New Method for Pavement Rutting Prediction

M. Rodriguez, M. Ould-Henia, A.-G. Dumont

Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire des Voies de Circulation (LAVOC), Lausanne, Switzerland.

ABSTRACT: In recent years, pavement rutting rate has increased significantly due to constant traffic intensity increment. These solicitations affect the bituminous layers that can quickly attain their permanent deformation limit resistance. This phenomenon can lead to a pavement depression, located in the tyre-road contact surface. The purpose of this paper is to present a methodology to estimate the rutting of bituminous pavements and to predict the rutting risk considering the bituminous mix rutting resistance characteristics obtained with the LPC traffic simulator, and taking into account the traffic and environmental characteristics. The traffic characteristics are represented by the total heavy traffic expressed in equivalent single axle loads (ESAL) passed on the pavement during the service period, and the heavy vehicles speed on the considered section. The environmental characteristic is represented by the pavement temperature at 2 cm depth. The developed model starts from the widely used empirical rutting formula and its experimentally determined coefficients. The general concept of the model is to start from this generalised rutting formula and to apply it to the real rutting behaviour occurring in pavements. For this purpose, observations and material analysis of eleven in place pavements were made. The model was calibrated using eleven bituminous mixes and verified introducing the characteristics of four in place bituminous mixes not considered in the initial calibration phase. The developed model gives rut depth values after having determined material and site characteristics and presents a good correlation coefficient with very satisfactory results in its verification phase with additional materials.

KEY WORDS: Rutting, bituminous mixes, pavement, model.

1 OBJECTIVES OF THE STUDY

The main objective of this study is to develop a method that predicts the rutting risk for a pavement based on material characteristics, traffic load, heavy vehicles mean speed and site climatic conditions. The material is taken into account by the experimental rutting resistance parameters obtained with LPC traffic simulator. The traffic is characterised by the heavy traffic load (in terms of equivalent single axle loads (ESAL) which solicited the pavement during its service period) and the mean speed of heavy vehicles that gives information about the solicitation loading time.

The study began with the selection of eleven road sections representing different traffic and climatic conditions and representative of diverse possible climatic conditions. All the pavements were younger than ten years.

After the pavements selection, their rut depths were measured in situ and bituminous material slabs were extracted from the selected pavements. The slabs have been fully analysed for the purpose of knowing their composition and their compacting degree and then tested in the LPC traffic simulator at different temperatures. In parallel, climatic conditions and traffic characteristics data of the coring sites were also collected.

The next step consisted in creating a model able to represent the relation between the in situ rut depth, measured on the pavement, and the rate of rutting measured in laboratory with the slabs submitted to the LPC traffic simulator.

The developed model was then verified by introducing additional data from four other materials not considered in the model development phase.

2 EXPERIMENTAL STUDY

Eleven road sections satisfying the initially determined criteria were selected based on information obtained from several administrations. These specimens represent the basic material for the model development phase.

2.1 Transversal evenness measurement and sampling

Before the extraction of the samples, the in situ rut depths were measured according to the Swiss standard (SN 640 520a, 1977). The measure consists in placing a 4 m beam perpendicularly to the traffic flow and in measuring the transversal evenness.

After the transversal evenness measurement (see Table 1), the samples were cut and extracted from the pavement. To avoid errors and dispersion in the laboratory test results, it was necessary to dispose of least solicited material (not much damaged by traffic loads). Therefore, the eight samples for the rutting test were extracted from the road part situated between each rut.

Table 1: In situ measured rut depths

Material	Left rut depth	Right rut depth	Mean rut depth	
	[mm]	[mm]	[mm]	
Mat. 1_kl	11.0	11.0	11.0	
Mat. 2_mo	4.0	6.3	5.2	
Mat. 3_da	16.7	7.0	11.8	
Mat. 4_gr	7.7	4.0	5.8	
Mat. 5_sc	7.7	7.0	7.3	
Mat. 6_de	34.0	27.7	30.8	
Mat. 7_st	4.7	17.3	11.0	
Mat. 8_lo	4.0	7.0	5.5	
Mat. 9_bo	8.0	17.0	12.5	
Mat. 10_mo	17.5	32.5	25.0	
Mat. 11_be	10.0	10.7	10.3	

The major differences between the rut depth values measured in the two wheelpaths are site specific. The road sections for the material extraction were selected in accordance to the rehabilitation works foreseen by the different responsible road administrations.

2.2 Rutting test

The laboratory rutting test used in this study was conducted with the LPC-traffic simulator according to the French standard (NF P 98-253-1, 1991). The test shows the evolution of the bituminous mix permanent deformation. It consists in submitting a bituminous mix slab to a vertical rolling load induced by a tyre that induces a relative diminution of the slab thickness (rut).

The standard (NF P 98-253-1, 1991) defines the rutting evolution as a function of the number of cycles in bi-logarithmic axis where Y is the rut depth, A the rut depth at 1000 load cycles, N the number of load cycles and b the straight line slope.

$$Y = A \cdot \left(\frac{N}{1000}\right)^{b} \tag{1}$$

For each slab, the test has been first realised at a temperature of 50°C and then, based on the material behaviour and its temperature susceptibility, more tests were done at different temperatures, 55°C and 60°C if 60'000 cycles were attained at 50°C, and 40°C and 45°C if the material attained the 15% rutting limit at 50°C.

3 DEVELOPMENT OF THE PREDICTIVE METHOD

The prediction of the in situ rutting evolution is based on the most widely used empirical rutting equation for bituminous mixes (Archilla & al., 2000) (Deacon & al., 2002) (Huh & al., 2001) (NF P 98-253-1, 1991), where T is the rut depth, N is the number of load cycles, α and β are experimentally determined parameters (function of material properties).

$$T = \alpha \cdot N^{\beta} \tag{2}$$

It is experimentally observed that the curve represented by the equation (2) becomes more regular from 1000 load applications. According to this, the empirical equation (2) has been changed in the French standard (NF P 98-253-1, 1991) as indicated in equation (3), where α represents the rut depth at 1000 load cycles and β is the slope of the rutting straight line plotted in bi-logarithmic axis.

$$T = \alpha \cdot \left(\frac{N}{1000}\right)^{\beta} \tag{3}$$

The last mentioned coefficients α and β have been used for this study.

In the equations (2) and (3) the number of load cycles corresponds to a certain amount of loads and a certain loading speed imposed by the standardised test procedure described in (NF P 98-253-1, 1991). However, in real pavements, applied loads and loading speeds are specific to each road section. That is why it was necessary to introduce some adjustment coefficients to take this reality into account.

The general concept of the presented method consists in taking the general rutting equation (3) as starting point and applying it to the real rutting phenomenon. For this purpose, three hypotheses were introduced:

- 1. The real rutting phenomenon follows the same function as the one observed in laboratory
- 2. There is no structural rutting, i. e. rutting only appears in the bituminous layers and not in the soil
- 3. There is no temperature gradient in the bituminous layer, i. e. temperature is constant in the whole material

In equation (3) the number of laboratory cycles N is replaced by a number of "equivalent cycles" Neg that are supposed to be applied in real pavements:

$$T = \alpha \cdot \left(\frac{N_{eq}}{1000}\right)^{\beta} \tag{4}$$

In reality, the traffic solicitation depends on a certain traffic load at a certain speed. That is why the term Neq includes the adjustment coefficients related to these two parameters, C_W for the traffic load and C_V for the speed. That permits to give a ratio between the accelerated laboratory test and the real traffic load where W is the number of equivalent single axle loads (ESAL).

$$N_{eq} = f(W, C_W, C_V)$$
 (5)

The material temperature has a non negligible influence in the rutting phenomenon. Laboratory tests are conducted at a certain temperature and the adjustment coefficient for temperature C_{θ} was introduced to take into account the correspondence between laboratory tests and reality:

$$T = C_{\theta} \cdot \alpha \cdot \left(\frac{N_{eq}}{1000}\right)^{\beta} \tag{6}$$

Finally, a last adjustment coefficient δ was added for the purpose of fitting the developed model with the theoretical model. The theoretical model is a straight line where the calculated rut equals the measured rut (y=x):

$$T = C_{\theta} \cdot \alpha \cdot \left(\frac{N_{eq}}{1000}\right)^{\beta} + \delta \tag{7}$$

3.1 Material related parameters

The parameters α and β represent the rut depth at 1000 load cycles and the slope of the rutting straight line plotted in bi-logarithmic axis, respectively. To allow a comparison between all tested materials, the considered temperature for the determination of the material parameters α and β was the one common to all tests, i. e. 50°C.

For the eleven sites considered in this study, these experimentally determined coefficients are presented in table 2.

3.2 Traffic related parameters

The rutting test gives a rut depth expressed as a function of the number of load cycles and the experimental parameters α and β . The effect of each load cycle on the sample depends on the applied load level and the imposed speed. The number of laboratory load cycles N is converted in "equivalent cycles" supposed to be observed in reality. For this conversion, an estimation of the total traffic load W [ESAL] and an adjustment traffic coefficient C_W are needed.

$$T = \alpha \cdot \left(\frac{C_W \cdot W}{1000}\right)^{\beta} + \delta \tag{8}$$

3.3 Speed related parameter

The vehicles speed influences the pavement rut evolution. Because of the viscous behaviour of pavements, the lower the speed is, the higher the rut depth will be. To take into account the vehicles speed effect in the model, the general equation developed by Louis Francken (Francken, 1977) was used. This equation gives the permanent deformation ε_p as a function of the vertical and horizontal stresses σ_v and σ_h , the number of load cycles N, the speed V and the plastic deformation module E_p depending on the material characteristics.

$$\varepsilon_{p} = (\sigma_{v} - \sigma_{h}) \cdot \left(\frac{N}{450 \cdot V}\right)^{0.25} \cdot \frac{1}{2 \cdot E_{p}}$$
(9)

The characteristics of a standard mix were introduced to calculate the values of E_p for temperatures from -20°C to 40°C and speeds from 10 km/h to 100 km/h. The reference temperature was 50°C according to the one used in laboratory tests. For the determination of the speed adjustment coefficient C_V the reference speed was 50 km/h:

$$C_{V} = \frac{T(V)}{T(V_{ref})} = \frac{\varepsilon_{p(V)} \cdot h}{\varepsilon_{p(V_{ref})} \cdot h} = \left(\frac{V_{ref}}{V}\right)^{0.25} \cdot \frac{E_{p(V_{ref})}}{E_{p(V)}}$$
(10)

Figure 1 shows the speed adjustment coefficient calculated for each speed from 10 km/h to 100 km/h. The coefficient C_V has the form of a power function depending on the speed (11).

$$C_{V} = 5 \cdot 10^{-5} \cdot V^{2.5177} \tag{11}$$

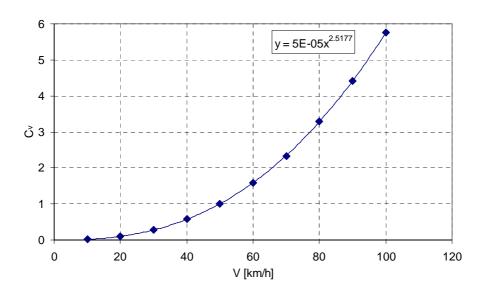


Figure 1: Speed adjustment coefficient C_V

To take into account the speed effect in the calculation of the rut depths, the equation (8) becomes:

$$T = \alpha \cdot \left(\frac{C_W \cdot W}{1000 \cdot C_V}\right)^{\beta} + \delta \tag{12}$$

3.4 Temperature related parameter

Similar to the determination of the speed adjustment coefficient, the temperature adjustment coefficient C_{θ} is obtained as the ratio of the rut value obtained at a certain temperature to the one obtained at the reference temperature $\theta_{\text{ref}} = 50^{\circ}\text{C}$:

$$C_{\theta} = \frac{T(\theta)}{T(\theta_{\text{ref}})} = \frac{\varepsilon_{p(\theta)} \cdot h}{\varepsilon_{p(\theta_{\text{ref}})} \cdot h} = \frac{E_{p(\theta_{\text{ref}})}}{E_{p(\theta)}}$$
(13)

The temperature adjustment coefficient C_{θ} plotted for temperatures from 10°C to 50°C is exponential (see Figure 2):

$$C_{\theta} = A \cdot e^{B \cdot (\theta - \theta_{ref})} \tag{14}$$

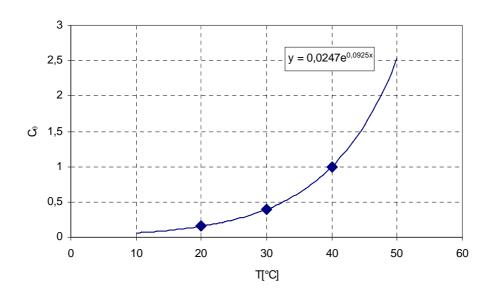


Figure 2: Temperature adjustment coefficient C_{θ}

The final expression of the temperature coefficient is the equation (15)

$$C_{\theta} = e^{\frac{\theta - 50}{10.8}}$$
 (15)

With the determination of this last adjustment coefficient, the final equation becomes:

$$T = C_{\theta} \cdot \alpha \cdot \left(\frac{C_{W} \cdot W}{1000 \cdot C_{V}}\right)^{\beta} + \delta \tag{16}$$

The coefficients C_W and δ adjust the model with a theoretical model where the calculated rut should equal the real rut. The determined values giving the good correlations are C_W =5.128·10⁻³ and δ =4.9.

3.5 Predictive calculation of rut depths

With the previous developments and using the model final equation (16) it was possible to calculate all sites predicted rut depths and compare these values with the real measured rut depths (see Table 2 and Figure 3).

	Table 2: Summar	v of the	considered	characteristics
--	-----------------	----------	------------	-----------------

Material -	Material characteristics		Site characteristics			Rut depths	
	α	β	W [ESAL]	V [km/h]	θ [°C]	Measured rut [mm]	Calculated rut [mm]
Mat. 1_kl	1.936	0.4051	2'464'813	53	46.07	11.0	8.79
Mat. 2_mo	3.251	0.3796	569'422	62	45.44	5.2	7.78
Mat. 3_da	4.468	0.5580	240'425	30	44.56	11.8	10.50
Mat. 4_gr	1.818	0.3870	2'212'906	80	45.85	5.8	7.14
Mat. 5_sc	4.608	0.6353	458'403	80	44.33	7.3	8.05
Mat. 6_de	6.292	0.6943	2'051'390	51	46.39	30.8	30.04
Mat. 7_st	2.106	0.2027	894'259	41	45.22	11.0	7.14
Mat. 8 lo	2.111	0.2925	13'172'339	90	46.49	5.5	8.30
Mat. 9 bo	2.226	0.3997	2'407'905	69	46.88	12.5	8.52
Mat. 10_mo	5.816	0.7507	765'121	35	45.72	25.0	29.32
Mat. 11_be	2.820	0.5458	9'808'574	90	46.22	10.3	12.13

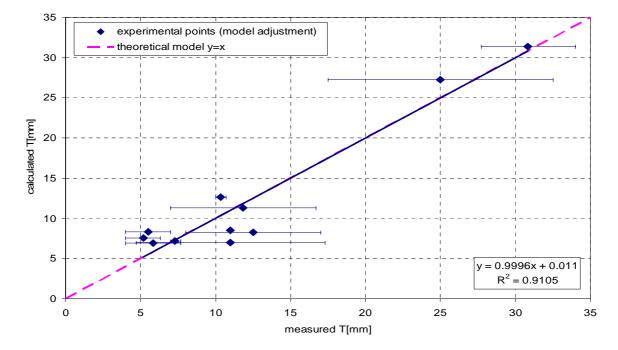


Figure 3: Modelled relation between measured and calculated rut depths

Figure 3 illustrates the relation between the calculated rut depths with the model equation and the in situ measured rut depths on the chosen eleven materials. The points represent mean values calculated with the left and right rut and the horizontal lines indicate the minimal and maximal rut depth for each site.

The predictive model represented by a straight line with a correlation coefficient R^2 =0,91 seems to be a good method to estimate the rut depth on any type of bituminous material (see Figure 3).

3.6 Procedure for the application of the predictive rutting method

Following are the four steps for the application of the new rutting prediction procedure (see Figure 4):

- Step 1: Determination of the experimental coefficients α and β from a laboratory rutting test (LPC traffic simulator (NF P 98-253-1, 1991)) or from an existing database.
- Step 2: Determination of the total equivalent traffic load W [ESAL] considered during the pavement service period using the Swiss standard (SN 640 320a, 2001) and/or any available traffic data. Once W is calculated the constant value of the adjustment coefficient C_W =5.128·10⁻³ has to be introduced in the model equation (16).
- Step 3: Determination of the heavy vehicles (>3.5 t) mean speed on the considered pavement using the Swiss standard (SN 640 138a, 1986) and/or in place speed measures if it is an existing pavement. The speed has to be linked to the model rutting equation (16) by the introduction of the speed adjustment coefficient C_V =5·10⁻⁵· $V^{2.5177}$.
- Step 4: Determination of the maximal material temperature for a return period of 20 years with the method described by Angst (Angst & al., 2000). The temperature has to be linked to the model (16) by the introduction of the temperature adjustment coefficient C_{θ} = $e^{(\theta-50)/10.8}$.

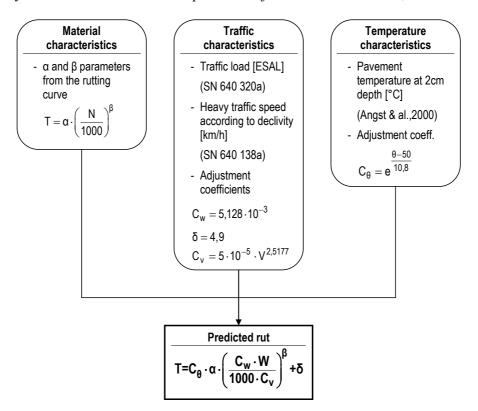


Figure 4: Procedure for the application of the rutting prediction method

3.7 Method verification

For the verification and the validation of the developed model, four additional bituminous mixes have been analysed. These mixes were independent of the initial materials used for the model development and were not taken into account for its calibration.

After applying the four steps of the method procedure described before (see Figure 4) and determining all the values and adjustment coefficients needed for their introduction in the method equation, the four additional points have been calculated with the method equation (16) and were put in the graph model presented in Figure 3.

The difference between the calculated and measured rut depths are presented in Figure 5. It can be observed that the additional materials perfectly integrate the initial graph obtained from the method development phase.

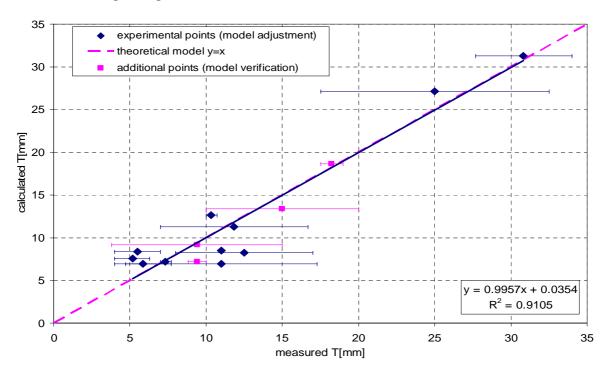


Figure 5: Initial mixes (blue points) and additional mixes (pink points)

4 CONCLUSIONS

This study presented the development of a predictive rutting model based on the most widely used empirical rutting equation. The general concept consists in taking the general rutting equation as starting point, and applying it to the real rutting phenomenon introducing the following three fundamental hypotheses:

- 1. The real rutting phenomenon observed in a pavement has the same function as the one observed in laboratory,
- 2. There is no structural rutting i. e. rutting only occurs in the bituminous material and not in the soil, and

3. There is no temperature gradient in the bituminous layer, i. e. the temperature remains constant in the whole material.

The use of the predictive model is linked to the knowledge of some parameters like material experimental parameters (α and β), traffic characteristics (traffic load, speed) and environmental characteristics (in situ bituminous mix temperature). Some adjustment coefficients were introduced for each material independent parameter.

The model has been adjusted analysing the properties of eleven materials supposed to be representative of the Swiss climatic conditions and independent from each other.

The final model equation gives rut depth values after having determined material and site characteristics and shows a very good correlation coefficient giving very satisfactory results in its verification phase with the additional materials.

5 REFERENCES

- Angst, Ch., Remund, J., 2000. Klimatische Grundlagen der Schweiz für die SHRP-Bitumen Klassifikation. Office fédéral des routes, N° 473, Bern, Switzerland.
- Archilla, A.-R., Madanat, S., 2000. *Development of a pavement rutting model from experimental data*. Journal of transportation engineering, pp. 291-299.
- Deacon, J., Harvey J. T., Guada I., Popescu L., Monismith C. L., 2002. *An Analytically-Based Approach to Rutting Prediction*. Transportation Research Board.
- Francken L., 1977. Permanent deformation law of bituminous road mixes in repeated triaxial compression. Fourth International Conference on the Structural Design of Asphalt Pavements, Univ. of Michigan, Ann Arbor.
- Huh J. D., Nam Y. K., 2001. *Relationship between Asphalt Binder Viscosity and Pavement Rutting*. Transport Research Board.
- NF P 98-253-1, 1991. Déformation permanente des mélanges hydrocarbonés, partie 1: Essai d'orniérage. Association française de normalisation (AFNOR), Paris, France.
- SN 640 138a, 1986. *Tracé, Voies additionnelles en rampe*. Union des professionnels suisses de la route (VSS), Zürich, Switzerland.
- SN 640 320a, 2001. *Dimensionnement, Trafic pondéral équivalent*. Union des professionnels suisses de la route (VSS), Zürich, Switzerland.
- SN 640 520a, 1977. *Planéité, Contrôle de la géométrie*. Union des professionnels suisses de la route (VSS), Zürich, Switzerland.