
Design Visual Thinking tools for Mixed Initiative Systems
Pearl Pu

Ergonomics of Intelligent Systems and Design
Database Laboratory

 Swiss Federal Institute of Technology (EPFL)
CH-1015 Ecublens, Switzerland

pearl.pu@epfl.ch

Denis Lalanne
Avenue Major Davel 44,
1800 Vevey, Switzerland
denis_lalanne@hotmail.com

Abstract
Visual thinking tools are visualization-enabled mixed
initiative systems that empower people in solving com-
plex problems by engaging them in the entire resolution
process, suggesting appropriate actions with visual cues,
and reducing their cognitive load with visual representa-
tions of their tasks. At the same time, the visual interac-
tion style provides an alternative to the dialog-based
model employed in most mixed-initiative (MI) systems.
Visual thinking tools avoid complex analyses of turn tak-
ing, and put users in control all the time. We are espe-
cially interested in implementing visual "affordances" in
such systems and present three examples used in
COMIND, a visual MI system that we have developed.
We show how humans can more effectively concentrate
on synthesizing problems, selecting resolution paths that
were unseen by the machine, and reformulating problems
if solutions cannot be found or are unsatisfactory. We
further discuss our evaluation of the techniques at the end
of the paper.
Keywords
Visual thinking, mixed-initiative systems, interactive in-
formation visualization, visualization of complex infor-
mation, visualizing algorithms
INTRODUCTION
Mixed-initiative systems (MIS) refer to intelligence sys-
tems for which users’ input and intervention are solicited
during the entire automatic reasoning process. Important
issues in earlier dialog based MIS were turn taking analy-
sis as well as natural language processing. More recently,
researchers began combining direct manipulation princi-
ples with work on intelligent agents [8]. Such systems
avoid complex analysis of turn taking, and engage users
in more vivid graphical user interfaces. A step further in
this direction is to employ visualization techniques [4] to
create visual metaphors that will reduce the cognitive load
of MIS users and empower them with extra values: 1)

external representation of user’s task; 2) visual cues to
influence human strategy, and solution path selection; 3)
possibility to add “human” criteria in the systems’ deci-
sion making process; 4) and visualization of conflicts so
that humans can reformulate problems and explore un-
seen paths.
In this paper, we draw examples from the specific domain
of configuration tasks to illustrate various visual meta-
phors, although the principles developed in our work
have been applied to airline rescheduling systems [16],
travel planning [20], product and robot design [11], as
well as potential areas such as personal computer, auto-
mobile, and insurance policy configuration. Configuration
is a difficult computation task for both human and ma-
chines, thus an ideal case for MIS. Neither human nor
machine alone can solve the problem with satisfactory
results.
We first introduce the configuration tasks and describe
the artificial intelligence part of our MIS. Then we con-
centrate on the discussion of the visual metaphors. We
show how users rely on Kaleidoscope for selecting
search strategies, Tradeoff Maps for performing multi-
variant tradeoff analysis in high dimensions, and Conflict
Resolution Lattice for discovering conflicts in the origi-
nal problem definition. We also present a user study of
our visualization-based UI system, followed by a review
of related work.
Configuration tasks using constraint satisfaction
techniques
Mixed-initiative systems rely on inference engines to
solve at least some parts of the problem automatically.
We found it useful to think in terms of abstraction tech-
niques in identifying the AI part of a MI system. Abstrac-
tion, according to the AI literature [5], is an encoding of a
problem for which an inference engine exists. In the case
of configuration tasks, we use constraint satisfaction
problem solving [24] as an abstraction method. The infer-
ence engines are various CSP algorithms. JCL [23], the
Java Constrain Library, is a repository of some 15 CSP
algorithms. Because CSPs are NP-complete, there is no
single CSP algorithm that is good for all configuration
problems. Human ingenuity is required to choose among
the algorithms the most suitable ones depending on prob-
lem context.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
IUI’02, January 13-16, 2002, San Francisco, California, USA.
Copyright 2002 ACM 1-58113-459-2/02/0001…$5.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Visual reification of tasks
The configuration task has been externalized in a visual
interface shown in Figure 1 for the landscape design
problem.1 It is a problem of assigning land pieces to struc-
tures in a community. At present, there are six structures:
a house complex, an apartment complex, a school, a rec-
reation area, a dumpsite and a cemetery. Eight land pieces
are available for construction. Each of them has its char-
acteristics, such as view, noise level, and ground charac-
teristic. Some lots such as lot 11 and 17 can be only used
for the cemetery, the dumpsite, or the recreational area. A
solution of the landscape design problem (e.g., lot3 ->
dumpsite, lot5 -> school, lot7 -> cemetery, lot9 -> apart-
ment, lot10 -> recreational area, lot12 -> houses) is an
assignment of land pieces to structures so that constraints
are satisfied and criteria are optimized. Do not put a
dumpsite next to houses is an example of a constraint. A
solution is optimal when the total satisfaction of land use
is the highest. Optimization in this case is multi-variant in
terms of cost, noise level, quality of the view, closeness to
school, etc.
Kaleidoscope
The first CSP algorithm is a straight-forward backtrack-
ing search by assigning land pieces lot 3, lot 5, lot 7, lot 9,
lot 10, lot 11, lot 12, or lot 17 to each structure. At the
same time it checks for constraint violations. Kaleido-
scope (Figure 2) visualizes the internal state of the search
process, which starts from the 00 line. It sweeps the entire
search space represented by the disk in counter-clock-
wise direction. The assignment of all structures to exist-
ing lots is called a valuation. Unsuccessful valuations are
immediately discarded and the algorithm goes back to the
last non-violated variable. Black segments correspond to
successful assignment of one structure. Thus a successful
valuation is a single black line reaching all the way to the
exterior circle. On the other hand, some areas do not have
any black lines due to violation of constraints occurring
right from the beginning. Some areas have short black
lines, but they are unable to reach beyond the circle be-
cause violation of constraints occurred in later assign-
ments. The color prohibiting a line from penetrating the
exterior circle corresponds to the constraint (same color)
that has caused the failure of this assignment (Figure 3).
These color patterns (black lines and color elements)
guide humans to change the current search strategies if
results so far are not satisfactory.
For instance, a phenomenon called thrashing [13] during
backtracking occurs when the search repeatedly fails on a
certain combination of values. This corresponds to a large
area in Kaleidoscope blocked by the same color. We can
detect easily the constraint responsible for the thrashing
by looking up the color coding as shown in Figure 3. The
area in light gray indicates that constraint recre !=17 (rec-

1 Color figures are available at http://lbdsun.epfl.ch/f/staff/pear/.

reational structure is not to be built on lot 17 because of a
severe slope) is blocking many solutions.
The origin of thrashing is that the search algorithm al-
ways starts with recre <- lot 17 when lot17 should be
eliminated from consideration for the recreational area.
To remedy this problem, more intelligent techniques,
called pre-processing algorithms [6,17] have been devel-
oped that attempt to eliminate as many inconsistencies as
possible before the search begins. In addition, search can
start with structures that have the most difficulty of find-
ing a land piece. This algorithm, called dynamic variable
ordering, can reduce the number of search steps from 343
to 120 in the case of landscape design. It is very effective
for large problems. Figure 5 shows the same problem
with two different variable orderings.
In addition, a Monte Carlo search algorithm, called the
Knuth algorithm [10], can be used to assess whether a
search space has numerous solutions or not. The main
idea is to explore several places of the search space
quickly, although randomly. Users can draw an idea of
the shape of the space in order to do a more precise
search on a specific part of the space with the backtrack-
ing method (Figure 4).
To summarize the first visualization technique, we enu-
merate the set of inferences that users can perform relying
on information given in Kaleidoscope:
• Is the current algorithm fast enough for generating

solutions? If not, use Knuth algorithm to guide the
selection of search strategies.

• Does thrashing occur and in what type of frequency?
If so, preprocessing algorithms should be employed.

• Are solutions diversified or concentrated in clusters?
• Are solutions abundant
• Is search futile? If so more efficient or random algo-

rithms should be used
PARETO SPACE FOR 2D TRADEOFF ANALYSIS
The second visualization consists of multi-criteria trade-
off analysis and a map of the solution space. This model
is especially useful for under-constrained problems where
many solutions compete for attention. Users rely on visu-
alization assistance in order to evaluate solutions and
make intelligent decisions with human criteria.
Consider the same landscape design example and suppose
users have selected two evaluating criteria to maximize:
cost factor and view. Figure 7 shows the solution space
where nodes represent solutions, and x-axis and y-axis
represent solution's performance on the selected criteria.
A node, which performs best on both criteria, is called the
dominant solution. If such a solution is absent (as in Fig-
ure 7), nodes lying on the outer rim of the solution space
are called non-dominant nodes (in red). All other nodes
(in blue) are called dominated solutions. In most cases a
solution map does not contain a dominant node, thus re-
quiring tradeoff analysis to choose a winner (often a non-

dominant solution) based on users' dynamic preference
measure. For example, if a user prefers to optimize more
on the view, but is willing to compromise on cost, then he
can choose the red node lying farthest on the x-axis, even
though the y-value is not the best. When several compet-
ing solutions exist, users will be prompted to choose addi-
tional criteria so that some dominant solutions might
emerge. However, this visualization (it's called pareto
space optimization [19]) is feasible for up to three criteria.
Many real-world problems call for tradeoff analysis in
much higher dimensions.
Tradeoff Map
Our new visualization (Figure 11) overcomes this limit by
combining color patterns, visual structures and interactiv-
ity. It is called tradeoff balance because the solutions are
mapped to the x-axis much like the behavior of weights in
a balance. Given a solution having 4 criteria as those
shown on the right of Figure 11, we calculate its position
in the tradeoff balance as follows. The y coordinates rep-
resent the total sum of all criteria values (criterion is al-
ways optimized instead of max- or minimized). Thus the
solution performs the best overall-speaking is the node
with the largest y value. To calculate x coordinates, we
imagine four weights, corresponding to the criteria values
of this solution, lying on the bottom of this tradeoff map.
The x coordinate is the center of mass of these weights.
While y represents an absolute performance value, x
shows the distribution of the underlying criteria much like
a balance. When tradeoff analyses are required, users can
slide to the left or right from the middle depending on his
current preferences. For instance the current solution
(shown on the left of Figure 11) performs well on the
view, but it is not the most cost effective one. There are
cases where solutions are pulled by multiple criteria val-
ues, but individually these criteria are not distinguishable.
In this case interactivity solves this problem by allowing
users to click on the solution nodes and clarify the details.
Notice the colors are coded in the small display in syn-
chrony with criteria bars on the bottom.
For tradeoff analysis in multi-variant spaces, we associate
the following inferences:
• Is there a dominant solution?
• Are there numerous or few non-dominant solutions?
• Should additional criteria be defined in order to push

out dominant solutions?
• Are solutions cluttered around a certain area, or more

spread out in the map?
CONFLICT RESOLUTION LATTICE
The third design consists of a set of reasoning algorithms
to discover conflicts in over-constrained problems and the
use of a lattice as a visualization tool. Conflicts occur
when either the given constraints contain inconsistencies
(such as x = y and x > y defined simultaneously) or too

many constraints have been defined. Conflict resolution
involves pinpointing the set or sets of constraints respon-
sible for over-constrained CSPs so that humans can either
eliminate or repair them.
A conflict set is a set of constraints for which no solution
exists. Visually they are represented as black (minimal
conflict) or dark blue (regular conflict set) squares in an
interactive lattice (e.g., Figure 10). The top three sets in
Figure 10a are the smallest conflict sets and correspond to
constraints pointed by the arrows. The meaning of these
constraints will be explained in detail in a moment. Sets
are further ordered from the top to the bottom by their
sizes with the set on the bottom being the largest. When a
square is black, it is a minimal conflict set, and any set
containing that set is also a conflict set. When it is dark
blue, the set blocks a certain number of solutions. The
darker it is, the more potential solutions it blocks. The
human conflict solver is to eliminate the black conflict
sets, or to find the smallest (top most) and darkest blue set
of constraints to relax. While normal lattices contain lines
to relate sets to their sub or supersets, this lattice is inter-
active and only displays the set and superset relationship
when a set is clicked on. In Figure 10b, the bottom-most
white square is the supper set of all white squares lying
above it. This allows displaying a large lattice without the
risk of having lines crisscrossing and thus causing visual
overloading. We now discuss the different cases of con-
flict sets.
Inconsistent CSP
As mentioned, an example of inconsistent CSP is when
inconsistent constraints are defined at the same time.
Shown in Figure 8 is a simple inconsistent CSP with its
definition and lattice visualization. The squares on the top
row represent the sets of constraints to be disjunctively
eliminated in order to restore consistency to the problem.
Furthermore, if one clicks on the square, a number is
shown in the side window to indicate the number of po-
tential solutions obtainable. Thus, eliminating x=y will
produce 28 solutions, while taking out x>y will generate
8 solutions.
Over-constrained problems
An over-constrained problem is one where one or several
sets of constraints are defined in such a way that no solu-
tion could exist. Further if any bigger CSP contains this
over-constrained CSP, it will not have any solutions ei-
ther. Identifying such minimal conflict sets thus becomes
a major task. In the visual lattice, this type of conflict sets
is displayed in black (Figure 9). Consider the example of
the map-coloring problem of three neighboring countries.
If each country can be colored only in red or blue and no
two neighboring countries should have the same color,
then the problem is over-constrained. To find a smaller
conflict set to repair, a user clicks on the black square in
the lattice. Three blue subsets are shown. Further, it is

shown that repairing any of them will allow exactly 2
solutions.
Multiple conflict sets
Some problems have several minimal conflict sets as in-
dicated by the black squares in the red/black lattice of
Figure 6. Here is an example of selecting watch design
criteria and their relationships:
• (beauty > 3) -> (implementation >3)
• (complexity > 3) -> (implementation > 3)
• (usability > 3) <-> (complexity < 5)
• usability == 4
• complexity == 5
• beauty == 4
• implementation ==1
The black squares in Figure 6c correspond to all minimal
conflict sets. At least one of the minimal conflict sets has
to be relaxed to generate any solutions. As before, if a
black square is clicked on, Lattice shows subsets (see
lattices in Figure 6d). The subsets define parts of the
original problems for which solutions exist. This informa-
tion guides the users to choose the subsets to keep. For
example, clicking on the black square on the first lattice
in Figure 6d, two subsets are shown. Thus either we keep
the first subset or the second. Since the second subset is a
larger set, keeping it automatically allows us to keep the
largest original problem. By visualizing all conflicts and
largest consistent subsets, we offer designers the choice
of what to throw away and what to keep, which is the
most difficult decision in design and requires experience,
gut feeling and dynamic criteria from the designers.
Futile search
The worst scenario of an over-constrained CSP is one
where there are actual solutions, but the search algorithm
will take exponential amount of time to find them. For a
CSP of size larger than 50 parameters and an equal
amount of constraints, it is almost impossible to wait for
the results. Thanks to the Knuth algorithm, we can esti-
mate very quickly if the search space of a given CSP is
poor. If this occurs, then conflict resolution involves find-
ing the degree of constrainedness of sets of constraints.
As in the case of over-constrained problems, we have the
notion of sets of constraints. Instead of being a conflict
set, these sets allow only few partial solutions, thus few
full solutions as well. We define the notion called the
blocking rate, which is a percentage of no-good partial
valuations over all possible combinations.
In the lattice visualization, recall that the sets are colored
in blue and the darker the blue, the more blocking it is. If
there are multiple blocking sets, then which one should
the user focus on first? The sets lying on the top row are
smaller than those underneath. The smaller the set is, the
easier it is for users to modify the constraints. The general
heuristic is thus to find the smallest (top most) and dark-
est blue set of constraints to relax. Furthermore, this visu-

alization is linked to the map of solutions as described in
the section on Tradeoff Map. Each square on the lattice
will invoke secondary windows to display the potential
solutions that could be obtained if the constraints had
been relaxed. The advantage of this coupling is to avoid
searching unless the users are certain about the quality of
solutions that they will obtain.
Shown in Figure 12 is a design scenario of a pen which
consists of a cap, a body, a button, and a tube in addition
to several other variables. As can be seen in the Kaleido-
scope, there are only two valuations satisfying all the con-
straints in the possible space of solutions. With the help
of the lattice, we realize that the squares on the top most
row look promising since they are small and can poten-
tially yield 26 and 10 solutions respectively. Further, the
tradeoff map shows that the solutions permitted by the
first square of constraints are ranking high in the tradeoff
analysis. Thus one can easily try to either eliminate that
constraint or relax it. To summarize this section on over-
constrained problems, we list the inferences representing
different reasoning tasks and the corresponding results we
can get from the lattice visualization:
• Is the given CSP problem over-constrained: a single

or several black squares in lattice
• Which one of the conflict sets to relax: either use the

side window to select the most optimal one, or look
up in the constraint definition to find the most appro-
priate one

• If certain conflicts are removed, potential solution
characteristics are reflected in the map of solutions in
Tradeoff.

• If the search is futile, then the degree of constrained-
ness will lead users to relax certain constraints and
obtain more solutions

EVALUATION
Since we have selected problems that were generally hard
to solve neither by human or machines alone, we did not
evaluate subjects on their problem solving skills without
COMIND. We are interested in knowing if the visual
metaphors provide intuitive cues and whether they speed
up problem resolution.
We observed 6 industrial design students on how they
solve three real design problems in COMIND (one under-
constrained, one inconsistent, and one over-constrained).
• Almost all of them used the Knuth algorithm to first

find out if the problem yields solutions or is over-
constrained (usage of visualization to gauge the
search space).

• Almost all of them within 20 minutes solved the two
design problems, one being under-constrained, and
one over-constrained (normally when they encoun-
tered over-constrained problems, they take much
longer to find compromises).

Denis
to be precise

• Most of them with a brief explanation of the lattice
can use it as a tool to navigate in the constraint editor
to modify the problem and later obtain interesting so-
lutions (lattice is intuitive in the problem context).

• Most of them used the interactive search feature (it's
fun - was often the remark) in Kaleidoscope while
search was underway and construct different search
strategies depending on constraint characteristics.

In general, we are satisfied with the learning speed of our
subjects. Because the task has been externally repre-
sented, subjects have a good mental model of the func-
tionalities of COMIND with minimal explanation. The
average duration of design problem solving is much
shorter than what they would take if they were to solve
these problems in COMIND but with no visualization as
feedback. Furthermore, the user's knowledge retention of
COMIND is quite good. When subjects are asked to come
back to reuse COMIND, almost no explanation needs to
be given again.
BACKGROUND AND RELATED WORK
Hybrid reasoning and mixed initiative systems
Mixed-initiative systems refer to artificial intelligent sys-
tems where users input and intervention are solicited dur-
ing the entire automatic reasoning process. They are in
the middle of the spectrum between two extreme interac-
tion styles [15]: those that employ autonomous interface
agents and those that use computer strictly as tools. A set
of general principles for developing such mixed-initiative
systems was presented in [8], and a set of principles for
the specific domain of interactive search [1]. In addition
to those principles, we found that humans’ goals and cri-
teria are highly dynamic and unpredictable. So instead of
using computational resources to judge their goals, we
emphasize the formulation and visual reification of users’
tasks. We start the design of UIs from the first principle
by analyzing the users and their tasks. We have designed
in our system the possibility to allow users to reformulate
the original problems before search begins, and select
criteria in the tradeoff process. [2] presented an example
on the extreme end of the interaction spectrum where
search engines are viewed strictly as tools to find local
minima and humans guide the search by designating
promising spaces.
TRAINS [7] is an interactive planning systems where
multi-modal interaction using speech, natural language
were combined with plan recognition, planning, and
simulation components in a human-computer collabora-
tive environment. Visage [21] uses visualization to ex-
plain scheduling results, but has not been used to prompt
users for appropriate problem-solving actions.
Knowledge crystallization
In the introduction chapter of [4], Card et al gave an ex-
ample of the knowledge crystallization task using visual
tools. It consists of gathering information from diverse
sources (foraging), searching for a representational form

(a schema) to capture the data, modifying the representa-
tion to include all attributes, and performing tradeoff
analysis to reach a decision. Throughout this process,
humans rely on visual representational techniques to help
them organize thoughts, and discover areas of insufficient
knowledge. Thus knowledge crystallization is about mak-
ing ideas clear, bringing them into focus, and discovering
new ones. The visual representation of tasks in our
method corresponds to the representational form in
knowledge crystallization. Problem synthesis in our terms
corresponds to synthesis and modification of the schema
in knowledge crystallization. A major difference is that
all of our visualization methods come with inference en-
gines so that solutions can be automatically generated. In
addition, visual cues help humans think and solve prob-
lems, not just clarify ideas.
Intelligent agents
We can find many similar examples in the area of intelli-
gent agents [12,14,22] which treat problem solving. There
are mainly two classes of agents: those self-learning
agents that watch over the shoulder of a user and become
trained to perform the tasks for the user, and those
autonomous ones that from the beginning solve problems
for users. Our work differs from intelligent agents for two
main reasons: the users in our system are also part of the
problem solving architecture and the interaction between
human and machine is via visualization, not through
learning techniques.
Visualization in multivariate spaces
Visualizing data sets in 2D often employs scatter plots.
However, as the data dimension increases, it is more dif-
ficult to mediate between the goals of achieving visual
clarity and data representation accuracy. For example,
when 3D methods are used, data are accurately mapped to
points in space, but users have hard times seeing them
and navigate in 3D spaces. Several previous works
[3,9,18] have explored different methods for rendering
multivariate data sets. Our tool, Tradeoff Map, is novel in
terms of its unique metaphor to a balance during a trade-
off process.
ACKNOWLEDGEMENT
This work was sponsored by the Swiss National Science
Foundation. We like to thank the reviewers for their valu-
able comments and feedbacks.
CONCLUSION
Visualization techniques are beginning to make its way to
mixed-initiative user interfaces. The main challenge is the
design of visual metaphors to model user’s tasks, and
prompt them for the right intervention actions. We have
shown three visual thinking tools in the configuration
domain: Kaleidoscope, Tradeoff Maps, and Conflict
Resolution Lattice. Our fundamental contribution is the
design of the affordances these tools provide to augment
human's reasoning skills in solving problems.

REFERENCES
[1] Amant, R. S., and Healey, C. G. (2001). Usability

Guidelines for Interactive Search in Direct Manipula-
tion Systems, Proceedings of International Joint
Conference on Artificial Intelligence (pp. 1179-
1184).

[2] D. Anderson, E. A., N. Lesh, J. Marks, B. Mirtich, D.
Ratajczak, and K. Ryall. (2000). Human-guided sim-
ple search, Proceedings of the National Conference
on Artificial Intelligence (pp. 209-216): AAAI Press.

[3] Beshers, C. and Feiner, S. (1992). Automated design
of virtual worlds for visualizing multivariate rela-
tions. In Proceedings of IEEE Visualization '92,
pages 283--290.

[4] Card, S.K., Mackinlay, J.D., and Shneiderman, B.
(eds.) (1999). Readings in Information Visualization
- Using Vision to Think. Morgan Kauffman Publish-
ers, San Francisco CA.

[5] B. Chouiery et al (1998). Thoughts on a practical
theory of reformulation for reasoning about physical
systems. In Symposium on Abstraction, Reformula-
tion and Approximation.

[6] Freuder, E.C. (1978). Synthesizing constraint expres-
sion, Communications of the ACM, 21(11): 958--966.

[7] Ferguson, G., Allen, J. and Miller, B. (1996).
TRAINS-95: Towards a mixed-initiative planning as-
sistant, in Proceedings of the 3rd Conference on AI
Planning Systems.

[8] Horvitz, E. (1999). Principles of mixed-initiative user
interfaces. In Proceedings of Human Factors in
Computing Systems. Pittsburgh, PA, U.S.A., ACM
Press.

[9] Kandogan, E. (2000). Star Coordinates: A Multi-
dimensional Visualization Technique with Uniform
Treatment of Dimensions. In Proceedings of the
IEEE Information Visualization Symposium, Late
Breaking Hot Topics.

[10] Knuth, E.(1975). Estimating the efficiency of back-
track programs, Mathematics of Computation,
29:121--136.

[11] Lalanne, D. (1998). Computer Aided Creativity and
Multi-criteria optimization in Design. Ph.D. Thesis
No. 1879. Swiss Institute of Technology (EPFL),
Lausanne.

[12] Max Metral Yezdi Lashkari and Pattie Maes. (1994).
Collaborative interface agents, In Proceedings of Na-
tional Conference on Artificial Intelligence.

[13] Alan K. Mackworth. (1977). Consistency in net-
works of relations, Artificial Intelligence, 8.

[14] Maes, P. (1994). Agents that reduce work and infor-
mation overload, CACM, 37.

[15] Maes, P., and Schneidermand, B. (1997). Direct Ma-
nipulation vs. Interface Agents: A Debate. Interac-
tions, Vol. IV Number 6, ACM Press.

[16] Melissargos, G. (2000). Interactive Visualization for
Resource Allocation Tasks. Ph.D. Thesis No. 2166.
Swiss Federal Institute of Technology (EPFL),
Lausanne.

[17] Nadel, B. (1988). Tree search and arc consistency in
constraint satisfaction algorithms. In L. Kanal and V.
Kumar, editors, Search in Artificial Intelligence,
pages 287--342. Springer-Verlag.

[18] Nielson, G.M., Foley, T.M., Hamann, B. and Lane,
D.A. (1991). Visualizing and modeling scattered
multivariate data. IEEE Computer Graphics and Ap-
plications, 11(3):47--55, May 1991.

[19] Pareto, V. (1896). Cours d'économie politique,
Technical report, Rouge, Lausanne, Switzerland.

[20] Pu, P. and Faltings, B. (2000). Enriching buyers’
experiences: the SmartClient Approach, in Proceed-
ings of ACM CHI’2000, ACM Press.

[21] Roth, S.F. et al (1996). Visage: A user interface envi-
ronment for exploring information, In Proceedings of
Information Visualization.

[22] Shehory, O. and Kraus, S. (1995). Task allocation via
coalition formation among autonomous agents, In
Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence.

[23] Torrens M., Weigel R. and Faltings B. (1997). Java
Constraint Library: bringing constraint technology on
the Internet using Java Language. In Working Notes
of the Workshop on Constraints and Agents, Techni-
cal report WS-97-05, AAAI-97.

[24] Edward Tsang. (1993). Foundations of Constraint
Satisfaction, In Academic Press.

Denis
nternational Joint Conference on Artificial Intelligence

Figure 1. A landscape design problem.

Figure 2. Kaleidoscope of backtracking search.

Figure 3: Color code of constraints.

Figure 4. Knuth algorithms visualized in Kaleidoscope.

Figure 5. From top to bottom, parameters' order is more

and more optimal in order to accelerate the search.

Figure 6. An over-constrained problem with several conflict

sets.

Figure 7. Pareto visualization.

Figure 8. An inconsistent problem.

Figure 9. The map coloring problem.

Figure 10. a) Lattice b) its interactive form

Figure 11. The balance visualization and a selection solution in relation to solution space.

Figure 12. A futile search scenario. The lattice's visualization can be used in collaboration with the tradeoff view in order to browse

the potential space of solutions.

	Abstract
	Keywords

	INTRODUCTION
	Configuration tasks using constraint satisfaction techniques
	Visual reification of tasks
	Kaleidoscope

	PARETO SPACE FOR 2D TRADEOFF ANALYSIS
	Tradeoff Map

	CONFLICT RESOLUTION LATTICE
	Inconsistent CSP
	Over-constrained problems
	Multiple conflict sets
	Futile search

	EVALUATION
	BACKGROUND AND RELATED WORK
	Hybrid reasoning and mixed initiative systems
	Knowledge crystallization
	Intelligent agents
	Visualization in multivariate spaces

	ACKNOWLEDGEMENT
	CONCLUSION
	REFERENCES
	��

