
IconoNET: a Tool for Automated
Bandwidth Allocation Planning

C. Frei, B. Faltings
Artificial Intelligence Laboratory
Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne
Switzerland
{Christian.Frei, Boi.Faltings}@epfl.ch

G. Melissargos, P. Pu
Research group of ergonomics of intelligent systems
ISR/DMT
Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne
Switzerland
{George.Melissargos, Pearl.Pu}@epfl.ch

Abstract
Communication networks are expected to offer a wide range of services to an
increasingly large number of users, with a diverse range of quality of service. This
calls for efficient control and management of these networks. In this paper, we
address the problem of quality-of-service routing, more specifically the planning of
bandwidth allocation to communication demands. Shortest path routing is the
traditional technique applied to this problem. However, this can lead to poor
network utilization and even congestion. We show how an abstraction technique
combined with systematic search algorithms and heuristics derived from Artificial
Intelligence make it possible to solve this problem more efficiently and in much
tighter networks, in terms of bandwidth usage.

Keywords
Quality of Service routing, constraint-based routing, resource allocation planning,
abstraction, constraint satisfaction problem.

1 INTRODUCTION

The communication networks of the next millennium are expected to offer a wide
range of services to an increasingly large number of users, with a diverse range of
Quality of Service (QoS) requirements. This calls for efficient control and
management of these high-speed networks. A central problem is the automatic
routing of traffic through the network. Routing must be a very fast process, in order

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to guarantee customer satisfaction. Currently, shortest path routing is most often
used to route traffic across a network. Although this ensures the best possible route
for each particular demand, it can lead to ineffective use of the global network and
even congestion, especially in highly loaded networks.

From the routing point of view, the key resource to manage in networks is
bandwidth. Therefore, in order to make better use of available network resources,
there is a need for planning the bandwidth allocation to communication demands, in
order to set up routing tables (or any other route selection criterion) more
purposefully. This can be achieved by the use of global information, including not
only the available links capacities but also the expected traffic profile, in an off-line
manner. The traffic profile may be given, as when setting up virtual private
networks in an ATM network of a provider, or estimated by objective traffic
measurements (which almost every network operator carries out).

In this paper, we introduce the techniques behind an innovative tool we
developed, IconoNET (Figure 1). The tool allows modeling a network and
demands, and provides decision aids and automatic functions for allocating these
demands to network resources. The basic problem IconoNET solves is resource
allocation in networks (RAIN):

Given a network composed of nodes and bidirectional links, each link
with a given resource capacity, and a set of communication demands to
allocate, each demand defined by a triple: (source node, destination node,
requested bandwidth)

Find one route for each demand so that the bandwidth requirements of
the demands are satisfied within the resource capacities of the links.

It is important to note that because of technological limitations (for ATM
typically) and/or performance reasons, it is impossible to divide demands among
multiple routes. However, there may be several demands between same endpoints.
With this restriction, the RAIN problem is NP-hard in the number of demands.
When demands are subject to multiple additive or multiplicative quality of service
(QoS) criteria, then Wang and Crowcroft [1] have shown that the allocation of
every single demand is NP-hard by itself. This creates a new situation for the
networking community, as traditional routing algorithms such as shortest paths do
not perform very well on this problem.

The RAIN problem occurs as a basic problem in a large variety of network
performance management settings. Most obvious is its application in routing, but it
is also a key component of network dimensioning, designing network topologies,
and analyzing robustness to link and node faults. However, it has to be embedded
as a decision aid and be highly efficient to be useful for such tasks. IconoNET uses
a novel abstraction scheme, which allows the RAIN problem to be solved more
efficiently than traditional k-shortest path methods.

IconoNET uses techniques of constraint programming to solve the allocation
problem. With respect to other optimization techniques, constraint programming
allows us to represent arbitrary constraints on QoS or routing. This makes possible
for users to interact with the allocation procedure without having to understand



abstract representations. For example, when allocation fails it is possible to provide
explanations of where network capacity is insufficient. Graphical representations
allow rapid understanding of bottlenecks of problems with robustness.

Figure 1: The graphical user interface of IconoNET.

Constraint satisfaction [2] is a technique, which has been shown to work well
for solving certain NP-hard problems. A Constraint Satisfaction Problem (CSP) is
defined by a triple (X, D, C), where X = {x1,, ..., xn} is a set of variables, D = {D1,,
..., Dn} a set of finite domains associated with the variables, and C = {C1,, ..., Cm} a
set of constraints. The domain of a variable is the set of all values that can be
assigned to that variable. A constraint between variables restricts the combinations
of values that can be assigned to those variables. Solving a CSP amounts to finding
a value for each variable so that all constraints are satisfied. This may be done with
a backtracking algorithm.

Indeed, the RAIN problem is easily formulated as a CSP in the following
way: variables are demands, the domain of each variable is the set of all routes
between the endpoints of the demand, and constraints on each link must ensure that
the resource capacity is not exceeded by the demands routed through it. A solution
is a set of routes, one for each demand, respecting the capacities of the links.



However, this formulation presents severe complexity problems. It is too expensive
to compute, represent, and store the domains of the variables, i.e., all the routes that
join the endpoints of each demand. Suppose the network is simple but complete
with n nodes (this is not even the worst case, since a communication network is a
multi-graph: it allows multiple links between same endpoints). A route is a simple
path; its length in number of links is therefore bounded by n-1. Since a route of
length j has j-1 intermediate (and distinct) nodes, the number of routes of length j is
(n-2)!/(n-j-1)!. The total number of routes between two nodes is therefore equal to

�
i=1

nB1

�n�2�! ��n�i�1�! . Storing all routes between a pair of nodes would

require exponential space. For instance, in a complete graph with 10 nodes, there
are 69 281 routes between any pair of nodes. Since methods such as forward
checking or dynamic variable ordering require explicit representation of domains,
they would be very inefficient on a problem of realistic size.

In this paper, we show how abstractions of the network, called Blocking
Islands, create a compact representation of the problem which allows the
application of well-known CSP techniques such as forward checking, variable and
value ordering to the RAIN problem, with manageable complexity.

2 RELATED WORK

Surprisingly, there has been little published research on the RAIN problem.
Currently, most network providers use some kind of best effort algorithm, without
any backtracking due to the complexity of the problem: given an order of the
demands, each demand is assigned the shortest possible route supporting it, or just
skipped if there is no such route. Operation Research techniques are also applied to
the RAIN problem. Most often, a fixed number of shortest paths for each demand
are precomputed, and the problem is solved using linear programming with very
large constraint systems of equations [3]. However, because only a given number of
routes are considered, these techniques are not guaranteed to find a solution if one
exists.

Mann and Smith [4] search for routing strategies that attempt to ensure that
no link is over-utilized (hard constraint) and, if possible, that all links are evenly
loaded (below a fixed target utilization), for the predicted traffic profile. Finally,
the routing assignment attempts to minimize the communication costs. Genetic
algorithms and simulated annealing approaches were used to develop such
strategies. However, their methods do not apply well, if not at all, to highly loaded
networks, mainly because the multi-criteria objective function they use cannot
ensure that the hard constraint, i.e., no link is over-utilized, is respected in every
case. Moreover, we think that load balancing should be viewed in terms of
bandwidth connectivity and not the even distribution of the load among the links,
especially in highly loaded networks, since high bandwidth connectivity allows to
route additional demands easier, without having to recompute a complete solution. 

To our knowledge, the closest published work to ours is the CANPC
framework [5]. It is based on the successive allocations of shortest routes to the



demands, without any backtracking when an assignment fails. They propose several
heuristics to order the demands (such as bandwidth ordering) to provide better
solutions, i.e., to route more demands. They are currently developing an
optimization tool that takes the partial solution as input to try to allocate all
demands. However, preliminary results show that the methods we propose clearly
outperform theirs.

3 THE BLOCKING ISLAND PARADIGM

[6] introduces a clustering scheme based on Blocking Islands (BI), which can be
used to represent bandwidth availability at different levels of abstraction, as a basis
for distributed problem solving. A β-blocking island (β-BI) for a node x is the set of
all nodes of the network that can be reached from x using links with at least β
available resources, including x. Figure 2 (d) shows all 64K-BIs for a network. Note
that some links inside a β-BI, i.e., the links that have both endpoints in the β-BI,
may have less than β available resources. In such a case, it simply means that there
is another route with β available resources between the link’s endpoints. As a
matter of fact, link (a,b) has both endpoints in 64K-BI N1 but has less than 64K
available resources. However, there are at least 64K available resources along route
{(a,c), (c,b)}.

β-BIs have some fundamental properties. Given any resource requirement,
blocking islands partition the network into equivalence classes of nodes. The BIs
are unique, and identify global bottlenecks, that is, inter-blocking island links. If
inter-blocking island links are links with low remaining resources, as some links
inside blocking islands may be, inter-blocking island links are links for which there
is no alternative route with the desired resource requirement. Moreover, BIs
highlight the existence and location of routes at a given bandwidth level:

Proposition 1 (Route Existence Property): There is at least one route satisfying
the resource requirement of an unallocated demand du=(x, y, βu) if and only if its
endpoints x and y are in the same βu-BI. Furthermore, all links that could form part
of such a route lie inside this blocking island.

Blocking islands are used to build the β-blocking island graph (β-BIG), a
simple graph representing an abstract view of the available resources: each β-BI is
clustered into a single node and there is an abstract link between two of these nodes
if there is a link in the network joining them. Figure 2 (c) is the 64-BIG of the
network of Figure 2 (d). An abstract link between two BIs clusters all links that join
the two BIs, and the abstract link’s available resources is equal to the maximum of
the available resources of the links it clusters (since a demand can only be allocated
over one route). These abstract links denote the critical links, since their available
resources do not suffice to support a demand requiring β resources.



Figure 2: The blocking island hierarchy for resource requirements {64K, 56K,
16K}. The weights on the links are their available bandwidth. Abstract nodes’
description includes only their node children and network node children in brackets.
Link children (of BIs and abstract links) are omitted for more clarity, and the 0-BI
is not displayed since equal to N7. (a) the 16-BIG. (b) the 56K-BIG. (c) the 64K-
BIG. (d) the network.

β 
in

cr
ea

si
n

g

d) Network

(c) 64K-BIG

b) 56K-BIG

N7
N5 

{N1, N2} 
[a,b,c,d,e,f,g]

N6 

{N3, N4} 
[i,j,k]

28

N7 

{N5, N6} 
[a,b,c,d,e,f,g,i,j,k]

a) 16K-BIG

a

b c

d e f g

hi

j k

96

112

4

128

68 60 118

976

10

22

16 58

256

28

N4

N2N1

N3

N6

N5

N1 

{a,b,c,d,e}

N3 

{i}

N2 

{f,g,h}

N4 

{j,k}

60

10

58

28



In order to identify bottlenecks for different βs, e.g., for typical possible
bandwidth requirements, we build a recursive decomposition of BIGs in decreasing
order of the requirements: β1 > β2 > ... > β b. This layered structure of BIGs is a
Blocking Island Hierarchy (BIH). The lowest level of the blocking island hierarchy
is the β1-BIG of the network graph. The second layer is then the β2-BIG of the first
level, i.e., β1-BIG, the third layer the β3-BIG of the second, and so on. On top of the
hierarchy there is a 0-BIG abstracting the smallest resource requirement βb. The
abstract graph of this top layer is reduced to a single abstract node (the 0-BI), since
the network graph is supposed connected. Figure 2 shows such a BIH for resource
requirements {64K, 56K, 16K}. The graphical representation shows that each BIG
is an abstraction of the BIG at the level just below (the next biggest resource
requirement), and therefore for all lower layers (all larger resource requirements).

A BIH can not only be viewed as a layered structure of β-BIGs, but also as an
abstraction tree when considering the father-child relations. In the abstraction tree,
the leaves are network elements (nodes and links), the intermediate vertices either
abstract nodes or abstract links and the root vertex the 0-BI of the top level in the
corresponding BIH. Figure 3 is the abstraction tree of Figure 2.

Figure 3: The abstraction tree of the BIH of Figure 2 (links are omitted for clarity).

The blocking island hierarchy summarizes the available bandwidth given the
currently allocated demands at a time t. As demands are allocated or deallocated,
available bandwidth changes on the communication links and the BIH may need to
be modified to reflect this. The changes can be carried out incrementally, only
affecting the blocking islands which participate in the demand which is being
allocated or deallocated:

• When a new demand is allocated along a particular route, the bandwidth of
each link decreases. If it falls below the bandwidth β of its blocking island,
and no alternative route exists with available resources ≥ β within the BI, it

a b c d e f g h i j k

N716

N6N556

N80

N4N2N164 N3



causes a split of the BI into two parts. Furthermore, this split must be
propagated downwards to all BI in the hierarchy with a higher β. 

• When a demand is deallocated, bandwidth across each link increases. If it
thus becomes higher than the β of the next higher level in the hierarchy, it
will cause two disjoint blocking islands to merge into a single one. This
merge must be propagated upwards to all levels with a lower β.

[6] presents in more details how the incremental adaptation of a BIH is
performed, not only when new connections are established or existing ones
deallocated, but also in case of link failure, link properties alteration or even
network topology changes (such as link or node addition/removal).

The β-BI S for a given node x of a network graph can be obtained by a simple
greedy algorithm, with a linear complexity of O(m), where m is the number of
links. The construction of a β-BIG is straightforward from its definition and is also
linear in O(m). A BIH for a set of constant resource requirements ordered
decreasingly is easily obtained by recursive calls to the BIG computation algorithm.
Its complexity is bound by O(bm), where b is the number of different resource
requirements. The adaptation of a BIH when demands are allocated or deallocated
can be carried out by O(bm) algorithms. Therefore, since the number of possible
bandwidth requirements (b) is constant, all BI algorithms are linear in the number
of links of the network.

4 AUTOMATICALLY SOLVING A RAIN PROBLEM

Solving a RAIN problem amounts to solving the CSP introduced in Section 1. This
can be done using a backtracking algorithm with forward checking (FC) [2]. Its
basic operation is to pick one variable (demand) at a time, assign it a value (route)
of its domain that is compatible with the values of all instantiated variables so far,
and propagate the effect of this assignment (using the constraints) to the future
variables by removing any inconsistent values from their domain. If the domain of
a future variable becomes empty, the current assignment is undone, the previous
state of the domains is restored, and an alternative assignment, when available, is
tried. If all possible instantiations fail, backtracking to the previous past variable
occurs. FC proceeds in this fashion until a complete solution is found or all possible
assignments have been tried unsuccessfully, in which case there is no solution to
the problem.

The formulation of the CSP presents severe complexity problems (see Section
1). Blocking islands provide an abstraction of the domain of each demand, since
any route satisfying a demand lies within the β-BI of its endpoints, where β is the
resource requirement of the demand (Proposition 1). In fact, there is a mapping
between each route that can be assigned to a demand and the BIH: a route can been
seen as a path in the abstraction tree of the BIH. Thus, there is a route satisfying a
demand if and only if there is a path in the abstraction tree that does not traverse
BIs of a higher level than its resource requirement. For instance, from the
abstraction tree of Figure 3, it is easy to see that there is no route between a and g



with 64 available resources, since any path in the tree must at least cross BIs at
level 56. This mapping of routes onto the BIH is used to formulate dynamic
variable and value ordering heuristics. (We note that a patent for the methods given
below is pending.)

4.1 Forward Checking

Forward checking is a technique to improve backtracking algorithms. Its idea is to
propagate value assignments to unallocated variables along the constraints in order
to detect a dead-end earlier, thereby increasing search efficiency. Moreover,
decisions regarding which variable to select next and what value of the selected
variable to try next can then be done in a more informed way.

Thanks to the route existence property, we know at any point in the search if
it is still possible to allocate a demand, without having to compute a route: if the
endpoints of the demand are clustered in the same β-BI, where β is the resource
requirement of the demand, there is at least one, i.e., the domain of the variable
(demand) is not empty, even if not explicitly known. Therefore, after allocating a
demand, forward checking is performed first by updating the BIH, and then by
checking that the route existence property holds for all uninstantiated demands. If
the latter does not hold, another route must be tried. Domain pruning (i.e.,
constraint propagation) is thus implicit while maintaining the BIH.

4.2 Variable Ordering

A backtracking algorithm involves two types of choices: the next variable to assign,
and the value to assign to it. The selection of the next variable to assign may have a
non-negligible effect on search efficiency. A widely used variable ordering
technique in CSP is based on the “fail-first” principle (FFP): “To succeed, try first
where you are most likely to fail”. The rationale is to minimize the size of the
search tree and to ensure that any branch that does not lead to a solution is pruned
as early as possible when choosing a variable. There are some natural static
variable ordering (SVO) techniques for the RAIN problem, such as choose first the
demand that requires the most resources. BIs allow to dynamically (during search)
approximate the difficulty of allocating a demand more subtly, according to the
current state of the network:
• DVO-HL (Highest Level): choose first the demand whose lowest common

father of its endpoints is the highest in the BIH (remember that high in the BIH
means low in resources requirements). The intuition behind DVO-HL is that
the higher the lowest common father of the demand's endpoints is, the more
constrained (in terms of number of routes) the demand is. Moreover, the higher
the lowest common father, the more allocating the demand may restrict the
routing of the remaining demands (FFP), since it will use resources on more
critical links.

• DVO-NL (Number of Levels): choose first the demand for which the
difference in number of levels (in the BIH) between the lowest common father
of its endpoints and its resources requirements is lowest. The justification of
DVO-NL is similar to DVO-HL.



Figure 4: Selecting the next demand to allocate using DVO-HL and DVO-NL. The
DVO-HL line shows the value for the lowest common father level for each
demand. The DVO-NL line shows the number of levels between the lowest
common father and the bandwidth requirement level. The selected demand by each
heuristic is shaded in gray.

Figure 4 illustrates these two heuristics.

4.3 Value Ordering

The domains of the demands are too big to be computed beforehand. Instead, we
compute the routes as they are required. In order to reduce the search effort, routes
should be generated in “most interesting” order, so to increase the efficiency of the
search, that is: try to allocate the route that will less likely prevent the allocation of
the remaining demands. A natural heuristic is to generate the routes in shortest
order (SP), since the shorter the route, the fewer resources will be used to satisfy a
demand. Consider the problem of routing a single demand d=(c,e,16) in the
network of Figure 2 (d). The shortest route satisfying the demand is c → i → e.
However, allocating this route to d is here not a good idea, since it uses resources
on two critical links in terms of available bandwidth: (c,i) and (i,e). Allocating this
route causes a split of N7, thereby preventing the allocation of a demand requiring
16 (or more) between any of the nodes of N5 and N6.

We can do better with a kind of min-conflict heuristic, based on the BIH,
called lowest level (LL) heuristic. It considers first (in shortest order) the routes in
the lowest blocking island (in the BIH), i.e., the blocking island for the highest
resource requirement clustering the endpoints of the demand. This heuristic is
based on the following observation: the lower a BI is in the BIH, the less critical
are the links clustered in the BI. By assigning a route in a lower BI, a better overall
load-balancing effect is achieved, therefore reducing the risk of future allocation
failures. Moreover, the lower a BI is, the smaller it is in terms of nodes and links,
thus reducing even more the search space when looking for the first routes, and
thereby achieving a computational gain during the early stages of the search.

a b c d e f g h

16

32

64

128

2

128

d1

0

64

d2

1

32

d3

DVO-NL

DVO-HL

d3=(d,e,16)

d2=(b,c,64)

d1=(h,g,32)



Generating one route with the LL heuristic can be done in linear time in the number
of links. For the same demand d, LL selects route c → b → d → e, and the
allocation of that route does not change the bandwidth connectivity in the network.

5 RESULTS

In practice, the RAIN problem poses itself in the following way: a service provider
receives a request from the customer to allocate a number of demands, and must
decide within a certain decision threshold (for example, 5 seconds), whether and
how the demands could be accepted. A meaningful analysis of the performance of
the heuristics we proposed would thus analyze the probability of finding a solution
within the given time limit, and compare this with the performance that can be
obtained using common methods of the telecom world, in particular shortest-path
algorithms. For comparing the efficiency of different constraint solving heuristics,
it is useful to plot their performance for problems of different tightness. In the
RAIN problem, tightness is the ratio of resources required for the best possible
allocation divided by the total amount of resources available in the network. Since
it is very hard to compute the best possible allocation, we use an approximation, the
best allocation found among the methods being compared.

We generated 22’000 RAIN problems, each with at least one solution. Each
problem has a randomly generated network topology of 20 nodes and 38 links, and
a random set of 80 demands, each demand characterized by two endpoints and a
bandwidth constraint. A solution must allocate all demands within the bandwidth
capacities of the links. No other restriction was imposed on the routes. We
especially supposed no hop-by-hop routing table constraints for instance. A solution
is thus applicable to a connection-oriented network such as ATM. The problems
were solved with four different strategies: basic-SP performs a search using the
shortest path heuristic common in the networking world today, without any
backtracking on decisions; BT-SP incorporates backtracking to the previous in
order to be able to undo “bad” allocations. The next search methods make use of
the information derived from the BIH: BI-LL-HL uses the LL heuristic for route
generation and DVO-HL for dynamic demand selection, whereas BI-LL-NL differs
from the latter in using DVO-NL for choosing the next demand to allocate.

Figure 5 provides the probability of finding a solution to a problem in less
than 1 second, given the tightness of the problems (as defined above). Both BI
search methods prove to perform much better than brute-force, even on these small
problems, where heuristic computation (and BIH maintenance) may proportionally
use up a lot of time. Noteworthy, NL outperforms HL: NL is better at deciding
which demand is the most difficult to assign, and therefore achieves a greater
pruning effect. The shape of the curves is similar for larger time scales. The quality
of the solutions, in terms of network resource utilization, was about the same for all
methods. However, when the solutions were different, bandwidth connectivity was
generally better on those provided by BI methods.

These experimental results allow quantifying the gain obtained by using our
methods. If an operator wants to ensure high customer satisfaction, demands have



to be accepted with high probability. This means that the network can be loaded up
to the point where the allocation mechanism finds a solution with probability close
to 1. From the curves, we can see that for the shortest-path methods, this is the case
up to a load of about 40% with a probability of 0.9, whereas the NL heuristic
allows a load of up to about 55%. Using this technique, an operator can thus reduce
the capacity of the network by an expected 27% without a decrease in the quality of
service provided to the customer! Moreover, according to phase transition theory,
relative performance can be expected to scale in the same way to large networks.

All results were computed on a Sun Sparc 60 with a LISP program.

Figure 5: The probability of finding a solution within 1 second, given the tightness
of the problems (22’000 random problems with 20 nodes, 38 links, 80 demands).

6 CONCLUSION

The current technique for routing communication demands in a network is to select
the shortest route for each particular demand. However, this strategy can lead to
suboptimal routing or even highly congested network utilization as a whole.
Information about the expected traffic allows to make better use of network
resources. However, on-line routing processes cannot make use of this knowledge
since they must be very fast to ensure customer satisfaction. Instead, bandwidth
allocation can be planned in an off-line manner with this information, thanks to a
systematic search algorithm that is capable of backtracking to faulty routing
decisions in order to satisfy all demands. However, search must be guided carefully
since the search space to explore is exponentially large.



We have shown that using blocking island abstractions coupled with CSP
search mechanisms and heuristics, it is possible to solve plan bandwidth allocation
in reasonable time, and to get better solutions than shortest path routing algorithms,
especially in terms of the remaining bandwidth connectivity in the network after all
demands have been allocated. This is especially useful when another unexpected
demand needs to be routed, since the likelihood of being able to route it without
recomputing a full solution from scratch is higher. Network operators (or service
providers) can now plan the allocation of bandwidth in much tighter networks than
before. An on-line demo of IconoNET illustrating these features is available on the
WWW at http://www.iconomic.com.

In this paper, we restricted demands to point-to-point traffic. However, this
need not be. The same techniques can be applied for multipoint demands: routes are
then trees instead of simple paths. Generalizing the presented heuristics, such as the
lowest level (LL) for route generation or the number of levels for demand selection
(DVO-NL) are straightforwardly generalized to multipoint demands. Moreover,
quality of service was expressed in terms of bandwidth only. It is however easy to
incorporate other QoS parameters (such as maximal delay, maximal loss ratio, or
node capacity) or cost into the technique by checking that the generated routes do
verify those additional constraints. CSP modeling has the facility to easily take such
additional restrictions into account, by just adding these additional constraints "as
is". CSPs have in this case a major advantage over Operations Research techniques,
which do not allow the integration of new constraints in such a straightforward
manner. 

The presented techniques are not only applicable to connection-oriented
networks (such as ATM), but also to connection-less networks (such as IP). In a
connection-less network, demands can be derived from traffic statistics between
nodes. If a solution can be found, applying it will prevent congestion in the
network, or at least reduce its probability in case of unexpected traffic. The only
difference to connection-oriented networks is then in the route generation process,
since IP uses hop-by-hop routing tables, and the generated routes must respect that
additional constraint.

REFERENCES

[1] Zheng Wang and Jon Crowcroft. Quality-of-Service Routing for Supporting
Multimedia Applications. IEEE Journal on Selected Areas in Communications,
14(7):1228-1234, September 1996.

[2] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,
London, UK, 1993.

[3] Gerald R. Ash. Dynamic Routing in Telecommunications Networks. Mc-Graw
Hill, 1998.

[4] Jason W. Mann and George D. Smith. A Comparison of Heuristics for
Telecommunications Traffic Routing. In V. J. Rayward-Smith, I. H. Osman, C.



R. Reeves and G. D. Smith, editors, Modern Heuristic Search Methods, pages
235-254. John Wiley & Sons Ltd., 1996.

[5] Bruno T. Messmer. A framework for the development of telecommunications
network planning, design and optimization applications. Technical Report
FE520.02078.00 F, Swisscom, Bern, Switzerland, 1997.

[6] Christian Frei and Boi Faltings. A Dynamic Hierarchy of Intelligent Agents for
Network Management. In 2nd International Workshop on Intelligent Agents for
Telecommunications Applications, IATA’98, pages 1-16, Paris, France, July
1998. Lecture Notes in Artificial Intelligence, Vol. 1437, Springer-Verlag.

BIOGRAPHY

Christian Frei was born in Kampala, Uganda, in 1967. He received a diploma in
Computer Science from the Swiss Federal Institute of Technology in Lausanne
(EPFL), Switzerland, in March 1994. Since July 1994, he is a research assistant at
the Artificial Intelligence Laboratory of the Swiss Federal Institute of Technology
in Lausanne. He has developed abstraction techniques for constraint satisfaction, in
particular for applications in communication networks. His research interests
include constraint satisfaction techniques, graph theory, and resource allocation
problems in general.

Boi Faltings is professor of computer science and director of the Artificial
Intelligence Laboratory at the Swiss Federal Institute of Technology, Lausanne
(EPFL). He holds a diploma in Electrical Engineering from ETH Zurich and a
Ph.D. in Computer Science from the University of Illinois. He founded the EPFL
Artificial Intelligence Laboratory in 1987, and has been head of the EPFL
Computer Science department from 1996 to 1998. His research interests are in
constraint satisfaction, case- and model-based reasoning, as well as applications in
engineering and e-commerce.

George Melissargos was born 20/08/67 in Athens, Greece. After 4 years of studies
in Computer Systems Engineering at the Technological Educational Institute of
Piraeus he continued at the State University of New York at Binghamton where he
earned the BS and MS degrees in Computer Science. After a short stay at the CN
division at CERN he moved to the Swiss Federal Institute of Technology at
Lausanne. There, as a research assistant, he works for the last 4 years towards the
Ph.D. degree in the Department of Microengineering. His interests lie in the areas
of Human Computer Interaction, Networks and Information Visualization.

Pearl Pu is a senior researcher at the Swiss Institute of Technology in Lausanne.
She heads the research group on ergonomics of intelligent systems. She obtained
her Ph.D. from the University of Pennsylvania in 1988. Her research interests
include information visualization, artificial intelligence, information retrieval, and
electronic catalogs.


