
Topian 0.1 Reference Manual

Emmanuel Eckard and Jean-Cdric Chappelier

17 September 2007

Abstract

This document describes Topian (“Topic-based Model layer for Xapian”),
a software layer intended to add support for topical models to Xapian.

One common technical problem of Information Retrieval engines is to hold and
access to data. We choose to use Xapian, a performent retrieval library focusing
on probabilistic retrieval.

Modern Information Retrieval does not limit itself at representing documents
in a vector space via indexing. A transformation of the vector space can take
place, often involving a reduction in dimensionality. Starting with the Latent
Semantic Analysis (LSI) model, a number fof models have been developed in the
past 10 years, including Probabilistic Latent Semantic Analysis (PLSI), Naive
Bayesian models, or Latent Dirichlet allocation.

We attempt at providing a general software framework to develop such mod-
els on the stable, fast and generally efficient basis of Xapian.

This document describes Topian (“Topic-based Model layer for Xapian”), a
software layer intended to add support for topical models to Xapian.

1 Conception

Topian provides two trends to objects: objects directly linked to the docu-
ments, and abstract objects dealing with the model. Document representa-
tion is implemented in DocsRep objects which encapsulate Xapian objects like
Xapian::Database. The DocsRep is what makes the link between the clas-
sical document representation, and features of the intended models held in
Parameters objects. The Parameters are abstract objects which represent
the model descriping statistical features of the document topics and word top-
ics. This architecture keeps the Parameters distinct and separated from the
DocsRep, allowing for selective loading of the data when both direct data and
model data are not needed for a given process.

For instance, the PLSA model is a statistical model based on the parameters
P (w|z) (probability that, given a certain topic z, work w occures), P (d|z) (prob-
ability that, given a certain topic z, document d occures), and P (z) (probability
that a topic z occures). On Topian, this translates into a PLSARep class inher-
iting from DocsRep data-wise, and a PLSAParams inheriting from Parameters,
model-wise. The classes PLSARep and Parameters have further children to take
specificities of queries versus collection documents into account.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147934053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parameters PLSAParams

PLSADocsParams

PLSAQueriesParams

DocsRep

Xapian::Database

DocsRep PLSARep

DocsPLSA

QueriesPLSA

(parameters where included in docsreps)

DocsRep PLSARep

DocsPLSA

QueriesPLSA

Parameters PLSAParams

PLSADocsParams

PLSAQueriesParams

Xapian::Database

Xapian::Database

PLSARep

DocsPLSA

QueriesPLSA

Current state (clear, but parallel, separation)

Multiple Inheritance (seems appealing)

Original state (not separation at all)

Figure 1: Conception of the Topian layer for PLSA

2

TREC::DocId foobar, foo, bar, foo2
Xapian::DocId 1, 2, 23, 42
Topian::DocId 0, 1, 2, 3

Figure 2: Example of document identifiers

2 Document identifiers

Document identifiers in NLP toolchains can take several types: int, string,
etc. In the concrete case of using Xapian and Topian to process TREC data, we
find ourselves with three flavours of identifiers. TREC identifiers are arbitrary
strings; Xapian identifiers, typed Xapian::DocId are non-continuous integers
starting from 1, 0 being reserved for out-of-collection documents; and Topian
uses continuous integers starting with 0. We will name these three types of
identifiers TREC::DocId, Xapian::DocId and Topian::DocId (see figure 2).

Xapian documents have a string container whose content can be accessed
from Xapian::Document::get data() member. The Xapian::DocId of a doc-
ument can be retrieved either from the document itself with the Xapian::

Document::get docid() member, or by dereferencing an iterator over the Xapian::
Documents with the operator*() const.

Over the course of the processing, we switch from the TREC identifiers to
internal identifiers, and back again. This allows abstracting the TREC format
if necessary (for instance when using the software on another format), and using
more efficient algorithms that maps of strings.

Two standards containers of the std library could be used to map different
types of docids: maps and vectors. Vectors map continuous integer indices to a
type. They have an access time in O(1). Maps allow using any type as indice; in
particular, they allow using strings or non-continuous integers as indices. Their
access time is in O(log n). Using an iterator, going through a whole container
(map or vector) is O(n). Hence it is adventageous to use vectors for punctual
accesses, but performance is not lost if a whole map is processed linearly.

We propose to implement the translations between the formats as follow:

• Xapian to Topian: the corresponding Topian::DocId is stored in a std::map
contained in DocsRep. This data must not be contained in the data

attribute of the Xapian::Documents because we need it to contain the
TREC::DocId, which is set there at indexing time. Furthermore, data is
of the std::string type, and it is unclean to set Topian things in the
Xapian database.

• Topian to Xapian: a std::vector of Xapian::DocId is created.

Topian::DocID 0 1 2 3 . . .
Xapian::DocID 1 2 23 42 . . .

Access being is O(n), this structure can be used for punctual access (by
opposition to skimming through the whole collection)

• Topian to TREC: a std::vector of TREC::DocId is created. This vector
can simply be constructed at indexing time, since the Xapian::DocId

indexing scheme is trivial.

3

Topian::DocID 0 1 2 3 . . .
TREC::DocID foobar foo bar foo2 . . .

This makes it possible to access the TREC::DocId of any document in
O(1).

It is straigthfowards that Xapian to TREC is obtained through Topian, also
in O(1). With the orientation of the data flow, it is not necessary to trans-
late TREC::DocId into the internal indices Xapian::DocId and Topian::DocId

(which should stay transparent TREC-wise anyway). Hence, we have a whole
set of translators.

4

