. Distinguishing aspects are their definition, their optimization

strategy (minimum/maximum), their complexity or their definition with specific numbers of

clusters such as k = 1. An index may have a tuning parameter to fix. This is the case of the MB

index. The computational complexity is important. Although data sets tested here are small,

other real-life examples may have tens or hundreds of thousands of points. In these cases, a

validity index with a linear complexity is preferred over polynomial complexity. Since none of

the other indices are bounded, the perfect cluster case is difficult to identify. When a value is

obtained for a given index, it is usually difficult, or impossible, to know the proximity of the data

set in relation to the perfect cluster situation. Since the single cluster case is usually not taken

into consideration when developing indices, most of them are not defined for such a situation.

This is the case for DU, DB, SI, MB and GE. All of these indices somehow involve the distance

between two different clusters. In a single cluster case there is no such value. Although this

problem does not appear for CH, the denominator of Equation 3.2 prevents the single cluster

situation. Table 3.9 contains a summary of the important properties of the seven validity indices.

Properties DU CH DB SI MB GE SF

On k = 2..n max max min max max min max

Tuning parameters no no no no yes no no

Complexity O(n2) O(n) O(n) O(n2) O(n) O(n) O(n)

Bounds ]0,∞[ ]0,∞[ ]0,∞[ ]-∞,∞[ ]0,∞[ ]0,∞[ ]0,1[

Single cluster no no no no no no emp.

Sub-clusters no yes yes no no yes yes

Table 3.9: Properties of the seven compared validity indices. The single cluster line states

whether the single cluster case is handled empirically (emp.) or not (no). The sub-clusters line

shows yes for indices that are shown empirically to find sub-clusters and no otherwise. The

tuning parameter for MB is p in Equation 3.9.

Except for indices DB and GE, which have to be minimized, all indices have to be maximized

on k = 2..n. Only SF can be maximized on k = 1..n due to its definition. The standard
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computational complexity is O(n), with n being the number of points, except for DU and SI

(O(n2)). This is due to the way these two indices calculate the distance between clusters. MB

is the only index with a tuning parameter (p in Equation 3.9). This value is usually chosen to

be two in the literature (Maulik and Bandyopadhyay, 2002; Kim et al., 2004). Concerning the

bounds, the SF is the only index that has a lower and upper bound. This is a strong advantage

with regards to other indices since it increases the usefulness of the value. SF is also the only

index to be defined for the single cluster case (k = 1). Finally, only CH, DB, GE and SF reveal

sub-clusters in data.

To summarize, the main drawbacks of the Dunn index are its computational load and its

sensitivity to noise. It is useful for identifying clean clusters in data sets containing no more

than hundreds of points. Although the Davies-Bouldin index gives good results for distinct

groups, it is not designed to accommodate overlapping clusters. The Silhouette index is only

suitable for estimating the first choice and therefore, it should not be applied to data sets with

sub-clusters. The Maulik-Bandyopadhyay index has the particularity of being dependent on a

user specified parameter. The Maulik-Bandyopadhyay and Geometric indices have been found

to give bad results on multidimensional data sets. Although closely related to SF, CH has no

upper bound and is not defined for k = 1. To conclude, the score function (SF) is competitive

with existing validity indices on multidimensional and noisy data sets. It can handle perfect,

single and sub-cluster cases. Finally, the SF is computationally efficient. It is in O(n) where n

is the number of data points.

3.4 Limitations

Since the SF depends on two exponentials, its evolution when the number of clusters equals the

number of points requires specific study. In addition, data sets presented so far only contain

hyper-spheroidal clusters. Additional tests with arbitrarily shaped clusters have been carried

out. These issues are treated in the next subsections.

3.4.1 Score Function Evolution

In Section 3.2, the score function (SF) is bounded. Therefore, the SF has a lower bound of zero

(no cluster structure) and an upper bound of one (perfect clusters). The purpose of the study

in this subsection is to investigate the behavior of the SF for a large number of clusters. More

specifically, the limits of the SF when the number of clusters k tends to the number of points n

is studied. When k tends to n, the wcd tends to zero (see Equation 3.11). This is the case when

each point represents a single cluster. The evolution of bcd is described by Equation 3.16:
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lim
k→n

bcd =
1

n2

n
∑

i=1

d(x, ztot)
2 (3.16)

Equation 3.16 can be rewritten as a function of the standard deviation, σ:

lim
k→n

bcd =
1
n

∑n
i=1 d(x, ztot)

2

n
=

σ2

n
(3.17)

Consequently, the limit for SF when the k → n can be written as:

lim
k→n

SF = 1 −
1

eeσ2/n
(3.18)

Two situations occur depending on the order of magnitude of σ2 and n. They are presented

in Equation 3.19:

lim
k→n

SF =

{

1 for σ2 � n

∼ 0.63 for σ2 � n
(3.19)

The second case is the most likely to happen when data are standardized (see Section 2.2.2).

The evolution of the SF with both the bcd and the wcd is plotted with respect to the number of

clusters. This number varies from kmin = 1 to kmax = 30. Results for the data set Overlapped

are shown in Figure 3.6. Starting from zero (single cluster), the bcd has its maximum at k = 2

and decreases monotonically. The wcd starts with a high value and decreases monotonically as

well. Concerning the SF, a maximum is observed at the correct number of clusters k = 3. The

SF tends to 0.63 which is the limit found by Equation 3.19.

Figure 3.7 shows the results for the Noisy data set. After reaching a maximum for k = 7,

the value of the SF stabilizes as predicted by Equation 3.19. The wcd decreases monotonically

with a knee at k = 7. It is observed that the bcd closely follows the wcd starting at k = 7.

Finally, the case of a single cluster - SingleN - is studied (Figure 3.8). The bcd has a typical

increase and then stabilizes. Instead of decreasing, the wcd grows from 1 to 3 clusters. This

shows that k should not be increased. Thus, the SF has a minimum at k = 3 clusters and

then grows slowly. This shows that in addition to validating Equation 3.15, the SF evolution

indicates a single cluster presence in the data set.

Empirical tests have also been carried out. For a precise comparison of indices, the starting

centroids are chosen to be the same in five runs. For each index, the best result over these five

runs is taken as the correct number of clusters. Seven data sets that contain 16, 25, 36, 49, 64,

81 and 100 clusters are used. Limits on k, kmin and kmax, are chosen to be, respectively, 2 and

110. Results are given in Table 3.10.
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Figure 3.6: Evolutions of the SF and components bcd and wcd for the data set Overlapped from

kmin = 1 to kmax = 30. For each value of k, the best over 20 runs is taken (see Section 3.3.1 for

details).

Figure 3.7: Evolutions of the SF and its main components bcd and wcd for the data set Noisy

from kmin = 1 to kmax = 30. For each value of k, the best over 20 runs is taken.
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Figure 3.8: Evolutions of the SF and its main components bcd and wcd for the data set SingleN

from kmin = 1 to kmax = 30. For each value of k, the best over 20 runs is taken.

Indices 16 25 36 49 64 81 100

DU 11 18 28 NA NA NA NA

CH 20 34 84 76 68 73 84

DB 15 35 36 38 59 63 84

SI 15 28 52 50 83 98 108

MB 110 110 110 70 83 98 103

GE NA NA NA NA NA NA NA

SF 20 34 58 76 68 74 84

Table 3.10: Estimated number of clusters for seven data sets containing respectively 16, 25,

36, 49, 64, 81 and 100 clusters. For simplifying this specific experiment, the best value over 5

runs with fixed K-means starting centroid locations are given. NA stands for not available (for

example due to infinite or divide by zero issues).
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It is observed that all indices have difficulty finding the correct number of clusters. This

is likely due to the effect of the starting centroid locations. The probability of obtaining good

centroid locations at the beginning - and therefore the correct number of clusters at the end -

becomes smaller as the number of clusters increases (Tan et al., 2006). This issue can be resolved

for many situations using methodologies to find better starting centroid locations (Pena et al.,

1999).

However, the higher the number of clusters, the less effective these methodologies become. To

illustrate the dependency of K-means results to initial centroid locations, an additional test has

been carried out. The data set containing 49 clusters (see Table 3.10) is used again. However,

in this case, initial centroid locations are chosen so that each starting position is in a distinct

cluster. Aside from DU and GE, all indices find the correct number of clusters. This thus

indicates that for high number of clusters, good results can be achieved when starting centroids

are correctly placed.

3.4.2 Arbitrarily Shaped Clusters

Up to this point, data sets used to test the different indices contained hyper-spheroidal clusters.

The purpose of this subsection is to study arbitrarily-shaped clusters. Three new data sets are

introduced. Rectangle contains 1000 points in 2D representing five rectangular clusters. The

data set Nonconvex is made of 284 regularly-spaced points in 2D. It contains three clusters,

one of them is not convex. Finally, Ellipsoidal is a data set made of 3 ellipsoidal clusters (1000

points in 2D). These data sets are shown in Figure 3.9.

Regarding the Rectangle data set, all indices overestimate the correct number of clusters (5).

Results for different indices are: DU (9), CH (10), DB (10), SI (7), MB (10), GE (10) and SF

(10). While it is clear that the SF is not able to find the real number of clusters, other indices

have the same difficulty. This is mainly due to non-spheroidal shape of clusters. As stated in

Tan et al. (2006), the clustering algorithm K-means is not reliable for non-spheroidal clusters.

Concerning the next data set, Nonconvex, the difficulty lies in the fact that one of the

clusters is non-convex. In this case, the maximum value of SF is at k = 4 and although close, it

overestimates the correct number of clusters (3). The following indices are also close to the real

number of clusters: DU (2), DB (4) and MB (4). This is not the case for CH (6), SI (6) and GE

(10). In the case of non-convex clusters, another clustering algorithm than K-means is advised.

In the last data set, Ellipsoidal, the clusters are far from spherical in shape. All indices fail

when estimating the number of clusters (3). All indices overestimate the real number of clusters:

DU (9), CH (10), DB (10), SI (10), MB (10), GE (10) and SF (10). Since all indices involves the

calculation of some diameter or variance of clusters, the process fail when applied to strongly

ellipsoidal shaped clusters. Therefore, a limitation of the score function, as well as other tested
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Figure 3.9: Three new artificial data sets. Rectangle and Ellipsoidal contain 1000 points in 2D

while Nonconvex is made of 284 points in 2D.
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indices using K-means, is their restriction to data sets containing hyper-spheroidal clusters.

3.5 Conclusions

A new cluster validity index called score function has been proposed in this chapter. This

leads to a new method to reliably estimate the number of clusters in a data set. The following

conclusions come out of this chapter:

• Evaluation of results obtained through clustering is not straightforward. In addition, one

issue of K-means concerns the user-defined number of clusters. The score function that

has been developed in this work addresses both of these issues.

• The score function is found to be a correct estimator of the number of clusters in a data

set. It is comprehensive since it can handle various situations such as perfect, single and

sub-clusters. Its linear computational complexity make it easily applicable to a wide range

of data set sizes.

• When used with K-means clustering, the SF (along with other validity indices) are limited

to hyper-spheroidal clusters.

In this chapter, results of the score function are evaluated using benchmark data sets only.

Additional results from the system identification methodology are given in Chapter 5. Clustering

is also integrated as a tool for decision support for sensor placement (see Chapter 6).
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Chapter

4
A New Algorithm for

Feature Selection

“The capacity of digital data storage worldwide has doubled every nine

months for at least a decade, at twice the rate predicted by Moore’s Law

for the growth of computing power during the same period.” Fayyad and

Uthurusamy (2002)

Overview

This chapter presents a new wrapper feature selection algorithm combining global search

(PGSL) and support vector machines (SVM). After a short introduction to PGSL, a summary

of SVM is given. The proposed approach is presented in detail and results on benchmark data

sets are given.

4.1 Probabilistic Global Search Lausanne (PGSL)

The aim of feature selection is to find a subset of m features from a total of d that best satisfies

a given criterion. For a given subset, a feature is either present or not. When finding all possible

subsets m among d, Equation 4.1 gives the number of possibilities:

d
∑

m=0

Cm
d =

d
∑

m=0

d!

(d − m)!m!
= 2d (4.1)

Therefore, according to Equation 4.1, the number of possible feature combinations is com-

binatorial. A methodology for treating combinatorial problems involves the use of stochastic

search.

PGSL (Raphael and Smith, 2003a) is a direct search algorithm that employs stochastic

sampling to find the global minimum of a user defined objective function. Gradient calculations

59
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are not needed and no special characteristics of the objective functions (such as convexity) are

required. PGSL performs global search through sampling the solution space using a probability

density function (PDF). PGSL has three tuning parameters (for more details, see Raphael and

Smith (2003a)):

• NS: number of samples (sampling cycle)

• NFC: number of loops in the focusing cycle

• NSDC: number of loops in the sub-domain cycle

At the beginning of search, a uniform PDF is assumed for the entire search space so that

solutions are generated randomly. When good solutions are found, probabilities in those regions

are increased so that more intense sampling is carried out in regions containing good solutions.

The key assumption is that better sets of solutions are found in the neighborhood of good sets

of solutions. The search space is gradually reduced so that convergence is achieved. The total

number of PGSL iterations is the product of these three tuning parameters (NS ·NFC ·NSDC).

4.2 Support Vector Machines (SVM)

This subsection provides a summary of support vector machines (SVM). SVM are based on two

concepts: the kernel trick and a separating hyperplane. The kernel trick transforms non-linear

relationships from the initial space into linear relationships in order to discover relationships

more easily in the feature space. A kernel is a function that evaluates the inner product between

data points in some space:

K(x,y) = φ(x) · φ(y) (4.2)

SVM is a margin classifier that can benefit from the kernel trick. A test instance z is classified

using the decision function (separating hyperplane) of the non-linear SVM given below:

y = sign

( n
∑

i=1

yiλiK(xi, z) + b

)

(4.3)

where n is the number of training samples, yi ∈ {−1, 1} is the class label of the training

example xi, λ ∈ λ1, ..., λn are the Lagrange multipliers, K(xi, z) is the chosen kernel function

and b is a parameter related to the decision boundary. Training a SVM is done by minimizing

the following objective function:
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L(λ) =
n

∑

i=1

λi −
1

2

∑

i,j

λiλjyiyjK(xi,xj) (4.4)

subject to the following constraints:

n
∑

i=1

λiyi = 0 (4.5)

0 ≤ λi ≤ C,∀i (4.6)

where C is a SVM tuning parameter representing the penalty for misclassifying training

examples. The SVM formulation described here is for binary classification problems. Methods

are available for multi-class SVM, for example in Weston and Watkins (1998). The choice of

the kernel K(xi,xj) is important and generally depends on the application domain. The most

commonly used kernel function is the Gaussian:

K(x,y) = e−
‖x−y‖2

2σ2 (4.7)

The main reason for using a Gaussian kernel is that it has only one parameter (standard

deviation, σ) to tune (see Section 4.4). Furthermore, it has provided good results in several

applications. Other types of kernel have been examined in the literature and new kernels can

be created.

4.3 PGSL and SVM for feature selection

As mentioned in Section 2.4.1, a wrapper approach is characterized by four aspects. In the

proposed algorithm, they are as follows:

• A state space of size: 2d, where d is the total number of features

• An initial state: the initial seed in PGSL

• A termination condition: PGSL maximum number of iterations

• A search algorithm: PGSL

The PGSL-SVM methodology combines global search (PGSL) with support vector machine

(SVM). The strategy is founded on the proposition that feature selection and classification stages

should be optimized together and not separately. Figure 4.1 shows the flowchart for the overall

wrapper feature selection procedure.
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Figure 4.1: Flowchart of the feature selection process. The data set is first divided in training

and test set. PGSL uses SVM with 10-fold cross-validation as the objective function. The mean

error rate of the 10-fold cross-validation is given back to PGSL for the next iteration. Once the

total number of PGSL iterations is achieved, the test set is used to evaluate the classification

accuracy.



4.3. PGSL AND SVM FOR FEATURE SELECTION 63

First, one third of the data set is randomly taken to be the testing set (Randomly divide

data set step). To avoid any over-fitting bias within results (Reunanen, 2003), this test set is

only used once, at the end of the process (Evaluation of accuracy step). PGSL is started with a

random initial vector of dimension d+2 (Feature selection step). The first d values are rounded

to either 1 or 0 (since PGSL uses continuous variables), respectively representing selected and

non-selected features. The last two values are tuning parameters C and σ for Gaussian kernels

in SVM.

The objective function that is minimized by PGSL is the classification error rate of the

SVM. In the Objective function (SVM) step, a SVM with 10-fold cross-validation is run (see

Section 2.4). The mean of the 10 obtained error rates is given back to PGSL as the value of

the objective function to minimize. If the total number of PGSL iterations1 is not achieved, the

loop continues. Otherwise, the feature subset corresponding to the minimum error is returned

by PGSL. These features are selected from both the training and test sets to respectively train

and evaluate the final accuracy of the SVM (Evaluation of accuracy step). The result of this

overall procedure (Figure 4.1) is averaged over five separate runs.

The generalization accuracy is not the only relevant criterion for evaluating a feature selection

strategy. Other factors are also of importance. The number of calls to the objective function

is crucial for comparison, since estimating the generalization error using 10-fold cross-validation

is expensive in terms of computational time (for each PGSL iteration, 10 SVM are trained).

This is a good estimator of the computational complexity of the feature selection process. Since

it is not related to a specific computer, the values for different wrapper approaches are easily

comparable. Therefore, while the accuracy and the number of selected features are observed

(see the next section), the number of calls to SVM is fixed to be nearly the same (see Table 4.3).

The number of features selected is of importance, as well. The fewer the number of features,

the smaller is the amount of memory/time needed for the classification algorithm. In addition,

as stated in Section 1, a small number of features helps in understanding the data.

It is noted that, due to the size of the solution space (2d), several feature subsets may give

good results for SVM. It is thus impossible to guarantee that the subset found is the best (the

one that give the best SVM results) since the solution space is enormous. The aim is to find one

solution among the set of good feature subsets. Thus, no study is made on the stability of the

feature selection process. A feature selection algorithm that is stable is simply more deterministic

than another one, however it does not mean that it performs better or it has found the best

solution. The proposed approach is compared with random and GA-based feature selection to

show its efficiency.

1The total number of PGSL iterations is the product of its three tuning parameters: NS, NFC, NSDC (see

Section 4.1)
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4.4 Results

The PGSL-SVM approach is compared with results from the literature on several UCI data

sets (Merz and Murphy, 1996). Data sets have been chosen on the basis of their low number of

missing values and their numeric features. Entries containing missing values have been discarded

in the data preparation step to avoid issues related to missing data. Data sets are standardized

with a zero mean and unit standard deviation. First, a comparative study is made. Detailed

results are given afterward.

4.4.1 Comparative Results

As noted in Yang and Honavar (1998), it is usually not feasible to do a completely fair comparison

of different techniques for feature selection. While certain papers use a separate test set, others

use a 10-fold or 5-fold cross-validation to estimate the generalization error. In addition, values

obtained are not always averaged over the same number of runs. For this reason, this study is

aimed only at estimating the competitiveness of the PGSL-SVM approach.

In this experiment, PGSL tuning parameters are set following indications in the original

paper by Raphael and Smith (2003a) and after some experimental testing. Values are fixed as

follows: NS = 2, NFC = 2 · d and NSDC = 2, where d is the total number of features. SVM

tuning parameters are fixed using PGSL (C ∈ [0, 100], σ ∈ [0, 10]). A 10-fold cross-validation

procedure is used to estimate the generalization ability. Table 4.1 shows the mean values of the

cross-validation accuracy on 5 different runs.

Table 4.1 shows that the PGSL-SVM results are similar to other results in the literature. In

comparison with other techniques, PGSL-SVM is better for several data sets while it is within

the range of other results for a few data sets. It is thus competitive with existing feature selection

techniques. An example of the difficulty of fair comparison in the literature is shown through

the Ionosphere data set. Bradley and Fayyad (1998) used a separate test set, which is not the

case of GA-ANN, for example, and PGSL-SVM at this stage (i.e. the Randomly divide data set

step of Figure 4.1 is not yet done). For more details about training and test sets, see Section

2.1.

4.4.2 Detailed Results

Studies have shown that cross-validation strategies are subject to over-fitting (Kohavi and Som-

merfield, 1995; Reunanen, 2003). Due to the high number of possible feature subsets, a feature

subset may be found that is better than others on only these particular cross-validation folds.

Therefore, an additional subset that has never been used for the feature selection process, is

used as the test set (Evaluation of accuracy step).
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Cleveland (13) - 80.9 84.6 - - - - - - 84.4

Cancer wisconsin (9) 98.0 - - - - - - - - 96.8

Ionosphere (34) 94.5 84.1 86.1 95.4 92.0 89.4 92.0 91.7 92.8 96.1

Hepatitis (19) 85.2 - - - - - - - - 81.0

Glass (9) 69.3 - - - 76.6 76.7 - 62.6 65.5 67.1

Table 4.1: Comparative study of 9 feature selection methods with PGSL-SVM on 5 data sets from

the UCI Repository (Merz and Murphy, 1996). Numbers are percentage of correct classification.

Compared results are taken from (a) Yang and Honavar (1998), (b) Bradley and Fayyad (1998),

(c) Oh et al. (2004), (d) Loughrey and Cunningham (2005), (e) Liu and Zheng (2006) and (f)

Huang et al. (2007).

Often, tuning parameters of SVM are manually set to a particular value as in Mao (2004).

In this study, tuning parameters are set using a strategy depending on the method used. Four

different methods are compared:

• SVM: Support vector machine without feature selection. SVM tuning parameters are

chosen through a grid search (C ∈ {1, 10, 100}, σ ∈ {0.1, 1, 10}).

• RAND-SVM: Random selection of parameters. The solution space is sampled randomly

to find subset of parameters. SVM tuning parameters are fixed to be the same as above.

• GA-SVM: GA feature selection combined with SVM. SVM tuning parameters are fixed

according to Fröhlich et al. (2003). GA tuning parameters are based on the work by Yang

and Honavar (1998). Probabilities of crossover and mutation are 0.6 and 0.001 respectively.

Population size and number of generations are fixed, for each data set, so that the total

number of GA iterations is the closest to PGSL (see Table 4.3).

• PGSL-SVM: PGSL feature selection combined with SVM. SVM tuning parameters are

fixed by adding them to the PGSL search space (C ∈ [0, 100], σ ∈ [0, 10]). The total

number of iterations is dependent on the total number of features in the data set and is

given in Table 4.3.
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In this subsection, the methodology described in subsection 4.3 is applied. For large data sets

(more than 200 samples), one third of the data is used as the test set (Evaluation of accuracy

step). For data sets with less than 200 samples, no separate test set is used. In these cases, the

Evaluation of accuracy step is done with a 10-fold cross-validation. Results of the four methods

are given in Table 4.2.

First, it is visible that both GA-SVM and PGSL-SVM give better results than RAND-

SVM. This shows that both strategies are effective. Regarding GA-SVM and PGSL-SVM,

improvement with feature selection over standard SVM is visible for several data sets. WDBC,

Cancer wisconsin and Hungarian show no improvement using feature selection. This is due to

their small initial number of features and their importance for classification. Cleveland is the

only data set to clearly perform worse with feature selection. This may be due to the fact that

every feature is important in explaining the different classes. Therefore, removing even one of

them significantly reduces classification accuracy.

Valuable improvements in classification accuracy are observed on several data sets. On

the Ionosphere data set, GA-SVM and PGSL-SVM are better than SVM by 10.2% and 8.2%

respectively. On Zoo, improvement are of 15.9% and 19.9%. Finally, the best improvement are

shown for the Hepatitis data set, with an accuracy increase of 36.8% and 38.9%.

Regarding GA-SVM and PGSL-SVM, it is noted that their classification accuracy is nearly

the same on average. PGSL-SVM performs marginally better on 6 data sets out of 11. This

indicates that both strategies are equivalent in their generalization ability. A more interesting

result is the mean number of features selected. For 8 data sets out of 11, PGSL-SVM finds sets

with less number of features than GA-SVM, for the same order of accuracy. This is due to the

fact that SVM tuning parameters are better fixed through PGSL-SVM. On WDBC, GA-SVM

and PGSL-SVM find respectively 16.2 and 13.0 features for a difference of 1% in classification

accuracy. PGSL-SVM has thus an improvement of 19.8% in the number of features. On Lung

cancer and Sonar, the improvement is of 10.9% and 19.3% respectively.

The PGSL-SVM feature selection has two advantages over GA-SVM. First, with GA, the

SVM tuning parameters have to be coded to match the usual binary format. This is not needed

in the case of PGSL which uses continuous values. Second, PGSL has less tuning parameters

to fix than GA. While GA has at least four tuning parameters, PGSL has a simple guideline

concerning three variables. The main limitation of the proposed methodology, as with every

wrapper-based approach, is the time consuming process of the classification algorithm evaluation.

This time is further increased with standard cross-validation strategies.

The speed of convergence of GA and PGSL is dependent on the way their tuning parameters

are fixed. Convergence studies on PGSL have been carried out in Raphael and Smith (2003b).

For a fair comparison between GA and PGSL search strategies, it is ensured that the number
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SVM RAND-SVM GA-SVM PGSL-SVM

Accuracy Accuracy Accuracy # features Accuracy # features

Data sets Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

WDBC (30) 97.9 1.3 84.8 6.0 97.5 1.2 16.2 1.3 96.5 1.1 13.0 1.2

Cleveland (13) 86.5 2.5 57.6 2.7 84.1 2.5 8.4 0.9 80.8 2.6 7.0 2.1

Cancer wisconsin (9) 96.5 1.7 96.4 1.2 96.2 0.8 5.6 1.1 95.6 0.9 4.8 1.1

Ionosphere (34) 84.0 1.0 66.6 17.0 92.6 1.0 17.6 2.4 90.9 1.3 16.4 3.6

Wine (13) 93.5 0.5 92.3 3.3 98.2 0.5 8.2 1.3 98.7 0.4 7.8 1.5

Hepatitis (19) 56.5 0.6 63.5 3.1 77.3 3.2 8.6 1.1 78.5 2.7 6.4 1.7

Glass (9) 59.7 5.1 31.1 4.3 62.3 5.2 4.8 1.1 61.4 4.5 5.4 1.1

Hungarian (13) 81.2 1.7 70.3 7.6 78.1 3.1 5.8 0.8 79.8 4.9 6.4 0.6

Sonar (60) 77.1 7.2 43.5 22.6 81.5 4.3 30.0 2.5 83.2 7.9 24.2 2.5

Zoo (16) 81.4 1.5 88.2 6.3 94.3 2.0 7.8 1.5 97.6 0.6 8.8 0.8

Lung cancer (57) 73.2 5.9 77.3 5.5 88.3 3.4 25.6 3.1 89.2 5.2 22.8 4.8

Table 4.2: Comparison of accuracy for SVM, random feature selection (RAND-SVM), GA-based feature selection (GA-SVM)

and PGSL-based feature selection (PGSL-SVM). Numbers in brackets are dimensionality of data sets. For each strategy,

5 independent runs are made. Mean is the average and Std the standard deviation over the 5 runs. For RAND-SVM, the

number of selected features is not given since it is random, and thus gives no useful information.
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Data sets Size GA-SVM PGSL-SVM

WDBC 569 240 240

Cleveland 297 110 104

Cancer wisconsin 683 72 72

Ionosphere 351 272 272

Wine 178 110 104

Hepatitis 80 156 152

Glass 214 72 72

Hungarian 294 110 104

Sonar 208 506 480

Zoo 101 132 128

Lung cancer 27 462 448

Table 4.3: Number of GA and PGSL iterations during the search for the best feature subset.

Values are the number of calls to the 10-fold cross validation procedure. The best and the mean

values of Table 4.2 corresponds to 5 different runs. The second column is the number of samples

for each data set.

of calls to SVM is almost the same. Detail of the number of calls to the 10-fold cross-validation

procedure using SVM is given in Table 4.3.

4.5 Conclusions

A new feature selection algorithm based on the wrapper concept is proposed in this chapter.

This leads to an efficient feature selection algorithm. The following conclusions come out of this

chapter:

• PGSL-SVM is an efficient feature selection strategy. It performs better than GA-SVM for

feature selection on various data sets.

• The PGSL-SVM strategy finds subsets with a smaller number features than GA-SVM for

the same order of accuracy and in the same amount of time.

• The strategy involving PGSL is easier to use since it has less tuning parameters than GA-

based strategy. This number is of importance since bad tuning can lead to poor results.

• The fact that PGSL use continuous values helps fix the tuning parameters of SVM during

the feature selection process.
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In this chapter, the feature selection algorithm is tested on benchmark data sets. More

real-case tests are performed in Chapter 5.
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Chapter

5
Decision Support for

System Identification

“The bridge seemed to be among the things that last forever; it was un-

thinkable that it should break.” (Wilder, 2004)

Overview

This chapter addresses the research question “To what extent can data mining techniques

support engineers during system identification tasks?”. A system identification methodology

that utilizes multiple models is presented. The application of data mining techniques such

as correlation, principal component analysis, clustering and feature selection to the task of

extracting knowledge from multiple models are evaluated using a laboratory structure and a

full scale bridge.

5.1 The Need for Multiple Models

Traditionally, system identification is treated as an optimization problem where the difference

between model predictions and measurements is minimized. Values of model parameters for

which model predictions best match measured data are determined by this approach. However,

this approach is not reliable due to the abductive nature of the task and several types of errors

(see Section 2.5). These two factors lead to the strategy of filtering multiple models. To further

explain this issue, a practical example is presented. The multiple model strategy is demonstrated

with a simple truss example. The structure is made of ten bars each with a cross-sectional area

of 16cm2. Figure 5.1 shows the truss. Only the displacement at location A is measured using a

sensor. The structure has a vertical displacement of 10.5 mm at position A when subject to a

vertical load F of 40 kN at the same position. The objective is to detect damage in the truss.

Three distinct candidate models are given in Table 5.1.

71
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Figure 5.1: Schema of the truss structure used to justify the strategy of a multiple model

approach for system identification.

Case Damage scenario Description Displacement

Model 1 Element 2 damaged 87% area reduction 10.3 mm

Model 2 Element 6 and 7 damaged 69% area reduction 10.1 mm

Model 3 Support B damaged displacement 11.0 mm

Table 5.1: Details of three models that can explain the behavior of the truss structure shown

in Figure 5.1. For each model, the damaged element(s) and the modified area(s) are given. All

other elements have an area of 16cm2.
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All of them have predictions at A that lie within 5% of measurement (at point A) and will be

part of a candidate model set for this identification problem. The uncertainty in identifying the

model that correctly represents the structure is due to modeling and measurement errors and

lack of sufficient measurements. Adding more sensors such as strain gauges on certain members

can filter out some models from the candidate model set. However, minimizing the difference

between errors and measurements in order to select a single model can lead to the wrong model.

Consequently, multiple models are needed for reliable system identification. When many

models are presented, engineers might find it difficult to interpret the results (Section 5.3.2 and

5.3.8). Data mining is used to address this difficulty (see Section 5.3). The concept of multiple

models also affects measurement system design since sensor placement is undertaken accounting

for several models instead of one. This issue is developed in Chapter 6.

5.2 System Identification Methodology

5.2.1 Overall Methodology

The detailed methodology for the system identification process is given in Figure 5.2. This

chapter focuses on the knowledge extraction part. Modules for initial or single measurement

cycle and subsequent measurement cycles are described in Chapter 6. The model creation and

identification of candidate models parts have been developed by Robert-Nicoud et al. (2005c).

Techniques used in the knowledge extraction module have been introduced in Chapter 3 and 4.

In this module, data mining methods are applied to the data set containing model parameters

in order to obtain useful knowledge for engineers performing system identification.

The methodology is structured as follows:

Structural assumptions: Modeling assumptions define the parameters for the identifica-

tion problem. The set of model parameters may consist of quantities such as elastic modulus,

connection stiffness and moment of inertia. Each set of values for the model parameters corre-

sponds to a model of the structure.

Model creation (compositional modeling): Compositional modeling is a framework for

constructing adequate device models by composing model fragments selected from a model frag-

ment library (see Section 2.5.2). Model fragments partially describe components and physical

phenomena. A complete model is created by combining a set of fragments that are compati-

ble. For modeling the behavior of structures, fragments represent support conditions, material

properties, geometric properties, nodes, elements and loading. Assumptions are explicitly rep-

resented in model fragments so that the model composition module generates only valid models

that are compatible with the assumptions chosen by users.
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Figure 5.2: Detailed methodology for the system identification process. This thesis focus on three

modules: knowledge extraction, single or initial measurement cycle (Section 6.1) and subsequent

measurement cycles (Section 6.2). The stick person indicates where human-computer interaction

is needed, and the faces indicate whether or not the user finds the results to be satisfactory.
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Identification of candidate models (stochastic search): The next step identifies -

using stochastic search - a set of candidate models that may represent the real state of the

structure. Measurements, a set of model parameters and an objective function (Equation 2.6)

that evaluates models are needed to generate the set of candidate models. The search in the

space of possible models is done through the PGSL algorithm (see Section 4.1). PGSL is used

to minimize the cost function that evaluates the difference between measurements and model

predictions.

Knowledge extraction: Data mining techniques such as Pearson’s correlation and principal

component analysis (PCA) are applied to the models for knowledge extraction. The aim is

to help engineers understand the model parameters, their relationships and more generally the

model space. In addition to these two techniques, clustering is used to group models into clusters.

Models are grouped into clusters to i) facilitate visualization of the model space and ii) reduce

the number of models given to engineers (the centroid of the cluster is a possible way of defining

the cluster). The number of clusters is estimated through the score function. Visualization of

clusters is improved through the use of principal components. It is thus supporting decisions

of engineers regarding system identification. A feature selection algorithm is used to select

relevant parameters that explain candidate models. This information is used by engineers for

subsequent decisions in the system identification process. Details about these techniques are

given in Chapter 3 and 4.

At this point, three situations may happen. If engineers have obtained enough knowledge

from the different data mining techniques, the next step is model identification. The second

and third situations occur when engineers are not satisfied with the available information. In

the second situation, they modify assumptions (see the structural assumptions step). The third

situation involves adding more sensors to obtain additional information. In this case, the next

step is subsequent measurement cycles.

Model identification: In this final step, engineers - with the knowledge obtained and after

possible iterations - identify the state of the system.

In this chapter, four data mining methods are used to extract information from models. First,

the presence of relationships between parameters are examined using the correlation measure-

ment (Section 5.3.4). Second, principal components analysis (PCA) is used to check whether

there are parameters that are independent from others (Section 5.3.5). Clustering is used to

group models into classes. The clustering process is outlined in Section 5.2.2 while results are

given in Section 5.3.6. Finally, a feature selection algorithm is used to reveal important param-

eters that explain candidate models (Section 5.3.9). These methods are applied to models with

two illustrative case studies (Section 5.3.1 and 5.3.7). Sections 5.3.2 and 5.3.8 empirically show

the need of data mining techniques to interpret multiple models. In the case of correlation, PCA
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and clustering, only candidate models are used. Since the feature selection algorithm belongs to

the supervised learning techniques (see Section 2.1), it needs both candidate and non-candidate

models.

5.2.2 Clustering Algorithm

The methodology for grouping models into clusters combines PCA and K-means in order to

improve visualization of results. After standardization, the PCA procedure (see Section 2.2.2) is

applied to candidate models. Using all the principal components, the complete set of models is

transformed into the feature space. The number of clusters is estimated using the score function

(see Section 3.2). The K-means algorithm (see Section 2.3.1) is applied to the data in the feature

space. Table 5.2 presents the pseudo-code of the methodology used.

Procedure for grouping models into clusters

1. Standardize the data (Section 2.2.2)

2. Transform the data using PCA (Section 2.2.2)

3. Loop i from kmin to kmax

4. Run K-means T times with i clusters

5. Evaluate K-means results using the score function (Section 3.3.1)

6. End

7. Select results with maximum value for the score function

Table 5.2: Pseudo-code of the clustering procedure combining PCA and K-means to separate

models into clusters. kmin and kmax are respectively the lower and upper bound for the number

of clusters and T is the number of times K-means is run.

The procedure to determine the best number of clusters is to evaluate the score function

value for different number of clusters from kmin to kmax. The randomness of K-means, through

its starting centroids, has to be taken into consideration. For this, the algorithm is run T times

and the maximum value for the score function is chosen. More details can be found in Chapter

3.

5.3 Results

5.3.1 First Illustrative Case Study

A timber beam supported by springs is used to illustrate three data mining techniques from

the knowledge extraction module. It is emphasized that even though this study focuses on a
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beam structure, it can be applied to other structures in other domains. After candidate models

are selected using the identification of candidate models module, a set of parameters is chosen.

In the present study, every model has the same set of parameters (see Section 7.4.5 for further

details). The beam structure and the parameters are shown in Figure 5.3. Table 5.3 shows

the names, descriptions and units of parameters that are contained in candidate models of the

structure.

Figure 5.3: Schema of the timber beam structure. The load A is represented by its position from

the left part of the beam and its intensity. B and C are two elements with particular properties

(see Table 5.3).

Parameters Descriptions Units

p1 Load position (A) Node number

p2 Load magnitude (A) kN

p3 Area of element C m2

p4 Moment of inertia of element C mm4

p5 E of element C N/mm2

p6 Moment of inertia of element B mm4

p7 E of element B N/mm2

Table 5.3: Names, descriptions and units of parameters (see Figure 5.3 for more details).

Only candidate models (ε < τ)1 are taken into account. This results in a m × p matrix M ,

where m is the number of models and p is the number of input parameters. For the next two

data mining methods, a data set containing 3200 models is used (identification of candidate

models step). Among these models, 300 are fixed to be candidate models. In this case, the

threshold for candidate models (see Section 2.5.2) is taken to be 3.04 · 10−4 (τ in Equation 2.6).

As explained in Section 2.5.1 errors are as follows:

1For details, see Section 2.5.2.
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• Measurement error (emeas): difference between real and measured quantities in a single

measurement.

• Modeling error (emod): difference between the prediction of a given model and that of the

model which accurately represents the real behavior. This error is divided in:

– e1: error due to the discrepancy between the behavior of the mathematical model

and that of the real structure. This is usually fixed to zero, since its variation is

impossible to define for a range of practical situations.

– e2: introduced during the numerical computation of the solution of the partial differ-

ential equations representing the mathematical model. Fixed by engineers.

– e3: error due to the assumptions that are made during the simulation of the numerical

model. Due to the sampling of multiple models according to parameters that cause

this error, this value is fixed to zero.

5.3.2 Interpreting Multiple Models

In traditional system identification, engineers work with a single model and then declare that

certain parameters are variables that require calibration with measurements. Through model

updating techniques, they aim to assign model parameters in order for model predictions to

match measurements. As explained in Section 2.5.2, this way of proceeding does not take into

account both the abductive nature of the system identification task and compensating errors

in the modeling and measurement processes. Using a multiple model strategy modifies the

way engineers perform system identification. Indeed, instead of working with a single model,

engineers are confronted with finding the best model among hundreds or thousands of candidate

models.

The first question is: what is the best way to display a set of models? When working with

a single model, engineers can simply work with an array containing two columns: the name of

each parameter and its value. There is no need to visually represent the model in a solution

space. When multiple models are possible, the solution space can be represented by a matrix

where each row is a model and each column a parameter. It is obvious that engineers cannot

manually go through hundreds of lines to study each model itself. Plotting these models is not

straightforward since they are in a multidimensional space. To illustrate this issue, a set of

models is plotted according to two parameters (Figure 5.4).

In Figure 5.4, each point is a model that is only represented by two parameters. In this

example, these models have seven dimensions. Even visually, manual inspection is not feasible.

Both the single model tradition and multidimensionality are two issues that make the task
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Figure 5.4: Plot illustrating the difficulty of interpreting multiple models. Models are plotted

according to two out of seven possible parameters. Since each point is a different model, it is

infeasible for engineers to interpret all of them manually.
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of multiple model system identification very challenging for engineers. Providing 1000 model

possibilities to engineers is useless if they have no way to interpret these models. Without

data interpretation techniques, generating multiple models for the system identification task,

although theoretically correct, is of no use. Therefore, data interpretation techniques, such as

data mining, are essential for interpreting multiple model system identification results.

5.3.3 Type of Knowledge Extracted

Section 5.3.2 has shown the need for data interpretation in multiple model system identification.

Data interpretation can be done with the use of data mining techniques (see Chapter 3 and 4).

Above all, one has to consider the kinds of information that engineers may find useful. This is

dependent on the task they perform. System identification is an example of such a task. In this

work, several pieces of information can be useful to engineers, for example:

• How are model parameters related?

• Are some model parameters independent of others?

• Are there groups (clusters) of models?

• If clusters of models are present, how many are they?

• How can these clusters be visualized by engineers?

• What makes a model candidate?

• Are there parameters that have values which can help discriminate between candidate and

non-candidate models?

These questions are expressed in different types of knowledge. Table 5.4 summarizes the type

of knowledge that can be extracted, the type of models concerned and the technique used.

The third column corresponds to the data mining technique that has been chosen to extract

the particular type of knowledge. Although other techniques can be used, data mining techniques

used have been chosen on the basis of their efficiency in extracting different types of knowledge.

Explanations related to the choice of the data mining techniques are given below.

When measuring independence between variables and linear relationships, several method-

ologies are possible, for example: covariance, correlation, mutual information and PCA. The

Pearson’s correlation measure is an extension of the simple covariance formula. The usual unit

of measurement of the mutual information is the bit, which makes it not easily readable by

engineers. PCA is not limited to comparison between two variables, as is correlation. Other
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Type of knowledge extracted Type of models Technique used

Linearly independent
Candidate

Pearson’s correlation

parameters PCA

Linear relationships between
Candidate

Pearson’s correlation

parameters PCA

Number of clusters of models Candidate
K-means clustering

Score function

Visual representation of clusters Candidate
K-means clustering

PCA

Features explaining candidate models
Candidate and PGSL

non-candidate SVM

Table 5.4: Type of knowledge extracted, type of models mined and technique used.

techniques exist such as linear discriminant analysis (LDA). However, the latter deals with

discrimination between possible classes and it is not the aim at this step (since only candidate

models are present). PCA is preferred since it deals with the data in its entirety without focusing

on the possible underlying class structure (Martinez and Kak, 2001).

For clustering a data set, many types of algorithms are possible. They are mentioned in

Section 2.3. K-means is chosen due to its efficiency, easy implementation and ease of use. K-

means has been identified as one of the 10 most important algorithms in data mining (Wu et al.,

2008). Fuzzy clustering is not used since it is difficult to understand results in the context of

multiple model system identification. Regarding the validity index, several have been tested.

Results of these tests as well as the single cluster case, have motivated development of a new

score function in the scope of this thesis. Finally, PCA has been chosen to display the results.

It is chosen since it is easy to map the data back in the initial space. Indeed, models in the

PCA space are not directly usable by engineers. The fact that PCA allows to transform the

data back in the initial space is a plus.

Regarding features explaining candidate models, simple ranking techniques cannot detect the

effect of feature combinations. This is why a more complex feature selection technique is used.

Among existing techniques, wrapper approaches are the most efficient. Moreover, stochastic

search algorithms do not require the monotonic assumption that greedy strategies impose. It is

for these reasons that PGSL is used. It is combined with support vector machine (SVM) that

has been recognized to belong to the 10 most important algorithms in data mining (Wu et al.,

2008).
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5.3.4 Correlation

With correlation measurements, the aim is to examine how two candidate model parameters pi

and pj are related. For achieving this, a correlation matrix, in which each element is computed

as explained in Section 2.2.1, is constructed. Rows and columns of the matrix correspond to

one of the seven parameters of Table 5.3. For example, element (2, 3) represents the correlation

between p2 and p3. The correlation matrix is symmetric about its diagonal since correlation is

a commutative operation. Correlations between certain parameters are observed, as shown in

Table 5.5.

Correlation matrix of model parameters

p1 p2 p3 p4 p5 p6 p7

p1 1.00 0.00 0.00 -0.00 0.00 0.00 0.00

p2 0.00 1.00 0.20 0.53 -0.13 0.83 -0.04

p3 0.00 0.20 1.00 0.36 -0.24 0.35 -0.01

p4 0.00 0.53 0.36 1.00 -0.05 0.47 -0.05

p5 0.00 -0.13 -0.24 -0.05 1.00 -0.04 -0.15

p6 0.00 0.83 0.35 0.47 -0.04 1.00 -0.12

p7 0.00 -0.04 -0.01 -0.05 -0.15 -0.12 1.00

Table 5.5: Correlation matrix for the seven parameters of Table 5.3.

If two parameters have a high degree of correlation, for example, greater (in absolute value)

than 0.5, it is assumed that there is a relationship between them. Two notable results are present

in Table 5.5. Firstly, p1 (i.e. the load position) is not correlated with any other parameters since

the first column of the correlation matrix is zero (except for the first element). This means that

the load position is an independent parameter for system identification. This is due to the fact

that for all candidate models, the position of the load is always the same. In other words, a good

match between predictions and measurements is not obtained if the load is not in the correct

position. Therefore, it is concluded that the load position can be estimated reliably using the

system identification methodology.

The second notable result concerns p2, the load magnitude. There are significant correlations

in the second column of the correlation matrix. This implies that the load magnitude has strong

correlation with other parameters. In other words, the load magnitude cannot be estimated

independently of other parameters. Different combinations of the load magnitude and other

parameters could result in the same degree of match with measurements.
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5.3.5 Principal component analysis (PCA)

In this subsection, PCA is used as a “weighting method” that gives us an idea of the rela-

tionships among candidate model parameters. By examining the principal components, linear

combinations of parameters may be visible. Similar to the correlation measurement, the PCA

is an unsupervised data mining method. After applying PCA on the data, the first three prin-

cipal components are examined. Remaining components are not needed since the first three

components explain about 90% of the variations in the data as shown in Figure 5.5.
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Figure 5.5: Percent variability of the data explained with the principal components. The hori-

zontal line represents the sum of the variability explained with the principal components.

Figure 5.5 shows that about 60% of the candidate models differ in the value of the first

principal component and about 20% models differ in the value of the second principal component.

There is no significant variation in the values of remaining components. Instead of using the

initial model parameters (see Table 5.3), new variables c1, c2, etc. are introduced. Using these

new variables, a common characteristic of all candidate models is that the values of variables

c3, c4, .. c7 are nearly constant. Models differ mostly in the values of c1 and c2.

In this example, a few components explain most of the variations in data. For example, a

two-dimensional plot (using only two principal components instead of seven parameters), shows

about 80% of the total variability in the data. Showing data in two or three dimensions is

straightforward, while displaying seven dimensions is an issue. When c1 and c2 are plotted in

a two dimensional graph, a number of clusters are observed (see Figure 5.8). The clustering
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technique presented in Chapter 3 is applied to system identification in Section 5.3.6. The first

three principal components (PC) are presented in Table 5.6.

First three PC

PC1 PC2 PC3

w1 0.00 0.00 0.00

w2 -0.01 -0.01 0.00

w3 -0.42 -0.14 -0.82

w4 -0.55 -0.62 0.49

w5 0.67 -0.71 -0.17

w6 -0.27 -0.28 -0.17

w7 -0.03 0.13 0.17

Table 5.6: The first three principal components (PC) ordered according to their ability in

explaining the variability of the data. The wi are the weighting coefficients for each initial

parameter.

Each column of Table 5.6 contains the weighting coefficients (wi) for each initial parameter

within the linear equation that is used to compute a point in the new dimension space. Therefore,

each coefficient wi is a weight factor that represents the importance of the initial parameter in

the new dimensional space. The first coefficient is zero for the first three principal components2.

It means that p1, the load position, has no influence on the variability of the data. As reported

above, the load position is always the same for every candidate model. This is not the case with

other parameters; they vary among candidate models.

The load position can be estimated reliably by plotting the MSE between model predictions

and measurements against the load position for all the models (Figure 5.6).

In Figure 5.6, each point in the plot corresponds to a model. In this study, all generated

models have a low mean square error (MSE). This is due to the nature of the study which is

done on a simple laboratory structure. In this case, 300 models have been chosen as candidate

models. In reality, the number of candidate models is fixed according to the threshold which

is itself defined according to the structure. For more details related to the different errors, see

Section 5.3.1. Details of error values are given for another case study in Section 5.3.9. All

models that have a low MSE have the load on node 10. However, all models that have a load

on node 10 need not have a low MSE because the values of other parameters might be wrong.

A necessary although not sufficient condition for a model to be candidate is that the load is on

2This is also the case for other principal components.
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Figure 5.6: Mean square error (MSE) versus p1, i.e. the load position. Each point on the plot

is a model. The thick horizontal line shows the threshold for candidate models.

node 10. Therefore, this plot shows that identification is good with respect to the load position.

This is not the case with other parameters. This is clear from the plot of the MSE versus p3

shown in Figure 5.7.

For parameter p3, candidate models are widely spread out. This parameter alone is not

sufficient to estimate the reliability of system identification in this example. Variations in val-

ues of parameters of candidate models are represented by a few principal components. Since,

these components are combinations of initial model parameters, it is concluded that there are

relationships between model parameters which make system identification unreliable.

It is to be noted that one can visually see that the solution space has patterns. Consider the

same case study with another set of parameters containing two loads instead of one. As shown

in Figure 5.8, candidate models form a set of groups within the solution space. This leads to

further investigation of the candidate model space using clustering techniques.

5.3.6 Clustering

The number of clusters of candidate models is useful information for engineers performing sys-

tem identification. When the identification of candidate models step defined in Section 5.2.1

produces m candidate models, it does not mean that there are m completely different models
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Figure 5.7: Mean square error (MSE) versus p3, i.e. area of element C. Each point on the plot

is a model. The thick horizontal line shows the threshold for candidate models.
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Figure 5.8: View of the model space using two parameters (position of load 1 and 2). Clusters

of candidate models are visible.
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of the structure. These m models might only differ slightly in a few values of parameters while

representing the same state. In other situations, models might have important differences repre-

senting distinct classes which are referred to as clusters. In this problem, the number of clusters

(i.e. the number of classes of models) for a data set is unknown.

Two important notions have been defined in Section 3.2: the within class distance (wcd) and

the between class distance (bcd). Engineering meanings in terms of system identification need

to be given to these two distances. They are both directly related to the space of models for the

task of system identification using multiple models. The wcd represents the spread of models

within one cluster. Since it gives information on the size of the cluster, a high wcd means that

models inside the class are widely spread and that the cluster may not reflect physical similarity.

The bcd is an estimate of the mean distance between the centers of all clusters and therefore, it

provides information related to the spread of clusters. For example, a high bcd value means that

classes are far from each other and that the system identification is not currently reliable. More

details about the score function are given in Section 3.2. From a system identification point of

view, bcd values indicate how different the k situations are. Values of wcd give overviews of sizes

of groups of models.

The case study used below is inspired by the description given in Section 5.3.1. In this

particular example, 300 models composed of seven parameters are identified. The six first

parameters are position and magnitude of three loads while the last one is the stiffness of the

spring (see Figure 5.3). After running the procedure described in Table 5.2, the number of

clusters is chosen to be five. The results are shown in Table 5.7.

Number
bcd wcd SF

of clusters

2 1.13 1.85 0.39

3 1.17 1.57 0.49

4 1.20 1.41 0.55

5 1.07 1.28 0.56

6 0.92 1.18 0.54

7 0.81 1.12 0.52

8 0.71 1.01 0.52

Table 5.7: Comparison of values for between class distance (bcd), within class distance (wcd)

and score function (SF) for various numbers of clusters.

It can be seen that the maximum value for the score function is reached with five clusters.

Values of the SF for 4 and 6 clusters are close to the maximum achieved with 5 clusters. This
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means that the number of clusters is not straightforward. Results can be double-checked visu-

ally as shown in Figure 5.9 bottom. This shows that the methodology needs user interaction.

Engineers can interact in different ways. They can either fix the number of clusters according

to the plot and the SF value, for example. They can also manually input the desired number of

clusters. In this case, the number of clusters is considered to be part of the domain knowledge.

The procedure outlined in Table 5.2 is followed. To judge the improvement of the methodol-

ogy with respect to the standard K-means algorithm, the two techniques are compared. Figure

5.9 shows the improvement in a visualization point of view. The top part of Figure 5.9 corre-

sponds to standard K-means whereas the bottom part is the result of the methodology described

in Section 5.2.2. It can be seen that the proposed methodology is better able to present results

visually.

To conclude, the score function defined in Section 3.2 serves two purposes. First, it gives an

idea of the performance of the clustering procedure. Second, it allows choice of a realistic value

for the number of clusters. This number must be verified by the expert. Reducing the random

effect of the procedure is achieved through several runs of the algorithm to compute the score

function value.

5.3.7 Second Illustrative Case Study

To illustrate the feature selection algorithm (see Chapter 4), the Schwandbach bridge (designed

by Maillart in 1933) is taken as a case study (Figure 5.10). This structure is inspected periodi-

cally and has been the subject of many verifications as codes have improved, for example Salvo

(2006). The Schwandbach bridge is now a pedestrian bridge, although it could be reopened

for traffic. Deflection measurements have not been carried out since the 1930s and while the

bridge shows no visible evidence of deterioration, the question of taking measurements arises

periodically. In Switzerland, bridges are traditionally measured for changes in deflection at mid-

span during load tests. A single model (usually the design model) is used with the deflection

measurement and the loading to determine values for parameters that have some uncertainty,

such as the elastic modulus multiplied by the moment of inertia, E · I. However, this bridge is

too complex for such rudimentary model-calibration strategies.

While many assumptions are acceptable at the design stage for achieving safety and ser-

viceability, they are not appropriate for interpreting measurements. For example, there is no

physical hinge at the extremities of the vertical spandrel elements. These connections cannot

be assumed to be fixed either since even small amounts of cracking reduce connection stiffness.

Furthermore, not all connections are expected to have the same stiffness due to factors such

as relative slenderness and varying locations on the structure. The Schwandbach bridge has

20 such connections. They are shown in Figure 5.11 using open circles. In this chapter, the
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Figure 5.9: Visual comparison of standard K-means (top) with respect to the proposed method-

ology (bottom). Every point represents a model and belongs to one of the five possible clusters.
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Figure 5.10: Schema of the Schwandbach bridge used to illustrate the feature selection algorithm.

knowledge extraction module (see Section 5.2) is used to select relevant model parameters (i.e.

connections) that can explain why models become candidates through Equation 2.6.

Figure 5.11: Schematic view of the bridge showing the 20 connections.

In the case of the Schwandbach bridge, the number of permutations and combinations of

modeling assumptions - connection stiffnesses - results in several tens of thousands of possible

models. Although this case has important technical and historical attributes, these conclusions

are equally valid for most ordinary structures of moderate complexity.

Bridges are often tested periodically using static loads to check for strength degradation. The

response of the bridge for trucks positioned on the bridge is measured using sensors. Engineers

estimate the stiffness of the bridge from measured responses and compare those with results

from previous tests. Such a scenario is simulated for the Schwandbach bridge. It is schematically

represented in Figure 5.12.

For simulation, a three dimensional finite element model of the complete bridge is created.
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Figure 5.12: Example of the load case for the Schwandbach bridge given the scenario that the

bridge is reopened for traffic.

The vertical slab-girder connections and the vertical slab-arch connections are modeled using

rotational springs. A load test is simulated that involves two trucks. The details of the load test

are given in Table 5.8.

Information Value

Position of rear axle of left truck from left abutment 15 [m]

Distance between trucks 3.7 [m]

Distance front-rear axle 2.6 [m]

Front axle load 17 [kN]

Rear axle load 44 [kN]

Spacing between front wheels 1.8 [m]

Table 5.8: Details of the two trucks and their positions.

5.3.8 Interpreting Multiple Models (cont’d)

The case study presented in Section 5.3.7 illustrates the need for data interpretation as well.

This case is much more complex than the previous one. Here, a real structure is modeled instead

of a lab structure. In this particular example, 20 parameters are identified by engineers instead

of 7 in the first case study. Therefore, the model space is enormous and thus very difficult

to understand. It is for example difficult to understand why some models are candidates and

others are not. Techniques such as PCA are only able to reduce the dimensionality by performing

feature extraction3. Figure 5.13 shows the result of PCA on the Schwandbach bridge example.

In this example, it is observed that even 10 principal components only explain around 85%

of the variability of the data (see Figure 5.5 for comparison). PCA is also limited to linearly

transform data in the feature space. Thus, non-linear relationships are not taken into account.

3Building new features (i.e. principal components) from the initial ones.
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Figure 5.13: PCA results on the Schwandbach bridge example. The x-axis are the principal

components while the y-axis the variability explained.

Another important point with PCA is that only candidate models are used. PCA explains the

variability and linear relationships among candidate models, but gives no indication such as the

importance of sets of parameters in explaining the candidate models.

It is interesting for engineers to know parameters that explain or differentiate candidate from

non-candidate models. This task cannot be done manually due to the high number of models.

Only data analysis techniques, such as data mining, provide support. This type of knowledge

can be extracted through feature selection techniques. The aim is to select a subset of the

features that best explain candidate models. This is represented by a classification task where

the inputs are the parameters and the output is the class. Two values for the class are possible:

candidate or non-candidate model. The aim of feature selection is to select the feature subset

that best classify models into one of these two possible classes. The selected features give thus

an idea to engineers of parameters that are important in explaining candidate models.

5.3.9 Feature Selection

When engineers are given model parameters that best separate candidate from non-candidate

models, they can better understand why some models become candidates. The advantage of

such knowledge is that it is easily readable by engineers. Therefore, it gives engineers a better
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understanding of the candidate model space. The case study introduced in Section 5.3.7 is used

for illustrating feature selection.

First a set of 1000 models are generated using the methodology described in Section 5.2.

There are five sensors on the structure at positions 1, 6, 10, 13 and 18 (see Figure 5.11). The

threshold is defined by e2 (see Section 5.3.1) which is 8µrad. Among these models, 500 are

candidate models. The starting point is thus a matrix of 1000 rows and 21 columns. The first

20 columns contain, for each model, the value of each connection stiffness. The last column

corresponds to the class label. A candidate model is labeled with 1 and a non-candidate model

with 2. At this point, the methodology described in Section 4.3 is run 5 times. The size of the

test set is fixed as one third of the data set (33%). Results obtained are given in Table 5.9.

Feature selection results

Mean test accuracy: 97.2%

Standard deviation of test accuracy: 0.6

Mean number of features: 11.4

Standard deviation of number of features: 2.1

Table 5.9: Results obtained for feature selection on 1000 models over 5 independent runs.

First, it is observed that the standard deviation of the test accuracy is low. This means

that results of the 5 different runs are close. Regarding the number of features, it is observed

that around 11 connection stiffnesses are selected, in mean, out of 20. Thus, about half of the

connection stiffnesses are useless in separating candidate from non-candidate models.

For this experiment, the number of PGSL iteration is set to 160 and 5 independent runs

are averaged. The best test accuracy (97.9%) corresponds to the selection of the following

parameters: p2, p4, p7, p9, p11, p12, p14, p15, p16, p17, p18, p19 and p20. Therefore, with these 13

connection stiffnesses, one can argue that a model is candidate with 97.9% accuracy. These 13

parameters are shown with black dots in Figure 5.14.

This set of 13 features is of importance for engineers. It can be used to support further

decisions. For example, the other 7 connection stiffnesses are not important in identifying

candidate models. Variations at these positions do not help engineers for his system identification

task. Since these 13 features have been selected, it means that the other 7 either contain similar

information (they are redundant) or no information at all. The 13 connection stiffnesses are

independent from each other since they contain no or few redundant information. This may

change assumptions of engineers about the structure. Therefore, feature selection can give

useful information to engineers who must decide on subsequent sensor placement and evaluate

the validity of modeling assumptions. This conclusion is however related to the initial sensor
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Figure 5.14: Representation of the 13 selected parameters (black dots) on the Schwandbach

bridge. Sensors are at positions 1, 6, 10, 13 and 18 (see Figure 5.11).

positions. If another set of sensors is chosen, another set of features could be selected.

This issue is illustrated through the same case using different sensor locations. While in

the previous example, sensors where at positions 1, 6, 10, 13 and 18, in this situation, they

are at position 2, 5, 9, 11 and 20 (see Figure 5.11). Since the sensors are placed differently,

information obtained is not the same. Thus, candidate models generated are different, as well

(their predictions match measurements at the new sensor locations). Therefore, in the feature

selection process, other parameters explaining candidate models are selected. They are shown

in Figure 5.15.

Figure 5.15: Representation of the 8 selected parameters (black dots) on the Schwandbach

bridge. Sensors are at positions 2, 5, 9, 11 and 20 (see Figure 5.11).

As explained above, it is observed that the selected parameters depends on the sensor place-

ment. In this example, less parameters are selected (8 instead of 13). The classification accuracy

with these 8 parameters is 98.2%. It is noted that certain parameters are selected in both situa-

tions. It is the case of parameters p4, p12, p14, p16 and p19. Although no general conclusion can

be drawn from these two situations, it is remarked that out of p4, the recurrent parameters are

all on the arch of the bridge. It is thus assumed that these parameters are the most important

in explaining candidate models.
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5.3.10 From Feature Selection to Feature Weighting

In Section 5.3.9, the feature selection algorithm was used to select parameters that explain

candidate models. However, the only information given to engineers is whether a parameter

is important or not in explaining candidate models. A step further is to show the relative

importance of each parameter. For this, feature selection is generalized to feature weighting.

An example in the case of genetic algorithms (GA) is given in Komosinski and Krawiec (2000).

The same procedure as described in Section 4.3 is used. However, instead of rounding the

solution proposed by PGSL to a binary vector, it is rounded to two decimal numbers. For

example, instead of obtaining a binary vector such as [1 0 1 0 0 1] which only gives important

features in the case of six possible parameters, the detailed vector [0.85 0.23 0.65 0.18 0.03 0.55]

is given. Therefore, instead of informing engineers that parameters p1, p3 and p6 are important,

one can rank the importance of each parameter.

The feature weighting procedure is applied to the second case study of Section 5.3.9. Table

5.10 shows the results of feature weighting on the case were initial sensors are at position 2, 5,

9, 11 and 20.

Relative importance of each parameter

Parameters p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Weights 0.14 0.67 0.34 0.37 0.86 0.02 1.00 0.83 0.36 0.42

Parameters p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Weights 0.91 0.60 0.62 0.59 0.66 0.04 0.00 0.00 0.60 0.18

Table 5.10: Parameters and their importance (weight) in explaining candidate models for the

second case study of Section 5.3.9. These weights are represented graphically in Figure 5.16.

Relative importance of these parameters are given with a classification accuracy of 98.8%.

First, it is noted that, for the same case study, if values are rounded, results are different from

the ones observed in Figure 5.15. This is due to the fact that, during the feature subset search

process, SVM are trained using weighted parameters instead of selected parameters. Thus, the

SVM classification accuracy is not the same. Therefore, it guides PGSL differently (i.e. toward

different solutions). It is thus important to understand that, in the case of global search in the

parameter space, feature weighting is significantly different from feature selection.

Second, the results allow more specific comments regarding the importance of parameters.

For example, parameters p6, p16, p17 and p18 are meaningless for explaining candidate models

since their value is close or equal to zero. On the contrary, p5, p7, p8 and p11 are the most

meaningful parameters. Finally, the relative importance of parameters is noted. It is observed
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that parameters p2, p12, p13, p14, p15 and p19 are nearly the same (around 0.6). Particularly,

parameters p12, p13, p14 and p15 show that useful information is present all along the left part

of the arch.

One way to represent the results is to show the importance of each parameter on the bridge

by an intensity factor. For example, colors can be used. In Figure 5.16, each parameter is

devised by a color from white (weight of zero) to black (weight of one). Therefore, the darker

the parameters, the better they explain candidate models.

Figure 5.16: Graphical representation of the importance of each parameters in explaining candi-

date models. Each parameter is devised by a color from white (weight of zero) to black (weight

of one). Specific values are given in Table 5.10.

It is also concluded that PGSL has an advantage over GA for feature weighting since the

former uses continuous variables. PGSL is thus easily applicable to the general case of feature

weighting.

5.4 Conclusions

A methodology that integrates data mining in the system identification process is evaluated.

Techniques such as correlation, PCA, clustering and feature selection are used to extract knowl-

edge that is useful for engineers. The following conclusions are of importance:

• A multiple model strategy is needed in system identification. This is demonstrated through

a simple truss example.

• Data mining techniques are helpful for interpreting results leading to system identification.

• Data mining techniques such as correlation and PCA have the potential for bringing out

common characteristics of the set of candidate models.

• Applied to system identification, correlation and PCA are able to i) bring out parameters

of candidate models that are linearly independent and ii) improve visualization of models

that have a high number of parameters.
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• The use of K-means (for grouping models) and application of PCA (for displaying them)

help in visualizing the solution space. This support is needed since the methodology

involves the use of several models for system identification.

• Feature selection is an effective data mining process for supporting system identification

since it informs engineers about parameters that are relevant in explaining candidate mod-

els.

This chapter thus successfully demonstrated how data mining can be integrated in an overall

methodology for multiple model system identification.
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Chapter

6
Decision Support for

Sensor Placement

“I have no problem paying an engineer for one day to place sensors and

make measurements on a railway bridge. However, I have a problem paying

the engineer for six months to make sense of the data.” (A Swiss railways

engineer)

Overview

Knowledge extracted through data mining is of better quality when relevant information is

measured. In this chapter, two strategies for initial sensor placement are compared: greedy

and global search. It is shown that the best strategy is mainly determined by the context

of the measurement system. A methodology for iterative sensor placement, that integrates

clustering, is proposed. Through the use of clustering and entropy, the next best sensor

location is iteratively proposed to engineer. Several case studies are presented to validate the

methodology.

6.1 Initial Sensor Placement

6.1.1 Sensor Placement using Entropy

In the field of model-based system identification, configuring a measurement system can be

defined as finding optimal positions for sensors in order to best separate model predictions1.

Following Robert-Nicoud et al. (2005b), the notion of entropy is used to measure the separation

between predictions. The expression used to calculate entropy is the Shannon’s entropy function

(Shannon and Weaver, 1949) which comes from the field of information theory. Shannon’s

1The term predictions will be used in place of model predictions for readability.

99
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entropy function represents the disorder within a set. In the present work, a set is an ensemble

of predictions for a particular system identification task. The entropy or disorder is maximum

when predictions show wide dispersion.

Since the goal is to make maximum separation between models, positions with maximum

prediction disorder are the most interesting. In other words, the best measurement location is

the one with maximum entropy (model predictions have maximum variations). For a random

variable X, the entropy H(X) is given by Equation 6.1:

H(X) = −

|X|
∑

i=1

Pi · log(Pi) (6.1)

where Pi are the probabilities of the |X| different possible values of X. For practical purposes,

0 · log(0) is taken to be zero. When a variable takes |X| discrete values, the entropy is maximum

when all values have the same probability 1/|X|. Thus entropy is a measure of homogeneity in

a distribution. A completely homogeneous distribution has maximum entropy.

In the present study, the entropy for a given sensor location is calculated from the histogram of

predictions (see Figure 6.1). Given a set of candidate models (Raphael and Smith, 2003a; Robert-

Nicoud et al., 2005b), the finite element method is used to compute predictions at all possible

sensor locations. These predictions can be seen as a matrix in which each row corresponds to

predictions for a model and each column is a specific sensor location. At each possible sensor

location, a histogram containing predictions is built. Each bar in the histogram represents those

models whose predictions lie within that interval. Note that intervals are defined by the accuracy

of the measurement devices. At each iteration, the sensor location corresponding to maximum

entropy of predictions is chosen. Sensors are therefore sorted in ascending order according to

their efficiency in separating model predictions. For calculating the entropy, the probability P i

of an interval in the histogram has to be computed. It is given by Equation 6.2:

Pi =
ri

rtot
(6.2)

where ri is the number of predictions in the interval and rtot the total number of predictions

(see Figure 6.1). Therefore, for S possible sensor locations, S histograms are evaluated according

to the entropy measure. The methodology for initial sensor placement is given in Figure 6.2 and

described below. Details about other parts of the methodology are given in Section 5.2 and 6.2.

Model generation (stochastic sampling): In this step, a stochastic search algorithm is

used to generate a set of models through sampling the model space. An initial model definition

(from the Model creation step) is used as a starting point for sampling the model space.

Initial measurement system design: Starting with a set of models (model generation

step), either a greedy or a global search algorithm is used to place sensors according to generated
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Figure 6.1: Histogram for a specific sensor position. The x-axis is the sensor prediction range.

The y-axis is the number of models. The vertical size of each bar corresponds to the number of

predictions lying in the interval. The probability Pi is the ratio of the number ri of predictions

in an interval by the total number of predictions rtot.

models and potential sensor locations. Within each iteration, the algorithm finds the optimal

sensor configuration using the entropy. Both greedy algorithm (Section 6.1.2) and global search

(Section 6.1.3) can be used. Once the sensor placements are chosen, a set of measurements is

obtained by the engineer. Note that in this work, simulated measurements are used2. Details

about the initial measurement system design are given below.

6.1.2 Greedy Search

The greedy algorithm iteratively places each sensor at the best position and does not allow

for subsequent relocation when more sensors are added. At each iteration, the sensor location

corresponding to maximum entropy is chosen. On the histogram, sets of models lying within an

interval size that is bigger than the limit, are considered to be non-identifiable3. The process is

repeated with all subsets of non-identifiable models to place the next sensor. When all sensors

are positioned, an array of dimension two is obtained. It contains, for each iteration, the location

chosen for the sensor and the number of non-identifiable models. Sensors are therefore sorted

in ascending order according to their efficiency in separating models. Using this methodology,

it is observed that minimizing the biggest subset of non-identifiable models at each iteration

2Measurements are simulated using ANSYS, a finite element analysis software.
3The limit is defined by engineers.
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Figure 6.2: Single or initial measurement cycle, part of the overall methodology for system

identification. The stick person indicates where human-computer interaction is needed. Details

about other parts of the methodology are given in Section 5.2 and 6.2.
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corresponds to maximum entropy at each step.

6.1.3 Global Search

Analysis of Complexity

According to the greedy algorithm, previously selected set of sensor locations is unchanged

when the next best sensor is determined. This is the principal drawback of the greedy solution.

Strategies that accept a less attractive intermediate solution for a better overall solution are not

allowed. A more rigorous approach is to test all possible configurations for sensor placement at

each iteration of an additional sensor location. At each iteration, all combinations of i sensor(s)

among n possible locations are tested. This has the following computational complexity:

n
∑

i=1

Ci
n = 2n − 1 (6.3)

The task of placing i sensors among n possible locations is combinatorial and the total com-

plexity is exponential as shown by Equation 6.3. It is obvious that trying all possible solutions

for the measurement system gives the best configuration. However, as explained in Culler and

Hong (2004), the number of possible sensor locations can be extremely high. This makes the

calculation of all possible configurations infeasible. Therefore, a global search algorithm is used.

PGSL (Raphael and Smith, 2003a) is chosen due to its efficiency and ease of use. More details

about PGSL can be found in Section 4.1.

Global Sensor Placement (GSP)

This section describes the global sensor placement (GSP) strategy. Unlike the greedy algorithm,

the global strategy searches for the best possible solution within the whole solution space. As

explained in Section 6.1.3, the solution space is exponential. Therefore, computing all possible

solutions is infeasible. Using PGSL, only a subset of the solution space is tested. Better coverage

of the solution space is possible by increasing the number of function evaluations and changing

PGSL parameter values. The GSP algorithm is described next.

The following parameters are used by the algorithm: n is the total number of possible sensor

locations, L is the limit for a group of models to be considered as identified and I is the number of

intervals in the histogram of sensor values. The last two are considered to be search parameters

of the GSP algorithm. The PGSL function is called i times, where i varies from 1 to n. Within

each iteration, the globally optimal configuration of i sensors among n is obtained. There are

two stopping criteria for the GSP main loop. Either the total number of possible locations, n,

is reached, or there are no further models left to be identified. Both conditions are triggered by
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values of search parameters. For details about parameters for PGSL the reader is referred to

Section 6.1.4. The GSP methodology is presented in Figure 6.3.

Figure 6.3: Schema of the global sensor placement (GSP) methodology.

Within each iteration, PGSL finds the optimal solution by minimizing an objective function.

The input of the objective function is a sensor configuration that is chosen by PGSL for evalua-

tion. It consists of an array of dimension N containing zeros and ones. A value of 1 means that

the sensor is present at this location and 0 means that the sensor is absent. For example, the

vector [0 1 0 0 1 0 0 0] means that sensors 2 and 5 are present. The output of the objective

function varies depending on what is minimized. The number of calls to the objective function

is determined by the PGSL parameters (see Section 4.1).

Usually the objective function of an optimization algorithm (such as PGSL) is of the form

y = f(x) where x is the input and y the output. In this work, the objective function is a relatively

complex procedure; it is not expressible in the form of an explicit mathematical expression. Note

that instead of maximizing the entropy, the number of non-identifiable models is minimized. It

is due to the fact that there is no way to calculate the entropy for two sensors that are chosen

at the same time. Table 6.1 contains the pseudo-code of the objective function.

The main consequence of the GSP strategy is that sensor configuration at iteration i is not

dependent on the one at i−1 as it is for the greedy algorithm. Figure 6.4 illustrates this concept.

The left part of the picture represents three iterations of the greedy algorithm and the right

part shows the GSP for the same iterations. Black dots represent sensors that are selected in

the previous iteration and are not changed in subsequent iterations in the greedy algorithm. In
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Pseudo-code of the objective function

1. sel sens contains the sensor configuration proposed by PGSL for evaluation

2. sub cell contains all the models

3. For i from 1 to size(sel sens) do

4. If sel sens(i) = 1 then

5. While sub cell is not empty do

6. Current models = first element of sub cell

7. Delete first element of sub cell

8. Calculate distributions (histograms)

9. Update non id with non-identifiable models corresponding to the chosen sensor

10 new cell = new sets of non-identifiable models

11. End while

12. Update sub cell with new cell

13. End if

14. End for

15. Save current configuration as an already tested one

16. Return non id

Table 6.1: Details of the objective function called by PGSL during the GSP procedure.

Figure 6.4: Schematic comparison between greedy algorithm (left) and global search (right)

strategies. In global search, the configuration at iteration i is not related to the one at iteration

i − 1.
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contrast, location results for each iteration of the GSP algorithm are independent of those from

the previous iteration.

It is noted that the PGSL variables are continuous. However, the sensor placement task uses

discrete variables. This issue could be resolved by rounding the PGSL values that vary from 0

to 1. However, a penalty would then be necessary for PGSL to propose the correct number of

sensors at each iteration since there is no constraint on PGSL regarding the number of sensors

to place. To simplify the problem, when placing i sensors, the i highest values of the PGSL

vector are set to 1, while others are set to 0. The ones correspond to chosen sensor locations.

For example, when PGSL proposes the vector [0.1 0.8 0.4 0.3 0.7 0.2 0.1 0.3] and in the case of

placing 3 sensors, the transformed vector is: [0 1 1 0 1 0 0 0].

6.1.4 Results

In this section, a case study is used to evaluate the methodology. This involves a laboratory

beam structure which is two meters long. A set containing 1000 models is created in order to

represent the space of possible models. Models are randomly generated such that each model

parameter has values within bounds specified by engineers. The limit chosen for non-identifiable

set of models, L, must be an integer greater than 1. The interval number, I, is an integer

greater than or equal to 2. In this case, the number of possible sensor locations is 8. Even

though the size of the solution space, 28, is small, the example illustrates key aspects of the

methodology. Parameters taken for the PGSL algorithm are the following: NS = 512, NFC =

1 and NSDC = 1. Consequently, the total number of evaluations of the objective function is

512 (512 · 1 · 1). Since the objective of the present study is to find out whether global search

can identify better configurations of sensors, a large number of iterations is used in order to

ensure the identification of the globally optimal solution. Since PGSL is more suited for larger

problems involving continuous variables, a large number of iterations compared to the size of

the solution space is needed here. Table 6.2 shows the results obtained when the biggest subset

of non-identifiable models is used as the objective function.

Number of sensors 1 2 3 4 5 6 7 8

Greedy search 205 87 38 31 26 25 25 25

Global search 205 82 35 29 26 25 25 25

Table 6.2: Example for greedy and global search algorithms when minimizing the biggest subset

of non-identifiable models. Numbers in the table correspond to the size of this subset at iteration

i.
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First, it can be seen that results of the global search are close to that of greedy algorithm.

When placing 2, 3 and 4 sensors, the global search proposes a slightly better solution. However,

it is not certain that global search is performing better in general. Second, after iteration 5, there

is no clear improvement on the number of non-identifiable models. This means that placing more

than 5 sensors in this case will not improve the system identification process. Moreover, the

number of sensors from which there is no more improvement is the same for greedy and global

search. In other words, in this case, the greedy strategy is sufficient to obtain this information.

When the total number of non-identifiable models is used as the objective function (instead

of the biggest subset), results are different. Figure 6.5 shows the difference between selecting the

biggest subset of non-identifiable models (left) and the total number of non-identifiable models

(right).

Figure 6.5: Difference between selecting the biggest subset of non-identifiable models (left) and

the total number of non-identifiable models (right). Details about the limit are given in Section

6.1.2.

Assume that two sensor locations, A and B identify most number of models using the greedy

algorithm. A different set of sensor locations C and D might identify more models due to the

fact that locations A and B cross-identify some models. Models are said to be cross-identified

when more than one sensor location identify them. When minimizing the total number of

non-identifiable models, Table 6.3 is obtained.

In this case, the global search strategy has found better solutions then greedy search for

iterations 2 to 7. These optima have not been found by the greedy algorithm. Table 6.4

contains the sensor configurations for the 5 first iterations.

Table 6.4 shows that from iteration 2, sensor configurations are not the same for greedy
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Number of sensors 1 2 3 4 5 6 7 8

Greedy search 995 958 889 754 546 481 402 322

Global search 995 946 789 537 443 383 349 322

Table 6.3: Example for greedy and global search algorithms when minimizing the total number

of non-identifiable models. Numbers correspond to the total set of non-identifiable models at

iteration i.

Number
Greedy Search Global Search

of sensors

1 [0 0 0 0 0 0 1 0] [0 0 0 0 0 0 1 0]

2 [0 1 0 0 0 0 1 0] [0 0 0 0 1 1 0 0]

3 [1 1 0 0 0 0 1 0] [1 0 0 0 1 1 0 0]

4 [1 1 0 0 1 0 1 0] [1 0 0 0 1 1 0 1]

5 [1 1 0 0 1 1 1 0] [1 0 0 1 1 1 0 1]

Table 6.4: Example of sensor configurations chosen for greedy and global search algorithms. In

this case, the objective function is the total number of non-identifiable models. Configurations

correspond to the five first iterations of the example given in Table 6.3.
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as they are for global search. Both strategies are the same for placing the first sensor. The

sensor configuration at iteration 2 in global search is independent from the one at iteration 1,

which would be impossible with the greedy algorithm. Consequently, depending on the objective

function used, global search can be equal or better than the greedy algorithm. However, global

search is useless for iterative sensor placement (see Section 6.2). It is thus concluded that the

choice of the strategy depends above all on the context and the future use of the measurement

system.

6.2 Iterative Sensor Placement

6.2.1 Sensor Placement using Clustering

The process of system identification goes from measurements (consequences) to possible models

(causes). This is an abductive task. The unreliability of abductive tasks, and the presence of

compensating errors, are the motivations for multiple-model system identification. The correct

model for the structure should be contained in the model sets given after model generation.

Clustering techniques (see Section 5.2.2) aid in eliminating incorrect models from these model

sets and thus rapidly converge to the correct model. Visualizing distributions of models in

multi-dimensional parameter spaces is difficult for engineers without suitable computing tools.

The use of a data mining method such as clustering can also give engineers a better idea of the

topology of the candidate model space. The clustering process is explained in detail in Section

5.2.2.

6.2.2 Detailed Methodology

The overall objective of this part of the thesis is to propose a methodology for improving an

existing measurement system - by correctly adding new sensors - in order to support system

identification. To achieve this goal, the following methodology is proposed. A schema of this

part of the methodology is given in Figure 6.6 and details about it are given below. Details

about other parts of the methodology are given in Section 5.2 and 6.1.

Representative model selection: In this step, a few models representing each cluster are

selected. Only models which are close to the center of the cluster are selected. In this study,

5% of the total number of models in each cluster are taken to be representative models. This

number has been chosen after experimental testing. Then, Shannon entropy is used as a measure

of prediction separability to identify the next measurement location (see Equation 6.1). If model

sets have high values of entropy, more candidate models can be filtered.

The first stopping criterion is the entropy of remaining sensors. If the entropy of predictions



110 CHAPTER 6. DECISION SUPPORT FOR SENSOR PLACEMENT

Figure 6.6: Schema showing the iterative sensor placement part of the methodology for system

identification. The stick person indicates where human-computer interaction is needed. Details

about other parts of the methodology are given in Section 5.2 and 6.1.
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is not significant (below 1) at every sensor location, then the entropy is considered as low. If

this is not the case, the next step is sensor addition and further measurements. If this is the

case, it is then checked if there is a single cluster. For that, the score function defined in Section

3.2 is used. Equation 3.15 is thus used as a stopping criterion for further sensor addition. Such

a condition may mean that the current set of measurement locations is incapable of further

filtering models. The next step is thus add new sensor placement locations. If there is only one

cluster and the entropy is low, the center of all remaining models is given to engineers as the

correct model for the structure (model identification step).

Add new sensor placement locations: engineers have to provide other measurement

location(s) to the algorithm in order to find the correct model. With the obtained knowledge,

engineers propose additional possible sensor location(s) to the system.

Sensor addition and further measurements: During this step, entropies of selected

representative models are used to find the position of the next sensor. The location with the

highest entropy is chosen as the best position for the next measurement. Then, the measurement

is taken on the structure.

Model filtering: In this step, sensor measurements at the new location are compared for

every candidate models. Candidate models that do not predict the measurement within the

threshold are eliminated from the current set of models. If there are models left, then the next

step is knowledge extraction through clustering. However, if no model is left, then it is likely

that all models were not generated by the identification of candidate models step. While it may

be possible to generate all models for a lab structure, it is practically impossible to generate

all possible candidate models in a real complex structure. In that case, the identification of

candidate models phase is revisited. On the other hand, if all candidate models have been

generated, then some assumptions related to modeling the structure are incorrect. Therefore,

structure assumptions have to be checked and modified by engineers (structural assumptions

step). Generating all possible models for very complex structures may not always be feasible.

6.2.3 Case Study: Schwandbach Bridge

To demonstrate the methodology for sensor addition, the Schwandbach bridge (see Section 5.3.7)

is taken as a case study. The Schwandbach bridge has 20 connections. They are shown in Figure

6.7 (numbers from 1 to 20). Possible sensor locations are shown as well (numbers from 1 to 27).

The system identification methodology (see Section 6.2) is used to determine the behavior of

the structure.

Details of the load case are given in Section 5.3.7. Measurements at different sensor locations

(see each example of Section 6.2.4) are given as input to the model generation module. The

parameters of the models generated, however, are the logarithms of the stiffness. In this paper,
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Figure 6.7: Schematic view of the bridge showing the 20 connections (1-20), the 17 possible

sensor locations (1-10, 21-27) and the 10 vertical walls (1-10 circles).

only inclinometers are used. Sensor precision are 9.5µrad (micro radian), τ (see Section 2.6) is

taken to be the sum of τmeas (3µrad) and τpred (8µrad).

6.2.4 Results

Example 1

This example illustrates the ability of the proposed methodology to iteratively add sensors in

a systematic way in order to identify uniquely the system. The bridge has 10 vertical walls

and therefore 10 wall-girder connections and 10 wall-arch connections. For this example, it is

assumed that the stiffnesses of the connections in walls 1, 2, 9 and 10 are the same. Other

assumptions are (a) symmetry about axis X-X, (b) the stiffness values of the top and bottom

connections are equal for each wall and (c) the stiffness values of these connections lie between

106 and 1012 Nm/rad . Thus, there are three parameters in this example. p1 represents the

stiffness of the connections of walls 3 and 8, p2 for walls 4 and 7 and p3 for walls 5 and 6. p1, p2

and p3 are permitted to vary between 6 and 12 (in log space).

For simulation, a model representing the real structure is required. The correct model for

this example is given in Table 6.6. Assuming no measurement error, the predictions given by

this model are taken to be the measurements. The starting measurement system is assumed to

consist of inclinometers measuring the rotation at the following locations: 1, 10 and 24 (Figure

6.7). Since there are only three parameters, models can be directly visualized in three-dimension

plots. A total of 1000 candidate models are generated for this example. At the first iteration,

only sensor locations on the deck are chosen. This decision is taken because it is easier to place
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sensors on the deck of the bridge. When the entropy for sensors on the deck is low (below 1),

then other sensor locations are also included. Table 6.5 shows the number of models remaining

and the selected sensors.

Iterations 0 1 2 3 4

Number of models 1000 926 907 906 10

Selected sensor location 4 6 5 23

Table 6.5: Evolution of the number of models at each iteration for example 1 with respect to

selected sensor location.

The first observation concerns the sensors on the deck. They filter fewer candidate models

compared to the sensor on the vertical wall. After four iterations, the entropy values at the

remaining sensor locations are close to zero. Therefore, there is no need to add more than four

sensors. Furthermore, at iteration 4, the value of Equation 3.15 is 0.46, which is close to the

empirical 0.6 found in Section 3.3.3. This information, in addition to the visual display of the

remaining models, can be interpreted as a single cluster by the engineer. Consequently, the

mean of this cluster is calculated, and the model closest to this mean is given to the engineer.

A plot of the models in the initial parameter space at iteration 0 and 4 are given in Figure 6.8.

The model identified as well as the correct model (providing idealized measurements) are given

in Table 6.6.
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Figure 6.8: Models in the initial parameter space at iteration 0 (left) and 4 (right).

Figure 6.8 shows how the candidate model space decreases from iteration 0 to 4. From Table

6.6 it is noted that the model identified is very close to the correct model for this example.

This is especially true for parameters p1 and p3. This illustrates the ability of the proposed
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Parameters p1 p2 p3

Correct model 8.0 8.0 8.0

Model identified 8.2 7.4 8.1

Table 6.6: Values of parameters [Nm/rad] for the correct (providing idealized measurements)

and identified models in the case of example 1 (in log scale).

methodology to uniquely identify structural systems. This example has only three parameters

and a single cluster of models. A more complex example is shown below.

Example 2

In practical situations, the identification problem may involve dozens of parameters. In such

cases, it is impossible to visualize the model space as was done for the previous example for

reasons of high dimensionality. The identification methodology is illustrated for such an ex-

ample. The Schwandbach bridge is again considered, however, with more elaborate modeling

assumptions. Symmetry about X-X (see Figure 6.7) is assumed. This example models 10 pa-

rameters. Each parameter corresponds to two connections, one on either side of X-X. Here, the

starting measurement system consists of inclinometers at the following locations: 1, 10, 23, 24

and 25 (Figure 6.7). The stiffness values of each connection vary between 102 and 1012 Nm/rad.

1719 candidate models are generated for this example. Input data for the PCA part of the

methodology are the stiffness values of 10 sets of connections.

The number of clusters is estimated using the score function. The starting point for PCA is

a matrix where each row is a different model and each column contains values of a parameter.

Figure 6.9 shows the curve of the score function from kmin = 1 to kmax = 8 clusters at the very

first iteration.

The first observation from Figure 6.9 is regarding the global maximum achieved for k = 6.

This number has to be interpreted carefully since values for k = 5 and k = 7 are close to the

global maximum. This result has to be combined with the PCA plot of the models (Figure 6.10).

The role of engineers here is to carefully interpret these results. This is generally required of the

user in any data mining task. According to the results of Figure 6.9, the number of clusters is

chosen to be six for this case. The clustering result after applying Table 5.2 procedure is given

in Figure 6.10.

In Figure 6.10, every point represents a model. Although all principal components are used

in the K-means algorithm, only the first two components are used for visualization. The reader

must be aware of the fact that other dimensions (i.e. other principal components) explain these
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Figure 6.9: Curve of the score function from kmin = 1 to kmax = 8 clusters. The best value is

taken over t = 20 runs.
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Figure 6.10: Clustering results at the very first iteration. Each point represents a model that is

displayed using the first two principal components (out of 10).
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data. Even if not well defined, clusters are already visible. In addition, clusters also contain

outliers. This is not an issue since the score function is using the cluster size as a weight in

Equation 3.10 and 3.11. Again, this plot taken alone is not enough to estimate the correct number

of clusters. This is mainly due to the dimensionality of the data set and the overlapping between

clusters. Combined with Figure 6.9, it can help engineers estimate the most reliable number of

clusters. The centroid of each cluster defines a possible state of the structure. Instead of having

to examine 1719 models, engineers can examine the six groups of models, each represented by

its center. Indeed, the center of each cluster represents a bridge with a particular set of stiffness

values for the connections.

The next step is to iteratively add sensors to reduce the total number of models. Repre-

sentative models are selected in each cluster for evaluating entropy. Representative models are

chosen around each cluster centroid. This way, only models that represent the cluster are taken

into account. The selected set of representative models is 5% of the total number of remaining

models. This set is proportionate to the cluster size (i.e. the number of models inside the clus-

ter). Therefore, bigger clusters have more influence on the selection of the next sensor. Figure

6.11 shows the representative models selected at the first iteration.
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Figure 6.11: Plot of the representative models (solid circles) among other models (open circles)

for the first iteration.

The plot of Figure 6.11 shows that representative models are a good representation of each

cluster. Entropy is calculated at every remaining sensor location for the representative model
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predictions and a sensor is added at the location with highest entropy. The entropy value is

found to be a valid stopping criteria for the methodology. Once the new sensor is known, a new

measurement is taken. All models whose predictions do not match the new measurement are

eliminated. Figure 6.12 shows a plot of the models and their error (Equation 2.6) after adding

the new sensor.
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Figure 6.12: Plot of the error of each model after adding the first new sensor (sixth sensor). The

darker the model, the higher the error between its predictions and the measurements.

Models with a high error (dark) are filtered for the next iteration. This is repeated until the

entropy of model predictions is zero for every sensor location. At each iteration, the number of

models is either reduced or the same.

In this case, the methodology is unable to converge to the unique model for the bridge. At

iteration 3, multiple clusters are still present. Indeed, Equation 3.15 has a value of 0.13, which

informs engineers that there are multiple clusters in the model space. This indicates that the

remaining sensor locations are incapable of further reducing the number of candidate models. At

this juncture, engineers can consider adding more load cases, including other sensor types and

augmenting the set of sensor locations. Engineers could also opt to look at the cluster centroid

from each cluster.

Table 6.7 shows that sensors on the deck are useful for reducing the number of candidate

models in this example. This was not the case in the previous example. Therefore, it can be

concluded that the choice of sensor locations is understandably dependent on the parameter set.
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Iterations 0 1 2 3

Number of models 1719 923 243 71

Selected sensor location 8 21 26

Table 6.7: Evolution of the number of models at each iteration for example 2 with respect to

selected sensor location.

Table 6.8 shows the entropy of each sensor from iteration 0 to 2 (all entropy values are 0 at

iteration 3). From Table 6.8, it is observed that locations on the vertical walls have a higher

entropy and are thus better than locations on the deck to identify the system. At iterations 0

and 1, all locations on the deck have an entropy that is smaller than entropies for locations on

the walls. The table also shows that the best location for a particular iteration is dependent on

the locations chosen in the previous iteration. At iteration i+1 the entropy for a given sensor is

not the same as at iteration i. After each iteration, models are filtered, and therefore the entropy

of each remaining sensor may be different. In this example no unique model is identified, rather

the model closest to the mean of every cluster is given to the engineer. Values of the identified

models as well as the correct model are given in Table 6.9.

Iteration 0 Iteration 1 Iteration 2

Sensor Entropy Sensor Entropy Sensor Entropy

26 3.58 21 2.47 26 1.49

21 3.45 27 1.93 22 1.31

27 3.12 26 1.88 2 0.00

22 3.12 22 1.64 3 0.00

8 2.46 3 0.86 4 0.00

3 2.30 7 0.67 5 0.00

4 2.19 2 0.00 6 0.00

2 2.04 4 0.00 7 0.00

7 1.96 5 0.00 9 0.00

9 1.86 6 0.00 27 0.00

6 1.46 9 0.00

5 0.90

Table 6.8: Sensors and their corresponding entropy to every sensors. Values in bold represent the

chosen sensors. After iteration 2, the entropy value is zero for every remaining sensor location.
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Parameters p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Correct model 3.0 3.0 7.0 7.0 10.0 10.0 7.0 7.0 3.0 3.0

Identified model 1 5.1 6.1 5.0 4.5 10.0 10.0 6.6 6.3 4.7 5.1

Identified model 2 7.2 6.6 7.1 7.4 9.9 10.0 6.8 6.4 7.7 6.9

Identified model 3 7.1 4.5 6.1 7.1 10.1 10.0 7.1 5.7 5.5 4.0

Identified model 4 3.2 3.3 5.2 5.6 10.0 10.1 5.4 6.6 3.6 6.2

Identified model 5 4.7 7.8 5.0 4.8 7.6 10.0 7.4 5.2 8.3 9.6

Identified model 6 5.0 6.2 6.8 6.5 10.1 10.1 6.9 6.4 5.7 5.8

Table 6.9: Correct model of the problem and models identified in the case of example 2 (in log

scale).

From Table 6.9 it is noted that more than one model is proposed as a correct model. Among

them, only solution 4 is closest to the correct model. The values for the different parameters

show some common features among the solutions. Nearly all models have a value of 10 for

both p5 and p6. Since the variation in these parameters is very small, they are likely to have

a much larger influence on predictions than other parameters. The other parameters do not

significantly affect the behavior of the bridge. In other words, the connections closer to the

ends could be modeled as hinged or rigid and it would not generate changes in displacements

that are detectable with the precision of inclinometers considered in this study. However, sensor

technology is improving day-by-day and precision of sensors are gradually increasing. Further

choices also include measurement of other phenomena using other sensors.

Finally, for a better visualization of the obtained solutions, three models (out of the six

identified) are shown in Figure 6.13. Although these models are clearly different, they are all

candidate models (their predictions are close to measurements).

6.2.5 Conclusions

Both initial and iterative sensor placement are important parts of the methodology. It is most

likely to obtain useful knowledge if sensors are optimally placed. A global strategy is compared

to a greedy algorithm for initial sensor placement. A clustering algorithm is integrated in a

greedy strategy for iterative sensor placement. Conclusions are given below:

• For a simple case study, global search provides the same results as greedy search when the

size of the biggest subset of non-identifiable models is chosen as the minimization function.

When the total number of non-identifiable models is used as the minimization function,

there are good solutions which are missed by the greedy algorithm.
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Figure 6.13: Three candidate models taken from Table 6.9 (models 3, 4 and 5). A double tilde

means a big crack (stiffness below 4 in log scale) and a single tilde means a stiffness varying

from 4 to 6 (in log scale). Finally, positions with no symbol are rigid connections (more than 6

in log scale). The difference between predictions and measurements is small in each case.
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• The choice between greedy algorithm and global search should be done according to the

context. When additional measurements are required from an existing measurement sys-

tem, greedy algorithm is the best choice.

• When improving measurement systems, the choice of sensor locations depends on the

parameter set.

• Low entropy values obtained at every sensor position are found to be a good stopping

criteria for the iterative sensor placement methodology.

• Clusters may indicate different possible types of behavior of a structure, thus guiding

subsequent decision making related to new measurements and further system identification

studies.

Data mining is thus a useful decision support tool for engineers performing system identifi-

cation in iterative measurement-evaluation methodologies.
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Chapter

7

Conclusions

“I am turned into a sort of machine for observing facts and grinding out

conclusions.” (Charles Darwin, 1809-1882)

Overview

This chapter starts with a discussion of the results of this thesis. A discussion of the research

methodology and its validation follows. Conclusions are then drawn for each chapter. Finally,

opportunities for future work are presented.

7.1 Discussion

In this work, the potential for data mining strategies in system identification is evaluated. For

example, valuable knowledge is extracted through clustering (Chapter 3) and feature selection

(Chapter 4). These techniques are integrated into an overall methodology for system identifica-

tion (Chapter 5). An iterative methodology for sensor placement is also proposed and supported

through data mining techniques such as clustering (Chapter 6).

A new index for hard clustering called the score function (SF), is presented and studied in

depth in this work. More specifically, the SF is better or as good as six other validity indices

(Dunn, Calinski-Harabasz, Davies-Bouldin, Silhouette, Maulik-Bandyopadhyay and Geometric)

for the K-means algorithm on hyper-spheroidal clusters. In addition, the SF has been tested

successfully on multidimensional real-life data sets. The SF can also accommodate perfect

and single cluster cases. In order to identify the single cluster case, an empirical condition is

formulated. It is important to note that calculating the SF is computationally efficient.

Concerning feature selection, the PGSL-SVM results show that this technique is competitive

with others in the literature. In comparison to other techniques, PGSL-SVM is better for several

123
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data sets while it is within the range of other results for a few data sets. This new feature

selection algorithm combines global search (PGSL) and support vector machines (SVM) in a

wrapper approach. It is found that PGSL-SVM is an efficient feature selection strategy since it

performs in general as well as GA-SVM (genetic algorithm SVM) for feature selection on various

data sets. The PGSL-SVM strategy finds feature subsets that are smaller than GA-SVM. It is

noted that the proposed strategy is easier to use since it requires less tuning of parameters than

GA-based strategies.

This work is a new application for the data mining field. It is a successful example of

application in the area of system identification in the domain of civil engineering. A system

identification methodology that accounts for factors influencing the reliability of identification

is proposed. The importance of a multi-model approach is demonstrated with a real case study.

The need for data mining techniques to make sense of multiple models is shown using two dif-

ferent examples. Linearly independent variables are identified by the correlation measurement.

The first principal components in PCA consist of independent variables whose values are iden-

tified. A few principal components are sufficient for explaining the variation in data, implying

relationships among variables. Clustering is useful for grouping models into clusters thus pro-

viding information to engineers about possible model classes. Clusters may indicate different

possible types of behavior of a structure. Feature selection highlights parameters that explain

candidate models. This can thus guide subsequent decision making related to new measurements

and further system identification studies.

This methodology raises an important issue regarding data interpretation. Firstly, results of

data mining have to be interpreted carefully. The user thus has an important role in ensuring

that the methodology is successful. Secondly, even if the methodology is well applied, results

are not necessarily entirely useful. For example, data might be noisy (poor sensor precision), or

may have missing values (low sensor quality) or may be missing useful information (bad sensor

configuration) and this may preclude obtaining useful results.

An example of challenges associated with applying data mining to system identification is

given below. Assume that, after applying data mining, three clusters of models are obtained.

The methodology alone is not able to interpret these clusters. Suppose that two clusters group

similar information. Although the clustering algorithm has generated three clusters, only the

user is able to identify that there are only two clusters that have physical meaning. Therefore,

data mining is only able to suggest possible additional knowledge. As written in Kuonen (2004),

“Even the most advanced algorithms cannot figure out what is most important”. The process of

acquiring and confirming that knowledge is of practical use for decision is left for engineers.

Regarding the initial sensor placement, depending on the objective function used, global

search can be equal or better than the greedy algorithm. However, global search is less useful for
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iterative sensor placement, especially when sensors cannot be moved (see Section 6.2). Therefore,

the choice of the strategy depends above all on the context and the future use of the measurement

system. The ability of the iterative sensor placement methodology to uniquely identify the

system is illustrated in a case study. This example has only three parameters and a unique

cluster of models. Using a more complex case study, it has been found that the choice of sensor

locations is dependent upon the parameter set. Furthermore, the entropy value obtained at

every sensor position is an iterative indication of the number of sensors needed on the structure.

7.2 Validation

The research methodology and plan followed in this research is summarized in Figure 1.2. Each

activity shown in the figure has been evaluated using one or several validation data (benchmark

data sets, laboratory structure and Schwandbach bridge). Parameters used for validation are also

given in Figure 1.2. The research performed is thus empirically validated using these parameters.

Below, a summary of the evaluation of each research activity in terms of these parameters is

provided.

The potential for existing data mining techniques was evaluated by applying them to a

laboratory structure and assessing the following three parameters:

1. Amount of additional knowledge generated

2. Increase in the level of support

3. Enhancement of visualization capabilities

Each of these three parameters are detailed below. The following are examples of important

knowledge generated by data mining:

• Independent parameters

• Linear relationship between parameters

• Number of principal components

Regarding the increase in level of support, it is measured by the reliability of system iden-

tification. The knowledge obtained informs engineers about independent (and thus reliable)

parameters. Through this knowledge, engineers are supported in the overall iterative method-

ology for system identification.
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The visualization capabilities are measured by the improvement in presenting multiple mod-

els to engineers. To present thousands of multidimensional models to engineers, visualization

capabilities are enhanced through:

• Dimensionality reduction (PCA)

• Visual representation of clusters

Thus, the three validation parameters indicate that existing data mining techniques have

potential to provide reasonable level of support for system identification. However, current data

mining techniques are limited in reliably and efficiently providing the following useful knowledge:

1. The number of clusters in data

2. Parameters explaining candidate models

The development of a new index for cluster validity helps answer the first point. Examples

of capabilities of the score function are:

• Estimating the number of clusters in a given data set

• Linear computational complexity

• Ability to handle perfect, single and sub-cluster cases

Regarding the parameters explaining candidate models, the efficiency of the new wrapper

feature selection algorithm (PGSL-SVM) is shown by the following aspects:

• Good classification accuracy

• Subsets with a smaller number features than genetic algorithms (GA)

• Less tuning parameters to fix than GA

The above techniques are integrated in the new methodology for decision support and the new

measurement system design. The overall methodology is validated on the laboratory structure

and the Schwandbach bridge. The parameters used to validate the methodology are:

1. The amount of remaining information to measure

2. The number of remaining models

3. The number of sensors placed



7.3. CONCLUSIONS 127

Regarding the first point, it is measured by entropy calculations. This measure gives an

idea of the information remaining. When the entropy value at each sensor location is low

(< 1), no more sensors are needed on the structure. The entropy value decreases iteratively

until no additional sensors are needed. The number of remaining models measures the speed of

convergence of the algorithm. Finally, the number of sensors placed measures the efficiency of

the sensor placement algorithm. The fewer sensors are needed, the better it is.

From the parameters mentioned in this section, it is concluded that the developed algo-

rithms, in combination with existing data mining techniques, have good potential for system

identification tasks.

7.3 Conclusions

The following conclusions are related to the application of data mining techniques to system

identification. Several data mining techniques have been integrated in the system identification

methodology, thus avoiding narrow points of view that can happen when dealing with only one

method. It is well known that “when the only tool you have is a hammer, everything looks

like a nail” (Zadeh, 2001). This work brings together different ideas and concepts to avoid

this problem. It is shown that, when integrated in an overall framework for decision support,

data mining techniques constitute a valuable tool for engineers performing system identification.

General conclusions of this work are separated in four groups and detailed in the next subsections.

7.3.1 Cluster Validity

A score function is proposed to support two important issues in clustering which are i) evaluating

obtained results and ii) estimating the number of clusters. The following conclusions are drawn:

• The score function is a reliable index for estimating the number of clusters in a given data

set.

• The score function can be used on a wide range of data set sizes, since its computational

complexity is linear.

• The generalization abilities of the score function are high due to its particularities, such

as its ability to handle perfect, single and sub-clusters cases

The score function is able to efficiently estimate the number of groups in a given data set,

thus increasing clustering results understanding.
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7.3.2 Feature Selection

A new feature selection algorithm using global search and support vector machine (SVM) in

a wrapper approach has been proposed. Experiments on several data sets have lead to the

following conclusions:

• PGSL-SVM is an efficient feature selection strategy since it performs in general as well as

GA-SVM for feature selection on various data sets.

• The PGSL-SVM strategy finds subsets with a significantly smaller number features than

GA-SVM for the same order of accuracy and time.

• The strategy involving PGSL is easier to use since it has less tuning parameters than

GA-based strategies. This number is of importance since bad tuning can lead to poor

results.

Global search algorithms (PGSL) and kernel methods (SVM) are examples of useful tools for

searching the space of possible feature combinations which is a combinatorial problem.

7.3.3 System Identification Methodology

A methodology that integrates data mining into the system identification process is proposed.

The process is iterative and requires engineer interaction. The overall methodology is tested on

an existing structure to validate its possibilities in decision support. Although this approach has

much potential to be generalized to many applications, the scope of the conclusions is limited

to the applications that were studied in this thesis. The following conclusions are of interest:

• Data mining techniques are essential for interpreting the results of system identification

• Clusters can guide subsequent decision making related to further system identification

studies since they can indicate different possible types of behavior of a structure.

• The combination of K-means and PCA improves understanding of the model space as it

allows an efficient visualization for engineers, even if the data set is multi-dimensional.

• The application of data mining to complex tasks such as system identification requires an

expert user since the methodology is iterative and needs input from engineers.

• The overall applicability of the methodology goes beyond toy examples and laboratory

cases since it is applied to a real structure in Switzerland.

Data mining is a valuable tool which, when used by engineers, increase their understanding

of the system for subsequent decision making.
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7.3.4 Sensor Placement

As part of the overall methodology for system identification, clustering is integrated in a greedy

strategy for sensor placement. Although this approach has much potential to be generalized to

many applications, the scope of the conclusions is limited to the applications that were studied

in this thesis. Conclusions are given below:

• When integrated in a methodology for iterative sensor placement, clustering is found to

be a relevant tool for supporting engineers by improving subsequent sensor placement on

existing structures.

• Greedy and global search strategies should be used according to the context. Experiments

show that whereas global search is more efficient for initial sensor placement, a greedy

strategy is more suitable for iterative sensor placement.

• When improving measurement systems, the choice of sensor locations depends on the

parameter set chosen by engineers.

• The entropy value obtained at every sensor position is an iterative indication of the number

of sensors needed on the structure. It is therefore used as a stopping criterion.

In addition to providing information about the candidate model space, data mining is found

to be a valuable tool for supporting additional sensor placement.

7.4 Future Work

During the period that was available for this research, several ideas and concepts have emerged.

However, due to time limitations only a few have been developed, implemented and tested.

Nevertheless, generation of these experimental ideas are also important contributions of this

research. Below is a list of possible subsequent research in the areas covered by this thesis.

They serve as starting points for future research in this field.

7.4.1 Improvement of Clustering Procedure

Further work can be performed on clustering. For example, in Section 5.2.2, self-organizing

map (SOM) can be used instead of PCA. In addition, other clustering algorithms are available.

Stability of clusters can also be studied. For example, through consensus clustering (Monti

et al., 2003), it is possible to represent consensus of results across multiple runs of a clustering

algorithm. It thus helps to know how the clustering algorithm (e.g. K-means) is affecting results.
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7.4.2 Supervised Learning on Clusters

Once clusters are found, they can be labeled and considered as classes of models. Thus, a

supervised learning technique can be used to obtain additional knowledge from these classes.

For example, a decision tree can be built on the data set where each cluster is considered as a

different class. Figure 7.1 gives a possible methodology for supervised learning on clusters.

Figure 7.1: A possible strategy for extracting rules from clusters.

This decision tree thus leads to a set of rules. The idea is to give engineers simple and

readable rules which characterize each class. In this way, engineers would have rules describing

classes. Given these rules, engineers can have a better idea of the topology of each cluster (i.e.

each cluster would be defined by a set of rules on the parameters).

7.4.3 Feature Selection for Dynamic Response

All the data in this thesis come from static measurements. For example, a truck is placed on a

bridge and then system identification is performed to discover the state of the structure. The

next step is dynamic measurements. Measurements are taken every t seconds. Dynamic feature

selection may be necessary. A different subset of features is selected every t seconds. It is thus

possible to see how important different parameters are, according to the position of the truck.

7.4.4 Association Rule Mining on Model Parameters

Association rules mining can be applied to both candidate and non-candidate models to obtain

information for engineers. When used on model parameters, association rules of the form “80%

of candidate models have p1 < a” or “If a model is candidate and has p3 > b then there is a
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95% chance that p5 < c” may be useful. Association rules can thus provide useful knowledge to

engineers related to the reliability of system identification.

7.4.5 Data Containing Varying Number of Parameters

A limitation of current work is that only models containing a fixed number of parameters can

be processed. This is due to the fact that most current data mining techniques are limited to

data sets containing a fixed number of columns (i.e. parameters). Advances in relational data

mining may provide more flexibility. In relational data mining, several “tables” with different

number of parameters can be processed together. Dimensionality reduction techniques may

be useful. Examples are multidimensional scaling (MDS), locally linear embedding (LLE) and

isomap (Hadid and Pietikainen, 2004).

7.4.6 Improvement of Sensor Placement Methodology

Regarding the iterative sensor placement strategy, several extensions are possible. In this work,

the number of representative models is fixed by the user. It may be difficult to find a relevant

number without a specific framework to help. Work toward devising a standard way of esti-

mating the number of representative models required from each cluster to identify subsequent

measurement locations would be of interest. Another issue is the number of candidate models

required for correct system identification. In the present work, this number is fixed by the size

of the model space (number of possible models) and the computational time required to sample

the solution space. For example, this problem can be treated probabilistically.

Another approach to sensor placement is to account for measurement redundancy to perform

system identification. This is already done in fault diagnosis for example (Isermann, 1993). Frisk

and Krysander (2007) state that redundancy, which is needed, is provided by several sensors.
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Chapter

8

Appendix

8.1 Acronyms

Below is a list of abbreviations used in this thesis:

ACM Association for Computing Machinery

ANN Artificial Neural Network

ARR Analytical Redundancy Relations

BCD Between Class Distance

CBR Case-Based Reasoning

CH Calinski-Harabasz index

CSP Constraint Satisfaction Problem

DB Davies-Bouldin index

DIKW Data Information Knowledge Wisdom hierarchy

DNA Deoxyribonucleic Acid

DU Dunn index

GA Genetic Algorithm

GE Geometric index

GSP Global Sensor Placement

KDD Knowledge Discovery in Databases

LDA Linear Discriminant Analysis

MB Maulik-Bandyopadhyay index

NA Not Available

NS Number of Samples

NFC Number of loop in the Focusing Cycle

NSDC Number of loop in the Sub-Domain Cycle

PC Principal Component
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PCA Principal Component Analysis

PDF Probability Density Function

PGSL Probabilistic Global Search Lausanne

RFE Recursive Feature Elimination

SA Simulated Annealing

SBFS Sequential Backward Floating Search

SBS Sequential Backward Selection

SF Score Function

SFFS Sequential Forward Floating Search

SFS Sequential Forward Selection

SI Silhouette index

SOM Self-Organizing Map

STD Standard Deviation

SVM Support Vector Machine

WCD Within Class Distance

8.2 Miscellaneous

Several user manuals have been used to benefit from the LATEX formatting:

• “Une courte introduction à LATEX 2ε”, Oetiker, T., Partl, H., Hyna, I., Schlegl, E. and

Herrb, M., 2001.

• “Natural Science Citations and References - natbib”, Daly, P.W., 2006.

• “Using LATEX to Write a PhD Thesis”, Talbot, N., 2006.

• “The geometry package”, Umeki, H., 2002.
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