
Interactive Problem Solving Via Algorithm Visualization

Pearl Pu
Database Lab, Computer Science Department

Swiss Federal Institute of Technology
LBD/DI EPFL

1015 Lausanne, Switzerland
Pearl.pu@epfl.ch

Denis Lalanne*
LIA - CERI, Université d'Avignon et des Pays

de Vaucluse
339 chemin des meinajariès

BP1228, 84911 AVIGNON cedex 9, France
denis.lalanne@lia.univ-avignon.fr

Abstract

COMIND is a tool for conceptual design of industrial
products. It helps designers define and evaluate the initial
design space by using search algorithms to generate sets
of feasible solutions. Two algorithm visualization
techniques, Kaleidoscope and Lattice, and one
visualization of n-dimensional data, MAP, are used to
externalize the machine’s problem solving strategies and
the tradeoffs as a result of using these strategies. After a
short training period, users are able to discover tactics to
explore design space effectively, evaluate new design
solutions, and learn important relationships among
design criteria, search speed, and solution quality. We
thus propose that visualization can serve as a tool for
interactive intelligence, i.e., human-machine
collaboration for solving complex problems.

1. Introduction

In Douglas Adams’ novel “The hitch hiker’s guide to
the galaxy,” the computer Deep Thought was put to work
for 7.5 million years to solve “the ultimate question of
Life the Universe and Everything.” His answer, 42,
rightfully disappointed its designers who had expected a
more comprehensive explanation. Many computer users
face similar situations every day: complex algorithms for
scheduling, configuration and design turn out supposedly
optimal answers without justification. If users could also
gain an understanding of how solutions were obtained,
and why they are the best, they could tune the behavior of
their programs to obtain solutions of much better quality.
Here we consider the case of conceptual design using the
formulation of constraint problem solving and a set of
automatic search methods. We examine the issues of
learning, discovery and control of strategies by novice
users. We focus on three important tasks in conceptual

design: solution search, tradeoff analysis of alternative
solutions, and discovery of new solutions.

Conceptual Design

“Design is not description of what is, it is exploration
of what might be [16].” But the space quickly becomes
large and the set of interacting design criteria very
complex, making it difficult for a designer to effectively
evaluate the different possibilities. Computational
assistance can offload some of the cognitive tasks from
designers so that they can concentrate on the most creative
aspects.

Designers start the definition of a search space for a
new product by first identifying a set of key parameters.
Then they enumerate a list of possible values for each
design parameter. Finally, to put everything together, they
combine all values into a set of coherent and consistent
design alternatives taking into consideration design rules,
customers’ criteria and preferences. Such a design process
has been used not only for conceptual design [17], but
also configuration design [6], land use design [18] and
industrial product design. We employ constraint
satisfaction problem solving (CSP) techniques [23] to
formulate and solve conceptual design problems. CSPs are
known to be NP-complete. Many efficient algorithms
exist, but they are only optimal when the right context is
found. Algorithm visualization is useful in presenting right
opportunities to users in order for them to select the best
strategy for a given problem.

2. Related works

Algorithm visualization is about presenting the
workings of complex algorithms in visual forms, often
with animation [20]. The benefit is to offer users with a
significantly fast and intuitive understanding of algorithm

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

behavior by taking advantage of the high bandwidth
communication channel between the display, the human
fovea and perceptual inference [3]. Research work in this
area has given important results in algorithm learning [1],
software maintenance [8], designing and analyzing
concurrent algorithms [13], and software engineering.

We use algorithm visualization not only to show the
workings of the algorithms, but also to externalize the
machine’s strategies and the tradeoffs of these strategies.
Thus our system helps users discover problem solving
tactics and become an expert user of those tactics.

The use of interactive visualization tools to support
design is not new. Attribute and influence explorers
[21,22] use multiple linked interactive representations to
extrapolate dependencies among design attributes which
are often governed by a set of abstract mathematical
models. Thus untrained users can set a range of values for
a design criterion such as cost and ask the system to give
ranges of admissible values for other design attributes
such as material used and dimensions of the designed
pieces. Such interval propagation techniques are useful for
engineering design where parameters are continuous and
mathematical models that describe their behavior are
difficult to interpret for normal users. However, in
conceptual design where parameters are both discrete and
continuous, combinatorial search methods are needed to
generate admissible solutions. In doing so, the internal
search state is important and must incorporate users’
strategies in choosing the right subspace.

Meanwhile in the information visualization domain,
there is increasingly a strong interest in developing
methods that support human and computer interaction at
the problem solving level. Several examples can be found
in document retrieval [11], complex information
visualization [4], worldwide web navigation [9], and large
data base exploration [10]. According to Duce [7],
visualization tools can be generally described as
consisting of three components: data access, mapping and
rendering. But in order to support visualization of a much
larger quantity of data, such three-component architecture
is not sufficient, as pointed out by Campo et al [2]. Our
work on algorithm visualization proposes to abstract
problem solving knowledge using algorithm visualization
to allow humans to explore in a much larger information
space.

Our paper is organized as follows. We first describe
constraint satisfaction problem solving in the conceptual
design framework; we then introduce visualization
methods for three important steps of conceptual design:
design space definition, solution tradeoff analysis, and
design conflict resolution; finally, we describe the user
evaluation of our system followed by our conclusion.

3. Constraint satisfaction and search

A CSP formulation of conceptual design consists of a
set of variables, a domain of values for each of these
variables, and constraints on the values. A solution to a
CSP is an assignment of values from its domain to all
variables so that none of the constraints is violated.
Consider a simplified watch design (see [14] for more
realistic examples, such as parallel robot design, land use
configuration, and industrial product design). The CSP
consists of design criteria such as beauty,

complexity, implementation, and usability.
Each criterion takes values ranging from 1(the least) to 5
(the most). It is more suitable to use discrete values such
as low, medium, high, and maximum. But designers adopt
scalar values as shortcuts. Criterion beauty is the
aesthetic appearance; complexity is the number of
pieces needed for the watch; implementation is how
easy it is to manufacture the final product; and
usability is how easy it is to put on the watch and
manipulate the settings. Designers can now describe
solution spaces in terms of what should and what should
not be included in the final solutions using rules as
follows:

C1 (beauty > 3) -> (implementation > 3)
C2 (complexity > 3) -> (implementation > 3)
C3 (usability > 3) <-> (complexity < 5)
C4 usability == 4
C5 complexity == 2

Thus the more beautiful the watch is, the more
difficult it is to implement (C1). The more complex it is,
the more difficult it is to implement (C2). The easier it is
to use the watch, the less complex it should be (C3). The
watch currently being designed should have usability
value 4 (C4) and complexity value 2 (C5).

Figure 1: Kaleidoscope showing search result

3.1. Backtrack search

Backtracking is the simplest way to solve a CSP
problem. It systematically instantiates one value at a time
from each variable domain and checks for constraint
violation. When it succeeds in instantiating all required
variables, then the enumeration becomes a solution. All
admissible solutions can be generated automatically. The
following list shows the trace of the backtracking
algorithm:

• beauty = 1 complexity = 1 search fail by C5
• beauty = 1 complexity = 2 implementation = 1

usability = 1 search fail by C4
• beauty = 1 complexity = 2 implementation = 1

usability = 2 fail by C4 …..
We call each row in the trace a valuation.

Unsuccessful valuations are immediately discarded and
the algorithm goes back to the last variable for which an
alternative value remains to be tried. It continues in this
way until all value combinations have been examined.

Figure 2: Progressive snapshots of Kaleidoscope. There are 5 solutions in the space of 4 5 possibilities

Figure 3: Visualization of a random search based on Knuth algorithm

Figure 1, which we call Kaleidoscope, is the
visualization tool animating the internal search state using
color patterns. These patterns change as users modify
design parameters, similar to kaleidoscope’s curious
changing patterns as one manipulates the device.
Kaleidoscope shows how solutions are obtained. The
entire search space is the Kaleidoscope disk which is
divided into concentric rings, one for each variable of a
CSP problem. The drawing of the wedges starts from the
right-hand center line and sweeps the disk in counter-
clock-wise direction as shown in figure 2. Each value
assignment is visually displayed by a wedge of colors in
the disk. Successful assignment is colored in black while
unsuccessful assignment is drawn with the corresponding
color of the constraint. E.g., assignment (x1=1 x2=1 and
x3=1 in figure 1) gives the first wedge in black.
Assignment (x1=1 x2=1 and x3=2) results in the first
portion of the wedge in black and the second portion in
the color that corresponds to x1>=x3. Thus a thin black
line reaching beyond the outer most circle represents a
solution. Figure 2 are successive snapshots of the
Kaleidoscope for the watch design example. Black lines
represent solutions while color bands show forbidden
spaces blocked by the relative constraints. Kaleidoscope
can scale well to a CSP of any size. Similar to the circular

forms used in [5], we also use a fisheye view technique to
visualize local search spaces when a CSP becomes too
large. In contrast to [5], our visual display represents a
reasoning process, rather than an aggregation of
hierarchically organized data.

A phenomenon, called thrashing [15], can occur
when search repeatedly fails on a certain combination of
values. In Kaleidoscope, the disk has a large slice chopped
off by the same color (top part in figure 1). Thrashing
behavior signals to a designer that certain combinations of
values should be discarded to avoid future valuation. But
backtracking is not intelligent enough to provide such
preprocessing.

3.2. Random search by Knuth

Our example only used 4 variables, each having a
range of 5 values. Unfortunately most CSP problems
grow to the size of 20 variables with the number of values
ranging in the 10 to 50s, thus too big for backtracking
search algorithms to find answers quickly. Our second
CSP algorithm is a Monte Carlo search method by Knuth
[12], which can be used to explore the search space
efficiently although randomly. Figure 3 is a set of
snapshots showing the progress of using Knuth algorithm

for a slightly different design problem, which contains
more solutions as visualized by the black lines. As
depicted in the figure, the algorithm explores different
areas of the circle randomly. However, by the first
snapshot, the algorithm already obtained two solutions.

Figure 4: From top to bottom, parameters' order
is more optimal in order to accelerate the search

3.3. Search with variable reordering

The third CSP algorithm is called variable
reordering. It examines the constraints and picks those that
are most restricting. The order of search then starts with
those most restricting ones. Consider the watch design
example again. The new order is usability,
complexity, implementation, and beauty.
Figure 4 compares the visualization of the same CSP
problem by two different algorithms, simple backtracking
(top) and variable reordering (bottom). In the second case,
there are significantly fewer numbers of unsuccessful
valuations, thus making the algorithm much faster to
terminate.

3.4. What can users discover in Kaleidoscope?

The color patterns (black lines and color elements)
convey important abstractions which guide humans in
setting up search strategies. When search space is large
and solutions are scarce (called futile space), Knuth’s
method is most appropriate. When a small set of variables
have strong constraints, variable ordering offers
significant advantages. For simple problems, backtracking
is often sufficient. Not only should users become aware of
the different strategies used by the algorithms, they also
have to know enough to switch from one algorithm to

another depending on context. The program allows
humans to stop the current search and change the
subspaces if results so far are not satisfactory. For
example, if the search process has been blocked by the
same color element (thus the same constraint), then
thrashing is obviously the cause and we can detect easily
the constraint responsible for the thrashing by looking up
the color coding. Knuth algorithm is a good cure for
thrashing behavior. Kaleidoscope also contains two visual
structures that are easily learned and appreciated by users:
the spaced out black lines (i.e., solutions) represent
solutions of diverse characteristics while concentrated
black lines represent more homogeneous solutions.

We can also quickly observe if the search space is
abundant or futile by noticing whether full-length black
lines are numerous or none has existed so far. In the case
of a futile search space, we use color patterns to diagnose
the constraints responsible for the lack of solutions.

To summarize, we list a set of strategic points that
can help users perform efficient combinatorial search with
the help of Kaleidoscope:
• Does thrashing occur and with what type of

frequency?
• Are solutions diversified or concentrated in clusters?
• Are solutions abundant or futile?
• If variables are reordered, does solution generation

become faster?

Figure 5: MAP in 2D Pareto space

4. Map and N-dimensional tradeoff

Designers can become bewildered by too many
choices. We provide them with visualization assistance to
evaluate the solution space in order for them to make
intelligent decisions. Users first define a set of criteria, for
instance the quality of material used for a product and its
manufacturing cost. For two-criteria tradeoff analyses,
solutions are mapped to a 2D space where x and y
coordinates represent the criteria values and each solution
is represented by a node.

Figure 5 shows the solution space of a city planning
design problem with criteria on noise factor
(quietness) and cost (cheapness). The node which
performs the best on both criteria is called the dominant
solution. The nodes lying on the outer rim of the solution
space are called non-dominant nodes (darker in figure 5).
In most cases a solution map does not contain a dominant
node. Thus, tradeoff analysis is necessary in order for
users to choose a winner based on their dynamic
preference measure. For example, if they prefer to
optimize more on noise factor and less on cost, then a
point with the highest value on y will be the current
winner. While this visualization, called Pareto space [19],
is feasible for up to three criteria, many real-world
problems call for tradeoff analysis in much higher
dimensions.

Figure 6: The balance visualization for
performing tradeoff analysis in n-dimension.

Our new visualization design, MAP (Multiple
Attribute Pareto), overcomes this limit by combining
color patterns, visual structures and interactivity. Figure 6
shows the new design where the x position represents the
center of mass of the N criteria values which make up the
bars on the bottom, and y position represents the sum of
all criteria values. The solution that performs the best
overall-speaking is the node with the largest y value.
While y represents an absolute performance value, x

shows the distribution of the underlying criteria much like
a balance. For example, nodes located above the view line
represent solutions having relatively higher values on view
compared to other criteria. When tradeoff analysis is
required, users can slide to the left or right from the center
line depending on his current preferences. There are cases
where solutions are pulled by multiple criteria values, but
individually these criteria are not distinguishable. In this
case interactivity solves this problem by allowing users to
click on the solution nodes and examine the details.
Another method is to change interactively criteria's weight
so that ambiguities disappear. For example, increasing the
quietness' weight would pull the optimal solutions toward
the right side of the visualization.

The answers that can be obtained from MAP are:
• Is there a dominant solution?
• Are there numerous or few non-dominant

solutions?
• Are solutions clustered around a certain area, or

more spread out in MAP?

Figure 7: The map coloring problem in a Lattice
shown in the upper-right corner.

5. Enemy of design: null solution sets

The opposite of an abundant solution space is the
designers’ enemy: null solution space. A design problem
can become over-constrained very quickly due to the
number of variables explored and constraints defined. An
over-constrained problem contains one or several sets of
constraints defined in such a way that no solution could
exist. The conflict elicitation algorithms described in [14]
diagnose over-constrained problems by listing a set of
constraints which cannot be satisfied simultaneously, or a
set of sets of constraints of which at least one set has to be
“repaired” in order to give any solutions.

As a simple example of an over-constrained problem,
consider coloring 3 mutually adjacent countries (aa, bb,
and cc) with 2 colors such that all neighboring countries
have a different color. There are 3 constraints which
cannot be satisfied at the same time: aa != bb, aa != cc,
and bb != cc, where != means that the colors of the
countries are not the same. Further observe that if a CSP

contains any over-constrained CSPs, it will not have any
solutions either. We define the following notions:
• a constraint set is a conflict set if it does not allow any

partial solutions
• a constraint set is the minimal conflict set if no

smaller set is a conflict set
• a constraint set cannot allow any solutions if and only

if it contains at least one minimal conflict set

Figure 8: A Lattice and its interactive form

5.1. Interactive lattice

Conflict sets can be analyzed in a visual interactive
lattice (shown in the upper right corner in figure 7). Each
square is a set of constraints. Sets are further ordered from
the top to the bottom by their sizes with the sets on the
top-most row being the smallest. When a square is black,
it is a minimal conflict set. When it is dark blue, the set
blocks a certain number of solutions. The darker it is, the
more potential solutions it blocks. The question is if there
are multiple blocking sets, as is the case with most
problems, then which one should the user focus on first?
The sets lying on the top row are smaller than those
underneath. The smaller the set is, the easier it is for users
to modify the constraints. The general heuristic is thus to
find the smallest (top most) and darkest blue set of
constraints to relax.

The square on the bottom of the lattice shown in
figure 7 is the minimal conflict set of the map coloring
problem. By clicking on that set, three subsets are
highlighted on the top. Removing the main conflict will
give 8 solutions, while removing or relaxing each of the
subsets will give 2 solutions, as indicated by the numbers
in the small windows. This means that we either allow
adjacent countries to have the same color (i.e., removing
the constraint !=) or we remove or relax each of the
subsets. Since it is not desirable to color neighboring
countries with the same color, we opt for relaxing the
subsets by adding another color to one of the domains,
thus obtaining two solutions. The final map coloring
problem is the same as before except there are three color
choices for one of the countries.

While normal lattices contain lines to relate sets to
their sub or supersets, our lattice is interactive and only
displays all subsets when a set is clicked on. In figure 8b,
one square becomes white when clicked, so are all subsets
highlighted in white. This way we can display a large

lattice without the risk of having lines crisscrossing and
thus causing visual overloading.

Figure 9: lattice with multiple conflict sets shown
as black squares in c)

5.2. Multiple minimal conflict sets

Some problems have several minimal conflict sets as
indicated by the black squares on the left part of figure 9.
This is the same watch design but with different constraint
sets (the constraint network is visualized in Fig 9a):

• (beauty > 3) -> (implementation >3)
• (complexity > 3) -> (implementation > 3)
• (usability > 3) <-> (complexity < 5)
• usability == 4
• complexity == 5
• beauty == 4
• implementation ==1

The black squares in figure 9c correspond to all
minimal conflict sets. At least one of the minimal conflict
sets has to be relaxed to generate any solutions. Further, if
a square on that row is clicked on, Lattice shows the
subsets (see lattices on figure 9d). The subsets define parts
of the original problems for which solutions exist. This
information guides the users to choose the subsets to keep.

For example, clicking on the black square on the first
lattice in figure 9d, two subsets are shown. Thus either we
keep the first subset or the second. Since the second
subset is a larger set, keeping it automatically allows us to
keep the largest original problem. By visualizing all
conflicts and largest consistent subsets, we offer designers
the choice of what to throw away and what to keep, which
is the most difficult decision in design and requires
experience, gut feeling and dynamic criteria from the
designers.

To summarize this section on over-constrained
problems, we list the type of queries representing different
reasoning tasks and the corresponding results we can get
from the lattice visualization:
• Is the CSP problem over-constrained: a single or

several black squares in a lattice
• Which of the conflict sets to relax: either use the side

window to select the most optimal one, or look up in
the constraint definition to find the most appropriate
one

• How potential solutions perform in MAP if
corresponding constraints are removed?

6. Putting it all together

Figure 10 is a set of design parameters for a pen
which consists of the following variables and domains:
capwidth {3 3.5 4}, headsupwidth {2 2.5 3 3.5},
headinfwidth {1.5 2 2.5}, bodywidth {2.5 3 3.5},
tubewidth {2 2.5 3}, inkwidth {1 1.5 2},
buttonwidth {2 2.5 3}.

We first used simple backtracking in Kaleidoscope
and discovered that there was only one successful
valuation. A quick application of the Knuth algorithm
gave the same answer; the CSP was futile. The lattice,
shown in the lower right corner of figure 10, gave three

dark squares indicating main conflicts responsible for the
lack of solutions. The two squares on the top row
represent constraints 9 and 7. If they are eliminated, there
will be 26 + 10 new solutions. The square on the second
row is the combination of constraint 9 and 7. That is, if
these two constraints are eliminated at the same time,
there will be 184 solutions liberated. Clicking on each
square, MAP gives visualization of potential solutions.
The advantage of this coupling is to avoid doing the entire
search process unless the users are certain about the
quality of solutions that they will obtain. The top squares
seem promising, because they are small and can
potentially yield 26 or 10 new solutions respectively (+
the one already found). Further they rank fairly well in the
tradeoff analysis. It is thus rational to relax the constraint
7 (bodywidth > buttonwidth). The design choices
are thus re-evaluated with this new consideration. Instead
of having the button inset in the body, we will screw it
directly to the body. The button width no longer has to be
smaller than the body width. The two widths are now
equal. The constraint 7 is re-written: bodywidth ==
buttonwidth. In order to find new solutions, the
system just re-evaluates the new constraint over the 10
solutions that the previous constraint was forbidding plus
the only one that was initially found. COMIND returns 7
solutions among those 11. The largest pen among the 7
returned was the one that we finally selected because it is
optimal on the tradeoff visualization (figure 10). This
small scenario shows how algorithm visualization can
influence the user in his design strategies. For the last few
years, COMIND has been used for several design
problems (parallel robot design, micro-engineering
products, kitchen arrangement, etc.). It helped discover
new concepts and different aspects of existing designs,
and has been particularly appreciated as a reflective tool.

Figure 10: A design of a pen. The Lattice's visualization in the lower right corner can be used in
collaboration with the tradeoff view in order to browse the potential space of solutions.

7. Evaluation

We asked 6 subjects to solve two real design
problems in COMIND (figure 11), one being under-
constrained, and one over-constrained. Each subject was
asked to note down their initial problem solving strategies.
After they have used COMIND, they were to compare
their strategies with those of the machine’s. Subjects were
all students in our university, either in micro-engineering
or computer science. We summarize the results as follows
(for more detail, please see [14]): 5 out 6 used the Knuth
algorithm to first find out if the problem yielded solutions
or was over-constrained. Most of them with a brief
explanation of MAP and Lattice could use it as a tool to

navigate in the constraint editor to modify the problem
and later obtain interesting and optimal solutions. All 6
used the interactive search feature in Kaleidoscope while
search was underway and became aware of the role of
variable order in search speed after being told the color
coding. 4 out 6 solved the two design problems within 20
minutes. In general, we are satisfied with the learning
speed of our subjects and the speed of their mastering of
the set of search heuristics offered by the machine. They
were able to distribute computationally intensive tasks to
the various algorithms, and concentrate on finding
innovative design solutions or relaxing design constraints
to obtain compromises.

Figure 11: The COMIND system offers a set of computational tools (located on the far left) to define,
solve, repair and visualize design problems. Active assistants are located on the lower left corner,
while inactive ones are on the left panel. The next column presents the history of the working space.
Any tool can be used at any time; there is no predefined order. The main working area on the right
provides visualizations of each of the active computational assistants (three at the moment: problem
definition, solve, and conflict elicitation).

8. Conclusion

We presented three visualization techniques to help
designers explore design spaces, evaluate and discover
new design solutions. Our “interactive intelligence”
paradigm is in contrast to many automatic methods that
keep themselves as intelligent black boxes, often
compounding untrained users’ frustration of the problem
with further misery of the miscomprehension of the
results, the Deep Thought analogy. Kaleidoscope, MAP,
and Lattice are some of the initial steps towards applying
interactive visualization to conceptual design problems
where human and machine must collaborate to solve
problems that are difficult for either of them. More
generalization of our framework is underway for resource
allocation and travel planning since both activities use the
same CSP formalism. We believe that this type of user-
involved intelligent systems are engaging, and that
visualization is a good communication medium.

9. References

1. Brown, M.H., and Sedgewick, R. A system for algorithm
animation. IEEE Software, 2(1): 28-39, January 1985.

2. Campo, M., Orosco, R., and Teyseyre, A. Automatic
abstraction management in information visualization
systems, In Proceedings of the Visualization Conference,
1997.

3. Card, S. Information Visualization. In Tutorial notes,
CHI’99.

4. Chalmers, M. Design perspectives in visualising complex
information, in Proc 3rd IFIP Visual Databases
Conference (VDB.3), 1995.

5. Chuah, M. Dynamic Aggregation with Circular Visual
Designs. Proceedings of the IEEE Symposium on
Information Visualization (InfoVis '98), Triangle Park, NC,
October, 1998.

6. Darr, T., Klein, M., and McGuinness, D. Configuration
Desing, Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing, 12(4), 1998.

7. Duce, D.A. Visualization, In Proceedings of the
Visualization '93 conference, 1993.

8. Eick, S.G. Maintenance of Large Systems, in Software
Visualization, Stasko et al (eds), MIT Press, 1999.

9. Gershon, N. Moving happily through the world wide web,
IEEE Computer Graphics and Applications, 16(2):72--75,
March 1996.

10. Goldstein, J., and Roth, S.F. Using aggregation and
dynamic queries for exploring large data sets, In
Proceedings of the Conference on Human Factors in
Computing Systems (SIGCHI '94), pages 23--29, 1994.

11. Hearst, M.A. Tilebars: Visualization of term distribution
information in full text information access, in Proceedings
of the Conference on Human Factors in Computing
Systems (CHI'95). ACM Press, May 1995.

12. Knuth, E. Estimating the efficiency of backtrack programs,
Mathematics of Computation, 29:121--136, 1975.

13. Kraemer, E., and Stask, J.T. Creating an Accurate Portrayal
of Concurrent Executions, IEEE Concurrency, 6(1), pp. 36-
46, January /mar 1998.

14. Lalanne, D. Computer aided creativity and multicriteria
optimization in Design, Ph.D. thesis (thèse no.1879), Swiss
Institute of Technology Lausanne, 1998. Also appeared in
doctoral consortium, CHI’97.

15. Mackworth, A.K. Consistency in networks of relations,
Artificial Intelligence, 8, 1977.

16. Mitchell, W. Introduction: A new agenda for computer-
aided design in the electronic studio. In Mitchell,
MaCollough and Purcell (eds), The Electronic Design
Studio. MIT Press, 1990.

17. Mittal, S., and Frayman, F. Towards a Generic Model of
Configuraton Tasks, in Proceedings of the International
Joint Conference on Artificial Intelligence, pp.1395-1401,
Morgan Kaufmann, August 1989.

18. Navinchandra, D. Exploration and Innovation in Design.
Springer-Verlag, New York Inc., 1991.

19. Pareto, V. Cours d'économie politique, Technical report,
Rouge, Lausanne, Switzerland, 1896.

20. Stasko, J.T., Domingue, J.B., Brown, M.H., and Price, B.A.
(eds), Software Visualization, MIT Press, 1999.

21. Tweedie, L.A. , Spence R., Williams D., and Bhogal R. The
Attribute Explorer, in Video Proceedings CHI'94 Boston,
April 24th - 28th , ACM Press 1994

22. Tweedie, L.A., Spence, R., Dawkes, H., and Su, H. The
Influence Explorer -- a Tool for Design. In Proceedings of
ACM CHI 96 Conference on Human Factors in Computing
Systems, VIDEOS: Visualization, Vol. 2, pp. 390-391,
1996.

23. Tsang, E. Foundations of Constraint Satisfaction, In
Academic Press, 1993.

	Interactive Problem Solving Via Algorithm Visualization
	Conceptual Design

