
Optimal Polynomial Filtering for Accelerating
Distributed Consensus

Effrosyni Kokiopoulou, Pascal Frossard
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Signal Processing Laboratory - LTS4
CH - 1015 Lausanne, Switzerland

{effrosyni.kokiopoulou,pascal.frossard}@epfl.ch

Dimitra Gkorou
Dept. Comp. Eng. & Informatics

University of Patras,
26500 Patras, Greece.
gkorou@ceid.upatras.gr

Abstract—In the past few years, the problem of distributed
consensus has received a lot of attention, particularly in the
framework of ad hoc sensor networks. Most methods proposed
in the literature attack this problem by distributed linear itera-
tive algorithms, with asymptotic convergence of the consensus
solution. It is known that the rate of convergence depends
on the second largest eigenvalue of the weight matrix. In this
paper, we propose the use of polynomial filtering in order to
accelerate the convergence rate. The main idea of the proposed
methodology is to apply a polynomial filter that will shape the
spectrum of the weight matrix by minimizing its second largest
eigenvalue and therefore increase the convergence rate. We
formulate the computation of the optimal polynomial as a semi-
definite program (SDP) that can be efficiently and globally solved.
We provide simulation results that demonstrate the validity and
effectiveness of the proposed scheme in both fixed and dynamic
network topologies.

I. INTRODUCTION AND MOTIVATION

We consider the problem of accelerating distributed average
consensus that has become recently particularly interesting
in the context of ad hoc sensor networks. The distributed
averaging problem has attracted a lot of research efforts in
the field of wireless sensor networks (e.g., [1], [2], [3], [5]
and references therein). It presents many applications for
distributed estimation and for coordination of networks of
autonomous agents.

Given the initial values at the sensors, the problem of
distributed averaging is to compute their average at each
sensor using distributed linear iterations. Each distributed
iteration involves local communication among the sensors. In
particular, each sensor updates its own local estimate of the
average by a weighted linear combination of the corresponding
estimates of its neighbors. The weights drive the importance
of the measurements of its neighbors. This is equivalent to a
matrix vector product of the network weight matrix W with
the vector of the sensor values. If W satisfies some conditions,
it can be shown that the average consensus solution can be
reached by successive multiplications of W with the vector
of initial sensor values. Furthermore, it can be shown [1] that
the convergence rate depends on the second largest eigenvalue
of W , λ2(W); that is, the smaller the λ2(W), the faster the
convergence.

The main research direction so far focuses on the com-
putation of the optimal weights that will yield the fastest

convergence rate to the consensus solution [1], [2], [3], under
the successive multiplications paradigm. In this work, we
diverge from this paradigm and we allow the sensors to use
their previous estimates in order to accelerate the convergence
rate. The main idea is to use a matrix polynomial p applied
on W , in order to shape its spectrum (see e.g. [7]). Given
the fact that the convergence rate is driven by λ2(W), it
is possible to impact on the convergence rate by careful
design of the polynomial p. In the implementation viewpoint,
working with p(W) is equivalent to each sensor aggregating
its value periodically using its previous estimates. Note that
this is along the lines of our previous work [6], where we
proposed the use of extrapolation methods for accelerating
the convergence to the consensus solution. In particular, we
have shown that the consensus solution is reached in a finite
number of steps. Along the same lines, the authors in [8]
view the distributed consensus problem as a linear dynamical
system and they propose an approach which also converges
in a finite number of steps. However, both methodologies
assume that the network topology is fixed. On the contrary, the
polynomial filtering approach that we propose does not make
use of any such assumption, which makes it amenable to both
fixed and dynamic network topologies. Moreover, filtering
allows one to have more control on the convergence rate. We
provide experimental results that verify the validity and the
effectiveness of our method in both cases.

II. BACKGROUND

We model the network as an undirected graph G = (V, E)
with nodes V = {1, . . . , n} corresponding to sensors. An edge
(i, j) ∈ E is drawn if and only if sensor i can communicate
with sensor j. We denote the set of neighbors for node i as
Ni = {j| (i, j) ∈ E}.

Initially, each sensor i reports a scalar value x0(i) ∈ R.
We denote by x0 = [x0(1), . . . , x0(n)]> ∈ Rn the vector of
initial values on the network. Denote by µ = 1

n

∑n
i=1 x0(i)

the average of the initial values of the sensors. The problem
of distributed averaging is to compute µ by distributed linear
iterations at each sensor. In this work, we consider distributed
linear iterations of the following form

xt+1(i) = Wiixt(i) +
∑

j∈Ni

Wijxt(j), (1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for i = 1, . . . , n, where xt(j) represents the value computed
by sensor j at iteration t. Since the sensors communicate in
each iteration t, we assume that they are synchronized. The
parameters Wij denote the edge weights of G and Wij = 0
when (i, j) /∈ E , which implies that each sensor communicates
only with its direct neighbors. The above iteration can be
compactly written in the following form

xt+1 = Wxt. (2)

We call the matrix W that gathers the edge weights Wij , as
the weight matrix. We assume that W is symmetric, so we
can arrange its (real) eigenvalues as follows:

λ1(W) ≥ λ2(W) ≥ . . . ≥ λn−1(W) ≥ λn(W). (3)

Denote also W = QΛQ> its eigenvalue decomposition.
Note that the distributed linear iteration (2) converges to the

average if and only if

lim
t→∞

W t =
11>

n
, (4)

where 1 is the vector of ones. Indeed, notice that in this case
limt→∞ xt = limt→∞W tx0 = 11>

n x0 = µ1. It is well known
that the convergence rate of (2) depends on the magnitude
of the second largest eigenvalue λ2(W) [1]. We define the
asymptotic convergence factor as

rasym(W) = sup
x0 6=µ1

lim
t→∞

(‖xt − µ1‖2
‖x0 − µ1‖2

)1/t

, (5)

and the per-step convergence factor as follows

rstep(W) = sup
x0 6=µ1

‖xt+1 − µ1‖2
‖xt − µ1‖2 . (6)

We provide a theorem from [1] that relates the spectrum of
W to the convergence rate.

Theorem 1: The equation (4) holds if and only if

1>W = 1> (7)
W1 = 1 (8)

ρ(W − 11>

n
) < 1, (9)

where ρ(·) denotes the spectral radius of a matrix. Further-
more,

rasym(W) = ρ(W − 11>

n
) (10)

rstep(W) = ‖W − 11>

n
‖2 (11)

According to the above theorem, 1 is a left and right eigen-
vector of W associated with the eigenvalue one, and the
magnitude of all other eigenvalues is strictly less than one.
Also, the smaller the value of ρ(W − 11>

n) (or λ2(W)), the
faster the convergence rate. Note finally, that since W is
symmetric, the asymptotic convergence factor coincides with
the per-step convergence factor, which implies that the (10)
and (11) are equivalent.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
4
6
8
10

Fig. 1. Newton’s polynomial of various degrees k.

III. FAST CONSENSUS WITH POLYNOMIAL FILTERING

Motivated by Theorem 1, the authors in [1] compute the op-
timal weight matrix W that will bring the fastest convergence
to the consensus solution, under the paradigm of successive
multiplications. In this paper, we allow the sensors to use their
previous iterates and we propose a methodology that can be
applied on top of that and yield even faster convergence rates.
Starting from a given (possibly optimal) weight matrix W , we
propose the application of a polynomial filter on the spectrum
of W in order to impact the magnitude of λ2(W). Denote by
pk(λ) the polynomial filter of degree k that is applied on the
spectrum of W ,

pk(λ) = α0 + α1λ + α2λ
2 + . . . + αkλk. (12)

Accordingly, the matrix polynomial is given as pk(W) =
α0I + α1W + α2W

2 + . . . + αkW k. Observe now that

pk(W) = pk(QΛQ>)
= α0I + α1(QΛQ>) + . . . + αk(QΛkQ>)
= Qpk(Λ)Q>, (13)

which implies that the eigenvalues of pk(W) are simply the
polynomial filtered eigenvalues of W i.e., pk(λi(W)), i =
1, . . . , n.

In the implementation level, working on pk(W) implies a
periodic update of the current sensor’s value with a linear
combination of its previous values. To see why this is true,
observe that:

xt+k+1 = pk(W)xt

= α0xt + α1Wxt + . . . + αkW kxt

= α0xt + α1xt+1 + . . . + αkxt+k. (14)

Therefore, by the careful design of pk one may impact the
convergence rate dramatically. In what follows, we provide
two different approaches for computing the coefficients of pk.

A. Newton’s interpolating polynomial

One possible approach for the design of the polynomial
pk(λ) is to use Hermite interpolation. We assume that the

spectrum of W lies in an interval [a, 1] and we impose smooth-
ness constraints of pk at the left endpoint a. In particular,
the polynomial pk(λ) : [a, 1] → R that we seek, will be
determined by the following constraints:

pk(a) = 0, p
(i)
k (a) = 0, i = 1, . . . , k − 1 (15)

pk(1) = 1, (16)

where p
(i)
k (a) denotes the i-th derivative of pk(λ) evaluated

at a. The computed polynomial will have degree equal to k.
The coefficients of pk that satisfies the above constraints can
be computed by the Newton’s divided differences table.

The intuition for designing such a polynomial is to dampen
the smallest eigenvalues λ2, . . . , λn of W (see (15)), while
keeping the eigenvalue one intact (see (16)). Figure 1 shows
the form of pk(λ) for a = 0 and different values of the
degree k. The dampening is achieved by imposing smoothness
constraints of the polynomial on the left endpoint of the
interval. As k increases, the dampening of the small eigen-
values becomes more effective. The above polynomial design
is mostly driven by intuitive arguments, which tend to obtain
small eigenvalues for faster convergence. In the following
section, we provide a technique for computing the optimal
polynomial filter.

B. Optimal polynomial filtering using semi-definite program-
ming

Algorithm 1 Polynomial Filtered Distributed Consensus
1: Input: polynomial coefficients α0, . . . , αk+1, tolerance ε.
2: Output: average estimate µ̄.
3: Initialization:
4: µ̄0 = x0(i).
5: Set the iteration index t = 1.
6: repeat
7: if mod(t, k + 1) ==0 then
8: xt(i) = α0xt−k−1(i) + α1xt−k(i) + α2xt−k+1(i) +

. . . + αkxt−1(i) {polynomial filtered update}
9: xt(i) = Wiixt(i) +

∑
j∈Ni

Wijxt(j).
10: else
11: xt(i) = Wiixt−1(i) +

∑
j∈Ni

Wijxt−1(j).
12: end if
13: Increase the iteration index t = t + 1.
14: µ̄t = xt(i).
15: until µ̄t − µ̄t−1 < ε

Let us consider now the following problem; given a weight
matrix W and a certain degree k, what is the optimal poly-
nomial that leads to the fastest convergence of linear iteration
(2)? For notational ease, we call Wp = pk(W). According to
Theorem 1, the optimal polynomial is the one that minimizes
the second largest eigenvalue of Wp, i.e., ρ(Wp − 11>

n).
Therefore, we need to solve an optimization problem where
the optimization variables are the k+1 polynomial coefficients
α0, . . . , αk and the objective function is the spectral radius of
Wp − 11>

n .

We will use an auxiliary variable s to bound the objective
function and then express the spectral radius constraint as a
linear matrix inequality (LMI). Thus, we need to solve the
following optimization problem.

Optimization problem: OPT
mins∈R,α∈Rk+1 s
subject to

Wp = α0I + α1W + α2W
2 + . . . + αkW k,

−sI ¹ Wp − 11>
n ¹ sI ,

Wp1 = 1.

Note that since W is symmetric, Wp will be symmetric as
well. Hence, the condition Wp1 = 1 is sufficient to ensure that
1 will be also a left eigenvector of Wp. The spectral radius
constraint,

−sI ¹ Wp − 11>

n
¹ sI

ensures that that all the eigenvalues of Wp other than the first
one, are less or equal to s. Due to the LMI, the above opti-
mization problem is a semi-definite program (SDP). SDPs are
convex problems and can be efficiently and globally solved.
In our case, the αk’s are computed off-line. Then, the i-th
sensor applies polynomial filtering for distributed consensus,
by implementing the Algorithm 1 (see also equations (13)
and (14) for the equivalence of polynomial filtering and local
update using the previous sensors’ values).

IV. EXPERIMENTAL RESULTS

In this section, we provide simulation results which show
the effectiveness of the polynomial filtering methodology. First
we introduce a weight matrix that has been extensively used in
the distributed averaging literature. Suppose that d(i) denotes
the degree of the i-th sensor. It has been shown in [1], [2]
that iterating with the Laplacian weight matrix defined below,
leads to convergence to µ. Suppose that A is the adjacency
matrix of G and D is a diagonal matrix which holds the vertex
degrees. The Laplacian matrix is defined as L = D − A and
the Laplacian weight matrix is defined as

W = I − γL, (17)

where the scalar γ must satisfy γ < 1/dmax.
The sensor networks are built using the random geographic

graph model [9]. In particular, we place n nodes uniformly
distributed on the 2-dimensional unit area. Two nodes are ad-
jacent if their Euclidean distance is smaller than r =

√
log(N)

N .
It is known that this value of r guarantees connectedness of
the graph with high probability [9].

Finally, the SDP programs for optimizing the polynomial
filters are solved in Matlab using the SeDuMi [10] solver1.

1Publically available at: http://sedumi.mcmaster.ca/

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

||x
 −

 µ
 ||

2

Iter
k=2
k=4
k=6
SEA

(a) SDP polynomial filtering

0 50 100 150 200 250
10

−10

10
−5

10
0

10
5

Number of iterations

||x
 −

 µ
 ||

2

Iter
k=2
k=4
k=6
SEA

(b) Newton polynomial filtering

Fig. 2. Behavior of polynomial filtering for variable degree k on fixed topology using the Laplacian weight matrix.

A. Fixed network topology

We build a random network of n = 50 sensors and we
use the Laplacian weight matrix for distributed averaging.
We explore the behavior of the polynomial filtering methods
under variable degree k from 2 to 6 with step 2. Fig. 2 shows
the comparison of Newton’s polynomial and the SDP optimal
polynomial with the standard iterative method that is based on
successive iterations of eq. (2). For the sake of completeness,
we also provide the results of the scalar epsilon algorithm
(SEA), which uses all previous estimates (see [6] for more
details).

First, notice that polynomial filtering indeed accelerates the
convergence of the standard method that is based on successive
matrix-vector multiplications (solid line). Also, observe that
the SDP polynomial outperforms Newton’s polynomial, which
is expected, since the former has been designed to optimize
the convergence rate. Notice also, that the degree k governs
the convergence rate, since larger k implies faster convergence.
Note that the stagnation of the convergence process of the SDP
polynomial filtering is due to the limited accuracy of the SDP
solver.

Finally, we can see that the convergence rate is comparable
for SEA and polynomial filtering. Note however that the
former uses all previous values, in contrast to the latter that
uses only the k + 1 previous ones. Hence, the memory usage
is smaller for polynomial filtering and also the process is
smoother, which further permits easy extension to dynamic
networks

B. Dynamic network topology

We model dynamic sensor networks using the model pro-
posed in [4]. In particular, we assume that the network at any
arbitrary iteration t is G(t) = (V, E(t)), where E(t) denotes the
edge set at iteration t. Since the network is dynamic, the edge
set changes over the iterations. We assume that E(t) ⊆ E∗,
where E∗ ⊆ V × V is the set of realizable edges. In other

words, E(t) = E∗ if there is no link failure at iteration t. We
also assume that each link fails independently of the other
links according to a certain probability. Gathering all these
probabilities together, we form a probability edge formation
matrix P defined as follows

Pij =

{
prob of edge (i, j) if (i, j) ∈ E∗ and i 6= j,

0 otherwise.
(18)

Thus, the edge set E(t) is a random subset of E∗ according to
the P matrix.

We build a sequence of random networks of n = 50 sensors
and we assume that in each iteration the network changes with
probability q, independently from the previous iterations. The
authors in [4] show that the convergence rate depends on the
second smallest eigenvalue of the average Laplacian matrix
L̄ = D̄ − Ā = D̄ − P . Hence, in the SDP formulation (see
Sec III-B) we use L̄ in order to form the weight matrix (17).

Fig. 3 shows the average performance of polynomial filter-
ing using the median over 100 random experiments for some
representative values of the degree k and the probability q. We
do not report the performance of SEA, since it is not robust to
changes of the network topology. Notice that when k = 1 (i.e.,
each sensor uses only its current value and the right previous
one) polynomial filtering accelerates the convergence over the
standard method. At the same time, it stays robust to network
topology changes. Also, observe that in this case, the SDP
polynomial outperforms Newton’s polynomial. However, when
k = 2, the roles between the two polynomial filtering methods
change as the probability q increases. For instance, when
q = 0.8, the SDP method even diverges. This is reasonable
if we think that the coefficients of Newton’s polynomial are
computed using Hermite interpolation in a given interval.
Thus, they are generic and they do not depend on the specific
realization of underlying weight matrix.

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

||x
 −

 µ
 ||

2

Iter
SDP−PF
Newton−PF

(a) k = 1, q = 1

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

||x
 −

 µ
 ||

2

Iter
SDP−PF
Newton−PF

(b) k = 2, q = 0.1

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

||x
 −

 µ
 ||

2

Iter
SDP−PF
Newton−PF

(c) k = 2, q = 0.3

0 50 100 150 200 250
10

−20

10
−10

10
0

10
10

10
20

10
30

Number of iterations

||x
 −

 µ
 ||

2

Iter
SDP−PF
Newton−PF

(d) k = 2, q = 0.8

Fig. 3. Random network topology simulations. q denotes the probability that the network changes at each iteration.

V. CONCLUSIONS

In this paper, we proposed a polynomial filtering method-
ology in order to accelerate distributed average consensus.
The main idea of polynomial filtering is to shape the spec-
trum of the polynomial weight matrix in order to minimize
its second largest eigenvalue and subsequently increase the
convergence rate. We proposed two different techniques to
calculate the polynomial coefficients and the simulation results
demonstrated the effectiveness of the proposed methodology.

REFERENCES

[1] L. Xiao and S. Boyd, “Fast Linear Iterations for Distributed Averaging”,
Systems and Control Letters, February 2004.

[2] L. Xiao, S. Boyd and S. Lall, “A Scheme for Robust Distributed
Sensor Fusion Based on Average Consensus”, Int. Conf. on Information
Processing in Sensor Networks, pp. 63-70, Los Angeles, April 2005.

[3] L. Xiao, S. Boyd and S. Lall, “Distributed Average Consensus with Time-
Varying Metropolis Weights ”, submitted to Automatica, June 2006.

[4] S. Kar and J. M. F. Moura, “Distributed Average Consensus in Sensor
Networks with Random Link Failures”, IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), April 2007.

[5] A. Olshevsky and J. Tsitsiklis, “Convergence Rates in Distributed
Consensus and Averaging”, IEEE Conference on Decision and Control,
San Diego, CA, December 2006.

[6] E. Kokiopoulou and P. Frossard, “Accelarating Distributed Consensus
Using Extrapolation”, IEEE Signal Processing Letters, Vol. 14, Nr. 10,
pp. 665-668, October 2007.

[7] E. Kokiopoulou and Y. Saad, “Polynomial filtering in Latent Semantic
Indexing for Information Retrieval”, 27th ACM-SIGIR Conference on
Research and Development in Information Retrieval, 2004.

[8] S. Sundaram and C. N. Hadjicostis, “Distributed Consensus and Linear
Functional Calculation in Networks: An observability perspective”, 6th
Int. Conf. on Information Processing in Sensor Networks (IPSN), April
25-27, 2007.

[9] P. Gupta and P. R. Kumar, “The capacity of wireless networks”, IEEE
Trans. on Information Theory, 46(2):388-404, March 2000.

[10] J. F. Sturm, “Implementation of interior point methods for mixed
semidefinite and second order cone optimization problems,” EconPapers
73, August 2002, Tilburg University, Center for Economic Research.

