
Agile Preference Models based on Soft Constraints

Boi Faltings
Artificial Intelligence Laboratory

Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

boi.faltings@epfl.ch

Pearl Pu, Jiyong Zhang
Human Computer Interaction Group

Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
{pearl.pu, jiyong.zhang}@epfl.ch

Abstract

An accurate model of the user’s preferences is a crucial ele-
ment of most decision support systems. It is often assumed
that users have a well-defined and stable set of preferences
that can be elicited through a set of questions. However, re-
cent research has shown that people very often construct their
preferences on the fly depending on the available decision op-
tions. Thus, their answers to a series of questions before see-
ing decision options are likely to be inconsistent and often
lead to erroneous models. To accurately capture preference
expressions as people make them, it is necessary for the pref-
erence model to be agile: it should allow decision making
with an incomplete preference model, and it should let users
add, retract or revise individual preferences easily. We show
how constraint satisfaction and in particular soft constraints
provide the right formalism to do this, and give examples of
its implementation in a travel planning tool.

Introduction
Understanding and representing a user’s preferences accu-
rately is a crucial element of most decision support systems.
We consider in particular decision support systems that help
people find the most preferred outcome in a large set of pos-
sibilities. A typical example is a configuration system that
generates a large number of feasible solutions that must sat-
isfy the requirements. If the set of possibilities is very large,
users cannot compare them visually, so an automated filter
is required that finds the most preferred ones. Such filters
rely crucially on an accurate model of preferences.

We consider that preference are ephemeral and likely to
change between different sessions with a decision aid tool.
For example, in a travel planning system, preferences for
times, airlines, etc. all depend on the particular scenario.
Thus, we consider that the preferencemodel needs to be con-
structed specifically for each scenario at hand. Since users
are not willing to spend a lot of time on this process, this can
become a significant challenge.

Most existing systems elicit preferences through a se-
ries of questions whose answers precisely define the user’s
preferences. For example, a travel planning tool such
as Travelocity asks each user several questions about the
itinerary and time and airline preferences, and then returns

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

a set of possible choices based on the resulting prefer-
ence model. Certain e-commerce sites go further and lead
the user through a fixed sequence of questions that deter-
mine the final choice. Elicitation through questions is the
method proposed in classical decision theory (Keeney &
Raiffa 1976) and research continues on improving its per-
formance (Boutilier et al. 2004). Such elicitation processes
implicitly assume that users have a pre-existing and stable
set of preferences.

Behavioral decision theory (Payne, Bettman, & Johnson
1993; Carenini & Poole 2002) has studied actual decision
makers’ behavior. Many years of studies have pointed out
the adaptive and constructive nature of human decision mak-
ing. In particular, a user’s preferences are likely to change
as a result of the elicitation process itself, so that the an-
swers given to subsequent questions are often inconsistent.
Specifically, the following situations can lead a rigid prefer-
ence elicitation procedure to an incorrect model:

• Users are not aware of all preferences until they see them
violated. For example, a user does not think of stating
a preference for intermediate airport until a solution in-
cludes a change of airplane in a place that he dislikes.
This can not be supported by the decision tool that re-
quires preferences to be stated in a predefined order.

• Elicitation questions that do not concern the user’s true
objective can force him to formulate means objectives
corresponding to the question. For example, in a travel
planning system suppose that the user’s objective is to be
at his destination at 15:00, but that the tool asks him about
the desired departure time. The user might believe that the
trip necessarily involves a plane change and take about 5
hours, and thus forms a means objective to depart at 10:00
to answer the question. However, the best option might
be a new direct flight that leaves at 12:30 and gets there at
14:30. This solution would not be found using the elicited
preference model. This phenomenon has been studied by
Keeney(1992) in his work on value-focussed thinking.

• Preferences are often in contradiction and require the user
to make tradeoffs. In tradeoffs, users add, remove or
change preferences in an arbitrary order. Again, this is
not supported by a tool with a rigid preference elicitation
procedure.

To support these properties of human decision making, we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


System shows K
example
solutions

User revises
preference model by
critiquing examples 

User picks the final 
choice

Initial
preferences

Figure 1: Example critiquing interaction. The dark box is
the computer’s action, the other boxes show actions of the
user.

require a preference model to be agile: able to support in-
cremental construction and revision of a preference model
by the user. More precisely, we define agility as satisfying
the following two requirements:

• allow decision making with an incomplete preference
model that only captures those preferences that have ac-
tually been expressed by the user, and

• allow to add, retract and revise preferences in any order
during the decision process.

The need for such preference models has been pointed out
earlier, for example by (Ha & Haddawy 1997).

Furthermore, preference construction must be supported
by feedback indicating the influence of the current model
on the outcomes. A good way to implement such feed-
back is to structure user interaction as a mixed-initiative
systems (MIS). MIS are interactive problem solvers where
human and machine intelligence are combined for their re-
spective superiority (Allen et al. 1994; Horvitz 1999). MIS
are therefore good candidates for such incremental decision
systems. A good way to implement a mixed-initiative de-
cision support system is example critiquing interaction (see
Figure 1). It shows examples of complete solutions and in-
vites users to state their critiques of these examples. This
allows users to better understand the impact of their prefer-
ences. Example-critiquing as an interface method has been
proposed by a variety of researchers, for example (Burke,
Hammond, & Young 1997; Linden, Hanks, & Lesh 1997;
Shearin & Lieberman 2001).

Modeling Preferences for Example-Critiquing
Modelling the outcome space
In a multi-attribute decision problem, outcomes are modeled
using a set of attributes. Attributes can be component or fea-
ture attributes. A component attribute is a physical aspect
of a choice (e.g., the screen size of a PC), while a feature
attribute is an abstract concept such as the suitability of a
product for outdoor use (good, bad). Formally, an attribute

can be modelled by a variable that can take values in a fixed
domain. An outcome can be modelled as a combination of
attribute-values. There may be constraints that rule out cer-
tain combinations of attribute values.

A constraint satisfaction problem (CSP) is characterized
by a set of n variables X1, ..., Xn that can take values in
associated discrete domains D1, .., Dn, and a set of m con-
straints C1, .., Cm, which we assume to be either unary (one
variable) or binary (two variables), and which define the tu-
ples that are allowed for the variable or pair of variables.
Solving a constraint satisfaction problem means finding one,
several or all combinations of complete value assignments
such that all hard constraints are satisfied. Thus, the space
of possible outcomes in a decision support system can be
modelled as the solution space of a constraint satisfaction
problem.

Modelling preferences

People make decisions by considering a set of criteria that
involve these attributes. For example, a criterion could be
how tiring a trip is likely to be, or how well its schedule fits
the tasks to be accomplished. Each criterion is a function of
one or several attributes. Many criteria are simple functions
of a single attribute: for example, whether the arrival time
is early enough for a 18:00 meeting, or whether the airline
fits the user’s preference. Others can be more complex: for
example, how tiring a trip is depends on the total travel time,
the departure and arrival times, the number of stops, etc.

Because preferences naturally arise on criteria, changes
in preference models arise as addition, removal or change
of importance of threshold for some criteria. In particular,
critiques in the example-critiquing model can be formulated
in this way.

In classical decision theory, outcomes are ranked accord-
ing to a utility function formulated on attributes (Keeney &
Raiffa 1976). For example, a utility function on 3 attributes
a1, a2 and a3 could be specified as:

U(a1, a2, a3) = w1f1(a1) + w2f2(a2) + w3f3(a3) +
w12f12(a1, a2) + w13f13(a1, a3) +
w23f23(a2, a3) + w123f123(a1, a2, a3)

The functions (f1, f2, f3, ...f123) are called value functions,
and each function maps the values of one or a set of at-
tributes to a real number representing their utility. For most
decision makers, not all terms need to be present. For exam-
ple, each attribute might make an independent contribution
to the utility of an outcome and in this case only the first
three terms would be present. Note that if there are several
criteria on the same attributes, they would be combined into
a single function. When certain independence assumptions
hold, decision theory gives procedures where the weights w
and the functions f can be determined based on systematic
queries to the decision maker. However, the problem with
this framework is that several criteria might be part of the
same value function. When criteria change, the elicitation
process has to start over again. Thus, it is hard to construct
an agile decision support tool based on this mechanism.



Modeling preferences as soft constraints
Besides hard constraints (also known as feasibility con-
straints) that can never be violated, a CSP may also include
soft constraints. These are functions that map any potential
value assignment to a variable or combination of variables
into a numerical value that indicates the preference that this
value or value combination carries. Solving a CSP with soft
constraints also involves finding assignments that are opti-
mally preferred with respect to the soft constraints.

Note that soft constraints correspond exactly to criteria
that are the basic element of human preference models. Ad-
dition and removal of criterion can be easily modelled as
adding and removing a corresponding soft constraint. Thus,
the soft constraint formalism offers a natural way to imple-
ment agile preference models. For example, in a travel plan-
ning system, the user might initially start with a single crite-
rion involving arrival time that fixes it to be early enough for
the meeting at 18:00. Later on, when he considers arrange-
ments in more detail, he may additionally prefer an arrival
that also avoids the rush hour between 16:00 and 19:00. In a
preference model consisting of soft constraints, such an ad-
ditional preference can be integrated by simply adding an-
other soft constraint. By comparison, in a strict utility func-
tion, it would require re-evaluating the coefficients of the
utility function.

There are various soft constraint formalisms that differ
in the way the preference values of individual soft con-
straints are combined (combination function). For example,
in weighted constraint satisfaction(Schiex, Fargier, & Ver-
faillie 1995), the optimal solution minimizes the weighted
sum of preferences. In fuzzy constraint satisfaction(Ruttkay
1994), the optimal solution maximizes the minimum prefer-
ence value. In our systems, we have almost always used the
weighted model as we found it corresponds best to users’
intuition about the compensatory nature of tradeoffs. Thus,
in the following we assume the weighted constraint satisfac-
tion model.

Soft Constraints for Agile Preference Models
We apply the constraint satisfaction framework to multi-
attribute decision problems by formulating each criterion as
a separate constraint. Note that using the weighted CSP
model, we are able to express the general format of a util-
ity function in classical decision theory, where each of the
value functions is a soft constraint.

The constraint programming framework replaces prefer-
ence elicitation, a process of asking specific valuation ques-
tions, with preference construction where users can manipu-
late individual criteria as separate constraints. In particular,
it satisfies two important goals of agile preference models:
1. it allows users to formulate their criteria precisely without

being restricted by the vocabulary of a database schema or
elicitation tool,

2. criteria can be added, removed or changed in any order
they choose, as the model is not sensitive to an ordering
among the preferences.

Furthermore, we will see below that the constraint model
supports a variety of tradeoff strategies.

The following example illustrates the difference of a
constraint-based preference model with a value function.
Suppose that the task is to support a buying decision for a
new car. One of the attributes is color and let us assume
it has possible values red, green and black. For eliciting a
value function, we would ask the user a set of questions (at
least 3) that determine the utility values of each of the colors
and thus obtain the function fcolor:

Color red green black
fcolor 1 -1.0 2.0

In a constraint-based model, a user might first say that his
preferred color is red, resulting in a soft constraint such as
this:

Color red green black
P1 1 0 0

Later on, he might discover that black is also available and
that actually black is really even better. This would give rise
to another soft constraint P2:

Color red green black
P2 0 0 2.0

Finally, the system may at some point propose green, which
might not be desirable at all and give rise to this preference:

Color red green black
P3 0 -1.0 0

When ranking the outcomes, the effect of having the value
function fcolor and that of summing the three preferences
P1, P2 and P3 is exactly the same. However, the individ-
ual preferences could have been stated in any order and at
any time in the decision process, rather than having to all be
stated in the beginning. Furthermore, they can be retracted
or changed individually, resulting in much greater flexibil-
ity. For example, if the user finds later in the process that for
some reason red is actually not desirable, he can retract P1

or reduce its weight as a separately identifiable criterion.
There are also two other advantages that turn out to be

very important in practice. The first is that options that are
not desirable will most likely never come up, and their pref-
erence value thus never have to be elicited. This happens
frequently because the set of criteria that people are willing
to consider in a decision is usually much smaller than the
(very large) number theoretically possible in a value func-
tion.

The second advantage is that we can easily formulate cri-
teria with various dependencies. Suppose that the car has an-
other attribute of whether the bumper is chrome or painted
in the color of the car. The decision maker might not like
a black bumper, since it is easily scratched, so he would
prefer the black color only if the bumper is chrome. In a
value function, this means that color and the type of bumper
are no longer preferentially independent, so that we need to
elicit a combined value function for all combinations. In a
constraint-based model, P2 can simply become a soft con-
straint on both color and bumper type, without having to
affect the other options.

Some of the constraints could be inferred from a personal
profile or using methods such as collaborative filtering, de-



mographical analysis, default logic, and case-based reason-
ing (Ha & Haddawy 1998). For example, knowing that a
traveler is booking a business trip, we can infer that his most
important criterion is to be at his destination on time. How-
ever, most constraints will be specific to the particular sce-
nario, and need to be explicitly stated by the user. In this
paper, we focus on user stated preferences.

Allowing users to state arbitrary criteria as soft constraints
is a significant user interface challenge. We have found it
sufficient to decide a certain number of useful parameterized
criteria when designing the system and make these accessi-
ble through the user interface. While this choice limits the
preferences that can be stated by a particular user, the frame-
work itself places no limit on what criteria can be used for
preferences. Depending on how much interface complexity
a user is willing to accommodate, it is possible to provide a
very rich vocabulary for formulating them. For example, a
travel planning system we have built allows users to spec-
ify unary and binary constraints on any combination of at-
tributes visible in the display. This flexibility is an important
advantage over database-based systems where the set of pos-
sible preferences is strongly restricted by the schema of the
underlying database.

For each criterion, the system designer devises a para-
meterized function (criterion function) that maps each value
combination of the involved attributes to a numerical value.
This function is chosen to fit the majority of users. For
example, in an apartment search application, price differ-
ences are counted linearly, while preferences for location
are counted with a step function that assigns 0 utility to non-
preferred values and utilities in increasing steps of 100 to the
more preferred ones. Each preference has a weight that the
user is able to change. The function is inaccurate because it
is standardized for all users. However, we have shown in ear-
lier work that such inaccuracies can be compensated by gen-
erating a set rather than a single optimal solution (Faltings et
al. 2004; Faltings, Torrens, & Pu 2004). Other researchers
have investigated methods for obtaining constraints from
examples, for example (O’Sullivan, Freuder, & O’Connell
2001).

Preference Revision through Tradeoffs
We now consider how to support preference revision through
tradeoffs in a decision framework. Tradeoff is an important
aspect of preference construction as it is here that decision
makers refine the details of their preferences into an accurate
model. Furthermore, refining a preference model through
tradeoffs focusses the user’s effort on those parts of the pref-
erence model that are actually decisive for picking the final
outcome, thus playing an important role in reducing the elic-
itation effort.

¿From observing user behaviors, we have identified the
following 3 tradeoff strategies used by human decision mak-
ers:

• value tradeoff: a user explicitly changes the preference
values of a set of attributes; for example, the user can state
a value tradeoff to prefer a flight with a more favorite air-
line while compromising 2 hours on the total flight time.

Price Surface Location Bus
1 800 25 Center 12min
2 600 24 Renens 15min
3 900 30 Morges 8min
4 800 35 Renens 2min

Table 1: Several apartment choices.

• utility tradeoff: a user changes the weights of a set of pref-
erences so that those attributes with higher weight values
take precedent when values are assigned; for example,
when airline preference is becomes more important than
the total flight time, then the system will try to satisfy the
airline preference before satisfying the flight time prefer-
ence.

• outcome tradeoff: a user performs either value or util-
ity tradeoff after viewing a set of outcomes; for example,
seeing a particularly good airline in one of the outcomes
makes him either want to state an explicit preference for
that airline, increase the weight of airline preference, or
both.

Supporting these tradeoff strategies requires particular
agility of the preference model that cannot be effectively
supported by rigid elicitation procedures. As an exam-
ple to illustrate how a constraint-based model supports the
three types of tradeoff, consider the 4 choices for apartments
shown in Table 1.

A user may state the following 3 initial criteria:

1. (weight = 1): I am willing to pay up to 700.:
u1 = 700 − price

2. (weight = 20): Surface has to be at least 30.:
u2 = Surface − 30

3. (weight = 100): I work in the center, so I prefer Center
over the suburbs Morges over Renens:

u3 = (caselocation :

{
Center : 2
Morges : 1
Renens : 0

)

We assume that preferences are combined by forming a
weighted sum, so the initial ranking assigned to the 4 out-
comes would be:

u(1) = −100 + 20 ∗ −5 + 100 ∗ 2 = 0
u(2) = 100 + 20 ∗ −6 + 0 = −20
u(3) = −200 + 0 + 100 ∗ 1 = −100
u(4) = −100 + 20 ∗ 5 + 0 = 0

Outcomes 1 and 4 are preferred over 2 and 2 is preferred
over 3. However, none of the outcomes provides a positive
utility, so the decision maker is not likely to pick any of them
as a final solution.

Tradeoffs are required whenever none of the outcomes
achieves a sufficiently high ranking according to the pref-
erence model. This then requires a user to change the pref-
erence model so that an acceptable solution can be found.
In the constraint-based decision framework, the three differ-
ent tradeoff strategies described in the introduction can be
modeled as follows:



1. Value tradeoff: the user changes one of the soft constraints
in his preference model, increasing or decreasing the util-
ity of a certain value combination in comparison with the
others.

2. Utility tradeoff: the user changes the weight that a partic-
ular soft constraint is given in the combined ranking.

3. Outcome tradeoff: the user adds additional soft con-
straints that increase the relative utility of certain choices
to make them acceptable.

In the example, none of the outcomes is ranked with a utility
greater than his threshold of 0. Now the decision maker can
engage in the three kinds of tradeoff:

1. an example of a value tradeoff would be to reverse the
preferences for location after realizing that Morges offers
the best school for the decision maker’s children and thus
should be most preferred. This can be done by adding
a soft constraint with a weight of 200 that gives a value
of 1 to Morges and none to the other locations. Since
both soft constraints are added up, this has the effect of
making Morges the most preferred location, but requires
no revision of the earlier soft constraints. Now, the third
solution has a value of 100 and is thus acceptable.

2. an example of a utility tradeoff would be to change the
weight of surface preference from 20 to 30. Now choice 4
has a positive utility of 50 and could be chosen. This can
be done by modifying the weight of the preference in the
weighted combination function.

3. an example of an outcome tradeoff would be to notice that
choice 4 is in fact very close to public transport, and add
the following additional preference with weight 10: u4 =
(if Bus < 3min: 10, otherwise 0). Now choice 4 has a
positive utility of 100 and is acceptable.

Note that in each case, the required modification of the
ranking is achieved by adding a preference or changing its
weight in the combination model. In the soft constraint
model, these kinds of modifications are easy to carry out
and provide an agile modeling process. Such agility would
be very hard to achieve in models based, for example, on
classical preference elicitation, where the impact of answer-
ing a particular query is hard to evaluate.

Note furthermore that each of these three tradeoff types
requires that the decision maker has a good understanding
of the available outcomes and how they are affected by pref-
erences. This understanding is provided, at least to some
degree, by the example-critiquing framework: by showing
examples that are already close to the user’s desires, it in-
creases his understanding of the possibilities in the outcome
space that is relevant to his desires. In further work, we have
also shown techniques for generating additional examples
that are likely to stimulate users to express preferences that
have not been stated so far (Faltings et al. 2004). These
methods are based on a probabilistic analysis of what exam-
ples are likely to become optimal should the user discover
new criteria.

Conversely, the constraint-based decision framework pro-
vides the agile and easily modifiable preference model that

Figure 2: ISY-travel allows users to add preferences by post-
ing soft constraints on any attribute or attribute combination
in the display. Preferences in the current model are shown
in the preference display at the bottom, and can be given
different weights or deleted.

is required to implement example critiquing. The synergy
between the two models leads to powerful practical systems.

Example: ISY-Travel
We have used example critiquing with constraint-based pref-
erences models in ISY-travel, a tool for travel planning
that was commercialized by Iconomic Systems and later
i:FAO (Pu & Faltings 2000; Torrens, Faltings, & Pu 2002;
Pu & Faltings 2002). In ISY-travel, the user starts by giv-
ing dates and destinations of travel. The tool then gathers all
available airline schedules that may be relevant to the trip,
and generates 30 examples of solutions that are good accord-
ing to the current preference model. The preference model
is initially preset with a number of common-sense prefer-
ences, such as short travel time, few connections, low price,
etc. Seeing the examples, the user incrementally builds his
preference model by adding preferences as shown in Fig-
ure 2.

Preferences can be added on any attribute or pair of at-
tributes and in any order. Preferences on pairs of attributes
arise when a user conditions a preference for one attribute on
another one, for example one can select a different preferred
departure time for each possible departure airport. Prefer-
ences can also be removed or given lower or higher weight
by operations in the preference panel. When the preference
model has been sufficiently modified, the user can ask the
system to recompute again the 30 best solutions according
to these preferences.

When there are too many preferences, it can happen that
there is no longer a single solution that satisfies them all. In
this case, the system shows solutions that satisfy the pref-
erences to the largest degree possible. For example, in Fig-
ure 3, the user has posted constraints on the departure and



Figure 3: When it is not possible to satisfy all preferences
completely, ISY-travel looks for solutions that satisfy as
many of them as possible and acknowledges the attributes
that violate preferences in red.

arrival times that cannot both be satisfied. Thus, the system
proposes solutions that satisfy only one of the preferences,
and acknowledges the violation by showing the attribute in
question on a red background.

User studies have shown that the agile preference model
used in ISY-travel has led users to find travel itineraries that
were much closer to their wishes with less effort than with
traditional tools such as travelocity.

Conclusion
A number of researchers from both behavioral and qualita-
tive decision theory have pointed out the advantage of elic-
iting user preferences incrementally. We have shown how to
go further by allowing users to actively construct a prefer-
ence model in an example-critiquing interaction.

Such interaction is enabled by agile preference models
that allow users to add, retract and modify any criterion
they choose in any order. We have shown how this agility
is provided by preference models based on soft constraints.
Such models provide the flexibility required to deal with the
highly dynamic nature of human preferences in such inter-
actions.

References
Allen, J. F.; Schubert, L. K.; Ferguson, G. M.; Heeman,
P. A.; Hwang, C. H.; Kato, T.; Light, M. N.; Martin, N. G.;
Miller, B. W.; Poesio, M.; ; and Traum, D. R. 1994. The
TRAINS project: A case study in building a conversational
planning agent. In TRAINS Technical Note 94-3.
Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans, D.
2004. Regret-based utility elicitation in constraint-based
decision problems. In Working Paper.
Burke, R. D.; Hammond, K. J.; and Young, B. C. 1997.
The FindMe approach to assisted browsing. IEEE Expert
12(4):32–40.
Carenini, G., and Poole, D. 2002. Constructed preferences
and value-focused thinking: Implications for ai research on
preference elicitation. In Proceedings of the AAAI work-
shop on Preferences in AI and CP: Symbolic Approaches.
Edmonton, Canada: AAAI.
Faltings, B.; Pu, P.; Torrens, M.; and Viappiani, P. 2004.
Designing example-critiquing interaction. In International

Conference on Intelligent User Interfaces, 22–29. Island
of Madeira (Portugal): ACM.
Faltings, B.; Torrens, M.; and Pu, P. 2004. Solution genera-
tion with qualitative models of preferences. Computational
Intelligence 20(2):246–263.
Ha, V., and Haddawy, P. 1997. Problem-focused incre-
mental elicitation of multi-attribute utility models. In Pro-
ceedings of the Thirteenth Conference on Uncertainty in
Artificial Intelligence, 215–222.
Ha, V., and Haddawy, P. 1998. Toward case-based prefer-
ence elicitation: Similarity measures on preference struc-
tures. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, 193–201. San Fran-
cisco: Morgan Kaufmann Publishers.
Horvitz, E. 1999. Principles of mixed-initiative user inter-
faces. In CHI ’99: Proceedings of the SIGCHI conference
on Human factors in computing systems, 159–166. ACM
Press.
Keeney, R., and Raiffa, H. 1976. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. John Wiley
and Sons, New York.
Keeney, R. 1992. Value-Focused Thinking. A Path to Cre-
ative Decision Making. Cambridge: Harvard University
Press.
Linden, G.; Hanks, S.; and Lesh, N. 1997. Interactive as-
sessment of user preference models: The automated travel
assistant. In Proceedings, User Modeling ’97.
O’Sullivan, B.; Freuder, E.; and O’Connell, S. 2001. Inter-
active constraint acquisition. In roceedings of Workshop on
User-Interaction in Constraint Processing at the CP-2001.
Payne, J.; Bettman, J.; and Johnson, E. 1993. The Adaptive
Decision Maker. Cambridge University Press.
Pu, P., and Faltings, B. 2000. Enriching buyers’ expe-
riences: the smartclient approach. In SIGCHI conference
on Human factors in computing systems, 289–296. ACM
Press New York, NY, USA.
Pu, P., and Faltings, B. 2002. Personalized navigation of
heterogeneous product spaces using smartclient. In Inter-
national Conference on Intelligent User Interfaces. ACM
Press.
Ruttkay, Z. 1994. Fuzzy constraint satisfaction. In
Proceedings of the 3rd IEEE International Conference on
Fuzzy Systems, 1263–1268.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued
constraint satisfaction problems: Hard and easy problems.
In IJCAI’95: Proceedings International Joint Conference
on Artificial Intelligence, 631–639.
Shearin, S., and Lieberman, H. 2001. Intelligent profiling
by example. In Proceedings of the Conference on Intelli-
gent User Interfaces, 145–151. ACM Press New York, NY,
USA.
Torrens, M.; Faltings, B.; and Pu, P. 2002. Smartclients:
Constraint satisfaction as a paradigm for scaleable intelli-
gent information systems. CONSTRAINTS: an Internation
Journal. Kluwer Academic Publishers (7):49–69.


