
Representative Explanations for Over-Constrained Problems

Barry O’Sullivan and Alexandre Papadopoulos
Cork Constraint Computation Centre

University College Cork, Ireland
{b.osullivan|a.papadopoulos}@4c.ucc.ie

Boi Faltings and Pearl Pu
Ecole Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
{boi.faltings|pearl.pu}@epfl.ch

Abstract
In many interactive decision making scenarios there is often
no solution that satisfies all of the user’s preferences. The de-
cision process can be helped by providing explanations. Re-
laxations show sets of consistent preferences and, thus, indi-
cate which preferences can be enforced, while exclusion sets
show which preferences can be relaxed to obtain a solution.
We propose a new approach to explanation based on the no-
tion of a representative set of explanations. The size of the set
of explanations we compute is exponentially more compact
than that found using common approaches from the literature
based on finding all minimal conflicts.

Introduction
We consider a configuration tool where a user can specify
preferences for options. These preferences are expressed as
constraints. When preferences conflict, we want to help the
user find which preferences to relax. In an iterative process,
the user might relax constraints until at least one consistent
solution is found. Alternatively, the user might prefer to se-
lect a solution from a list of solutions that partially satisfy
the user’s constraints. It would be good to categorise solu-
tions according to which constraints are satisfied/violated,
and the benefits of that have been shown in earlier work (Pu,
Faltings, & Torrens 2004). However, this requires that they
are in some way representative.

Most current approaches to explanation generation in
constraint-based settings are based on the notion of a (set-
wise) minimal set of unsatisfiable constraints, also known as
a minimal conflict set of constraints. However, a minimal
conflict does not necessarily give an intuitive explanation,
in that many users will want to be shown which subsets of
their constraints they can satisfy and which they cannot sat-
isfy. Furthermore, we argue that users need more than one
explanation in order to avoid drawing false conclusions. It
has also been shown that minimal conflict-based explana-
tions can also be spurious and misleading (Friedrich 2004).
Example 1. Consider a simple car configuration problem,
based on an example presented in (Junker 2004), with the
following set of options; note that the Boolean variable xi ∈
{0, 1} indicates whether constraint ci is in the current set of
active constraints or not:
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Option Selector Cost
c1 Budget x1 = 1

P
i∈{2,...,5}(ki · xi) ≤ 3000

c2 Roof Rack x2 = 1 k2 = 500
c3 Convertible x3 = 1 k3 = 500
c4 CD Player x4 = 1 k4 = 500
c5 Leather Seats x5 = 1 k5 = 2600

Assume that the technical constraints of the configuration
problem forbid convertible cars having roof racks, therefore,
constraints c2 and c3 form a conflict. Note that, given the
budget constraint, if the user selects option c5, it is not poss-
sible to have any of the options c2, c3, c4. N

The set of all minimal conflicts for this example are:
{c2, c3}, {c1, c2, c5}, {c1, c3, c5}, {c1, c4, c5}. As explana-
tions, these conflicts are sufficient to explain, using a subset
of the user’s constraints, why all constraints cannot be satis-
fied simultaneously. However, it is not necessarily sufficient
to remove one of the constraints in a minimal conflict, thus
eliminating the conflict, to regain consistency.

Consider, for example, what happens if we present
{c1, c2, c5} as an explanation for why the set of constraints
{c1, . . . , c5} is not satisfiable. The user would be mistaken
in thinking that simply eliminating this conflict by removing,
say, constraint c2 is enough to recover consistency. It is not,
because {c1, c3, c5} is also a conflict. Similarly, relaxing
c5 from {c1, c2, c5} would not have been enough because
{c2, c3} is a conflict. Minimal conflicts only explain why a
set of constraints is inconsistent. In order to recover consis-
tency all minimal conflicts must be eliminated by relaxing a
set of constraints that form a hitting set of the conflicts.

Instead, we propose offering as an explanation a set of
maximal consistent subsets of the user’s constraints and their
corresponding sets of constraints that must be excluded. We
define a notion of representativeness that ensures the set of
explanations we compute is representative of all possible
maximal relaxations and exclusion sets. Our approach en-
sures that the worst-case size of our set of representative ex-
planations is linear in the number of user posted constraints.

The Approach
We present a sequence of examples, based on Example 1,
demonstrating the approach we propose in this paper. Ta-
ble 1 presents the set of all explanations, each showing how
the user can satisfy at least some of his constraints. Each

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

explanation comprises a (set-wise) maximal consistent re-
laxation, i.e. the set of constraints that can be satisfied, and
the corresponding minimal exclusion set of constraints that
must be excluded. For example, consider Explanation I: we
can simultaneously satisfy the constraints in {c3, c4, c5}, but
we must exclude c1 and c2.

Table 1: The set of relaxations and exclusion sets for the
over-constrained problem presented in Example 1. We show
both the subset of the constraints in the relaxation (marked
with a X) and those that are in the exclusion set, i.e. those
that must be removed (marked with a ×).

Constraints
Exp. c1 c2 c3 c4 c5 Relaxation Exclusion Set

I × × X X X {c3, c4, c5} {c1, c2}
II × X × X X {c2, c4, c5} {c1, c3}
III X × X X × {c1, c3, c4} {c2, c5}
IV X X × X × {c1, c2, c4} {c3, c5}
V X × × × X {c1, c5} {c2, c3, c4}

However, we cannot hope to be able to present the user
with every possible relaxation/exclusion set for his set of
preferences, because the number of maximal relaxations is
exponential in the number of user constraints in the worst
case.
Theorem 1 (Worst-case Number of Maximal Relaxations).
Given a inconsistent set of n constraints, the worst-case

number of set-wise maximal relaxations is
(

n

bn/2c

)
.

Proof. Immediate from Sperner’s Theorem.

The best we can hope for is to, therefore, present a subset
of all possible relaxations/exclusion sets of the user’s con-
straints. For example, we might require that every constraint
that appears in a relaxation appears at least once in a relax-
ation in our chosen subset. This is the scenario presented in
Table 2. However, this approach has the potential to mislead
the user. In our example, the user might believe that it is
never useful to exclude c4, and might miss that it is possible
to get option c5 while still satisfying the budget constraint
c1, drawing the wrong conclusion.

Table 2: A set of representative relaxations.
Constraints

Explanation c1 c2 c3 c4 c5

I × × X X X
II × X × X X
III X × X X ×

A similar problem arises if we present a set of explana-
tions that ensures that every constraint that must be relaxed
once, appears in at least one exclusion set as shown in Ta-
ble 3. Here, the user might be lead to believe that constraint
c2 must always be excluded.

Instead, we propose that the subset of explanations that
are presented to the user should be both representative of the

Table 3: A set of representative exclusion sets.
Constraints

Explanation c1 c2 c3 c4 c5

I × × X X X
III X × X X ×
V X × × × X

relaxations and exclusion sets of the problem. Specifically, a
set of explanations should be presented that contains at least
one maximal relaxation containing each constraint that can
be satisfied, and at least one minimal exclusion set contain-
ing each constraint that must be excluded at least once. The
set of solutions must satisfy the property that a constraint
should only appear in all relaxations iff it is always satisfied,
or that one should only appear in all exclusion sets iff it never
participates in a maximal relaxation. A set of explanations
that satisfies these properties is presented in Table 4.

Table 4: A set of representative explanations.
Constraints

Explanation c1 c2 c3 c4 c5

I × × X X X
IV X X × X ×
V X × × × X

Representative Explanations
We focus on constraint satisfaction problems in this paper,
but the results hold for many other settings in which consis-
tency is monotonic. In other words, the set of solutions to a
set of constraints C is a subset of the solutions to any set of
constraints that are a subset of C.

In addition, we focus on constraint satisfaction problems
that are solved in an interactive manner, e.g. product con-
figuration problems. It is useful to distinguish between a
background set of constraints, B that cannot be relaxed, and
a set of constraints, U , that are added by the user as he finds
a preferred solution to B by finding a solution to B ∪ U , the
constraint problem we denote as P def= 〈B,U〉.

We say that a set of constraints is consistent if it admits
a solution. We will assume that the set of background con-
straints, B, admits at least one solution. If a set of constraints
does not admit a solution, at least one constraint must be ex-
cluded in order to recover consistency. Specifically, we are
interested in finding maximal relaxations of P .

Definition 1 (Maximal Relaxation). Given a constraint
problem P def= 〈B,U〉 that is inconsistent, a subset R of U is
a relaxation of P if B ∪R admits a solution. The relaxation
R is a maximal relaxation if ∀R′ ⊃ R, B∪R′ is inconsistent.

Based on the notion of maximal relaxation, we can also
define the complementary notion of minimal exclusion set.

Definition 2 (Minimal Exclusion Set of Constraints). Given
a constraint problem P def= 〈B,U〉 that is inconsistent, and a

maximal relaxation R ⊆ U of P , we define E
def= U \ R to

be a minimal exclusion set.
LetR and E be the set of all maximal relaxations and min-

imal exclusion sets of P , respectively. Note that every pair
of maximal relaxations are set-wise incomparable, i.e. for
all Ri, Rj ∈ R : i 6= j, Ri 6⊆ Rj and Ri 6⊇ Rj . Similarly,
all pairs of exclusion sets in E are set-wise incomparable.

A maximal relaxation defines a maximal set of constraints
that the user can satisfy, while the corresponding minimal
exclusion set tells the user which constraints he must re-
move. However, the user might not be satisfied with an arbi-
trary explanation. Since the size of R can be exponential in
the number of constraints in U , presenting all explanations is
not practical in general. We are, therefore, interested in se-
lecting a subset of the explanations that are “representative”
of all possibilities.
Definition 3 (Representative Set of Explanations). Given a
constraint problem P def= 〈B,U〉 that is inconsistent, R′ ⊆
R a set of maximal relaxations of P , and E ′ = {U \R|R ∈
R′} the corresponding set of minimal exclusion sets, we say
that X def= {(R,U \ R)|R ∈ R′} is a representative set
of explanations iff ∀c ∈

⋃
R∈R R there exists a relaxation in

R′ containing c, and ∀c ∈
⋃

E∈E E there exists an exclusion
set in E ′ containing c.

Clearly, the example set presented in Table 4 is a repre-
sentative set of explanations since it contains a relaxation
(an exclusion set) containing each constraint that appears in
a relaxation (respectively, an exclusion set).

Of course, we wish to restrict the size of our representa-
tive sets to an optimal size. It is more computationally effi-
cient to focus on set-wise minimal sets of explanations. We
therefore, define the notion of minimal representative set.
Definition 4 (Minimal Representative Set of Explanations).
Given a constraint problem P def= 〈B,U〉 that is inconsis-
tent, we say that a set of representative set of explanations is
minimal if any strict subset of it is not representative.
Theorem 2 (Number of Explanations). The size of any min-
imal representative set of explanations is at most |U|, and
this bound is tight.

Proof. Let (R, E) be a minimal set of explanations, and let
R = R1, ..., Rm and E = E1, ..., Em. R2 is incomparable
to R1 so it must contain a constraint that is not in R1, and
E2 is incomparable to E1 so it must contain a constraint not
in E1. Let |R1| = k and thus |E1| = |U| − k. Since (R, E)
is minimal, for every explanation (Ri, Ei) either Ri has to
cover a constraint not covered by any other Rj or Ei has
to cover a constraint not covered by any other Ej . There
are only |U| − k − 1 constraints not covered by R1 or R2,
and k − 1 constraints not covered by E1 or E2, so there are
no more than |U| − 2 such constraints to be covered by the
remaining m − 2 explanations. Thus, m ≤ |U|. To show
that the bound is tight, consider an example where the only
minimal conflict is the set U . Then there are |U| minimal
exclusion sets, each containing one of the constraints.

We can generalise all the above definitions to richer forms
of representativeness. For example, we might want to insist

that all pairs, triples, etc. of constraints appearing in a relax-
ation or exclusion set also appear as such in our representa-
tive explanations. However, we will not consider these gen-
eralisations further in this paper due to limitations on space.

Complexity
We assume a polynomial consistency checker Π. This as-
sumption holds for consistency algorithms such as arc con-
sistency on tree-structured problems. However, in general
the assumption serves as a basis for establishing the base-
line complexity classes of the basic decision problems we
are interested in here.

To ensure that we have found a representative set of ex-
planations, we must at least find a minimal exclusion set for
each constraint, provided that each constraint appears in at
least one minimal exclusion set. Unfortunately, this decision
problem is NP-Complete.
Theorem 3 (Complexity). Given an inconsistent constraint
problem P def= 〈B,U〉, a procedure Π for testing consistency
of a set of constraints in polynomial time, and a constraint
c ∈ U , deciding whether there is a relaxation R such that
c 6∈ R is NP-Complete.

Proof. Given a relaxation R, we can test in polynomial time
whether it is maximal by running the consistency checker
Π on R ∪ {c′} for every c′ 6∈ R. We can easily test that
c 6∈ R. Thus, the problem is in NP. To show completeness,
we will use a reduction from 3SAT. Let x1, . . . , xn be the
variables and f the CNF formula of an instance of 3SAT.
We build an instance of the problem of deciding whether
there exists a maximal relaxation of an inconsistent problem
that does not contain a given constraint. For each variable
xi, let ci (resp. c′i) be the constraint that enforces xi = 1
(resp. xi = 0) and ⊥ the constraint that holds iff the vari-
ables form an instantiation that violates one of the clauses
of f . We define P with U = (∪n

i=1{ci, c
′
i}) ∪ {⊥} and no

background constraint. Clearly, P is inconsistent. There are
2n maximal relaxations, each corresponding to a different
value assignment to each of the n variables. Let R be a re-
laxation corresponding to an assignment of the n variables.
This assignment satisfies f iff ⊥ cannot be added to R, i.e.
R is a maximal relaxation. Therefore, f has a solution iff
there is a maximal relaxation not containing ⊥.

Corollary. Finding a minimal representative set of explana-
tions is NP-Hard.

The Algorithm
The complexity results show us that we cannot expect to
have a polynomial algorithm for computing representative
explanations, unless P = NP. The algorithm we propose is
based on a modification of an existing algorithm for comput-
ing all minimal exclusion sets. As a post-processing step, we
can reduce the set of minimal exclusion sets to obtain a mini-
mal representative set of explanations. This post-processing,
which we call minimisation, involves greedily removing ex-
planations not required to ensure representativeness.

Amongst the best algorithms for computing all minimal
conflict sets of constraints are (Bailey & Stuckey 2005)

and (Gregoire, Mazure, & Piette 2007). The latter is an al-
gorithm tailored for SAT problems, while the former has the
advantage here in that it is for general constraints. There-
fore, we based our algorithm on (Bailey & Stuckey 2005).

Algorithm 1: REPRESENTATIVEXPLAIN

Data: P def
= (B,U), an inconsistent problem, B consistent.

Result: X a minimal representative set of explanations.
X ← ∅1
E ← REPRESENTATIVEDA(P)2
foreach c ∈ U do3

if sat(B ∪ {c})∧(∀E ∈ E , c ∈ E) then4
R← grow({c},U \ {c})5
X ← X ∪ {(U \R, E)}6

minimise(X)7

function REPRESENTATIVEDA(P)8
C ← ∅9
E ← ∅10
H ← {∅}11
R← ∅12
U ← U13
repeat14

R← grow(R,U \ U)15
R← grow(R, U)16
if (U \R) ∩ U 6= ∅ then17

U ← U \ (U \R)18
E ← E ∪ {U \R}19

H ←Min(H⊗ {{c}, c ∈ U \R})20
R← ∅21
for H ∈ H \ C do22

if sat(B ∪H) then23
R← H24
break25

else C ← C ∪ {H}26

until (U = ∅ ∨R = ∅)27
return E28

function grow(S, M)29
foreach c ∈M \ S do30

if sat(B ∪ S ∪ {c}) then S ← S ∪ {c}31

return S32

function Min(H)33
ifH = ∅ then return ∅34
Let H ∈ H s.t. ∀H ′ ∈ H, |H| ≤ |H ′|35
return {H}∪Min({H ′ ∈ H/H 6⊆ H ′})36

The key property that is exploited in the algorithm is the
relationship between exclusion sets and conflicts: if E is the
set of all minimal exclusions and C is the set of all minimal
conflicts, then E is the set of all minimal hitting sets of C,
and vice versa. Intuitively, if we remove all the constraints
in an exclusion set, we break all the minimal conflicts, and
therefore restore consistency.

The grow() function (Lines 29-32) takes a consistent
subset as a seed and grows it to a maximal relaxation by
greedily adding from the remaining constraints in M those
that do not create inconsistency, as detected by our propaga-

tor, called by the sat() function.
At each point of the iteration of the repeat loop in func-

tion REPRESENTATIVEDA (Line 14), H contains all the
minimal hitting sets of the current E . The important prop-
erty used in this function is that when E contains some but
not all of the minimal exclusions, there must be at least one
consistent minimal hitting set in H. This is because if R is
the set of maximal relaxations corresponding to the minimal
exclusions in E , H is precisely the set of all minimal subsets
incomparable with any element of R. Because there is at
least one maximal relaxation not yet in R, and all maximal
relaxations are incomparable, then this new relaxation must
be a super-set of an element in H. Therefore, the condition
R = ∅ is satisfied iff all elements in H are inconsistent iff
E contains all the minimal exclusions. The hitting sets are
incrementally computed in Line 20 by computing the cross
product of two sets, where H1 ⊗ H2 = {H1 ∪ H2/H1 ∈
H1 ∧ H2 ∈ H2}, and then minimising the result, where
Min() keeps all set-wise minimal elements of the given set.

The algorithm used in REPRESENTATIVEDA is an adap-
tation of Bailey and Stuckey’s (2005) Dualize and Advance
algorithm. The essentials of the modification are that we
change the termination condition at Line 27 to either (a)
having covered all the user constraints, or (b) having found
all minimal exclusions, whichever occurs first. Clearly, we
want that all user constraints be covered as quickly as pos-
sible, and so try to first add constraints not in U so that as
many as possible in U will be in the exclusion set (Line 15).

Of course, when not all the user constraints belong to at
least one minimal exclusion, only condition (b) is met, and
we cannot expect to do much better than generating all min-
imal exclusion sets. However, even in this case, our algo-
rithm can still find a set of explanations quickly, while the
rest of the effort is spent proving representativeness.

Experiments
We studied the performance of our algorithm on both ran-
dom and real-world problems1. The objective of the exper-
iment was to study the reduction in the number of expla-
nations one achieves by considering a minimal set of rep-
resentative explanations, as computed using REPRESENTA-
TIVEXPLAIN, rather than all minimal exclusions, as com-
puted using (Bailey & Stuckey 2005), which we will refer
to as the baseline algorithm.

The random problems consisted of fifteen boolean vari-
ables with one 15-ary background constraint defined on
those variables. We varied the proportion of all possible
assignments that were consistent with this background con-
straint, i.e. its satisfiability, taking 20 settings in all. Since
we have assumed that the background constraints are al-
ways consistent, the least satisfiable background constraint
accepted only one assignment.

For a given satisfiability, we generated 10 randomly gen-
erated background constraints. For every background con-
straint, we generated 10 inconsistent queries for which each
algorithm generated a set of explanations. Each query was

1Experiments were implemented in Java and run on an iMac
(2.33GHz Intel Core 2 Duo), 3GB RAM, running Mac OSX 10.4.8.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.
95

0.
90

0.
85

0.
80

0.
75

0.
70

0.
65

0.
60

0.
55

0.
50

0.
45

0.
40

0.
35

0.
30

0.
25

0.
20

0.
15

0.
10

0.
05m
in

nu
m

be
r

of
 e

xp
la

na
tio

ns

satisfiability

Bailey & Stuckey
Representative

(a) Cardinality of the sets of explanations.

5000

1000

100

0.
95

0.
90

0.
85

0.
80

0.
75

0.
70

0.
65

0.
60

0.
55

0.
50

0.
45

0.
40

0.
35

0.
30

0.
25

0.
20

0.
15

0.
10

0.
05m
in

tim
e

-
m

ill
i-s

ec
on

ds
 (

lo
gs

ca
le

)

satisfiability

Bailey & Stuckey
Representative

(b) Times required to generate sets of explanations.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.
95

0.
90

0.
85

0.
80

0.
75

0.
70

0.
65

0.
60

0.
55

0.
50

0.
45

0.
40

0.
35

0.
30

0.
25

0.
20

0.
15

0.
10

0.
05m
in

pr
op

or
tio

n

satisfiability

(c) Proportion of queries per instances in which all
constraints were involved in at least one exclusion
set.

Figure 1: Results for a series of random problems.

defined in terms of a set of user constraints that assigned a
random value to each variable such that the whole set of con-
straints was inconsistent. We plot the average results over
100 queries at each satisfiability setting in Figure 1.

Consider the size of the representative set of explanations
(Figure 1(a)). For most settings of satisfiability we observe
a significant gap between the total number of exclusions, as
found by the Bailey and Stuckey algorithm, and the num-
ber of representative explanations found by our algorithm.
We noted that in the vast majority of cases, the set of expla-
nations was already almost always (set-wise) minimal, and
were already representative.

From Figure 1(b) we can see that the difference between
algorithms in terms of running time mimics the difference in
the size of the sets of explanations they generate. Note that
REPRESENTATIVEXPLAIN can avoid enumerating all relax-
ations if all user constraints are involved in at least one ex-

clusion. We refer to instances in which this occurs as “true”
instances. As we highlighted before, we can hope for a po-
tentially large decrease in the execution time on these “true”
instances. Figure 1(c) confirms this, as we see that the dif-
ference in running times tends to decrease as the proportion
of “true” instances decreases.

To analyse this behaviour more deeply on pure “false” in-
stances, we ran a second kind of experiment. We used ex-
actly the same process for generating random instances be-
fore, and just added a trivially satisfied constraint to each
instance, so that it belongs to all maximal relaxations. The
results are presented in Figure 2. On these instances we can-
not hope to be much faster than a full enumeration of all
maximal relaxations. We measured two different times: the
time when the last relaxation has been found by REPRESEN-
TATIVEXPLAIN and the time when it terminates, i.e. the
time to find a representative set of explanations and the time
to also prove representativeness, respectively. Here again,
the results are positive. We observe that we actually find a
representative set much faster than it takes to find all relax-
ations. However, unexpectedly, REPRESENTATIVEXPLAIN
can terminate a little quicker than the baseline algoritm.

 5000

 1000

 100

0.
95

0.
90

0.
85

0.
80

0.
75

0.
70

0.
65

0.
60

0.
55

0.
50

0.
45

0.
40

0.
35

0.
30

0.
25

0.
20

0.
15

0.
10

0.
05m
in

tim
e

-
m

ill
i-s

ec
on

ds
 (

lo
gs

ca
le

)

satisfiability

Bailey & Stuckey
Representative

Representative (last explanation)

Figure 2: Average times for finding all relaxations, a repre-
sentative set of explanations and the last explanation.

We also ran experiments on a real-world problem, the
Renault Megane car configuration problem (Amilhastre,
Fargier, & Marquis 2002). This problem is defined by 99
variables and has 2.8 × 1012 solutions. We extracted four
problem instances of this problem by restricting it in the fol-
lowing way. We ordered the variables by increasing domain
size. Then, by a dichotomic search, we instantiated the vari-
ables with the largest domain sizes in order to reduce the
number of solutions to a more reasonable level for an inter-
active application, while still honouring the real world struc-
ture of the problem. The restricted instances of the problem
provided four possible sets of background constraints, re-
ducing the number of solutions by a factor of 106, 107, 108

and 109 in each case. We compiled each instance into an
automaton, similar to that presented in (Amilhastre, Fargier,
& Marquis 2002). The user’s set of constraints was gener-
ated by randomly assigning 30 of the remaining uninstanti-
ated problem variables. The results of this experiment are
presented in Table 5; the instances are labelled by the re-
duction factor in the number of solutions as compared with
the original Renault problem. For each instance of the back-
ground constraint we computed explanations for 15 incon-

Table 5: The results for the Renault problem.

Baseline REPRESENTATIVEXPLAIN
Instance time #exps time last time all #exp
renault 106 474.76 17 318.87 618.76 3
renault 107 263.95 11 125.51 324.71 3
renault 108 205.82 8 97.98 232.32 3
renault 109 293.00 12 139.67 350.51 3

sistent queries, presenting the medians (due to the size of
the instances) in this table.

These results confirm those on the random problems, ex-
cept on one point. All of the instances are “false” instances,
which was expected, and the total running time of REP-
RESENTATIVEXPLAIN is a little higher than the time for
the baseline algorithm. This can be explained by the fact
that REPRESENTATIVEXPLAIN performs more set opera-
tions (intersection and filtering on U) which have not been
optimised for this bigger instance. However, the important
results that the set of representative explanations is much
more compact than the set of all explanations, and the last
explanation can be found faster, are very encouraging.

Related Work
There have been many technical papers about explana-
tion (Amilhastre, Fargier, & Marquis 2002; Friedrich
2004; Junker 2004; Bowen 1997; Freuder et al. 2003;
O’Callaghan, O’Sullivan, & Freuder 2005; Sqalli & Freuder
1996; Pu, Faltings, & Torrens 2004). The dominant ap-
proach to explanation in configuration is based on comput-
ing minimal conflicting sets of constraints. However, as dis-
cussed in the introduction, minimal conflicts have disadvan-
tages. Our approach addresses these disadvantages by show-
ing the user a representative set of constraints that can be
satisfied provided some other constraints are excluded.

Approaches have been proposed that attempt to be more
“helpful” by presenting users with partial consistent solu-
tions (Pu, Faltings, & Torrens 2004), or advise on how to re-
lax constraints in order to achieve consistency (O’Callaghan,
O’Sullivan, & Freuder 2005). Our approach is complemen-
tary to these by providing a basis for presenting a represen-
tative subset of choices facing the user.

Recent work has focused on finding minimal unsatisfiable
subproblems in temporal problems (Liffiton et al. 2005),
satisfiability (Liffiton & Sakallah 2005; Gregoire, Mazure,
& Piette 2007) and type error debugging (Bailey & Stuckey
2005). These techniques find all minimal unsatisfiable sets
of constraints, which can be exponential in the number
of constraints. Our work is complementary to these ap-
proaches: we propose a principled basis for compacting the
set of all explanations into an interesting set of explanations
that has size linear in the number of user constraints.

Conclusions and Future Work
We have proposed the notion of a representative set of expla-
nations. A representative set of explanations in this context
means that every constraint that can be satisfied is shown in

a relaxation and every constraint that must be excluded is
shown in an exclusion set. We presented an algorithm for
computing a minimal representative set of explanations, and
demonstrated its performance on a variety of random and
real-world problem instances.

Our future work will focus on developing suitable user in-
terfaces for presenting representative explanations to users,
informed by in-depth user studies. Also, we will study how
to inform our choice of representative explanations by con-
sidering the user’s preferences over constraints. Another di-
rection of work will be to study how to generate explanations
in the context of optimisation problems.

Acknowledgements. This work was supported by Science
Foundation Ireland (Grant No. 05/IN/I886) and the Swiss
National Science Foundation (Grant No. 200020-111888).

References
Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Consis-
tency restoration and explanations in dynamic CSPs appli-
cation to configuration. Artif. Intell. 135(1-2):199–234.
Bailey, J., and Stuckey, P. J. 2005. Discovery of minimal
unsatisfiable subsets of constraints using hitting set dual-
ization. In Proceedings of PADL, 174–186.
Bowen, J. 1997. Using dependency records to generate de-
sign coordination advice in a constraint-based approach to
concurrent engineering. Computers in Industry 22(1):191–
199.
Freuder, E. C.; Likitvivatanavong, C.; Moretti, M.; Rossi,
F.; and Wallace, R. J. 2003. Computing explanations and
implications in preference-based configurators. In Recent
Advances in Constraints, LNAI 2627, 76–92.
Friedrich, G. 2004. Elimination of spurious explanations.
In Proceedings of ECAI, 813–817.
Gregoire, E.; Mazure, B.; and Piette, C. 2007. Boosting a
complete technique to find mss and mus thanks for a local
search oracle. In Proceedings of IJCAI, 2300–2305.
Junker, U. 2004. QuickXplain: preferred explanations and
relaxations for over-constrained problems. In Proceedings
of AAAI, 167–172.
Liffiton, M. H., and Sakallah, K. A. 2005. On finding
all minimally unsatisfiable subformulas. In Proceedings of
SAT, 173–186.
Liffiton, M. H.; Moffitt, M. D.; Pollack, M. E.; and
Sakallah, K. A. 2005. Identifying conflicts in overcon-
strained temporal problems. In Proceedings of IJCAI, 205–
211.
O’Callaghan, B.; O’Sullivan, B.; and Freuder, E. C.
2005. Generating corrective explanations for interactive
constraint satisfaction. In Proceedings of CP, 445–459.
Pu, P.; Faltings, B.; and Torrens, M. 2004. Effective inter-
action principles for online product search environments.
In Web Intelligence, 724–727.
Sqalli, M. H., and Freuder, E. C. 1996. Inference-based
constraint satisfaction supports explanation. In Proceed-
ings of AAAI, 318–325.

