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Abstract. Establishing that machines cannot be creative in the same
way as humans, we propose a computational model which allows
human and machine to collaborate on creative design in a social
structure similar to human-human collaboration. We then discuss
specific architectural problems associated with the design of such an
interactive, collaborative, and intelligent system.

1 introduction

Design is a complex cognitive process which involves creative skills,
artistic intuitions, as well as a rich repertory of knowledge. Further-
more design is not description of what is, it is exploration of what
might be (Mitchell [8]). According to our experiences with designers,
exploration is further characterized by being a process, driven by the
desire to change an imperfection, that pushes many limits in the open
world. A creative design is one that meets a particular goal and at the
same time compromises a set of constraints and current technological
limitations.

To free machines from the predefined world or to enrich them
with interactions from nature (for a more detailed article, see [14]),
we must allow humans to help them in a similar way that humans
benefit from the calculation and data processing power of machi-
nes. In this paper we propose an approach which integrates several
previously built intelligent design systems in an open and distribu-
ted architecture. Most importantly, this architecture will facilitate
human-machine collaboration and human and machine creativity to
co-exist and co-contribute to the creative design process. An open
architecture contradicts the traditional algorithmic nature of software
and organizes its functionalities at the cognitive level of task distri-
bution instead of the control level of task performance. We propose
to use the method of software agents to design and develop such an
architecture as depicted in Figure 1. Automatic and semi-automatic
agents collaborate with human designers, and they cooperate with
each other seamlessly to achieve a given goal. Some agents are refle-
ctions (mirrors) of the cognitive inner workings of a person while
others are computational because they take care of detailed design
works such as constraint processing, search, and data visualization.
Many of the agents of this architecture have been developed such
as the case-based reasoning, constraint processing, and multimedia
browsing units. Here we discuss the challenging issues we encounte-
red in the development of this system: 1) what contributions human
and machine can each provide to the creative design process, 2) what
are the mirroring and processing roles of agents, and 3) what will be
the collaborative technique which allows contributions from humans
and machines to take place in the creative design process.
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Although the system contains components that help humans per-
form creative idea generation using techniques such as brainstorming
and synetics, in this paper we focus on the problem of performing
multicriteria optimization and decision making under multiple obj-
ectives. This task is known to be difficult and finding solutions to
such a problem is considered to be a typical creative process. We
will illustrate examples that can be treated in our system, COMIND, 3

along with some descriptions of implementation issues.

2 Human cognitive prosthesis and the role of
agents

Humans live in a stimulating and dynamic environment which allows
them to be creative and productive. But there are limitations of hu-
mans especially in terms of cognitive and mental power. For instance,
it is currently known that in short term memory, there are only 4-7
conceptual chunks we can hold [18]. We often have trouble visuali-
zing a set of vectors in three dimensions, let alone doing so in higher
dimensions. With the fast growing technology in computer industry,
we have become accustomed to using machines as our cognitive and
computational prostheses. That is, we rely on their power to help us
accomplish tasks. For many of us, it is hard to write well a letter
without typing it in a word processor because traditional paper and
ink do not allow us to copy and paste easily. There is no spelling
checker provided by a piece of paper.

Helping humans to perform word processing may be a trivial task,
but helping them solve creative design problems is not. We have to
consider a number of issues such as the ergonomics of the system, its
architecture, and the social issue between human and machine as col-
laborators and co-contributors. Our main approach is to use the idea of
software agents [16] as the interface between human and machine. So-
ciologists maintain that the interaction between human and machine
is mainly a social one [9]. Furthermore, the anthropomorphism bro-
ught by human-like agents is superior than other metaphors such as
object-oriented programming. Finally commonsense tells us that it is
much easier to tell my agent what I saw today on the subway coming
to work than to my program named inspiration.lisp.

In further designing such a system, we use theories and models
from three main domains: human-computer interaction, ergonomics
of software design, and artificial intelligence. A basic sketch of the
architecture of the system is the following: a working area is provided
for designers to treat various aspects of the design problem. Agents
will appear as iconized caricatures in the working area and they
consist mainly of two types: reflective and computational agents.

Reflective agents (appear on the last row in Figure 1) are fully
autonomous and their main goal is to serve as a cognitive map of the
user. They will show for instance that the designer has just done a
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session of brainstorming and now is instantiating design parameters.
Computational agents (appear on the two first rows in Figure 1)
process inconsistenciesin design space,generate partial and complete
solutions, retrieve design cases, help designers visualize a set of
competing solutions, and propose tradeoffs. These agents are semi-
automatic in the sense that they are only called for at the request
of users. They could become more autonomous once a trust period
has been established between the user and the agent. However, we
minimize the communications among the agents in order to simplify
the protocols used in this architecture.

3 Interfacing agents and their roles

In the next several sections, we will describe a framework based on
interfacing agents which operate in a design environment to support
innovative and creative design.

3.1 Reflective agents

Restricting our focus to the conceptual design domain, we have defi-
ned our agents and their goals in the following manner. The reflective
agents serve two purposes in the creative design process. For no-
vices like students, these agents act as a guide which reminds the
students of the important processes to take during conceptual design.
For example when a student is performing brainstorming, he must be
sometimes reminded not to criticize his design ideas at this moment.
The goal is to produce as many ideas as possible. An agent can ob-
serve the behavior of the person and notice the speed in which ideas
are produced. If the speed is below average, the agentmight guess that
the person is evaluating his design ideas and thus doing criticizing.
The agent can signal this to the user not to stall on idea production.
Another useful reflective agent is one which suggests some related
or contrasting ideas when users put down theirs. This method, called
synetics, is often used to stimulate ideas by combining two unrelated
ones. But we believe that similar ideas can also be useful in synetics.
In most cases, humans perform synetics among themselves by taking
terms to propose ideas and proposing related or contrasting ideas. But
agents can very well accomplish this task so that designers do not
have to always find partners in brainstorming sessions.

The other goal of the reflective agents is to serve expert designers.
They are useful in showing designers the reasoning path that he/she
took to arrive at this point of the design process. In a small window
in the corner of the working area, a map can show for instance that a
person has done brainstorming, synetics, evaluation using the house
of quality method, and now is working on multicriteria tradeoff.
Since each person has a different pattern to perform the conceptual
design, over a longer period of time, users may observe their own
behavioral pattern. They may choose to either follow similar patterns
or purposely change the patterns using this visualization tool. This
kind of cognitive map [2] has been found useful in prompting humans
in exploring unknown territories. Since it is critical that designers do
not slip into his usual way of thinking, the cognitive maps can serve
as indications of the current attention memory [1] of the human so
that if he notices it, he may choose to change it.

These agents are called reflective because they do not themselves
perform the design per se, but help reflect, organize and give feedback
of the ongoing design process. But in doing so, they help designers
achieve better design.

3.2 Computational assistants

Contrast to reflective agents, computational agents actually accomplish
tasks for human designers. Their main role is to take away some of
the computational burdens from the human and provide visualization
to facilitate tradeoff in higher dimensional spaces.

One important element of the design problems we address is ma-
king decisions and tradeoffs both before and after the generation of
design solutions. We consider mainly two cases. In one, the solu-
tion space is sparse and often null because the problems are over
constrained. Thus humans will help the system find solutions by
adding parameters or deleting constraints in order to relax the solu-
tion space. This process, called mutation, is central to many design
problems where creativity from humans is required in order to change
the current representation of the design problem, either by changing
the parameters or relaxing constraints. In the second case, there are
many solutions which can potentially cause problems in terms of ge-
nerating all of them or generating the good ones. Furthermore, after
designers have narrowed in on a dozen of them, it is hard to evalu-
ate them because they are competing, or Pareto optimal [12]. This
problem, called multicriteria optimization, can be better handled if
machines provide good visualization tools in order for humans to
analyze and perform tradeoffs.

More precisely, the computational agents currently implemented in
our architecture are named PARAM-DEF, SOLVE, PARETO-VISU,
SHOW-CASE and TRADEOFF and their main functionalities are as
follows. PARAM-DEF allows users to define and represent the cur-
rent design problem in terms of parameters and constraints. SOLVE
is an agent, which when brought over the PARAM-DEF area, will
search the solution space. In case it produces a null set, meaning that
the problem is over constrained, users will be asked to either change
the participating parameters or modify the constraints. SOLVE can
be brought in to re-generate solutions. When a problem admits many
solutions, users can ask for a neighborhood of solutions and ask
PARETO-VISU to plot the Pareto space along a set of evaluation
criteria (see Section 3.3) in order to visualize it. Users can propose
additional criteria in case there are many Pareto optimal solutions.
TRADEOFF can then offer to finalize on the design solution by fin-
ding a good balance of objectives. SHOW-CASE is a case-based
system which targets mainly at novices in teaching and stimulating
them to be creative by showing how expert designers achieve creati-
vities.

We present two scenarios to illustrate how our agents handle the
problem of mutation and multicriteria evaluation.

3.2.1 Mutation

In the first scenario, the goal is to design a wrist watch which is also
an electronic agenda. The first step is to have users define the main
parameters of such a product such as the dimensions, the weight,
the material used for the watch base, and the resolution of screen
display of the watch in PARAM-DEF as shown in Figure 2. Se-
condly, designers provide a rough range of these parameters and de-
fine constraints that govern these parameters. For instance, the largest
surface dimension, which can be the length or diameter depending on
whether the watch is square or round, should be within 4 centimeters.
The resolution is a function of 10 times the total square centimeters
of the dimension. The resolution is currently set to be greater than
300 pixels. PARAM-DEF then formulates the problem as a constraint
satisfaction problem [3] where both continuous and discrete design
parameters are represented as variables. Each variable has a range
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of possible values called the domain. Finding a design solution is to
generate an instantiation of all variables whose chosen values do not
violate any of the constraints.

Difficulties arise when the problem is overconstrained as it is in
our case. The resolution constraint is violated because the dimension
is too small. That is, for a wrist watch, the viewing area is not sa-
tisfactory. At this moment, the system will suggest the designers the
following two things. They can relax the constraints or perform muta-
tion. If relaxation of constraints is chosen, they are further given a list
of constraints that have caused the null space. In this case, the dimen-
sion and resolution constraints are highlighted in the PARAM-DEF’s
constraint area, signifying conflicts. Or, the designers are signaled
to add, modify or delete parameters in order to change the current
formulation of the problem. Deciding that he will change parameters,
this designer thought about how to achieve a compromise so that one
can have a larger display area without increasing the dimension of
the watch. He also came upon the thought of an umbrella and its
foldable feature. Thus he suggests that the wrist watch display area
be foldable and furthermore should have three faces when it is folded
out as shown in Figure 3. This gives a resolution of 160 times 2 which
is more than 300 pixels.

Novice designers are not likely to perform mutations very well. We
don’t believe that such magic intuitions or inspirations can be automa-
ted either. However, a case-based reasoning system [17, 20] will help
stimulate the creativity of novices by providing creative design sce-
narios via the use of video, animations and text. Our existing system,
CORINTH [13], can store design cases in either linear, hierarchical,
or linked list structures. Currently we plan to store 10 to 20 creative
design scenarios in the SHOW-CASE agent and when design students
ask to see one or several of them, we illustrate them in rotational order.
There is no adaptation involved. The main purpose is to show users
the types of creative possibilities they can integrate into the system.

3.3 Multicriteria evaluation

When a design problem has many solutions, it is important that these
solutions can be evaluated along a set of criteria and a best one
be chosen. Quite often solutions are found to be competing, called
Pareto optimal [12, 15, 10]. That is, some solutions are good in certain
aspects, but not in all and thus cannot dominate others. Creativity is
required to either discover new criteria to narrow down the Pareto
set or reevaluate the solutions in a tradeoff. This corresponds to the
"seeing things in a new light" that we do in life.

The following scenario from Navinchandra [10] can best illustrate
this type of problems. For the purpose of simplicity, we present a
non-design scenario. But our techniques are mainly applied to the
design domain.

In finding apartments on arrival to graduate school, a person en-
counters four choices. Given two criteria, noise level and the size of
the apartment, he maps these solutions according to the criteria in
the graph shown in Figure 5. Three solutions are found to be Pareto
optimal and furthermore they are about equal-distanced from the gi-
ven criteria. In such situations, the decision maker often lacks the
motivation to take any solution. Further exploration with the real-
estate agent brought him a fifth solution, an apartment on Brookline
street which is currently dominated by other solutions as shown in
Figure 4. However, at the same time, he discovered a third criteria to
evaluate the solutions, the distance to public transportation systems.
Being very close to the subway lines, this Brookline apartment got
pushed to the Pareto surface. Now the user is ready to do tradeoff.
That is, given these four possibilities, he is to reason which criterion

is the most important for him. Since the last solution has a strong
optimality with respect to the transportation criterion, it was chosen
as a final choice.

Again we believe that human-computer interaction plays an impor-
tant role in multicriteria evaluation. The additional criteria (emergent
criteria phenomenon by Tomlin [19]) are suggested by users during
the design exploration. Machines, however, will stimulate the human
in criteria emergence by showing design cases or simply providing
a multimedia browser to show a photo or a 2D sketch of an artifact.
Machines will also provide visualization capabilities in the criteria
space. Solutions are mapped in a three dimensional space as shown
in Figure 6a. A Pareto surface (Figure 6b) can be constructed to il-
lustrate dominating solutions. Either dominated solutions are thrown
out or users can try to add additional criteria so that some of them can
climb onto the Pareto surface. Furthermore, any node can be selected
and then the mouse can control the viewing area so that the selected
solution is compared with other solutions during tradeoff.

3.4 Algorithms

The SOLVE agent uses an efficient consistency-based constraint sa-
tisfaction algorithms [5] to prone the search space. For over-constrained
problems, this method can quickly indicate which design parameters
and constraints are the most restricted ones. If the search space is not
null, then SOLVE uses a simple backtracking algorithm to find one
or several solutions. It further looks for a neighborhood of similar
solutions. These solutions are then compared in the Pareto space ac-
cording to a set of criteria given by the users. The users can add new
criteria, perform tradeoffs, or select a solution. In selecting a solution,
the user can also ask SOLVE to change one of the value assignment
explicitly, but keep the rest of the assignments. In this case, SOLVE
uses the minimum conflict repair algorithm [7] to satisfy the user’s
request while attempting to resatisfy other variable assignments.

Our main method is in contrast to the implementation of CYCLOPS
(Navinchandra [10]) where A* algorithm is used to guide the search
towards one solution and along the way Pareto optimality is used to
heuristically guide the successful search path. The fact that such a
heuristic rule is applied uniformly to all partial solutions prohibits
the discovery of unusual partial solutions which seem unpromising
for a while. The interactiveness of our approach, on the other hand,
allows designers to see all kinds of solutions and then compare them
on a set of dynamically determined criteria. If users are dissatisfied
with the current solutions, they can abandon these neighborhoods and
opt for others. Though it seems that we allow designers to “shoot in
the dark” in the process of discovering creative designs, this kind of
serendipity is part of discovery.

4 Design of Engaging Interface Agents

One of our hypotheses established in this paper is that humans and
computers must meet each other on the screen to benefit from each
other’s strengths in creative design process. We claim that engaging
interface agents can stimulate designers’ creativity and increase the
output. After addressing the architectural and technical issues of such
a system, we discuss the artistical efforts that are required in the
design of such a system and its interface. Unlike domains where
evaluation can be measured more analytically, such as the O(n) notion
for expressing the complexity of algorithms, the interface design is
hard to evaluate with scientific scales. Fortunately there is a rich body
of theories and guidelines mainly found in HCI (human computer
interaction) on how to design and implement interfaces. Without
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reviewing the whole field, we will discuss some of the principles we
have adopted in our design.

The use of agents achieves three goals for the design of the current
architecture of COMIND. As stated earlier, the interaction between
machine and human is basically social. Thus agents appeal to de-
signers because they have characters which designers familiarize qu-
ickly through usage. Second, they help designers classify all the
knowledge and rules they need to remember into a manageable set of
chunks. Finally, an agent-based architecture is distributed which fa-
cilitates the computation of various design tasks in a non-algorithmic
structure. That is, a designer is not forced to do brainstorming follo-
wed by parameter definition or vise versa. He is free to choose the tool
that fits the most with his current state of mind. Such an architecture
also evolves as more agents are added to make the functionality more
extensive.

Many works on intelligent agents employ the use of learning
methods to implement agents which observe users’ behavior. After a
period of time, these so-called “watching-over-the-shoulder” agents
will automatically perform tasks for users. This approach is well su-
ited for domains such as electronic mail sorting [6], especially for
users who subscribe to interest groups and receive an enormous amo-
unt of mail from the same originator. However, Norman [11] points
out that fully autonomous agents can be overwhelming and annoying
to users. Many studies point out that it is still too early for humans
to completely trust machines. Most of us would like to know a little
bit about how machines solve a certain task before we entrust them
and launch them freely. This is true especially in the beginning of the
user’s experience with a program.

Our agents, except for the reflective ones, are never self-imposing.
In the beginning, they are called for action by the user through a
rather tedious invocation procedure, like pointing to the iconized
agent, pulling down a menu and selecting a function. This prohibits
the users from invoking them on a hasty basis. In other words, they
have to really want to call the agent before it becomes available.

Instead of using a measure to establish a trust between users and
machines as described in Maes [6], we use a simple mechanism of
associating key bindings with the invocation of agents. Humans are
known for routinizing tasks such as typing. Once routinized, execu-
ting the task becomes subconscious and thus does not require any
cognitive load. Thus instead of building agents which automatically
establish a trust with the user, we let the users capture such trust by
routinizing the task.

5 Summary

Our main hypothesis in this paper is that the interaction between
human and machine has an important role in computer-supported de-
sign, especially when creativity is required. We thus have proposed
an open architecture where design is not viewed as an algorithmic
activity, but a collaboration between a user and a set of software
agents. The role of creativity and drawing inspirations from nature
falls mainly upon the human while a number of computational and vi-
sualization tasks are provided by the machine. This architecture is not
limited by the closed world assumption of most artificial intelligence
systems. It evolves because human experiences evolve. Furthermore,
as more computational modules become available, they can be further
added to the system to support more design activities.

In his book [10], Navinchandra did a great job outlining and expla-
ining innovative design and the role of computers. Much inspiration
of our work came from there. However, instead of using users as
a judgemental factor, we go much deeper into the computer-human

interaction issues. Every key step of the design process is visualized.
Users and agents collaborate all the time. Thus COMIND is more hu-
manly whereas CYCLOPS is more automatic. COMIND evolves and
creates more new design cases whereas CYCLOPS tends to debug
designs always using the existing cases.

Finally the handle of agents and the protocol between human and
agents takes along a similar line of philosophy. That is, we maximize
the natural interaction between human and machine and minimize
guess work.
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and Professors Clavel and Popovic for their encouragement of our
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tings for giving us useful comments on the multicriteria optimization
and tradeoff problem.
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Figure 1. Software agents as appeared in COMIND

Figure 2. Definition of a design problem

Figure 3. An agenda watch

Figure 4. The nodes correspond to the street where the apartment is
located.

Figure 5. The larger nodes are located on the Pareto surface.

Figure 6. a) visualization of solutions b) visualisation of Pareto surface
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