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In this paper, based on the assumption that Euler’s two balance laws for a rigid body hold,
Lagrange’s equations for a system of rigid bodies subject to general holonomic and non-holonomic
constraints are derived. One advantage of this assumption is that it extends directly to rigid continua
(i.e. infinite-dimensional systems [J. Casey, Z. Angew.Math. Phys. 46 (1995), Special Issue, S805–
S847; MR1359345 (96g:70024)]).
The authors introduce a representation of the rigid bodies in a well-suited coordinate system
which consists of the center of mass xi (expressed in the current configuration) of each rigid
body i = 1, . . . , N , and 9 quantities for each rotation tensor Qi that is associated with a rigid
body i = 1, . . . , N . This leads to a 12N -dimensional vector space C2N representing the system.
From the formulation of the two Euler balance laws in tensor form, and using the aforementioned
coordinates, a simple formulaΦ = mv̇ is obtained representing the dynamics. Of course, although
v =

(
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)
is of a simple structure, the termΦ is quite complicated:
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where Fi are the external forces, M̂i are the external torques andWi
sym is the symmetric part of
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the Euler tensors (Πi = Xi−Xi is the relative position to the center of mass Xi expressed in a
fixed occupiable configuration, as opposed to xi). Based on this Newton-like formula Φ = mv̇,
and using some kinematical arguments concerning the holonomic and nonholonomic constraints,
the Lagrange equations

d

dt

(
∂T

∂q̇γ

)
− ∂T

∂qγ
= Qγ

with
Qγ = [Φ,aγ] and aγ =

∂v
qγ

are derived. The coordinate space is embedded in C12N and is 6N -dimensional. It is also shown to
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be a Riemannian space with the length of a line-element written as ds2 = aαβ q̇αq̇βdt2. The paper
then gives explicit expressions ofQγ based on the expressions of the holonomic and nonholonomic
constraints.
In the literature, there are both alternate derivations of Lagrange’s equations and expositions of
the dynamics of rigid bodies using the Riemannian manifold setting. For example, regarding the
whole system as a simple point moving in an abstract space appeared in M. M. G. Ricci and T.
Levi-Civita’s work [Math. Ann. 54 (1900), no. 1-2, 125–201; MR1511109; JFM 31.0297.01]. J. L.
Synge [Philos. Trans. Roy. Soc. London Ser. A 226 (1926), 31–106; JFM 52.0798.05] presented
a similar exposition based on the opposite progression of thought as in the present paper, namely
taking the Lagrange equations as an assumption (E. T. Whittaker’s derivation [A treatise on the
analytical dynamics of particles and rigid bodies: With an introduction to the problem of three
bodies, Cambridge Univ. Press, New York, 1959; MR0103613 (21 #2381)]) and concluding that
the dynamics can be expressed as geodesics in a suitable Riemannian space (i.e. the metric should
involve the kinetic energy). H. Hertz [The principles of mechanics, Translation by D. E. Jones and
J. T.Walley, Dover, NewYork, 1956;MR0077293 (17,1017f)] tried to bypass altogether the notion
of force and energy so as to only rely on time, space, and mass. However, he admitted that the
motion is along a stationary solution of the minimization problem for a metric. He admitted that to
justify this would simply involve the acceptance of both the law of inertia and Gauss’s principle of
least constraint [H. Hertz, op. cit. (p. 28)] (the latter being a formulation of d’Alembert’s principle
leading to a minimum problem [C. Lánczos, The variational principles of mechanics, Fourth
edition, Univ. Toronto Press, Toronto, Ont., 1970; MR0431821 (55 #4815)]). Synge and A. Schild
presented an almost purely tensorial derivation of dynamics. However, once we look more closely
at it, in [J. L. Synge and A. Schild, Tensor Calculus, Univ. Toronto Press, Toronto, Ont., 1949;
MR0033165 (11,400f); reprint, Dover, New York, 1978; MR0521984 (80b:53001)], Lagrange’s
equations (5.521) (or (5.531)) are explicitly stated as a consequence of (2.431) and (2.438) which,
in turn, follow from the equations of geodesics. The geodesic equations are a consequence of
the calculus of variations presented earlier in the book, which is simply applied for solving the
stationary problem involving the kinetic-energy Riemannian metric.
Finally, there is the original derivation of Lagrange himself, which rests on the principle of
equilibrium stated as the principle of virtual speed (i.e. the principle of virtual displacement of
Johann Bernouilli). A system is in equilibrium whenever the forces are in inverse correspondence
with their potential speed (i.e. the speed that the system would gain should the equilibrium cease).
D’Alembert rendered this static equilibrium principle to be extendable to the dynamic case,
which then allowed Lagrange to find an appropriate analytical treatment unfolded in his famous
treatise [J. L. Lagrange,Méchanique analitique, Desaint, Paris, 1788; reprint, ?d. Jacques Gabay,
Paris, 1989]. Incidentally, d’Alembert presented the dynamics in his book [J. R. d’Alembert,
Traité de dynamique, Reprint of the 1758 edition, Éd. Jacques Gabay, Sceaux, 1990; MR1451137
(98a:01011)] without resorting to the origin of the concept of force based on three principles: (1)
the law of inertia, (2) the composition of movements, and (3) the equilibrium principle.
Hence, all derivations must start from unprovable statements that can only be justified by their
agreement with experiments (here, Euler’s balance equations are admitted). All these points of
view complement and enlighten each other, forging a deeper understanding of mechanics. This
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paper contributes nicely to this mission. From the computational point of view, the pros and cons
must be addressed based on the specific problem at hand.

Reviewed byPhilippe A.Müllhaupt
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