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Abstract—Fountain codes are currently employed for reliable and effi-
cient transmission of information via erasure channels with unknown era-
sure rates. This correspondence introduces the notion of fountain capacity
for arbitrary channels. In contrast to the conventional definition of rate,
in the fountain setup the definition of rate penalizes the reception of sym-
bols by the receiver rather than their transmission. Fountain capacity mea-
sures the maximum rate compatible with reliable reception regardless of
the erasure pattern. We show that fountain capacity and Shannon capacity
are equal for stationary memoryless channels. In contrast, Shannon ca-
pacity may exceed fountain capacity if the channel has memory or is not
stationary.

Index Terms—Arbitrarily varying channels, channel capacity, content
distribution, erasure channels, fountain codes.

I. INTRODUCTION

Fountain codes are a class of sparse-graph codes that have received
considerable attention in the last few years. The first fountain codes
were the LT erasure-correcting codes introduced by Luby in [1]. The
LT codes are linear rateless codes that encode a vector of k symbols of
information with an infinite sequence of parity-check bits. The parity-
check equations (known to the decoder) are chosen equiprobably from
a random ensemble: The cardinality of the parity-check equations has a
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histogram given by the so-called robust soliton distribution and all k in-
formation symbols have identical probability to participate in any given
parity-check equation. The infinite sequence is transmitted through an
erasure channel. The decoder runs a belief propagation algorithm ob-
serving only as many channel outputs as necessary to recover the k

transmitted bits.
Better performance can be obtained with the fountain codes known

as raptor codes introduced by Shokrollahi in [2] for erasure correction.
Raptor codes have been applied to other channels such as binary chan-
nels in [3]–[5] and Gaussian channels [6].

A typical application of fountain codes is a system where the same
message is to be broadcast simultaneously to several receivers, served
by erasure channels with different erasure rates. The conventional
Shannon-theoretic approach to this scenario is the compound channel
(see, e.g., [7]), where the actual channel is unknown to the encoder and
chosen from a given uncertainty set. Ensuring reliable communication
for all receivers, the compound capacity is upper-bounded by the
smallest capacity among those channels in the uncertainty set. This
bound is tight in those cases, such as the compound erasure channel,
in which the mutual information of all channels in the uncertainty
class is maximized by the same input distribution. This setup not only
requires the transmitter to cater to the worst channel conditions but it
incurs a considerable waste of channel resources for those receivers
that enjoy better erasure rates than the worst. The use of fountain codes
enables receivers to stop listening to the channel once the information
is decoded reliably. Thus, receivers only need to obtain from the
channel a number of symbols that is a small multiple (close to 1) of
the number of information symbols. This happens sooner for those
receivers that experience favorable channel conditions. As customary
in the information theory of channels with nonprobabilistic description
of the uncertainty, we adopt a worst case approach in order to capture
the robustness of the fountain codes with respect to the patterns of
erasures.

Fountain codes have been adopted in the 3GPP wireless standard for
Multimedia Broadcast/Multicast [8], [9] and they have been used in
lossless data compression in [10].

In addition to their appealing conceptual structure, the commercial
success and excellent efficiency achieved by fountain codes are incen-
tives to investigate their Shannon-theoretic limits. The main difference
from the standard Shannon setup is in the definition of rate: a fountain
code is rateless (or zero-rate) in that it adds an infinite amount of redun-
dancy to the information vector. Instead of defining the rate from the
perspective of the encoder, in the fountain setup we define it from the
perspective of the decoder: ratio of information symbols transmitted
to channel symbols received. So while the classical definition of rate
penalizes the use of the channel by the transmitter (“pay-per-use”), in
the fountain setup the definition of rate penalizes the reception of (non-
erased) symbols by the receiver (“pay-per-view”). Independent of the
fountain code setting and within the context of broadcast channels, it
has been recognized in [11]–[13] that the classical definition of rate is
overly pessimistic for asynchronous broadcast where a common mes-
sage is transmitted to several receivers which are “turned on” at not
necessarily identical times. In [11]–[13], the individual rates in the ca-
pacity region are normalized by the time until the corresponding re-
ceiver is switched off. Recent works that deal with the conventional
Shannon capacity of the concatenation of noisy channels and erasure
channels include [14], [15].

This correspondence is organized as follows. In Section II, we give
the definition of fountain capacity for an arbitrary channel, along with
the associated notions of reliability and allowable encoding strategies.
We show that fountain capacity is upper-bounded by Shannon capacity.
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Fig. 1. Concatenation of noisy and erasure channel.

In Section III, we show that the fountain capacity of any discrete memo-
ryless channel is equal to its Shannon capacity, a result which no longer
holds for nonstationary channels. Moreover, we also consider memory-
less compound and arbitrarily varying channels (AVC), and show that
the compound/AVC capacities of those channels are equal to the cor-
responding compound/AVC fountain capacities.1

In Section IV, we give bounds on fountain capacity of channels
with memory and we show examples of channels with memory whose
Shannon capacity is larger than their fountain capacity.

II. DEFINITION OF FOUNTAIN CAPACITY

In Fig. 1, we depict the basic fountain setup where the receiver,
but not the transmitter, is aware of the schedule of times at which
the switch is on. In the definition of fountain capacity it is desirable
to guarantee reliability regardless of the schedule, while at the same
time defining rate by the ratio of received information bits to observed
channel symbols.

For the purpose of defining fountain capacity, we consider a gen-
eral channel fPY jX g1n=1 with input and output alphabets X , Y ,
respectively.

A fountain codebook with M codewords is a mapping

C : f1; . . . ;Mg ! X

that associates to each message m in f1; . . . ;Mg an infinite sequence
(Xm1; Xm2; . . .) of channel input symbols.

A fountain code library with M codewords, L, is a collection of
fountain codebooks with M codewords, L = fC� : � 2 �g, indexed
by a set �.

A schedule @ is a subset of the positive integers, whose cardinality
we denote by j@j. The receiver is only allowed to see the channel
outputs (Yi; i 2 @) at those times belonging to the schedule @.
The schedule is unknown to the encoder, and the schedule is chosen
without knowledge of either the message, codebook, or the channel
output.

A fountain decoder maps (Yi; i 2 @) to a message in f1; . . . ;Mg,
knowing the codebook used at the encoder. This captures the common
practice in fountain coding where the actual sequence of parity-check
equations is known at the decoder.

Assuming that the maximum-likelihood decoder is used, and there-
fore that the decoder chooses the most likely message upon knowl-
edge of the codebook, schedule, and channel law, the error probability
achieved by a codebook C and a schedule @ (averaged over equiprob-
able messages) is denoted by e(C;@).

In a fountain communication system, the transmitter and receiver
are equipped with a fountain code library L = fC� : � 2 �g with
M codewords, and a � 2 � drawn according to a probability distri-
bution . Observe that � is known to both the transmitter and receiver
and thus “random coding” is allowed as a communication technique,

1For the AVC, this only holds in the so-called random coding setting, when
the “jammer” is not informed of the actual code, only of the ensemble from
where it is chosen.

not just as a method to prove the existence of good codes. To commu-
nicate message m, the transmitter sends the infinite sequence C�(m);
the receiver, upon observing the channel output fYi; i 2 @g, declares
the maximum-likelihood estimate m̂ of m.

Definition 1: A fountain rateR is said to be achievable if there exists
a sequence of fountain code libraries L1;L2; . . ., where

Ln = fCn;� : � 2 �ng

has d2nRe codewords, and a sequence of distributions n on �n such
that

lim
n!1

sup
@:j@j�n �

e(Cn;�;@) dn(�) = 0: (1)

The channel fountain capacityCF is the supremum of all the achiev-
able fountain rates.

Note that in the above definition of achievable rate, the choice of the
schedule is performed by an adversary who knows the code library and
the probability law by which a codebook in this library is chosen, but is
unaware of which codebook is actually chosen. This adversary chooses
the schedule with the aim of maximizing the ensemble average proba-
bility of error under the constraint that a sufficient number of channel
symbols are observed by the receiver.

An easy consequence of the definition above is as follows.

Proposition 1: The fountain capacity is upper bounded by the
Shannon capacity.

Proof: We can lower-bound the left side of (1) by taking the con-
tiguous schedule @ = f1; . . . ; ng in which case the setup boils down
to the conventional setup [7], in which rates above Shannon capacity
are not achievable even with random coding.

It is straightforward to incorporate the ingredient of compound or
AVCs into the capacity by taking the supremum in (1) to be with respect
to not only the schedule but the channel uncertainty class. The same
reasoning as in the proof above shows that the fountain capacity in
these settings is upper-bounded by the corresponding random-coding
Shannon capacities.

To see why we need to consider random codes to arrive at a nontrivial
definition of fountain capacity, suppose that the scheduler knows which
codebook is used. We can view the codebook asM infinitely long rows.
Since there are jX jM possibilities (at most) for each column, the sched-
uler can always find an infinite subsequence in which the columns are
all equal, in which case the decoder sees a repetition code which cannot
achieve any positive rate with vanishing error probability.

One can state a more general conclusion along these lines.

Theorem 1: IfL1;L2; . . ., is a sequence of codelibraries withLn =
fCn;� : � 2 �ng, and if each �n is a finite set, thenL1;L2; . . . cannot
achieve any positive fountain rate.

Proof: Since Kn = j�nj is finite, we can view the code library
Ln as a collection of d2nReKn rows. As there are jX jd2 eK possi-
bilities for each column, there exist a schedule for which all columns
are identical for time indices in the schedule. Thus, no matter which
codebook is used, it still looks like a repetition code to the decoder.

The finiteness of the input alphabet is crucial for the foregoing
proof. For an additive Gaussian noise channel with transmitter subject
a power constraint the same conclusion holds. Although now we
have the freedom to choose columns that never repeat, the power
constraint on the codebook enables the scheduler to find columns that
are sufficiently close in Euclidean distance so as to render the variance
of the encoded sequence at the times of the schedule to be as as small
as desired.
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III. MEMORYLESS CHANNELS

A. Stationary Channels

Theorem 2: For a stationary memoryless channel, the fountain ca-
pacity CF equals the Shannon capacity CS .

Proof: Given a rate R < CS , find an input distribution PX on
the input alphabet X of the channel so that R < I(X;Y ). Consider
now choosing Ln to contain all codebooks with d2nRe codewords,
and choose the probability distribution  to make the random variables
Xm;j : � 7! C�(m)j independent and identically distributed (i.i.d.)
with distribution PX . Observe now, that for any @, the integral in (1) is
nothing but the ensemble average error probability of the i.i.d. random
coding ensemble of rate Rn=j@j over the memoryless channel PY jX ,
and thus depends on @ only through its cardinality j@j. For j@j � n, the
rate of the random coding ensemble is less than R, and by [17, The-
orem 5.6.2], this ensemble average error probability approaches zero
as n gets large.

The same argument as in the proof of Theorem 2 also establishes that
if we have a compound memoryless channel, its “compound fountain
capacity” equals its usual compound channel capacity. Note that we
can view this memoryless compound channel model as one where a
single schedule affects all possible channels in the uncertainty class and
there is a single rate defined based on the cardinality of that common
schedule. Note that this setting is different from the erasure compound
channel example in the Section I, where the fountain capacity of each
individual channel is achieved and is equal to its Shannon capacity.

For a memoryless AVC, the channel law is also a function of a state
s under the control of an adversary; formally, the channel is described
by PY jX;S . The adversary is completely free in his choice of state se-
quence, and he does so with the full knowledge of the mechanism em-
ployed by the transmitter and receiver, but without knowing which mes-
sage is being communicated. If random coding is allowed, and if the
adversary knows the random coding ensemble (but not the code in use),
the capacity of an AVC is given by (see, e.g., [18])

CR = max
P

min
�

I(P;W�) = min
�

max
P

I(P;W�) (2)

where the maximization is over probability distributions P on the
channel input, minimization is over all probability distributions � on the
state, W� denotes the channel W�(yjx) =

s
�(s)PY jX;S(yjx; s),

and I(P;W ) denotes the mutual information between two random
variables with distribution P (x)W (yjx). The proof of this result
establishes that if the random coding ensemble is the one that chooses
the codewords by making each letter of each codeword i.i.d. with
distribution P and the code has rate less than min� I(P;W�), then the
error probability for any choice of the state sequence approaches zero
as the block length increases.

If we use the same code library as in the proof of Theorem 2, with
R < CR we see that the integral in (1) again depends on@ only through
its size, and for j@j � n it is the error probability of a random code of
block length j@j of rate less than R. By the above discussion, this error
probability approaches zero for any state sequence as n gets large, and
so we see that the fountain capacity for a memoryless AVC equals (2),
the random coding Shannon capacity of the AVC.

B. Nonstationary Channels

For a nonstationary discrete memoryless channel with

PY jX (ynjxn) =

n

i=1

Wi(yijxi) (3)

where Wi 2 G and G is a finite set, the Shannon capacity is [19]

CS = lim inf
n!1

1

n

n

i=1

Ci (4)

where

Cj = max
P

I(P;Wj): (5)

In contrast, the fountain capacity is

CF = min
j:W 2G

Cj (6)

where G� is the subset of G containing the channels that appear in-
finitely often in the sequence W1;W2; . . .. To show that the right-
hand side of (6) is an upper bound to fountain capacity we can simply
consider a schedule @ containing only those times at which Wj is
a minimizer of (6). To show achievability of the right-hand side of
(6), we only need to generalize the proof of Theorem 2 by replacing
i.i.d. random coding by independent nonidentically distributed random
coding, where the distribution at time j is given by the maximizer of (5).

IV. CHANNELS WITH MEMORY

A general formula for the fountain capacity of channels with memory
that would generalize the formula for Shannon capacity in [19] re-
mains an open problem. One of the central difficulties in determining
the fountain capacity of channels with memory is that the least favor-
able schedule is heavily dependent on the channel.

A general upper bound on fountain capacity is

CF � lim inf
n!1

sup
XXX

inf
j@ j=n

1

n
I(XXX;Y [@n]) (7)

where the supremum is over the set of sequences of finite-dimen-
sional input distributions fPX g1m=1, and Y [fi1; . . . ; ing] =
fYi ; . . . ; Yi g. The standard argument based on Fano’s inequality is
easy to modify to normalize the rate not by the number of channel uses
but by the number of outputs revealed to the decoder. Furthermore,
since reliability is required regardless of the location of the n received
symbols, any achievable rate must be upper-bounded by the right-hand
side of (7).

Another upper bound to the fountain capacity is

CF � inf
0< <1

C( )

1�
(8)

where C( ) is the capacity of the concatenation of the noisy channel
with a memoryless erasure channel with erasure rate . To justify (8),
note that for any , C( )

1�
would be an achievable fountain rate if the

reliability in (1) were modified to average over i.i.d. erasures instead
of minimizing with respect to the schedule. The upper bound in (8)
is useful in those cases, such as the Gaussian dispersive channel [15],
where C( ) is known.

We can show a simple lower bound on fountain capacity for power-
constrained additive stationary Gaussian noise channelsq

Yi = Xi + Zi (9)

whereE Z2
i =�2 and the input power is constrained not to exceedP .
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The fountain capacity of (9) is lower-bounded by

CF �
1

2
log 1 +

P

�2
: (10)

To show (10), we first recall that because of the asymptotic equipar-
tition property for arbitrary Gaussian processes [16, eq. (46)], we can
claim, invoking standard information-theoretic arguments, that if Xi

are independent Gaussian with variance P , then

lim inf
n!1

inf
@

1

n
I(X[@]; Y [@])

is an achievable fountain rate where the infimization is over all sched-
ules of size n. Using the independence of the inputs, we can write for
any @

1

n
I(X[@];Y [@]) �

1

n
i2@

I(Xi;Yi) (11)

=
1

2
log 1 +

P

�2
: (12)

In the presence of memory, fountain capacity can be quite a bit
smaller than Shannon capacity. We provide two examples.

Example 1: The input and output alphabets are equal to the interval
[0; 1]. The channel described by

Yi = Xi �Wi (13)

where the noise process fWig is defined as

(. . . ;W�1;W0;W1;W2;W3; . . .) =

(. . . ; N�1; N0; N0; N1; N1; . . .) with prob. 1=2
(. . . ; N0; N0; N1; N1; N2; . . .) with prob. 1=2

(14)

where . . . ; N�1; N0; N1; . . . is an i.i.d. sequence of random variables
uniformly distributed on [0; 1].

The zero-error capacity (and thus, the Shannon capacity) of the
channel above is infinity. To see this, note that regardless of the
cardinality of S � [0; 1], if we let X0 = X1 = 0 and

X2i = 0; X2i+1 = Si; i = 1; 2; . . . (15)

with Si 2 S , we can recover fSig noiselessly, with probability 1, via
the equations

Ŝi =
Y2i+1 	 Y2i; if Y0 = Y1,
Y2i+1 	 Y2i+2; otherwise

(16)

where 	 stands for subtraction modulo the unit interval.
However, if the schedule @ contains only the even integers, then the

channel output observed at the receiver is

Y2k = X2k �W2k; k = 1; 2; . . . :

Noting that the sequence fW2k : k = 1; 2; . . .g is i.i.d. and that each
W2k is uniformly distributed in the interval [0; 1], the capacity of this
channel is zero, and thus so is the fountain capacity.

Note that a simpler example of zero fountain capacity and infinite
capacity can be given by not attempting to stationarize the noise; we
do that in order to explicitly show that it is memory (rather than non-
stationarity as in (3)), that accounts for the discrepancy.

The discrete counterpart of the channel in this example, where the
input/output alphabet is binary, can be similarly be shown to have zero
fountain capacity and Shannon capacity equal to 1/2 bit. To that end, a
“silent” period taking negligible rate at the beginning of the codeword

enables the decoder to ascertain the phase of the noise with arbitrary
reliability.

The next example is perhaps somewhat more familiar.

Example 2: Consider an additive Gaussian noise channel with col-
ored noise

Yk = Xk + Zk (17)

where the channel input X1; X2; . . . is power-constrained to have
average (over messages and time) power P and fZkg is zero mean,
stationary additive Gaussian noise, whose law is independent of the
channel input. Consider a “low-pass” noise whose power spectral
density Sz(�) is confined to half the bandwidth

Sz(�) =
2N; ��=2 � � < �=2

0; else
(18)

where N = (2�)�1
[��;�)

Sz(�) d� is the variance of Zk .
It is clear that the Shannon capacity in this case is infinite for any

nonzeroP , as there are noise-free frequency bands. However, the foun-
tain capacity is equal to 1

2
log(1 + P=N). According to (10), we only

need to show that 1
2
log(1 + P=N) is an upper bound to fountain ca-

pacity. This follows from the observation that fZ2k : k = 1; 2; . . .g
form an i.i.d. sequence of zero-mean Gaussian random variables of
variance N , and thus for the schedule that lets the receiver see only
the outputs at even times, the equivalent channel is an additive white
Gaussian channel whose capacity is 1

2
log(1 + P=N).

For those who are unhappy with noise processes that are not regular
[20] (in the sense that past samples of the noise determine the future
samples) one can modify the example by taking an 0 < � < N and
letting

Sz(�) =
2(N � �); ��=2 � � < �=2

2�; else.

It is easy to check that fZ2k : k = 1; 2; . . .g still form an i.i.d. se-
quence of zero-mean Gaussian random variables of varianceN , so that
the fountain capacity is still equal to 1

2
log(1 + P=N). The Shannon

capacity will now be given by the water-pouring solution, but in any
case is larger than 1

4
log(1+P=�) (by allocating power to only to high

frequencies). We again see that the discrepancy between Shannon and
fountain capacities can be made arbitrarily large by taking � arbitrarily
small; indeed, for any given nonzero a < A, Shannon capacity can be
made larger than A and fountain capacity smaller than a by a proper
choice of P and �.

V. CONCLUDING REMARKS

The setting proposed here to formalize the notion of fountain ca-
pacity is reminiscent of the random-coding setting used for the arbi-
trarily varying channel in which the “jammer” does not know the code
used by the communicator. Indeed, given a channel with input alphabet
X and output alphabet Y , we can define a new channel by equipping
the original channel with a state chosen from alphabet S = f0; 1g,
and augmenting the output alphabet with an erasure symbol such that
when the state is 0, the output of the new channel equals the output
of the original channel, and when the state is 1, the output of the new
channel equals the erasure symbol.

Recall that in an AVC setting, the state sequence is controlled by
an adversary who knows the communication mechanism used by the
transmitter and receiver, but not the message being sent. If random-
ized coding used, then the adversary knows—just as in the fountain
setting above—the code library, but not which codebook is actually



4376 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 11, NOVEMBER 2007

used. Thus, the role of the adversary for this AVC is of determining
the schedule. However, there are important differences. The AVC set-
ting defines the rate as a property of the transmission code; it does not
allow, as is done here, to define the rate from the perspective of the
receiver. The AVC setting does allow one to consider an average cost
constrained adversary. Through this, one can insist that a guaranteed
fraction of channel outputs are received unerased. The AVC formu-
lation would charge the adversary a unit cost for erasing an output,
compute the AVC capacity C(�) under an average cost constraint �,
convert this “pay-per-use” rate to a “pay-per-view” rate C(�)=(1��),
and then infimize over all 0 < � < 1. This leads to a stronger, albeit
harder to compute, bound than (8). The following example illustrates
the fact that such an AVC capacity under cost constraints does not ad-
equately capture the notion of fountain rate.

Example 3: Consider a memoryless but time-varying binary-sym-
metric channel, whose crossover probability pj at time j is given by

pj =
1=2; j is prime
0; else.

Since the channel is noiseless at an asymptotically unit fraction of the
time, and thus, for any � < 1, the adversary is forced to allow noiseless
transmissions at a fraction of the time equal to 1 � �. It follows that
C(�) = 1��. Thus, the capacity of the AVC as defined above is equal
to 1, while from (6) it follows that fountain capacity is zero.

Another difference is that (recall Theorem 1) if the code library is
allowed to contain a finite number of codes, then no positive fountain
rate is achievable; in contrast, the AVC capacity with a finite number
of codes or even deterministic coding can be nonzero [18].

For stationary memoryless channels, feedback fountain capacity is
upper-bounded by Shannon capacity since causal feedback does not in-
crease the ordinary capacity and one of the options of the scheduler is
to adopt a contiguous schedule; on the other hand, since feedback can
just be ignored, feedback fountain capacity is lower-bounded by foun-
tain capacity which is equal to Shannon capacity. Note that this holds
whether the feedback is of the channel output (prior to the scheduler)
or of the decoder input (after the scheduler). However, if the encoder
obtains the schedule causally, i.e., it knows whether i 2 @ prior to
the transmission of i + 1, random coding can be dispensed with (at
least if the channel is memoryless). To see this, note that for any given
code we can obtain the same fountain rate and error probability for any
schedule, by simply repeating the transmission of the last symbol if it
has been erased.

Several open problems are worth exploring: a) the fountain capacity
of some channels with memory may yield to analysis if the scheduler
is subject to constraints such as run-length or cost; b) fountain capacity
per unit cost (cf. [21]), where the cost of receiving a symbol need not be
equal for all symbols; c) generalizing the lower bound in (10) to other
stationary channels; d) fountain capacity regions for multiterminal sys-
tems ranging from challenging setups with multiple schedulers to a
simple memoryless multiple-access channel with a single scheduler at
the receiver (for which the fountain capacity region equals the conven-
tional one).
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