
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

M.Sc. in Engineering, Royal Institute of Technology, Suède
et de nationalité suédoise

acceptée sur proposition du jury:

Lausanne, EPFL
2008

Prof. M. Odersky, président du jury
Prof. U. Nestmann, Prof. T. Henzinger, directeurs de thèse

Dr A. D. Gordon, rapporteur
Prof. V. Kuncak, rapporteur

Dr B. Victor, rapporteur

EquivalEncEs and calculi for formal
vErification of cryptographic protocols

Johannes BORGSTRöM

THÈSE NO 4030 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 10 MARS 2008

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Laboratoire de modèles et théorie de calculs

SECTION D'INFORMATIQUE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Summary

Security protocols are essential to the proper functioning of any distributed system
running over an insecure network but often have flaws that can be exploited even
without breaking the cryptography. Formal cryptography, the assumption that the
cryptographic primitives are flawless, facilitates the construction of formal models
and verification tools. Such models are often based on process calculi, small formal
languages for modelling communicating systems.

The spi calculus, a process calculus for the modelling and formal verification
of cryptographic protocols, is an extension of the pi calculus with cryptography.
In the spi calculus, security properties can be formulated as equations on process
terms, so no external formalism is needed. Moreover, the contextual nature of
observational process equivalences take into account any attacker/environment that
can be expressed in the calculus.

We set out to address the problem of automatic verification of observational
equivalence in an extension of the spi calculus: A channel-passing calculus with a
more general expression language.

As a first step, we study existing non-contextual proof techniques for a par-
ticular canonical contextual equivalence. In contrast to standard process calculi,
reasoning on cryptographic processes must take into account the partial knowledge
of the environment about transmitted messages. In the setting of the spi calculus,
several notions of environment-sensitive bisimulation has been developed to treat
this environment knowledge. We exhibit distinguishing examples between several
of these notions, including ones previously believed to coincide. We then give a
general framework for comparison of environment-sensitive relations, based on a
comparison of the corresponding kinds of environment and notions of environment
consistency. Within this framework we perform an exhaustive comparison of the
different bisimulations, where every possible relation that is not proven is disproven.

For the second step, we consider the question of which expression languages
are suitable. Extending the expression language to account for more sophisticated
cryptographic primitives or other kinds of data terms quickly leads to decidability
issues. Two important problems in this area are the knowledge problem and an
indistinguishability problem called static equivalence. It is known that decidability
of static equivalence implies decidability of knowledge in many cases; we exhibit
an expression language where knowledge is decidable but static equivalence is not.
We then define a class of constructor-destructor expression languages and prove
that environment consistency over any such language directly corresponds to static
equivalence in a particular extension thereof. We proceed to place some loose con-
straints on deterministic expression evaluation, and redefine the spi calculus in this
more general setting.

Once we have chosen an expression language, we encounter a third problem,

which is inherent in the operational semantics of message-passing process calculi:
The possibility to receive arbitrary messages gives rise to infinite branching on pro-
cess input. To mitigate this problem, we define a symbolic semantics, where the
substitution of received messages for input variables never takes place. Instead,
input variables are only subject to logical constraints. We then use this symbolic
semantics to define a symbolic bisimulation that is sound and complete with respect
to its concrete counterpart, extending the possibilities for automated bisimulation
checkers.

Keywords: Security Protocols, Formal Methods, Verification, Process Calculi,
Operational Equivalence

Kurzfassung

Sicherheitsprotokolle sind eine Voraussetzung für die Funktionsfähigkeit jedweder
verteilten Systeme, die über ein unsicheres Netzwerk laufen, weisen aber oft Lücken
auf, die ausgenutzt werden können, sogar ohne die Kryptographie anzugreifen. For-
male Kryptographie, die Annahme, dass kryptographische Primitive fehlerlos sind,
erleichtert die Konstruktion von formalen Modellen und Verifizierungswerkzeugen.
Solche Modelle basieren oft auf Prozesskalkülen, kleinen formalen Sprachen zur Mo-
dellierung von Kommunikationssystemen.

Das Spi Kalkül, ein Prozesskalkül zur Modellierung und formaler Verifizierung
von kryptographischen Protokollen, stellt eine Erweiterung vom Pi Kalkül um Kryp-
tographie dar. Im Pi Kalkül können Sicherheitseigenschaften als Gleichungen über
Prozessterme formuliert werden, es ist also kein externer Formalismus nötig. Aus-
serdem berücksichtigt die kontextuelle Art von observationellen Prozessäquivalenzen
alle Angreifer bzw. Umgebungen, die im Kalkül ausgedruckt werden können.

Wir beschäftigen uns mit dem Problem automatischer Verifizierung von Beob-
achtungsäquivalenz in einer Erweiterung des Spi Kalküls: Ein Kalkül für kanalüber-
mittelnden Systemen mit einer allgemeineren Ausdruckssprache.

Als ersten Schritt untersuchen wir bestehende Beweistechniken, basierend auf
Transitionssystemen, für eine bestimmte kanonische Kontextäquivalenz. Im Unter-
schied zu anderen Prozesskalkülen müssen wir bei Umgang mit die von Spi Prozessen
generierten Transitionssystemen Wissen über die Umgebung mit einbeziehen. Um
dieses Umgebungswissen zu erlangen, wurden einige Varianten von umgebungsbe-
wusster Bisimularität für das Spi Kalkül entwickelt. Wir geben Beispiele, die die
Unterschiede dieser Varianten zeigen, inklusive einiger bisher als gleich angenomme-
ner. Dann entwickeln wir einen allgemeinen Rahmen zum Vergleich von umgebungs-
bewussten Beziehungen, auf der Grundlage von einem Vergleich der entsprechenden
Arten von Umgebungen und Begriffen von Konsistenz. Innerhalb dieses Rahmens
stellen wir einen erschöpfenden Vergleich der verschiedenen Varianten von Bisimu-
larität an, wo jede mögliche Beziehung, die nicht bewiesen wird, widerlegt wird.

Als zweiten Schritt betrachten wir die Frage, welche Ausdruckssprachen geeignet
sind. Die Erweiterung der Ausdruckssprache zu anspruchsvollerer kryptographische
Primitive oder andere Arten von Datentermen führt schnell zu Entscheidbarkeits-
fragen. Zwei wichtige Probleme in diesem Gebiet sind das Wissensproblem und ein
Nichtunterscheidbarkeitsproblem, die sogenannte statische Äquivalenz. Man weiss,
dass aus der Entscheidbarkeit von statischer Äquivalenz die Entscheidbarkeit von
Wissen in viellen Fällen folgt. Wir zeigen eine Ausdruckssprache, in der Wissen,
nicht jedoch statische Äquivalenz, entscheidbar ist. Dann definieren wir eine Klas-
se von Konstruktor-Destruktor Ausdruckssprachen und beweisen, dass Umgebungs-
konsistenz über jegliche solche Sprache direkt der statischen Äquivalenz in einer
bestimmten Erweiterung entspricht. Weiters legen wir einige lose Beschränkungen

auf die Evaluierung von determinischen Ausdrücken und redefinieren das Spi Kalkül
in dieser allgemeineren Umgebung.

Sobald wir eine Ausdruckssprache gewählt haben, findet sich ein drittes Pro-
blem, das der operationalen Semantik von nachrichtenübermittelnden Kalkülen in-
herent ist: die Möglichkeit, jegliche Nachrichten zu empfangen, führt zu unendli-
cher Verzweigung bei Prozessinput. Um dieses Problem zu lindern, definieren wir
eine symbolische Semantik, in der die Substitution von empfangenen Nachrichten
durch Inputvariablen nie stattfinden. Stattdess unterliegen Inputvariablen nur logi-
schen Beschränkungen. Wir nutzen diese symbolische Semantik dann dazu, um eine
symbolische Bisimularität die “sound” und vollständig in Bezug auf ihr konkretes
Gegenstück ist zu definieren, was weitere Möglichkeiten für automatische Bisimula-
tionsprüfer eröffnet.

Keywords: Sicherheitsprotokolle, Formale Verifikation, Prozesskalküle,
Operationeller Äquivalenz

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Environment-sensitive Bisimulations 3
1.1.2 Extending the Message Language 4
1.1.3 Symbolic Semantics . 5

1.2 Related Work . 6
1.2.1 Symbolic Techniques for Spi Calculi 6
1.2.2 Calculi with Extended Message Algebras 7

1.3 Contributions . 8
1.4 The Spi calculus . 9

1.4.1 Syntax . 10
1.4.2 Semantics . 11

2 Comparing Bisimulations 17
2.1 Environment-Sensitive Bisimulations 19

2.1.1 Framed and Fenced Bisimulations 20
2.1.2 Alley and Trellis Bisimulations 24
2.1.3 Hedged Bisimulation . 27
2.1.4 Weak Bisimulation . 29
2.1.5 Up-to techniques . 29

2.2 Distinguishing Examples . 34
2.2.1 Fenced vs. Framed and Hedged — Counting Extruded Names 34
2.2.2 Framed vs. Hedged — Unknown Names Must Not Matter . . 36
2.2.3 Framed vs. Hedged — Encryption Should Be Perfect 38

2.3 Intermezzo . 40
2.3.1 Comparing Environment-Sensitive Bisimilarities 40
2.3.2 Examples: Blindness and Inconsistency 42
2.3.3 Full Abstraction and M-equivalence 44

2.4 Comparing Environments . 45
2.4.1 Properties of Hedges . 45
2.4.2 Frames and Hedges . 51

vii

2.4.3 Fences and Hedges . 52
2.4.4 Hedges and Alleys . 53
2.4.5 Frames and Alleys . 59
2.4.6 Message Equivalence . 59

2.5 Comparing Bisimulations . 60
2.5.1 Fenced vs. Trellis Bisimulation 61
2.5.2 Fenced vs. Hedged Bisimulation 62
2.5.3 Fenced vs. Framed Bisimulation 62
2.5.4 Framed vs. Hedged Bisimulation 63
2.5.5 Alley vs. Hedged bisimulation 66
2.5.6 Negative Results . 68

2.6 Comparison in a Categorical Framework 70
2.6.1 Redefinitions . 71
2.6.2 Reinterpretation . 73
2.6.3 Up-to Techniques . 75
2.6.4 Θf Again! . 77
2.6.5 Summary . 79

2.7 Conclusions . 79

3 Extending the Message Language 83
3.1 Message Algebras . 84

3.1.1 Frames and Operations . 85
3.2 Static Equivalence is Harder than Knowledge 86

3.2.1 Message Algebra . 87
3.2.2 Translation . 89
3.2.3 Derivations . 89
3.2.4 Reduction . 95

3.3 Constructor-Destructor Languages 96
3.3.1 Hedges, Revisited . 98
3.3.2 Knowledge . 102
3.3.3 Consistency . 104

3.4 A Family of Spi Calculi . 107

4 Symbolic Semantics 111
4.1 Symbolic Operational Semantics . 111

4.1.1 A Single Step . 114
4.1.2 The Early Labelled Transition System 119

4.2 Symbolic Bisimulation . 122
4.2.1 Symbolic Environments . 122
4.2.2 Symbolic Bisimulation . 127

4.3 Examples . 134

4.3.1 Potential Sources of Incompleteness 134
4.3.2 A Simple Cryptographic Protocol 137

5 Conclusions 143

A Proofs 145
A.1 Proofs of Chapter 3 . 145
A.2 Proofs of Chapter 4 . 149

B A Prototype Implementation 165

List of Figures

1.1 Environment Transitions in Pi and Spi Calculi 3

2.1 Comparing Bisimulations . 18
2.2 Categorical Relations . 79

List of Tables

1.1 Syntax of the Spi Calculus . 11
1.2 Free and Bound Names and Variables 12
1.3 Concrete Evaluation (Decryption) . 13
1.4 Guard Satisfaction . 13
1.5 Operational Semantics . 14

2.1 An Algorithm for the Function ξ . 23
2.2 Relations Between the Bisimilarities. 70

4.1 Symbolic Operational Semantics . 113
4.2 Symbolic Transitions of Specification Process 138
4.3 Symbolic Transitions of Implementation Process 139
4.4 A Symbolic Bisimulation . 140

Chapter 1

Introduction

Security protocols are essential to the proper functioning of any distributed system
running over an insecure network, such as the Internet. However, security protocols
are notoriously hard to get right and often have flaws that can be exploited without
breaking the cryptography [AN95] and with a low expenditure of resources.

In order to check if a protocol is vulnerable to this class of attacks, researchers
turn to formal cryptography [DY83], working under the assumption that the cryp-
tographic primitives are flawless. This allows the construction of formal models and
tools for checking relevant properties of protocols [Low96]. Such models are often
based on process calculi [Mil80], small formal languages for modelling communicat-
ing systems.

1.1 Background

The spi calculus, proposed by Abadi and Gordon [AG99] for the modelling and for-
mal verification of cryptographic protocols, is an extension of the pi calculus [MPW92]
with cryptographic operators and operations. The success of the spi calculus and its
successors (notably the applied pi calculus [AF01]) is due to at least three reasons.

1. It is equipped with an operational semantics; thus any protocol described in
the calculus may be regarded as executable.

2. Security properties can be formulated as equations on process terms, so no
external formalism is needed to describe them.

3. The contextual nature of process equivalences avoids the need to explicitly
model the attacker; they take into account any attacker that can be expressed
in the calculus.

As seen in [AG99, DKR06], many correctness properties for cryptographic pro-
tocols are naturally expressed through equivalences between certain process terms.

2 CHAPTER 1. INTRODUCTION

To verify security properties expressed in this style, we need to choose a notion of
equivalence. Contextual equivalences—two terms are related if they behave in the
same way in all contexts—are attractive because the quantification over all contexts
directly captures the intuition of an unknown attacker expressible within the spi
calculus [AG98].

The most prominent notions of contextual equivalence are may-testing equiv-
alence [dNH84] and barbed equivalence [MS92]. Their main distinction is linear
time versus branching time: The former considers the possibility of passing a test
after a sequence of computation steps; the latter has a more refined view, also
comparing intermediate stages (cf. [Mil81]). Secrecy and authenticity are usually
seen as trace-based properties and formulated in terms of testing equivalence; how-
ever, testing is not known to be sufficient for other security properties such as
anonymity [CS02, DKR06].

Direct proofs of contextual equivalences are notoriously hard [AG99] due to the
requirement of infinitary quantifications (usually quantifications over infinitely many
process contexts). The standard solution to this problem is to work with an observa-
tional equivalence, based on the idea of an environment observing a pair of processes
to see whether it may distinguish one from the other. The environment typically
observes the labelled transition system derived from the operational semantics of
processes. This approach is useful since in most process calculi, the two points of
view of an observing environment and of an observed process are symmetric: any
transition that a process can do according to its semantics is also observable by the
environment. This symmetry is no longer valid in the case of the spi calculus.

In Figure 1.1, we show that the labelled transition system of the spi calculus, in
contrast to the pi calculus, contains what one may call “meaningless transitions”.
The various labelled arrows represent the input a b

−→ of a name b along channel a,

the output a b
−→ of a message b along channel a, or the bound counterpart

(νb) a b
−−−−→ for

a fresh name b, and the (bound) output
(νbk) a Ek(b)
−−−−−−−→ along channel a of a message

Ek(b) representing the encryption of the clear-text b using the key k. The displayed
transitions represent the possible observations about a process from the point of
view of an environment interacting with the process. For example, an environment
observing P might see the bound output (νb) a b, upon which the environment per-

forms a corresponding input operation. After the transition P
(νb) a b
−−−−→ P ′, the fresh

name b received by the environment may be used to interact with P ′ as seen in
Figure 1.1. Essentially, once the environment receives a name, it may freely use it
in interactions.

In the spi calculus there are also more complex transitions, such as in the tran-
sition from Q to Q′ above, where the exchanged messages are encrypted. Note that
both the key k and the datum b are bound, but when Q transmits the encrypted

1.1. BACKGROUND 3

P ′
1

P ′
2

P
(νb) a b

// P ′

c b

??~~~~~~~~~
b c 77nnnnnnn

b c
''PPPPPPP

P ′
3

Q′
1 Q′′

1

Q′
2 Q′′

2

Q
(νbk) a Ek(b)

// Q′

c b

99

b c 44

a k //

b c **

Q′′

c b

99rrrrrrrrrrrrrr

b c 44iiiiiiiiiiii

b c **UUUUUUUUUUUU

Q′
3 Q′′

3

Figure 1.1: Environment Transitions in Pi and Spi Calculi

message neither the key nor the clear text b are accessible to the environment.
Therefore, although present in the LTS of the process, none of the dotted transi-
tions are observable by the environment of Q′: since the environment does not know
the key k, it cannot interact with Q′ using the clear-text (the name b) hidden inside
the cipher-text Ek(b), neither to communicate on the channel b nor to send back b
to the process. However, these transitions become observable after the key k itself
is sent to the environment, as in the transition from Q′ to Q′′.

This asymmetry between the possible and the observable actions of a process also
makes the spi calculus highly interesting to study from a theoretical perspective.

1.1.1 Environment-sensitive Bisimulations

Labelled bisimilarity [Par81] is a coinductive observational equivalence that is often
used as a proof technique for barbed equivalence. Its definition is based on the
notion of simulation: A binary relation R on processes is a simulation if whenever
P R Q and P has a transition P

µ
−→ P ′ then Q can simulate this transition by some

Q
µ
−→ Q′ such that P ′ R Q′. Bisimilarity is then the greatest symmetrical simulation.
Unlike in the pi calculus, labelled bisimilarity is too strong a notion of equiva-

lence for spi processes: It distinguishes between the (barbed equivalent) processes
(νk) a〈Ek(M)〉 and (νk) a〈Ek(N)〉 whenever M 6= N , intuitively rendering encryp-
tion useless. This problem, and the observability issues related to Figure 1.1 as
discussed above, were adressed by explicitly taking into account the knowledge of
an environment about a process. As a means to capture the notion of environment
knowledge, environment-sensitive bisimulations were developed for the spi calculus,
in two main styles:

4 CHAPTER 1. INTRODUCTION

1. Abadi and Gordon [AG98] introduced framed bisimulation by imposing on ev-
ery bisimulation pair a shared environment: A frame-theory pair representing
the knowledge of the environment about the process pair. The frame is the
set of names (channels, keys) that the environment has learned so far, while
the theory is the set of pairs of non-name data items received from the pair of
processes during the “bisimulation game”. If all pairs of messages in the the-
ory are indistinguishable, i.e., if environment has no means (e.g., decryption
keys) to distinguish them, the environment is said to be consistent.
Fenced bisimulation [EHHO99] is a refinement of framed bisimilarity, replacing
one infinite existential quantification with an explicit algorithm.

2. Boreale et al. [BDP99] introduced another notion, under the generic name of
environment-sensitive bisimulation, called “alley” bisimulation in the follow-
ing. Here, each of the processes in a bisimulation pair is accompanied by an
environment, which (roughly) lists the messages received from the process in
the past. A pair of environments is statically equivalent if they validate the
same logical formulae.

All of the above notions of bisimulation are, assuming that the observing en-
vironments know all free names of the related processes, sound approximations of
barbed equivalence, and thus of may-testing equivalence.

In Chapter 2, after introducing the spi calculus, we formally highlight the dif-
ferences and similarities between the above-mentioned notions of bisimulation by
introducing a general framework for comparing environment-sensitive bisimilarities
and an improved version of framed bisimulation, called hedged bisimulation.

1.1.2 Extending the Message Language

In the formal cryptography tradition, cryptographic messages are treated as terms
modulo some equivalence relation, rather than as bit strings. The expression lan-
guage used in Chapter 2 was chosen for minimality and only contains symmetric
encryption with atomic keys. In order to model a cryptographic protocol we clearly
need to extend this language, at the very least with tuples. However, for automated
verification we need to be careful of how to choose the extension, in order to avoid
that the properties we want to check (e.g., secrecy) become undecidable.

There are two main ways of specifying secrecy for a cryptographic protocol [CRZ07].

(1) One common approach is to see if the attacker can deduce the value of a
secret parameter of the protocol, after some interaction with the protocol
participants. This disclosure-based approach is taken in, e.g., [Low96, Sch96,
KMM94].

(2) The other approach, used in the spi calculus, is to check whether the attacker
can notice any difference between protocol runs with different values of the

1.1. BACKGROUND 5

secret parameter. This indistinguishability-based approach fits naturally into
the process calculus framework of operational correspondence, is a standard
notion of secrecy of cryptographic primitives [GM84], and is thus often used
for protocol analysis in the probabilistic polynomial-time tradition [Mit01].
This approach can also be used to check other properties than secrecy, for
instance by comparing an implementation of the protocol with an executable
specification. At a given state in the protocol run, it gives raise to a static
equivalence problem (cf. alley bisimulation above).

In Chapter 3, we show that in general, it is harder to decide static equivalence
than disclosure. We then define a class of constructor-destructor message algebras
where both problems are decidable and that permit a smooth generalization of the
environment operations of Chapter 2.

1.1.3 Symbolic Semantics

Once we have chosen a non-contextual equivalence and a message language, we
face an inherent problem with the operational semantics of message-passing process
calculi: The possibility to receive arbitrary messages gives rise to an infinite number
of “concrete” transitions.

Using a symbolic semantics, the substitution of received messages for input vari-
ables never takes place. Instead, an input prefix produces a single “symbolic” tran-
sition, where the input variable is only indirectly instantiated by collecting necessary
constraints for later transitions.

In Chapter 4, we propose a symbolic structural operational semantics and a
symbolic bisimulation for the full spi calculus. Symbolic bisimulation is significantly
more complicated in the spi calculus than in value-passing CCS [HL95] or the pi-
calculus [BD96, Lin94, Liu94]:

1. We must keep track of when an attacker has learned some piece of information
so that it can only be used for instantiating inputs taking place later on;

2. The combination of scope extrusion and complex guards and expressions makes
a precise correspondence to the concrete semantics challenging;

3. The cryptographic knowledge of the environment should be represented clearly
and compactly;

4. Environment inconsistency, signaling that the environment has noticed a dif-
ference between the supposedly equivalent processes, must be carefully defined.
A key issue here is how and when to evaluate expressions when defining the
set of instantiating substitutions of a symbolic environment.

We choose hedged bisimulation as a starting point for our symbolic bisimulation
since it offers a compact and clear knowledge representation. We prove the soundness

6 CHAPTER 1. INTRODUCTION

and completeness of the symbolic operational semantics for a large class of message
languages, and the soundness of the symbolic bisimilarity with respect to hedged
bisimulation.

1.2 Related Work

There exist several cryptographic process calculi other than the spi calculus. For
generality we wanted to work with a channel-passing calculus. We chose to work
with the spi calculus over the applied pi calculus due to the latter’s lack of maturity
at the time. Moreover, in the original definition of the applied pi calculus [AF01],
channels could not be passed inside compound messages, limiting its usefulness.

Among the cryptographic process calculi without channel passing are Crypto-
CSP [Low96, Sch96, SR01], which is an extension of CSP [AH85, Ros97], and Crypto-
CCS [Mar99], which is an extension of CCS [Mil80]. Both Crypto-CSP and Crypto-
CCS are used for property-based protocol-verification, where properties are defined
as refinements of other CSP processes for Crypto-CSP and as logical predicates on
states for Crypto-CCS.

1.2.1 Symbolic Techniques for Spi Calculi

Symbolic semantics have been exploited to implement bisimulation-checking algo-
rithms for the pi calculus [San96, VM94]. Several symbolic semantics have also been
defined for the limited setting of non-mobile spi calculi, where no channel-passing is
allowed and channels often do not even exist. The first work along these lines was by
Huima [Hui99]. Amadio and Lugiez [AL00] gave a symbolic model for reachability
checking. Boreale [Bor01] defined a symbolic transition system and an algorithm
for deciding whether a pair of events always occurs in the same order (cf. [WL93]).
Boreale’s tool (STA) was later extended [BB05] to other message languages, includ-
ing asymmetric encryption both as a blackbox and using a more detailed model of
modular exponentiation. Fiore and Abadi [FA01] defined another notion of symbolic
traces, permitting complex keys (in contrast to the earlier work mentioned above
where keys were restricted to be names). Martinelli [Mar02] gives a symbolic pro-
cedure for deciding intruder knowledge for a particular class of knowledge inference
systems. The above-mentioned techniques are mainly intended for finite processes,
and for that reason simply treat restriction (fresh name/key creation) as absence of
initial environment knowledge, rather than as the actual generation of a previously
unknown name at the appropriate point in the excecution of the process.

For the full spi calculus, where channel names and their communication pose
challenges, the only earlier symbolic semantics that we are aware of was proposed by
Durante et al. [DSV03]. The authors propose a tool (S3A) based on an environment-

1.2. RELATED WORK 7

sensitive LTS, where the effects of structural and equality constraints are applied to
the environment at each step. Like above, restriction is simply treated as uniqueness
and absence of environment knowledge.

A more recent symbolic semantics and bisimulation than the original version of
ours [BBN04] is due to Lü et al. [LCFW05], working in a non-mobile spi calculus
without even internal communication. In that simpler setting they acheive the same
soundness result as we had at the time; I am not aware of any complete version of
their symbolic bisimilarity.

We prefer a pure process semantics that allows a more general expression lan-
guage, has negation in the constraints, treats restriction as a syntactic binder, and
lets us model the passing of channel names inside encrypted messages.

Recently, Delaune et al. [DKR07] have given a non-trivial extension of our sym-
bolic bisimulation to the applied pi calculus, and proven it sound but incomplete
with respect to barbed equivalence. Moreover, Johansson and Victor [JV07] have
defined a sound and complete symbolic semantics and bisimulationfor the applied
pi calculus, with an environment that is part of the process term and keeps track
of knowledge, (dis)equality constraints and name freshness. We use a key idea from
their completeness proof to define environment decompositions.

Other Spi Calculus Techniques By bounding the depth of messages, Hüttel
gives a decision procedure [Hüt02] for framed bisimilarity in the case of finite pro-
cesses. The time complexity of the procedure (doubly exponential, search tree
branching factor ≫ 2220

for simple examples) makes it, as currently defined, of
mainly theoretical interest.

Gordon, Jeffrey and Haack use typing to ensure authenticity [GJ04] and multi-
level secrecy [GJ05] properties, also for timed protocols [GJ05, HJ06] and allowing
unbounded processes.

Briais [Bri08] has specified hedged bisimilarity in Coq and given fully formal
proofs for key results, allowing machine-checked bisimilarity proofs. A similar but
unrelated work is by Kahsai and Miculan [KM07], that have specified both hedged
and framed bisimilarity in Isabelle/HOL Nominal.

1.2.2 Calculi with Extended Message Algebras

The original spi calculus has symmetric encryption and pairing as constructors for
composite messages, whereas the applied pi calculus permits the use of an arbitrary
term algebra modulo an equivalence.

Cortier [Cor02, Cor03] extends alley bisimulation to a more general calculus than
spi. The additions include both an extended expression language with public key
encryption and more general guards. In this calculus, static equivalence is decidable

8 CHAPTER 1. INTRODUCTION

because of the regularity of the guards and an equational theory that only admits
functions that are either one-way, completely invertible or partially invertible (i.e.,
encryption).

Blanchet [Bla01, AB05] gives a denotational semantics to an applied pi-like lan-
guage by compiling it to Horn clauses. These can then be checked using logic
programming techniques. This tool (ProVerif) has also been extended [BAF08] for
certain kinds of equivalence-based secrecy checking. The possibility to define the
message algebra to be used has permitted the use of ProVerif for verification of
Internet protocols with complex message formats [BFGP03, LMBG05, BFGT06].

Some Decidability Results Studying the original spi calculus, Hüttel [Hüt02]
proved that framed bisimilarity is decidable for finite spi, a spi calculus without
complex keys, replication and recursion. He also showed that finite-control (i.e.,
recursion, parallel composition only at the top level) spi calculus is Turing-powerful,
as opposed to finite-control pi calculus.

The concrete consistency problem has been solved for many different classes of
message algebras and guard languages, including symmetric encryption [BDP02],
public key encryption and hashing with general regular guards [Cor03], and more
generally for a guard language only containing equality checks [AC06].

Turning to the symbolic case, Baudet [Bau07] gives an NP algorithm for the
symbolic version of the knowledge problem in a more general setting than the spi
calculus (called subterm-convergent rewrite theories). In that setting, Baudet also
gives an NP algorithm for symbolic consistency, although for the case of guards
without disjunction and negation.

1.3 Contributions

In Chapter 2, we study the different notions of bisimulations for the spi calculus
that have been defined to date, and exhibit distinguishing notions between several
of these notions, including ones previously believed to coincide. We then give a gen-
eral framework for comparison of environment-sensitive relations, and interpret the
above-mentioned counterexamples in this framework. We proceed to relate and com-
pare the different bisimulations, based on a comparison of the corresponding kinds
of environment, yielding a full account in the sense that every possible relation (from
the above-mentioned framework) that is not proven is disproven. We finally extend
this comparison to a category-theoretical (as opposed to a set-based) framework,
using a corresponding interpretation of up-to techniques as quotient categories.

In Chapter 3, we give a full proof that for general message algebras, static equiv-
alence is harder to decide than knowledge. We then define a class of constructor-
destructor message languages where both of these problems are decidable. We show

1.4. THE SPI CALCULUS 9

how to extend the operations on hedges to this class of languages, and show that
key properties of these operations still hold. To validate the definitions, we prove
correspondence between consistency over any such message language, and static
equivalence in an extension thereof. By the decidability of consistency, we immedi-
ately get that static equivalence and consistency are both decidable for this class of
languages.

In Chapter 4, we give a general symbolic operational semantics for any spi cal-
culus. We then use this semantics to define a symbolic bisimilarity, for spi calculi
over constructor-destructor languages, that we prove to be both sound and complete
with respect to its concrete counterpart.

1.4 The Spi calculus

The pi calculus [MPW92, Mil99, SW01] is a small language for modelling commu-
nicating and distributed systems, where communication channels can be generated
and passed around. In its simplest form, processes P are built from the halted
process 0, input prefixes a(x) and output prefixes a〈b〉, parallel composition P1 |P2

and restriction (intuitively the generation of a fresh name) (νa)P . As an example,
in P := (νa) (a(x).b〈x〉. 0 | (νc) a〈c〉. 0), the process (νc) a〈c〉. 0 on the right-hand
side of the parallel composition generates a fresh name c and transmits it on the
hidden (restricted) channel a. The left-hand process a(x).b〈x〉. 0 receives a name on
the channel a, later forwarding it on the public channel b. The process P can then
perform the two transitions

(νa) (a(x).b〈x〉. 0 | (νc) a〈c〉. 0)
τ
−→ (νa) (νc) (b〈c〉. 0 | 0)

(νc) b c
−−−→ (νa) (0 | 0).

Here the label τ on the first arrow denotes internal communication, while the label
(νc) b c denotes the transmission of a fresh name c on channel b.

In contrast to the pi calculus, the spi calculus offers next to mere names another
kind of transmissible messages, namely ciphertexts, which are provided by the ad-
dition of primitive constructs to encrypt (Ek(M)) and decrypt (Dk(M)) data using
shared-key cryptography.

The original spi calculus [AG99] also included tuples. Here we use this simple
expression language since it is already sufficient to exhibit the differences between
bisimilarities; we treat extensions of the language in Section 3.4.

We build on the same assumptions on the underlying system of shared-key cryp-
tography as [BDP02], which read as follows:

1. Perfect Encryption: A ciphertext Ek(M), i.e., a message M encrypted under
a key k, can only be decrypted using k. The only way to produce the cipher-
text Ek(M) is to encrypt M under k. If k is secret, no attacker can guess or

10 CHAPTER 1. INTRODUCTION

forge k. An attacker possessing two different encrypted messages cannot tell
whether they are encrypted with the same key, contain the same or related
cleartexts or are completely unrelated.

2. There is enough redundancy in the structure of messages to tell whether de-
cryption of a message with a given key has actually succeeded or not.

3. There is enough redundancy in the structure of messages to tell their role
(name or compound ciphertext).

4. Compound messages are not admissible as encryption keys.

Assumption 3 is necessary since we only permit communications on channels
corresponding to a name (i.e., a compound message cannot be used as a channel,
in contrast to [DSV03, Tiu07]). To explicitly check for this distinction we have a
guard [F :N], the semantics of which can be found in Table 1.4 on page 13.

1.4.1 Syntax

We assume a countably infinite set N of names. Names are untyped, meaning that
the same name can be used as a channel, a key or the clear-text of a message.
The lower case letters a, b, c, k, l,m, n are used to range over names. We use x, y, z
to range over the infinite set V of variables. We let u, v, w range over N ∪ V.
While expressions F are formed arbitrarily using both constructors and destructors,
messages M represent nestings of encryptions.

Logical formulae φ generalize the usual matching operator of the pi calculus by
conjunction and negation. Moreover, the predicate [F :N] tests for the format of F ,
i.e., whether it evaluates to a plain name or not.

The syntax of messages, expressions, guards and processes is given in Table 1.1.
Our syntax is similar to that of the applied pi calculus, without a let construct.
This is beneficial since the set of messages M may not be closed under injective
(α-)renaming in extensions of the message language (see Example 3.4.5).

When writing down terms, we use the convention that (νb) , φ and prefixing
bind stronger than + and that + binds stronger than | , and let + and | be left
associative. We generally omit 0 when after a prefix.

The names n(·) resp. variables v(·) of a term are the names resp. variables occur-
ing in the term. Free and bound names and variables of process terms are inductively
defined as expected (Table 1.2): the name a is bound in “(νa)P” and the variable
x is bound in “F (x).P” and “!F (x).P”. Two processes are α-equivalent if they can
be made equal by conflict-free renaming of bound names and variables. We identify
α-equivalent processes, except as noted below.

Substitutions σ are of two kinds: instantiating or renaming. Instantiating sub-
stitutions are idempotent functions

{F
/x

}
from variables x to expressions F . Re-

namings are injective functions N → N . Substitutions are applied to processes,

1.4. THE SPI CALCULUS 11

F,G ::= u | EG(F) | DG(F) expressions E
M,N ::= a | Ea(M) messages M
φ, ψ ::= tt | φ∧φ | ¬φ guards G

| [G = F] (equality)
| [F :N] (is a name)

P,Q ::= 0 processes P
| F (x).P (input prefix)
| F 〈F 〉.P (output prefix)
| !F (x).P (replicated input)
| P + P (choice)
| P |P (parallel)
| (νa)P (restriction)
| φP (boolean guard)

Table 1.1: Syntax of the Spi Calculus

expressions and guards in the straightforward way, obeying the usual assumption
that capture of bound names is avoided through implicit α-conversion: for example,
P

{F
/x

}
replaces all free occurrences of x in P by F , renaming bound names and vari-

ables in P where needed. We write σ
{M
/x

}
for σ∪{(x,M)}, where x 6∈ dom(σ). To

add several messages, we write σ
{M1/x1 , . . . ,

Mn/xn

}
for σ∪{ (xi,Mi) | i = 1, 2, . . . , n }

where the xi are assumed to be pairwise different and not in dom(σ). The set of
free names of a substitution is defined as fn(σ) := n(range(σ)). If σ is a renaming,
we define its support as spt(σ) := {a ∈ N | σ(a) 6= a} .

When s1, . . . , sk are terms (where k may be 0), we write “s̃” as a shorthand for
“s1, . . . , sk”. We write “(νa, c̃) ” for “(νa) (νc̃) ” and “(ν) ” for “” (nothing). When
f is a function from terms to terms we write “f(s̃)” for “f(s1), . . . , f(sk)”. When
f is a function from terms to sets of terms we write “f(a, s̃)” for “f(a) ∪ f(s̃)” and
“f()” for “∅”, e.g., fn(P,Q) stands for fn(P) ∪ fn(Q).

1.4.2 Semantics

The structural operational semantics for our spi calculus mostly resembles the one
for the pi calculus, with three major differences:

• Since input and output prefixes contain arbitrary expressions, we must make
sure that these expressions evaluate to a concrete message or channel name
before performing the transition.

• Since a message may contain several different fresh names, the side conditions
guaranteeing name freshness are more complex.

12 CHAPTER 1. INTRODUCTION

P fn(P) bn(P)
0 ∅ ∅
F (x).Q n(F) ∪ fn(Q) bn(Q)
F 〈G〉.Q n(F) ∪ n(G) ∪ fn(Q) bn(Q)
!F (x).Q n(F) ∪ fn(Q) bn(Q)
Q1 +Q2 fn(Q1) ∪ fn(Q2) bn(Q1) ∪ bn(Q2)
Q1 |Q2 fn(Q1) ∪ fn(Q2) bn(Q1) ∪ bn(Q2)
(νa)Q fn(Q) \ {a} {a} ∪ bn(Q)
φQ n(φ) ∪ fn(Q) bn(Q)

P fv(P) bv(P)
0 ∅ ∅
F (x).Q v(F) ∪ (fv(Q) \ {x}) {x} ∪ bv(Q)
F 〈G〉.Q v(F) ∪ v(G) ∪ fv(Q) bv(Q)
!F (x).Q v(F) ∪ (fv(Q) \ {x}) {x} ∪ bv(Q)
Q1 +Q2 fv(Q1) ∪ fv(Q2) bv(Q1) ∪ bv(Q2)
Q1 |Q2 fv(Q1) ∪ fv(Q2) bv(Q1) ∪ bv(Q2)
(νa)Q fv(Q) bv(Q)
φQ v(φ) ∪ fv(Q) bv(Q)

Table 1.2: Free and Bound Names and Variables

• Guards generalize the standard matching construct with conjunction, negation
and the possibility to check whether an expression evaluates to a channel name.

The set of (late input) actions µ ∈ A is defined as µ ::= a(x) | (νc̃) aM | τ ,
where the bound names c̃ must be pair-wise different. We let bv(a(x)) := {x}
and bn((νc̃) aM) := {c̃}. For evaluation of expressions we have a partial function
e(·) : E ⇀ M that is defined recursively as in Table 1.3. For guards we have a
predicate [[·]] that is defined in Table 1.4.

Operational Semantics

In Table 1.5, we give the transition rules for the late input semantics for closed
processes (fv(P) = ∅). We assume that no α-renaming of processes occurs during the
derivation of a transition. Instead, we define α-equivalence on output transitions. If

P
(νb̃) aM
−−−−→ P ′ and σ : {b̃} → N is injective such that (range(σ)\dom(σ))∩(n(a,M)∪

fn(P ′)) = ∅ then (P
µ
−→ P ′) =α (P

(νebσ) aMσ
−−−−−−→ P ′σ).

1.4. THE SPI CALCULUS 13

G
e
7→

a if G = a
Ek(M) if G = EF2

(F1) and e(F1) = M ∈ M and e(F2) = k ∈ N
M if G = DF2

(F1) and e(F1) = Ek(M) ∈ M and e(F2) = k ∈ N
⊥ if otherwise

Table 1.3: Concrete Evaluation (Decryption)

[[tt]] is true
[[φ∧ψ]] is true iff [[φ]] and [[ψ]] are true
[[¬ψ]] is true iff [[ψ]] is not true.
[[[F = G]]] is true iff e(F) = e(G) 6=⊥
[[[F :N]]] is true iff e(F) ∈ N

Table 1.4: Guard Satisfaction

Example 1.4.1 We give a process Q having the transitions of Figure 1.1.

Q :=(νb, k) a〈Ek(b)〉.(a〈k〉 | b〈c〉 + b(x) + c(x))

Definition 1.4.2 A process P exhibits the (strong) barb b, written P ↓b, if

∃x, P ′. P
b(x)
−−→ P ′. We let ⇒ be the reflexive and transitive closure of τ

−→. The process
P exhibits the weak barb b, written P ⇓b, if ∃P ′. P ⇒ P ′ and P ′ ↓b.

Our target contextual equivalence is (strong) barbed equivalence. Since we are
in a synchronous setting, it is sufficient to study input barbs. Hüttel [Hüt02] has
showed that two-counter machines can be implemented in the spi calculus; this
implies that even the existence of a weak barb is undecidable. For this reason,
strong equivalences are more amenable to automated verification.

Definition 1.4.3 A binary relation R ⊂ P ×P is a (strong) barbed bisimulation if
whenever P R Q,

1. If P τ
−→ P ′ then Q

τ
−→ Q′ such that P ′ R Q′; and

2. If Q τ
−→ Q′ then P

τ
−→ P ′ such that P ′ R Q′; and

3. For all b ∈ N , if P ↓b then Q ↓b; and
4. For all b ∈ N , if Q ↓b then P ↓b.

We let barbed bisimilarity, ≃̇, be the union of all barbed bisimulations. Two processes
P and Q are (strongly) barbed equivalent, written P ≃ Q, if for all processes R,
(P |R) ≃̇ (Q |R).

14 CHAPTER 1. INTRODUCTION

(out)
e(G) = a e(F) = M

G〈F 〉.P
aM
−−→ P

(inp)
e(G) = a

G(x).P
a(x)
−−→ P

(com-l)
P

a(x)
−−→ P ′ Q

(νb̃) aM
−−−−→ Q′

P |Q
τ
−→ (νb̃)

(
P ′

{M
/x

}
|Q′

) if {b̃} ∩ fn(P) = ∅

(com-r)
P

(νb̃) aM
−−−−→ P ′ Q

a(x)
−−→ Q′

P |Q
τ
−→ (νb̃)

(
P ′ |Q′

{M
/x

}) if {b̃} ∩ fn(Q) = ∅

(guard)
P

µ
−→ P ′

φP
µ
−→ P ′

if [[φ]] (rep)
e(G) = a

!G(x).P
a(x)
−−→ P | !G(x).P

(par-l)
P

µ
−→ P ′

P |Q
µ
−→ P ′ |Q

if bn(µ) ∩ fn(Q) = ∅ (sum-l)
P

µ
−→ P ′

P +Q
µ
−→ P ′

(par-r)
Q

µ
−→ Q′

P |Q
µ
−→ P |Q′

if bn(µ) ∩ fn(P) = ∅ (sum-r)
Q

µ
−→ Q′

P +Q
µ
−→ Q′

(open)
P

(νb̃) aM
−−−−→ P ′

(νc)P
(νcb̃) aM
−−−−−→ P ′

if n(M) ∋ c 6∈ {a, b̃}

(res)
P

µ
−→ P ′

(νc)P
µ
−→ (νc)P ′

if c 6∈ n(µ)

(alp)
P

(νb̃) aM
−−−−→ P ′

P
(νc̃) aN
−−−−→ Q

if (P
(νb̃) aM
−−−−−→ P ′) =α (P

(νc̃) aN
−−−−−→ Q)

Table 1.5: Operational Semantics

1.4. THE SPI CALCULUS 15

The definitions of weak barbed bisimulation is the same as for the strong version
with every occurence of τ

−→ replaced by ⇒ and every occurence of ↓b replaced by ⇓b.
Weak barbed bisimilarity ≅̇ and equivalence ≅ are then defined analogously to the
strong case.

In the above definition of barbed equivalence, we limit ourselves to parallel con-
texts for two reasons. Firstly, in the pi calculus the use of more general contexts
yields a relation that is strictly stronger than labelled bisimilarity (defined below).
Secondly, the parallel context is very close to the intuition of an intruder that runs
simultaneously with the protocol to be verified. We define the standard notion of
(late strong) labelled bisimulation as follows.

Definition 1.4.4 A binary relation R ⊆ P×P is a labelled bisimulation if whenever
P R Q,

1. if P τ
−→ P ′ then there is Q′ such that Q τ

−→ Q′ and P ′ R Q′; and

2. if P
(νb̃) aM
−−−−→ P ′ with {b̃} ∩ fn(Q) = ∅ then there is Q′ such that

Q
(νb̃) aM
−−−−→ Q′ and P ′ R Q′; and

3. if P
a(x)
−−→ P ′ then there is Q′ such that Q

a(x)
−−→ Q′ and for all M ∈ M

P ′
{M
/x

}
R Q′

{M
/x

}
; and

4. the symmetrical versions of 1,2,3 for transitions of Q hold.

We let ∼ be the union of all labelled bisimulations.

Unlike in the pi calculus, labelled bisimulation is too strong a notion of equiv-
alence for spi processes: It distinguishes between the (barbed equivalent) pro-
cesses (νk) a〈Ek(M)〉 and (νk) a〈Ek(N)〉 whenever M 6= N , which contradicts the
modelling assumption of perfect encryption. This problem was adressed using
environment-sensitive bisimulation, which we treat in the following chapter.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Comparing Environment-sensitive
Bisimulations for the spi Calculus

The immediate questions on the various competing notions of bisimulation for the
spi calculus are (1) how they relate to each other, and (2) how each of them relates
to barbed equivalence, which is a uniformly defined contextual notion of bisimula-
tion that is usually considered prime among all bisimilarities [MS92]. So far, these
questions have only been treated in parts and not always fully correctly.

• Boreale et al. [BDP99] proved that alley bisimilarity is a sound approximation
of barbed equivalence. However, as we show in Section 2.1.5, their proof was
flawed (although later repaired by Boreale [Bor04]). Moreover, they proved
alley bisimilarity complete w.r.t. barbed equivalence for the class of structurally
image-finite processes, i.e., processes that are image-finite up to structural
equivalence.

• Abadi and Gordon [AG98] proved framed bisimilarity sound with respect to
barbed equivalence, but were aware that their notion of framed bisimulation is
strictly stronger than barbed equivalence. Their conjectured counterexample
uses pairing and encryption; we simplify it to only use encryption.

• Elkjær et al. [EHHO99] proposed that fenced bisimulation would coincide with
framed bisimulation, but their proof is also flawed and the inclusion only holds
in one direction (see Section 2.2.1): framed bisimilarity is not contained in
fenced bisimilarity.

• Two different notions of alley bisimilarity were defined by Boreale et al. [BDP99],
but the journal version [BDP02] only contains the weaker notion, alley bisim-
ilarity, which is complete with respect to barbed equivalence (see above). The
stronger notion, here called trellis bisimilarity, was shown by Frendrup et
al. [FHJ01] to coincide with fenced bisimilarity.

18 CHAPTER 2. COMPARING BISIMULATIONS

fenced ks
[FHJ01]

+3

([EHHO99])
ttjjjjjjjjjjjjjjj

��

“trellis”

[BDP99]

��

framed

**TTTTTTTTTTTTTT

hedged ks +3 “alley” ks
[BDP02]

+3 barbed eq.

Figure 2.1: Comparing Bisimulations

As in the pi-calculus [MPW92], bisimulations exist in early and late variants, as well
as strong and weak. We study the weak early variants of all bisimulations, since the
existence of a weak transition may be undecidable [Hüt02]. However, our results
applies without modifications to weak and/or late bisimulations.

In Figure 2.1, we pictorially summarize the various relations. Briefly, we intro-
duce a new bisimilarity, called hedged bisimilarity, in the style of framed bisimi-
larity, and prove it equivalent to alley bisimilarity and thus to barbed equivalence.
We then proceed to relate hedged bisimilarity to framed and fenced, showing that
fenced is strictly stronger than framed, which itself is strictly stronger than hedged
bisimilarity. We highlight the differences between the bisimilarities by means of
examples, strengthen them by disproofs within a novel framework for comparison
of environment-sensitive bisimilarities, and finally give embeddings of hedged into
certain up-to variants of framed and fenced bisimilarity.

Outline

We motivate and define environment-sensitive bisimulations (Section 2.1) and intro-
duce a general framework for comparing environment-sensitive bisimilarities (Sec-
tion 2.3). All of the relations in Figure 2.1 are supported by proofs for the previously
unknown positive results (Section 2.5) and both counterexamples (Section 2.2) and
disproofs (Section 2.5.6) for the negative results.

To further clarify the structural differences between the bisimilarities, we describe
the bisimilarities as categories (Section 2.6). Then, we attempt to relate these
categories in terms of embedding functors and equivalences. To obtain these results,
we also need to interpret up-to techniques in this setting.

2.1. ENVIRONMENT-SENSITIVE BISIMULATIONS 19

2.1 Environment-Sensitive Bisimulations

As motivated in the Introduction, bisimulations in the spi calculus must take into
account the knowledge of the observing environment—potentially any kind of mali-
cious attacker—at any moment in time. Since the interaction between an environ-
ment and a process is fully described by the exchange of messages, it is important
to spell out the power of attackers in the spi calculus model. Inspired by [DY83],
(1) the environment learns new messages by reading any kind of data that the pro-
cess sends on public channels; (2) the environment may then independent of any
further message exchange update its knowledge by

• detecting whether a known message is a name or an encrypted message,
• using known names to decrypt known messages (usually called analysis),
• comparing known messages to other known messages,
• storing known messages for later comparison, encryption or decryption;

(3) the environment may then send on public channels any message that it is able to
create (a procedure that is usually called synthesis) by using its current knowledge,
plus fresh names that it might create itself. Summing up, in environments we need
to represent knowledge in such a way that we may at any time calculate from this
knowledge those messages that it can currently synthesize according to the above
operations.

One straightforward approach is to jointly model the behavior of a pair eP ⊢ P ,
where eP contains the current knowledge as the list of all messages ever received
by the environment from the observed process that is now in state P . Any input
action of P is governed by the environment in that we consider inputs for only those
messages that can be synthesized by eP . Any output action of P resulting in P ′ is
used to increase the knowledge of eP resulting in eP ′ by simply appending the new
message to the list.

An alternative approach is to represent the knowledge “more efficiently” in ir-
reducible form by carrying out the full analysis after every process output. An
advantage is that the required data structure becomes smaller, and that the syn-
thesis can be carried out directly. Note that we cannot represent the full synthesis,
because it usually is infinite.

The mode of observation changes slightly under the regime of environment-
sensitive bisimulation. Instead of observing only a single process (as in eP ⊢ P), an
environment now observes a pair of processes “at the same time” (as in ePQ ⊢ P S Q,
where S denotes a bisimulation relation, and where ePQ simply may be a pair (eP , eQ)
of single environments). The spi calculus principle of distinguishing between pos-
sessing a message (e.g., Ek(a)) and knowing it (e.g., knowing that k is the encryption
key, such that a becomes known as well) comes into play again: In standard pro-
cess calculi it is required that whenever P emits a message M , the message emitted

20 CHAPTER 2. COMPARING BISIMULATIONS

by the simulating process Q must coincide syntactically with M , whereas the spi
calculus must be more permissive.

The definition of bisimulation must permit different messages to be sent to the
environment by P and Q, but only under the requirement that they lead to cor-
responding analyzes in the respective environment component of ePQ. This idea is
captured by the notion of consistency which guarantees that an environment can
not decrypt a message received from P unless it can also decrypt the corresponding
message received from Q. As a consequence, environments must also properly keep
track of the association of the messages received from P and Q.

Depending on the type of the data structure e as introduced below (frame-theory
pairs, hedges, or substitution pairs) the notions of analysis, synthesis, and consis-
tency appear in different forms or only implicitly, which renders their comparison
non-trivial. Irreducibility may be enforced on the data structure. Synthesis may be
expressed explicitly by means of substitution on expressions.

To prove two processes P and Q barbed equivalent, one wants to find a bisimu-
lation S such that e ⊢ P S Q for some initial environment e that knows all the free
names of both processes. Free names are public, so under a worst case assumption
a malicious attacker might take advantage of any and all of them.

We use some meta-variables for denoting bisimilarities and their corresponding
environments. Let ∼x and ∼y denote bisimilarities with corresponding environments
ex ∈ Ex and ey ∈ Ey. Whenever R ⊆ E×P×P is an environment-sensitive relation
for some kind of environments E, we define R−1:= { (e−1, Q, P) | (e, P,Q) ∈ R}
for some suitably defined inversed environment e−1. We write that e ⊢ P R Q if
(e, P,Q) ∈ R, otherwise e ⊢ P 6R Q. R is symmetric if R = R−1.

2.1.1 Framed and Fenced Bisimulations

Framed bisimulation [AG98], by Abadi and Gordon, was the first environment-
sensitive bisimulation proposed for the spi calculus. The original definition was
for a late bisimulation. Here, we study an early variant in order to sharpen the
comparison with the bisimulation defined by Boreale et al. [BDP99, BDP02]. Abadi
and Gordon also used a different calculus, with a complex set of messages containing
integers, pairing and general encryption keys but without general guards, choice and
general “let”. The examples distinguishing the bisimilarities, that we will exhibit in
Section 2.2, are chosen to also be expressible in the original spi calculus [AG99].

In framed bisimulation the environment consists of a frame and a theory. A
frame is a set of names known to the environment. A theory is a set of pairs of
messages considered equivalent by the environment, e.g., since it does not possess
the relevant decryption keys.

Definition 2.1.1 A frame is a finite subset of N . A theory is a finite subset of

2.1. ENVIRONMENT-SENSITIVE BISIMULATIONS 21

M × M. FT is the set of all frame-theory pairs. If B ⊂ M is finite then we
define IdB := { (b, b) | b ∈ B }. If th is a theory, we define th−1 := { (N,M) |
(M,N) ∈ th }, π1(th) := {M | (M,N) ∈ th } and π2(th) := {N | (M,N) ∈ th }.
The names of a theory is defined as n(th) := n(π1(th) ∪ π2(th)).

A frame-theory pair is consistent if the theory only contains pairs of encrypted
messages that the environment can not decrypt. Moreover, the theory may not relate
a given message to two different messages, since this intuitively yields a noticable
difference between the two sides .

Definition 2.1.2 A frame-theory pair (fr, th) is consistent iff for all messages M
and N such that (M,N) ∈ th we have that

1. M,N 6∈ N
2. If (M ′, N ′) ∈ th then M = M ′ ⇐⇒ N = N ′

3. If M = Ea(M
′) and N = Eb(N

′) then fr∩{a, b} = ∅.

Example 2.1.3 One consistent and three inconsistent frame-theory pairs:

({a, b}, {(Ek(a),Ek(a)), (El(a),El(b))}) is consistent.
(fr, th) = ({a, b}, {(Ek(a), k)}) violates condition 1 for consistency.

(fr′, th′) = ({a, b}, {(Ek(a),Eb(a))}) violates condition 3 for consistency.
(fr∪ fr′, th∪ th′) = ({a, b}, {(Ek(a), k), (Ek(a),Eb(a))}) violates all three

conditions for consistency.

The synthesis S (·) of a frame-theory pair is the set of message pairs constructed
by encrypting message pairs from the theory with keys from the frame. This models
the ability of the intruder to construct new messages from previously received ones.
The environment considers equivalent any message pair in the synthesis.

Definition 2.1.4 If (fr, th) is a frame-theory pair, we let S (fr, th) be the smallest
subset of M×M containing th∪ Idfr and satisfying

(syn-enc)
(M,N) ∈ S (fr, th) (a, b) ∈ S (fr, th)

(Ea(M),Eb(N)) ∈ S (fr, th)

We write (fr, th) ⊢M ↔ N for (M,N) ∈ S (fr, th); otherwise (fr, th) ⊢M 6↔ N .

To compare the knowledge of environments we use the following pre-order:

Definition 2.1.5 (fr, th) ≤ (fr′, th′) iff S (fr, th) ⊆ S (fr′, th′). Two frame-theory
pairs (fr, th) and (fr′, th′) are M-equivalent, written (fr, th) ≷ (fr′, th′), when
S (fr, th) = S (fr′, th′).

22 CHAPTER 2. COMPARING BISIMULATIONS

A framed process pair is a triple ((fr, th), P,Q) where fr is a frame, th is a theory
and P and Q are processes. A framed relation R is a set of framed process pairs.
R is consistent if (fr, th) is consistent whenever (fr, th) ⊢ P R Q. Now we have
enough notation to define framed bisimilarity.

Definition 2.1.6 A consistent framed relation R is a framed simulation if when-
ever
(fr, th) ⊢ P R Q we have that

1. If P τ
−→ P ′ then there exists Q′ such that Q τ

−→ Q′ and (fr, th) ⊢ P ′ R Q′.

2. If P
a(x)
−−→ P ′, a ∈ fr, B ⊂ N is finite, B ∩ (fn(P,Q) ∪ fr∪ n(th)) = ∅,

M,N ∈ M, and (fr∪B, th) ⊢M ↔ N ,
then there exists Q′

such that Q
a(x)
−−→ Q′ and (fr∪B, th) ⊢ P ′

{M
/x

}
R Q′

{N
/x

}

3. If P
(νc̃) aM
−−−−→ P ′, a ∈ fr, and {c̃} ∩ (fn(P) ∪ fr∪ n(π1(th))) = ∅,

then there exist Q′, N, d̃ with {d̃} ∩ (fn(Q) ∪ fr∪ n(π2(th))) = ∅ and

(a) Q
(νd̃) aN
−−−−→ Q′, and

(b) there exist fr′, th′ with (fr, th) ≤ (fr′, th′) and (fr′, th′) ⊢M ↔ N
such that (fr′, th′) ⊢ P ′ R Q′.

R is a framed bisimulation if both R and R−1 are framed simulations.

It is worth noting how the new environment after output transitions is characterized:
names and message pairs can be freely added as long as the synthesis is extended
conservatively and the new output messages are kept indistinguishable. Moreover,
since the two messages may differ in structure (as long as this is not noticed by the
environment), they may also contain different fresh names.
Since any union of framed bisimulations is a framed bisimulation there exists a great-
est framed bisimulation, denoted ∼f , which is the union of all framed bisimulations.

Fenced bisimulation was defined by [EHHO99], who proved it to be a sound and
complete approximation to framed bisimulation. (In Section 2.2.1, we show that
this is in fact not the case.) The difference between the definitions is that fenced
bisimulation replaces the existential quantification over frames and theories in case
3.(b) of Definition 2.1.6 with a function ξ, defined in Table 2.1, that extends a given
frame-theory pair with a new pair of messages. The function ξ works by recursively
decomposing the pair of received messages and adding the cores to the environment,
verifying consistency whenever anything has been added. Elkjær et al. showed that ξ
creates a minimal consistent extension whenever there exists one. Since our message
grammar is simpler the definition of ξ has been correspondingly simplified.

2.1. ENVIRONMENT-SENSITIVE BISIMULATIONS 23

ξ(fr, th,M,N)
IF ((fr, th) ⊢M ↔ N) THEN RETURN (fr, th)
IF (M = N ∈ N) DO

(fr′, th′) := (fr∪{M}, th)
λ := ∅
FOR EACH (Ek(M

′),El(N
′)) ∈ th DO

IF (k = l = M) THEN DO
th′ := th′ \{(Ek(M

′),El(N
′))}

λ := λ ∪ {(M ′, N ′)}
DONE
ELSIF (k = M ∨ l = M) THEN RETURN ⊥

DONE
FOR EACH (M ′, N ′) ∈ λ DO

(fr′, th′) := ξ(fr′, th′,M ′, N ′)
DONE
RETURN (fr′, th′)

ELSIF (M = Ek(M
′)∧N = El(N

′)) DO
IF (k = l ∈ fr) THEN RETURN ξ(fr, th,M ′, N ′)
IF (k ∈ fr∨ l ∈ fr) THEN RETURN ⊥
RETURN (fr, th∪{(M,N)})

DONE
RETURN ⊥

DONE

Table 2.1: An Algorithm for the Function ξ

Definition 2.1.7 A consistent framed relation R is a fenced simulation if whenever
(fr, th) ⊢ P R Q we have that

1. If P τ
−→ P ′

then there exists Q′ such that
Q

τ
−→ Q′ and (fr, th) ⊢ P ′ R Q′.

2. If P
a(x)
−−→ P ′, a ∈ fr, B ⊂ N is finite, B ∩ (fn(P,Q) ∪ fr∪ n(th)) = ∅,

M,N ∈ M, and (fr∪B, th) ⊢M ↔ N ,
then there exists Q′ such that

Q
a(x)
−−→ Q′ and (fr∪B, th) ⊢ P ′

{M
/x

}
R Q′

{N
/x

}

3. If P
(νc̃) aM
−−−−→ P ′, a ∈ fr and {c̃} ∩ (fn(P) ∪ fr∪ n(π1(th))) = ∅

there exist Q′, N, d̃ with {d̃} ∩ (fn(Q) ∪ fr∪ n(π2(th))) = ∅

such that Q
(νd̃) aN
−−−−→ Q′ and ξ(fr, th,M,N) ⊢ P ′ R Q′.

24 CHAPTER 2. COMPARING BISIMULATIONS

R is a fenced bisimulation if both R and R−1 are fenced simulations.

Since any union of fenced bisimulations is a fenced bisimulation there exists a great-
est fenced bisimulation, denoted ∼#, which is the union of all fenced bisimulations.

2.1.2 Alley and Trellis Bisimulations

Boreale et al. [BDP99, BDP02] defined environment-sensitive semantics and a corre-
sponding weak bisimulation for the spi calculus. As mentioned earlier, we call their
bisimulation “alley” in order to distinguish it from the other bisimulations, which are
also environment-sensitive. The authors proved that alley bisimulation is a sound
approximation of barbed equivalence, and that the approximation is complete for
the class of “structurally image-finite” processes. They also studied a number of
“up-to” techniques for this bisimulation. In this work, we study a strong version
of this bisimulation, in order to simplify the setting for our comparison.

Formally, Boreale et al. defined two levels of operational semantics, one for the
behavior of processes, and another one for the corresponding behavior of environ-
ments. We adapt their formalism to the style without per-process environments,
following [FHJ01], by simply incorporating the environment semantics rules into
the definition of bisimulation. In alley bisimulation, the environment is a pair of
substitutions. We denote by SS the set of all alleys, i.e., the set of all substitution
pairs.

Any set of messages, e.g., the messages in the codomain of a substitution, might
be reduced via decryption using the notion of analysis (cf. [Pau98]).

Definition 2.1.8 The analysis A(S) and the irreducibles I (S) of a set S ⊆ M are
defined as follows: A(S) is the smallest subset of M containing S and satisfying

(set-dec)
Ea(M) ∈ A(S) a ∈ A(S)

M ∈ A(S)

and I (S) := A(S) \ {Ea(M) | a ∈ A(S) }.

The function coreσ(M) decrypts a message M as far as possible, i.e., peels out
the core of M using the knowledge of a substitution σ. We use the shorthands I (σ)
for I (range(σ)) and A(σ) for A(range(σ)). We define

coreσ(M)
def
=

{
coreσ(M

′) if M = Ea(M
′) and a ∈ I (σ)

M otherwise

2.1. ENVIRONMENT-SENSITIVE BISIMULATIONS 25

Thus, we can decompose any message M into Ebn
(· · ·Eb2

(Eb1
(coreσ(M))) · · ·) for

any substitution σ with {b1 . . . , bn} ⊆ I (σ); if coreσ(M) = Ea(N), then a 6∈ I (σ).
Writing C(σ, x) := coreσ(σ(x)), we get I (σ) = {C(σ, x) | x ∈ dom(σ)}.

Boreale et al. define a substitution pair to be consistent if the two substitu-
tions have the same domain and enable the same guards, i.e., (σ, ρ) is consistent
if dom(σ) = dom(ρ) and ∀φ ∈ G such that n(φ) ⊆ dom(σ) we have [[φσ]] = [[φρ]].
They also give an alternative characterization, for this choice of guard and message
language, that avoids the infinite quantification over guards above. In this paper,
we work with this alternative characterization, stating that a pair of substitutions
is consistent if they allow us to decrypt corresponding messages in precisely corre-
sponding ways. In other words, it does not simply suffice to decrypt to corresponding
cores, but we must also use corresponding keys for the decryption.

Definition 2.1.9 A pair of substitutions (σ, ρ) is consistent, written σ ∼= ρ, iff σ
and ρ have the same domain {x1 . . . , xn} and the following conditions hold:

1. C(σ, xi) ∈ N ⇐⇒ C(ρ, xi) ∈ N
2. C(σ, xi) = C(σ, xj) ⇐⇒ C(ρ, xi) = C(ρ, xj)
3. For each i ∈ {1, 2, . . . , n} there is a tuple ι̃ = ι1, . . . , ιm such that

σ(xi) = EC(σ,xιm)(· · ·EC(σ,xι2)(EC(σ,xι1)(C(σ, xi))) · · ·)

ρ(xi) = EC(ρ,xιm)(· · ·EC(ρ,xι2)(EC(ρ,xι1)(C(ρ, xi))) · · ·)

Example 2.1.10 To illustrate this definition, we let

σ =
{a
/x1

}{Ea(b)
/x2

}{Ek(Ea(c))
/x3

}

ρ =
{a
/x1

}{Ea(b)
/x2

}{Ek(Ek(d))
/x3

}

τ =
{a
/x1

}{Ea(c)
/x2

}{Ek(Ek(c))
/x3

}

Then we have that σ ∼= ρ, σ ∼= τ and ρ ∼= τ . Note that we must allow two different
names (b and c) to correspond, in order to relate σ and τ . If both σ and ρ acquire
knowledge of the key (name) k we get that σ

{k
/y

}
6∼= ρ

{k
/y

}
, since they violate

condition 3 of ∼= by using different encryption keys in the decryption of the third
message. We also have that ρ

{k
/y

}
6∼= τ

{k
/y

}
, since they violate condition 2 by having

c in I (τ) correspond to both b and d in I (ρ).

We also define a notion of the synthesis of a consistent substitution pair.

Definition 2.1.11 If σ ∼= ρ we write (σ, ρ) ⊢ M ↔ N iff there is G such
that n(G) ⊆ dom(σ), e(Gσ) = M and e(Gρ) = N . The synthesis of a consistent
pair of substitutions is defined as S (σ, ρ) := {(M,N) | (σ, ρ) ⊢M ↔ N}.

26 CHAPTER 2. COMPARING BISIMULATIONS

An alley relation R is a set of triples ((σ, ρ), P,Q) with dom(σ) = dom(ρ). R is
consistent if (σ, ρ) ⊢ P R Q implies that σ ∼= ρ.

Definition 2.1.12 A consistent alley relation R is an alley simulation if whenever
(σ, ρ) ⊢ P R Q the following conditions hold:

1. If P τ
−→ P ′ then there exists Q′ such that Q τ

−→ Q′ and (σ, ρ) ⊢ P ′ R Q′.

2. If P
a(x)
−−→ P ′ and there are M,G, b̃, b such that

e(Gσ) = M , (σ, ρ) ⊢ a↔ b, {b̃} = n(G) and b̃ ∩ fn(P,Q, ρ, σ) = ∅,
then there exist ỹ, Q′ with ỹ ⊂ V, |ỹ| = |b̃|, c̃ ∩ dom(σ) = ∅

such that Q
b(x)
−−→ Q′ and (σ

{b̃
/̃y

}
, ρ

{b̃
/̃y

}
) ⊢ P ′

{
e(Gσ)

/x
}
R Q′

{
e(Gρ)

/x
}

.

3. If P
(νc̃) aM
−−−−→ P ′ with fn(P, σ) ∩ {c̃} = ∅, (σ, ρ) ⊢ a↔ b and x 6∈ dom(σ)

then there are Q′, N, d̃ with fn(Q, ρ) ∩ {d̃} = ∅

such that Q
(νd̃) bN
−−−−→ Q′ and (σ

{M
/x

}
, ρ

{N
/x

}
) ⊢ P ′ R Q′.

R is an alley bisimulation if both R and R−1 are alley simulations.

Note the difference with respect to the previous bisimulations. Here, the environ-
ment is extended simply by mechanically adding the new messages (for output) or
the new names (for input), without reducing the environment at all. This also gives
a minimal extension (cf. fenced bisimulation) since no extra information may be
added. Since we use substitutions as environments, consistency is vital. Otherwise,
the creation of message pairs by applying both substitutions to the same formula
gives meaningless results.

Trellis bisimulation is a strengthened variant of alley bisimulation, studied (not
under this name) by [BDP99]. There, two different notions of consistency of en-
vironments were proposed, of which one was rejected since it was considered too
strong. This rejected notion, here callede strong consistency, constitutes the basis
for trellis bisimulation.

Definition 2.1.13 A consistent pair of substitutions σ ∼= ρ is strongly consistent,
written σ ∼=s ρ, if C(σ, x) ∈ N implies that C(σ, x) = C(ρ, x).

This resembles the definition of consistency of frame-theory pairs in that two differ-
ent names may never be considered equal. Strong consistency has a corresponding
bisimulation, called trellis in this paper, that was defined and compared to fenced
bisimulation by [FHJ01]. We recapitulate and strengthen the results of the compar-
ison in Section 2.5.

Definition 2.1.14 An alley relation R is strongly consistent if (σ, ρ) ⊢ P R Q
implies σ ∼=s ρ. We call trellis bisimulation a strongly consistent alley bisimulation.

2.1. ENVIRONMENT-SENSITIVE BISIMULATIONS 27

Since any union of alley/trellis bisimulations is an alley/trellis bisimulation itself
there exists a greatest alley/trellis bisimulation, denoted ∼a/∼s, which is the union
of all alley/trellis bisimulations.

2.1.3 Hedged Bisimulation

Hedged bisimulation is introduced in this paper in order to clarify the differences
between framed, fenced, and alley bisimulation. Recall that alley bisimulation,
unlike its counterparts, does not force two processes to always send the same names;
it rather remembers that the respective names correspond to each other. The basic
idea of hedges is to mimic the lack of correspondence in frame-theory pairs by
dropping the separate frame component, but to include corresponding names as
part of the theory. The resulting theory is then called a hedge.

Definition 2.1.15 A hedge is a theory, i.e., a finite subset of M×M. We denote
by H the set of all hedges. The synthesis S (·) of a hedge h is defined as the smallest
subset of M×M containing h and satisfying

(syn-enc)
(M,N) ∈ S (h) (a, b) ∈ S (h)

(Ea(M),Eb(N)) ∈ S (h)

We write h ⊢M ↔ N for (M,N) ∈ S (h), h ⊢M 6↔ N otherwise.

A hedge is consistent if the hedge only contains pairs of names and pairs of encrypted
messages that can not be decrypted by the environment. We also require that no
message is considered to be equivalent to two different messages.

Definition 2.1.16 A hedge h is consistent iff whenever (M,N) ∈ h

1. M ∈ N ⇐⇒ N ∈ N
2. If (M ′, N ′) ∈ h then M = M ′ ⇐⇒ N = N ′

3. If M = Ea(M
′) and N = Eb(N

′) then a 6∈ π1(h) and b 6∈ π2(h).

Example 2.1.17 A consistent hedge and four inconsistent hedges:

g = {(a, a), (b, c), (c, k), (Ek(b),El(a))} is consistent.
h1 = {(a,Ek(a)), (b, c), (Ek(b),El(a))} violates condition 1 for consistency.
h2 = {(a, c), (b, c), (Ek(b),El(a))} violates condition 2 for consistency.
h3 = {(a, a), (k, c), (Ek(b),El(a))} violates condition 3 for consistency.

Note that h1 ∪ h2 ∪ h3 violates all three conditions. Indeed, if a hedge h is not
consistent then h ∪ h′ is not consistent for any hedge h′.

28 CHAPTER 2. COMPARING BISIMULATIONS

The difference between a consistent hedge and a consistent frame-theory pair is that
we do not require that the hedge receives the same names from both processes, so
they do not need to use the same channels and encryption keys. We defined hedge
consistency in this fashion in order to yield a closer correspondence to the state of
affairs in the alley style of bisimulation.

The difference between a consistent hedge and a consistent substitution pair is
that the former is minimal (cf. Lemma 2.4.11) since it only contains undecryptable
messages (i.e., cores) and that no duplicate message pairs are allowed. The third
condition for consistent substitutions (Definition 2.1.9) roughly corresponds to the
definition of hedge analysis (cf. Lemma 2.4.29) .

Definition 2.1.18 The analysis A(h) and the irreducibles I (h) of a hedge h are
defined as follows: A(h) is the smallest subset of M×M containing h and satisfying

(hedge-dec)
(Ea(M),Eb(N)) ∈ A(h) (a, b) ∈ A(h)

(M,N) ∈ A(h)

and I (h)
def
= A(h) \ { (Ea(M),Eb(N)) | (a, b) ∈ A(h) ∧M,N ∈ M}.

The analysis of hedges decrypts pairs of messages using pairs of names that are
considered equivalent by the environment. The resulting notion of irreducibles cor-
responds to the result of the ξ-function of fenced bisimulation (cf. Lemma 2.4.27).

Now that the environment and notions of consistency are defined, the definition of
hedged bisimulation is straightforward. A hedged relation R is a subset of H×P×P.
We say that R is consistent if h ⊢ P R Q implies that h is consistent.

Definition 2.1.19 A consistent hedged relation R is a hedged simulation if when-
ever h ⊢ P R Q we have that

1. If P τ
−→ P ′ then there exists Q′ such that Q τ

−→ Q′ and h ⊢ P ′ R Q′.

2. If P
a(x)
−−→ P ′, h ⊢ a ↔ b, B ⊂ N is finite, B ∩ (fn(P,Q) ∪ n(h)) = ∅,

M,N ∈ M, and h ∪ IdB ⊢M ↔ N , then there exists Q′

such that Q
b(x)
−−→ Q′ and h ∪ IdB ⊢ P ′

{M
/x

}
R Q′

{N
/x

}
.

3. If P
(νc̃) aM
−−−−→ P ′, h ⊢ a↔ b and {c̃} ∩ (fn(P) ∪ n(π1(h))) = ∅

there exist Q′, N, d̃ with {d̃} ∩ (fn(Q) ∪ n(π2(h))) = ∅

such that Q
(νd̃) bN
−−−−→ Q′ and I (h ∪ {(M,N)}) ⊢ P ′ R Q′.

R is a hedged bisimulation if both R and R−1 are hedged simulations.

On process output we use I (·) to construct the new hedge after the transition.
This entails applying all decryptions that the environment can do, producing—as in

2.1. ENVIRONMENT-SENSITIVE BISIMULATIONS 29

fenced bisimulation—the minimal extension of the hedge h with (M,N). As in the
other bisimulations, this extension may turn out to be inconsistent, signifying that
the hedge has detected a difference between the messages received from the process
pair.

Since any union of hedged bisimulations is a hedged bisimulation there exists a
greatest hedged bisimulation, denoted ∼h, which is the union of all hedged bisimu-
lations.

2.1.4 Weak Bisimulation

All of the above bisimilarities also exist in weak versions. The definitions are iden-
tical, apart from the substitution of · ·

==⇒ · as defined below for any occurrences of
·

·
−→ ·. The results comparing the bisimilarities all hold for both the strong and the

weak versions, with the single exception of Proposition 2.3.5 which only applies to
weak bisimilarities.

Definition 2.1.20 We let τ
==⇒

def
= (

τ
−→)∗ and

µ
==⇒

def
=

τ
==⇒

µ
−→

τ
==⇒ if µ 6= τ .

2.1.5 Up-to techniques

Generally, in bisimulation proofs, one needs to exhibit that two related terms P S Q
possess matching transitions that allow them to proceed to terms P ′ S Q′ that are
again related by the same relation S. For this to hold, the relation S is often required
to be large or even infinite. So-called “up-to techniques” are an effective way of
reducing the size of the relation S to be exhibited to prove two processes bisimilar:
the obligation to proceed to related terms P ′ S Q′ is relaxed by requiring only
P ′ F(S) Q′ for some F(S) (typically, S ⊂ F(S)). For example, for ordinary (i.e.,
non environment-sensitive) bisimulations, these techniques include “bisimulation up
to strong bisimilarity” for CCS by Milner [Mil89], where derivatives only need to
be related by ∼S∼. An up-to technique is sound for a certain bisimilarity, if one
can prove that whenever two terms are related using this up-to technique, then
they are also bisimilar. Sangiorgi [San98] introduced the concept of respectful up-to
techniques, and proved them sound and composable.

In the context of environment-sensitive relations, up-to techniques naturally have
to take into account the additional effects on the environment component. Moreover,
there are techniques (as we will see below) that exclusively affect the environment
component.

Boreale et al. [BDP02] defined several up-to techniques for alley bisimulation.
Since these up-to techniques were later used as the basis for a proof system [BG02],
it is interesting to study them also for other bisimilarities. In the remainder of this
section, we define and discuss up-to techniques for alley and hedged bisimulation;

30 CHAPTER 2. COMPARING BISIMULATIONS

adapting the latter definition to framed and fenced is straightforward. In Section 2.2
we then show some cases where up-to techniques are not sound for framed and fenced
bisimilarity. For alley bisimulation, we define up to forgetfulness (originally called
weakening; we reserve that term for a more general notion), contraction, additional1

restriction, and injective renaming, closely following Boreale et al. [BDP02].

Definition 2.1.21 If R is an alley relation, we define Rt for t ∈ {f, c, r, i} as the
smallest alley relation containing R and satisfying the following rules:

• up to forgetfulness:
(σ

{M
/x

}
, ρ

{N
/x

}
) ⊢ P Rf Q

(σ, ρ) ⊢ P Rf Q

• up to contraction:

(σ, ρ) ⊢ P Rc Q

(σ
{M
/x

}
, ρ

{N
/x

}
) ⊢ P Rc Q

if there is F : M = e(Fσ), N = e(Fρ)
and n(F) ∩ fn(σ, ρ, P,Q) = ∅

• up to additional restriction:

(σ, ρ) ⊢ P Rr Q

(σ, ρ) ⊢ (νn)P Rr Q
if n 6∈ fn(σ)

(σ, ρ) ⊢ P Rr Q

(σ, ρ) ⊢ P Rr (νn)Q
if n 6∈ fn(ρ)

• up to injective renaming: We let σ@
{M1

/x1 , . . . ,
Mn/xn

}
:= {M1σ/x1, . . . ,

Mnσ/xn
}.

Then
(σ, ρ) ⊢ P Ri Q

(σ′@σ, ρ′@ρ) ⊢ Pσ′ Ri Qρ
′ if σ′, ρ′ : N → N are injective.

We use words (or tuples) t̃ ∈ {f, c, r, i}∗ (with the single letters {f, c, r, i} abbre-
viating the respective {forgetfulness, contraction, additional restriction, injective
renaming} to denote sequential composition of up-to techniques by Rǫ := R and
Rt̃·u := (Rt̃)u.

The concept of alley bisimulation up to t̃ is defined in close analogy to Definition
2.1.12 as follows: all bisimulation clauses of this definition require the derivatives
P ′, Q′ to satisfy (σ′, ρ′) ⊢ P ′ R Q′ for some σ′, ρ′ depending on the current clause;
for the up-to variant we replace those conditions by the weaker (σ′, ρ′) ⊢ P ′ Rt̃ Q

′.

We also define up-to techniques for hedged bisimulation.

1We call this technique “up to additional restriction” to distinguish it from a different technique
called “up to restriction” [MPW92].

2.1. ENVIRONMENT-SENSITIVE BISIMULATIONS 31

Definition 2.1.22 We write h(σ, ρ) for {(Mσ,Nρ) | (M,N) ∈ h}.
If R is a hedged relation, we define Rt for t ∈ {w, r, b, s} as the smallest hedged

relation containing R and satisfying the following rules:

• up to weakening
h ⊢ P R Q

I (h′) ⊢ P Rw Q
if S (h′) ⊆ S (h)

• up to additional restriction:

h ⊢ P Rr Q

h ⊢ (νn)P Rr Q
if n 6∈ n(π1(h))

h ⊢ P Rr Q

h ⊢ P Rr (νn)Q
if n 6∈ n(π2(h))

• up to bĳective renaming

h ⊢ P R Q

h(σ, ρ) ⊢ Pσ Rb Qρ
if σ, ρ : N → N are bĳective

• up to labelled bisimulation

h ⊢ P R Q

h ⊢ P ′ Rl Q
′ if P ∼ P ′ and Q ∼ Q′

Note that Rbb = Rb, Rww = Rw and Rll = Rl, so we can take h ⊢ P R Q (rather
than h ⊢ P Rt Q) as precondition in the corresponding rules. Moreover, we clearly
have that R⊆ Rb, R⊆ Rw, and Rbw = Rwb.

A consistent symmetric hedged relation is a hedged bisimulation up to t̃ ∈ {w, r, b, s}∗

if it satisfies the definition of hedged bisimulation (Definition 2.1.19) with the con-
dition h′ ⊢ P ′ R Q′ on the derivatives replaced by the weaker h′ ⊢ P ′ Rt̃ Q

′.

The definitions of framed/fenced bisimulation up to restriction or weakening are
the same as for hedged bisimulation above. Note the definition of weakening; we
permit an arbitrary reduction of the synthesis, and then apply I (·) to ensure that we
end up with a minimal environment. (For frame-theory pairs, one instead recursively
applies the ξ function of fenced bisimilarity, starting with an empty theory.)

For environment-sensitive relations, “up to weakening permits discarding envi-
ronment entries” [BDP02], thus it denotes the reduction of environment knowledge.
This is in contrast to the field of type systems, where the notion of weakening
usually denotes the addition of potentially unnecessary information to the (typing)
environment (cf. up to contraction). In this paper, we reserve the term weakening
for arbitrary reduction of environment knowledge, while forgetfulness denotes the
discarding of individual environment entries. Clearly, weakening is the more general
notion.

In order for an up-to technique to be usable, it must at least be sound.

32 CHAPTER 2. COMPARING BISIMULATIONS

Definition 2.1.23 An up-to technique t̃ is sound for ∼h (∼a) if every hedged (alley)
bisimulation up to t̃ is contained in ∼h (∼a).

The following properties prove useful for the analysis of up-to techniques.

Definition 2.1.24 An up-to technique t̃ is an expansion if we always have R ⊆ Rt̃,
and monotonous (with respect to ⊆) if S ⊆ R implies that St̃ ⊆ Rt̃.

Note that all of the up-to techniques defined above are monotonous expansions.
Major parts of the proof system of Boreale & Gorla [BG02] arise from the fol-

lowing proposition. We also use its contrapositive in Section 2.2 to disprove the
soundness of certain up-to techniques.

Proposition 2.1.25 If an up-to technique t̃ is a monotonous expansion and sound
for ∼x, then e ⊢ P ∼x Q and (e′, P ′, Q′) ∈ {(e,P ,Q)}t̃ imply that e′ ⊢ P ′ ∼x Q

′.

The soundness of an up-to technique t̃ is usually proved by showing Rt̃ to be a
bisimulation whenever R is a bisimulation up to t̃. Another way is to use the
following property.

Proposition 2.1.26 If ũ is an expansion and t̃ũ is sound then t̃ is also sound.

As an example of where the usual soundness proof schema does not work, Bore-
ale et al. assert ([BDP02], p. 982, proof of Proposition B.5 (4.17)) that Rf is
“straightforwardly” an alley bisimulation whenever R is an alley bisimulation up to
forgetfulness. However, the assertion is false2; as we will see this is due to a sub-
tle issue regarding name freshness, similarly to the examples on framed and fenced
bisimilarity in Section 2.2. We here exhibit an alley bisimulation up to forgetfulness
R such that Rf is not an alley bisimulation.

Example 2.1.27 Fix a and let P := (νl) a〈l〉. 0. All transitions of P are of the

form P
(νl) a l
−−−→ 0 with l 6= a.

Take fixed k, x, y such that k 6= a and x 6= y, and let σ :=
{a
/x

}{Ek(a)
/y

}
and

R := {((σ, σ), P, P)} ∪ { ((σ
{u
/t
}
, σ

{u
/t
}
), 0, 0) | t 6= x, y ∧ u 6= a, k }. It is easy to

verify that R is an alley bisimulation. Thus, since forgetfulness is an expansion, R
is also an alley bisimulation up to forgetfulness.

We show that Rf is not an alley bisimulation. We have (
{a
/x

}
,
{a
/x

}
) ⊢ P Rf P ,

y 6∈ dom(
{a
/x

}
) and P

(νk) a k
−−−−→ 0. This transition needs to be simulated by P ,

resulting in an alley process pair in S := {((
{a
/x

}{k
/y

}
,
{a
/x

}{u
/y

}
), 0, 0) | u 6= a}.

This simulated transition is problematic in two independent ways.
2The reader familiar with the notion of respectful up-to techniques defined by [San98] will note

that this also implies that up to forgetfulness is not respectful, in contrast to what was asserted
by [BDP02] (p. 964, footnote 3).

2.1. ENVIRONMENT-SENSITIVE BISIMULATIONS 33

1. Name-clash in the range: k occurs as a bound output, but was free in the

original environment σ. Thus, all transitions P
(νl) a l
−−−→ 0 that needed to be

simulated under the original environment would have l 6= k. The possible
resulting environments after such a transition then only contains

{l
/z

}
for

l 6= k, and forgetfulness alone does not let us rename l to k.
2. Name-clash in the domain: The output message k was substituted for a variable

y already used in the original environment. Clearly, there is no way to turn an
environment in R (where

{Ek(a)
/y

}
) into an environment of S (where

{k
/y

}
)

by mere forgetfulness.

Summing up, we have S ∩ Rf = ∅, so Rf is not an alley bisimulation.

Example 2.1.27 does not disprove the soundness of alley bisimilarity up to forget-
fulness, because Rf ⊂ ∼a still holds for the R of the example. We have only showed
that the “standard” way of proving the soundness of an up-to technique does not
work for this case. As an aside, one of the main results of [BDP02], the proof of the
soundness of alley bisimilarity with respect to barbed equivalence, depends on the
soundness of forgetfulness (p. 983, proof of Proposition B.5 (4.17), Up to parallel
composition).

Noting that the problems in Example 2.1.27 were due to name clashes in both
the range and the domain of the environment substitutions, we proposed to use
injective renaming to solve the first problem and introduced a new up-to technique
called domain renaming to deal with the latter.

Definition 2.1.28 If R is an alley relation, we define Rd as the smallest alley
relation containing R and satisfying the following rule:

• up to domain renaming

(σ, ρ) ⊢ P Rd Q

(βσ, βρ) ⊢ P Rd Q
if β : N ⇀ dom(σ) is injective.

We define the concept of alley bisimulation up to t̃ ∈ {f, c, r, i, d}∗ as in Defini-
tion 2.1.21.

Indeed, following this proposal Boreale [Bor04] repaired the proof of soundness of
alley bisimilarity up to forgetfulness, using the up-to technique of domain renaming
defined above. The new result is that if R is an alley bisimulation up to forgetfulness,
additional restriction and structural equivalence (not defined in this thesis) then Rfrs

is an alley bisimulation up to injective renaming and variable renaming, where the
latter up-to techniques are also shown to be sound and composable. Thus, using
Proposition 2.1.26 we get that up to forgetfulness is sound for alley bisimilarity.

34 CHAPTER 2. COMPARING BISIMULATIONS

In order to relate framed and hedged bisimilarity, we need to prove the sound-
ness of hedged bisimilarity up to weakening. In doing the proof, we encounter the
same problems as seen in Example 2.1.27, but they are easier to deal with due to
the simpler structure of hedges. To wit, Theorem 2.5.17 will show that if R is a
hedged bisimulation up to weakening and bĳective renaming then Rwb is a hedged
bisimulation, i.e., hedged bisimulation is sound up to restriction and/or bĳective
renaming.

2.2 Distinguishing Examples

In this section we exhibit differences between framed, fenced and hedged bisimula-
tion. In Section 2.5 we show that hedged and alley bisimulation are equivalent, so
these examples also distinguish alley bisimulation from framed and fenced.

2.2.1 Fenced vs. Framed and Hedged — Counting Extruded
Names

The following example distinguishes fenced bisimulation from its competitors due
to a subtle requirement concerning the data involved in the simulation of output
transitions, especially the conditions on the choice of bound names:

P := (νnkl) a〈El(Ek(n))〉.P ′ P ′ := (νm) a〈m〉. 0
Q := (νnk) a〈Ek(n)〉.Q′ Q′ := (νm) a〈m〉. 0

Although there is no reason for P and Q to be distinguished, fenced bisimulation
does so because it insists that outputs of fresh names be simulated without renaming.

We write pwd(ñ) to denote that ñ is a tuple of pairw ise d ifferent names.

Proposition 2.2.1 ({a}, ∅) ⊢ P 6∼# Q.

Proof. The transitions of P are P
(νnkl) a El(Ek(n))
−−−−−−−−−−→ P ′ where pwd(n, k, l, a). The

transitions of Q are of the form Q
(νn′k′) a E

k′
(n′)

−−−−−−−−−→ Q′ where pwd(n′, k′, a). We then
get the theory {(El(Ek(n)),Ek′(n

′))}. Since n, k, l are pairwise different, there must
be a name z ∈ {n, k, l} \ {n′, k′}.

Now P ′ must simulate the transition Q′ (νz) a z
−−−−→ 0. We have P ′ (νm) am

−−−−−→ 0 for all
m 6= a. For the resulting frame-theory pair to be consistent, we must have m = z,
but since z ∈ n(π1(th)) this transition can not be used. 2

Fenced bisimulation fails since it cannot simulate an output of a particular bound
name when this name is already known by the simulating environment. This problem
could in all likelyhood be fixed at the level of the definition of the bisimilarity, at
the cost of increased discrepancy to the other definitions.

2.2. DISTINGUISHING EXAMPLES 35

On the other hand, both framed and hedged bisimulation succeed in relating the
two processes, but in different ways.

Proposition 2.2.2 {(a, a)} ⊢ P ∼h Q.

Proof. A hedged bisimulation relating P and Q is given by

R := { ({(a, a)}, P,Q) }
∪ { ({(a, a), (El(Ek(n)),El(n))}, P ′, Q′) | pwd(a, k, l, n) }
∪ { ({(a, a), (El(Ek(n)),El(n)), (m,m)}, 0, 0) | pwd(a, k, l, n,m) }
∪ { ({(a, a), (El(Ek(n)),El(n)), (w, k)}, 0, 0) | pwd(a, k, l, n, w) }

2

Note the addition of (w, k) to the hedge, simply denoting that the environment
cannot distinguish the two different names.

Proposition 2.2.3 ({a}, ∅) ⊢ P ∼f Q.

Proof. A framed bisimulation relating P and Q is given by

R := {(({a}, ∅), P,Q)}

∪{(({a, k}, {(El(Ek(n)),El(n))}), P ′, Q′) | pwd(a, k, l, n)}

∪{(({a, k,m}, {(El(Ek(n)),El(n))}), 0, 0) | pwd(a, k, l,m, n)}

2

Note the addition of k to the frame, which relieves the process P ′ from simulating
the critical bound output of z by Q′ (see the previous proof). The name created
by Q′ must be different from the names in the current frame and theory, so by
simply adding k to the frame—which is allowed in framed bisimulation, but due
to the minimality property not in fenced bisimulation—this name must be chosen
different from k, and thus P ′ may also create it.

In comparison, we may conclude that ∼f equates the processes through a non-
minimal extension of the frame (which could be considered “cheating”), while ∼h

equates them (more adequately) through correspondence.

Corollary 2.2.4 ∼f is not a subset of ∼#.

36 CHAPTER 2. COMPARING BISIMULATIONS

An Up-To Interpretation.

The examples above shows that removing a piece of information (the name k) from a
frame-theory pair actually may increase its power to distinguish between processes.
[BDP02] call this removal of knowledge from the environment weakening, which
intuitively should be sound with respect to a bisimulation: An environment with
more information at hand has more possibilities to discover a difference between two
processes. While Corollary 2.5.18 will state that hedged bisimulation is sound up to
weakening, the above examples show that this is not the case for framed and fenced
bisimulation.

Proposition 2.2.5 Framed and fenced bisimulations are not sound up to weaken-
ing.

Proof. As seen above, ({a}, {(El(Ek(n)),El(n))}) ⊢ P ′ 6∼# Q′. Similarly to
Proposition 2.2.3, we also have ({a, k}, {(El(Ek(n)),El(n))}) ⊢ P ′ ∼# Q′. Clearly,
(({a}, {(El(Ek(n)),El(n))}), P ′, Q′) ∈
{(({a, k}, {(E

l
(E

k
(n)),E

l
(n))}),P ′,Q ′)}w. Since up to weakening is a monotonous

expansion, Proposition 2.1.25 then gives that it is not sound with respect to fenced
bisimilarity. The same reasoning holds for ∼f . 2

2.2.2 Framed vs. Hedged — Unknown Names Must Not
Matter

This example is a version without pairing of the example by [AG98] showing that
framed bisimilarity is not complete w.r.t. barbed equivalence. We define

P := (νklm) a〈Ek(El(m))〉. (a〈m〉. 0+ a〈l〉. 0)
Q := (νkn) a〈Ek(n)〉. a〈n〉. 0

We show that {(a, a)} ⊢ P ∼h Q and that ({a}, ∅) ⊢ P 6∼f Q. Intuitively, this means
that for ∼f the identity of the unknown name matters, although an attacker doesn’t
have any means to verify this identity.

Proposition 2.2.6 {(a, a)} ⊢ P ∼h Q.

Proof. We show that the relation

R :={ ({(a, a)}, P,Q) }

∪{ (h(k, l,m), (a〈m〉. 0+ a〈l〉. 0), a〈n〉. 0) | k, l,m, n ∈ N \ {a} }

∪{ (h(k, l,m, n) ∪ {(m,n)}, 0, 0) | k, l,m, n ∈ N \ {a} }

∪{ (h(k, l,m, n) ∪ {(l, n)}, 0, 0) | k, l,m, n ∈ N \ {a} }

2.2. DISTINGUISHING EXAMPLES 37

where h(k, l,m, n) := {(a, a), (Ek(El(m)),Ek(n))} and k, l,m, n are pairwise different
wherever they occur, is a hedged bisimulation. R is “trivially” consistent as we never
receive a nor the outermost keys of encrypted messages.

• As P
(νk,l,m)a Ek(El(m))
−−−−−−−−−−−−→ (a〈m〉. 0+ a〈l〉. 0) whenever k, l,m and a are pairwise

different, we seek Q′, N, d̃ with Q
(νd̃) aN
−−−−→ Q′, a 6∈ {d̃} and

I ({(a, a), (Ek(El(m)), N)}) ⊢ (a〈m〉. 0+ a〈l〉. 0) R Q′.
We may choose d̃ = (k, n), N = Ek(n) and Q′ = a〈n〉. 0. We also have that
I (h(k, l,m, n)) = h(k, l,m, n).

• The output transitions of Q can be handled in the same way.
• The transition (a〈m〉. 0+ a〈l〉. 0)

am
−−→ 0 can be simulated by a〈n〉. 0 an

−→ 0.

• The transition (a〈m〉. 0+ a〈l〉. 0)
a l
−→ 0 can also be simulated by a〈n〉. 0 an

−→ 0.
• The transition a〈n〉. 0

an
−→ 0 can be simulated by (a〈m〉. 0+ a〈l〉. 0)

am
−−→ 0 .

The character of hedges is visible in the addition of the pair (l, n) resp. (l, n) in the
two last rows of R above; l and m are both different from n, but the hedge notes
that they should correspond. 2

Proposition 2.2.7 ({a}, ∅) ⊢ P 6∼f Q.

Proof. By contradiction: assume that ({a}, ∅) ⊢ P ∼f Q.

• As a is in the frame and P
(νk,l,m) a Ek(El(m))
−−−−−−−−−−−−→ (a〈m〉. 0+ a〈l〉. 0) whenever k, l,m

and a are pairwise different, we need to check that for all such k, l,m 6= a there

exist Q′, N, d̃, fr, th such that Q
(νd̃) aN
−−−−→ Q′, a 6∈ {d̃}, a ∈ fr and

(fr, th) ⊢ (a〈m〉. 0+ a〈l〉. 0) ∼f Q
′.

Any transition of Q is of the form Q
(νk′,n) a E

k′
(n)

−−−−−−−−−→ a〈n〉. 0.

• Since (a〈m〉. 0+ a〈l〉. 0)
a l
−→ 0 we need to check that a〈n〉. 0 can simulate the

transition. As the only possibility is a〈n〉. 0 an
−→ 0 there is a consistent frame-

theory pair (fr1, th1) such that (fr1, th1) ⊢ l ↔ n, which can only be the case
if l = n ∈ fr1.

• Since (a〈m〉. 0+ a〈l〉. 0)
am
−−→ 0 we need to check that a〈n〉. 0 can simulate the

transition. As the only possibility is a〈n〉. 0 an
−→ 0 there is a consistent frame-

theory pair fr2, th2 such that (fr2, th2) ⊢ m ↔ n, which can only be the case
if m = n ∈ fr2.

• We thus have that m = l, which is a contradiction.

38 CHAPTER 2. COMPARING BISIMULATIONS

2

As noted by Abadi and Gordon, framed (and fenced) bisimulation requires us to
decide whether to identify n with l or with m at the first output rather than the
second, with no possibility of backtracking on the choice.

Note that P contains nondeterministic choice, a construct that is not present
in the original spi calculus. However, this example works equally well if we replace
the nondeterminism as expressed by choice either by an input and two mutually
exclusive guards, as in

a(x).([x = a] a〈m〉. 0 | [x = b] a〈l〉. 0),

or with communication over a private channel, as in

(νc) (c〈a〉. 0 | c(x).a〈m〉. 0 | c(x).a〈l〉. 0).

The details are left as an exercise to the reader.

2.2.3 Framed vs. Hedged — Encryption Should Be Perfect

The following example exhibits a striking deficiency of framed bisimulation that is
remedied by hedged bisimulation: a frame-theory pair can distinguish between the
plaintext of an encrypted message (n in the example) and another random piece of
data (m in the example).

P := (νk, n) a〈Ek(n)〉.P ′ P ′ := (νm) a〈m〉. 0

Q := (νk, n) a〈Ek(n)〉.Q′ Q′ := a〈n〉. 0 where n 6= a.

We show that {(a, a)} ⊢ P ∼h Q and ({a}, ∅) ⊢ P 6∼f Q. We first study the
same relations for just the processes P ′ and Q′. (Note thatfn(P,Q) ⊆ n({(a, a)}),
although fn(Q′) 6⊆ n({(a, a)}).)

Proposition 2.2.8 {(a, a)} ⊢ P ′ ∼h Q
′.

Proof. We show that the relation

R := {({(a, a)}, P ′, Q′)} ∪ {({(a, a), (m,n)}, 0, 0) | m ∈ N \ {a}}

is a hedged bisimulation. R is consistent, since for all hedges h such that h ∈ π1(R)
conditions 1 and 3 are trivially satisfied and condition 2 follows from n 6= a 6= m.
As neither P ′ nor Q′ do input or internal computation we only have to check the
conditions for output. As the output is on a pair of names known to the environment
we need to check whether the environment accepts the input.

2.2. DISTINGUISHING EXAMPLES 39

• As P ′ (νm) am
−−−−−→ 0 when m 6= a, we seek Q′′, N, d̃ with Q′ (νd̃) aN

−−−−→ Q′′,
{a, n} ∩ {d̃} = ∅ and I ({(a, a), (m,N)}) ⊢ 0 R Q′′. Clearly, d̃ is empty,
N = n and Q′′ = 0. Trivially I ({(a, a), (m,n)}) = {(a, a), (m,n)}. Finally,
{(a, a), (m,n)} ⊢ 0 R 0.

• As Q′ a n
−→ 0, we need to check that there are P ′′, N, d̃ with P

(νd̃) aN
−−−−→ P ′′,

a 6∈ {d̃} and I ({(a, a), (n,N)}) ⊢ P ′′ R 0. We may choose d̃ = n, N = n and
P ′′ = 0. Clearly, by inspection, I ({(a, a), (n, n)}) ⊢ 0 R 0.

2

The result can be strengthened as follows:

Proposition 2.2.9 Whenever h is a consistent hedge such that (a, a) ∈ h,
n 6∈ π2(h) and π2(h) ∩ {En(M) |M ∈ M} = ∅ we have that h ⊢ P ′ ∼h Q

′.

Proof. The previous proof also holds for

R := {(h, P ′, Q′)} ∪ { (h ∪ {(m,n)}, 0, 0) | m ∈ N \ n(π1(h)) }

since R is a consistent hedged relation by the preconditions. 2

Note that in the above R the names m and n just correspond. They are previously
unknown, can not be used as decryption keys, and there is no way to distinguish
between them through further interaction with the process pair.

Since framed bisimilarity does not allow two different names to simply corre-
spond, we have the following negative result.

Proposition 2.2.10 There is no (fr, th) such that a ∈ fr and (fr, th) ⊢ P ′ ∼f Q
′.

Proof. Assume the opposite, and fix m 6= n such that m ∈ N \ (fr∪ n(π1(th))). As

a ∈ fr and P
(νm) am
−−−−−→ 0 there must exist Q′′, N, d̃, fr′, th′ such that Q′ (νd̃) aN

−−−−→ Q′′,
(fr′, th′) is consistent, and (fr′, th′) ⊢ m ↔ N . As the only transition of Q′ is
Q′ an

−→ 0 we have that N = n. Clearly syn-enc (cf. Def. 2.1.4) can not derive
(fr′, th′) ⊢ m ↔ n. Since (fr′, th′) is consistent, which implies that (m,n) 6∈ th′, we
must have that m = n ∈ fr′, which is a contradiction. 2

Now, we can use the results for P ′ and Q′ to derive results for P and Q.

Proposition 2.2.11 {(a, a)} ⊢ P ∼h Q

Proof. As (a, a) is in the hedge, P and Q can perform matching output steps. By
Proposition 2.2.9, any resulting hedged process pair is in ∼h. 2

Proposition 2.2.12 ({a}, ∅) ⊢ P 6∼f Q

Proof. As a is in the frame, P and Q can perform matching output steps. By
Proposition 2.2.10, no resulting framed process pair is in ∼f . 2

40 CHAPTER 2. COMPARING BISIMULATIONS

An Up-To Interpretation.

According to [BDP02], alley bisimulation is sound up to (additional) restriction,
meaning that names that are not present in the knowledge of the environment can
be restricted in one or both of the processes. By the above example this does not
hold for framed bisimulation.

Proposition 2.2.13 Framed bisimulation is not sound up to additional restriction.

Proof. As Proposition 2.2.5. 2

2.3 Intermezzo

Having seen some examples that distinguish the bisimilarities of Section 2.1, we will
now introduce a general framework for relating environment-sensitive bisimilarities.

As a starting point, let us recall the work of [MPW93], comparing early and late
bisimilarity (here denoted by ∼early and ∼late) for the π-calculus. Since π bisimilar-
ities are simply relations on P, mere set inclusion is good enough: ∼early (∼late.

When moving to environment-sensitive bisimilarities, we must also properly treat
the environments. Since the environments of framed and fenced bisimilarity are of
the same type, the comparison of the bisimilarities by [EHHO99] could still be done
in terms of set inclusion. This is no longer possible when comparing framed/fenced
to their hedged and alley counterparts; we must find a more general way to compare
environment-sensitive bisimilarities.

2.3.1 Comparing Environment-Sensitive Bisimilarities

Every environment — independently of the kind of data structure involved —
straightforwardly induces a binary relation on processes. E.g., to a frame-theory
pair (fr, th) we associate the set {(P,Q) | (fr, th) ⊢ P ∼f Q}. More generally, we
let Rex be the set {(P,Q) | ex ⊢ P ∼x Q}. We then call an environment ey sound
with respect to ex if ey does not relate any processes not related by ex, i.e., if the
set-theoretic inclusion Rey ⊆ Rex holds.

It does not make much sense to compare Rey and Rex for unrelated ey and ex.
However, if Ex and Ey are the sets of environments of the bisimilarities ∼x and ∼y,
then every function g : Ex → Ey gives us an embedding of the environments of ∼x

into those of ∼y. Such an embedding g is sound (point-wise), if Rg(ex) ⊆ Rex for all
ex ∈ Ex; and we call it complete (point-wise), if Rg(ex) ⊇ Rex for all ex ∈ Ex.

Along the same lines, we first considered to call such an embedding g a (point-
wise) bisimilarity equivalence if Rg(ex) = Rex for all ex ∈ Ex. However, this definition

2.3. INTERMEZZO 41

does not yield symmetry: there may be environments in Ey that have no equivalent
counterpart in Ex.

Instead, if Rg(ex) = Rex for all ex ∈ Ex we call g a full abstraction: It leaves
unchanged the set of process pairs related by the environments, which we consider
to be the essential property of an environment. Here the full abstraction relation is
parameterized with a function, so it is not simply a preorder and thus the standard
definition of kernel (ker(≤) := ≤∩(≤−1)) is not applicable. However, if g : Ex → Ey

and h : Ey → Ex are full abstractions then (g, h) is a bisimilarity equivalence relating
∼x and ∼y. To summarize, we have the following definitions.

Definition 2.3.1 Assume that ∼x and ∼y are environment-sensitive bisimilarities,
where Ex and Ey denote the sets of environments of ∼x and ∼y, respectively. Then
we define the following relations between ∼x and ∼y.

Soundness: ∼y is g-sound w.r.t. ∼x

if g : Ex → Ey is such that ∀e, P,Q : g(e) ⊢ P ∼y Q implies e ⊢ P ∼x Q.
Completeness: ∼y is g-complete w.r.t. ∼x

if g : Ex → Ey is such that ∀e, P,Q : e ⊢ P ∼x Q implies g(e) ⊢ P ∼y Q.
Full abstraction: ∼y is fully g-abstract w.r.t. ∼x

if g : Ex → Ey is such that ∀e, P,Q : e ⊢ P ∼x Q iff g(e) ⊢ P ∼y Q.
Equivalence: ∼x and ∼y are (g, h)-equivalent

if ∼x is fully g-abstract w.r.t. ∼y and ∼y is fully h-abstract w.r.t. ∼x.

Proposition 2.3.2 Soundness, completeness and full abstraction are reflexive and
transitive, in the following sense:

• ∼x is IdEx-sound (complete, fully abstract) w.r.t. itself.
• If g : Ex → Ey and h : Ey → Ez are such that ∼y is g-sound (complete, fully

abstract) w.r.t. ∼x and ∼z is h-sound (complete, fully abstract) with respect to
∼y, then ∼z is (h ◦ g)-sound (complete, fully abstract) w.r.t. ∼x.

Bisimilarity equivalence is reflexive, symmetric and transitive.

• ∼x is (IdEx , IdEx)-equivalent to itself.
• If ∼x and ∼y are (g, h)-equivalent,

then ∼y and ∼x are (h, g)-equivalent.
• If ∼x and ∼y are (g, h)-equivalent and ∼y and ∼z are (g′, h′)-equivalent,

then ∼x and ∼z are (g ◦ g′, h′ ◦ h)-equivalent.

Above, a bisimilarity equivalence is constructed from two a priori unrelated full
abstractions g and h. Further constraints, such as requiring g and h to be inverse
to each other, could be added to make the relation stronger. However, adding
constraints on the functions causes problems for the robustness and transitivity of

42 CHAPTER 2. COMPARING BISIMULATIONS

bisimilarity equivalence. It is not reasonable to require g and h to be inverses, since
this can be broken by merely adding a “behavioral copy” of an environment to one
of the bisimilarities. A weaker variant of this constraint is to require idempotence
of g ◦ h and/or h ◦ g, but it causes problems for transitivity — assuming that g ◦ h
and g′ ◦ h′ are idempotent, it may well be that g ◦ g′ ◦ h′ ◦ h is not. (A concrete
example is left as an exercise to the reader.)

2.3.2 Examples: Blindness and Inconsistency

We now give some simple examples of soundness, completeness and full abstraction
between environment-sensitive bisimilarities.

As it turns out, the definitions of g-soundness and g-completeness as defined
in Definition 2.3.1 can often be satisfied by trivial environment mappings. For
completeness, the mapping between environments might collapse all environments of
Ex to a single trivial environment in Ey that is equating any pair of processes, being
“blind” for any possible distinction. For soundness we have the dual, namely that
all environments of Ex may be mapped to an environment in Ey that discriminates
between all process pairs.

Definition 2.3.3 An environment b is ∼y-blind if b ⊢ P ∼y Q for all processes P
and Q.

Proposition 2.3.4 If there is a ∼y-blind environment by and By : Ex → Ey has
range(By) = {by} then ∼y is By-complete w.r.t. ∼x.

Proof. Whenever ex ⊢ P ∼x Q we have By(ex) ⊢ P ∼y Q. 2

Proposition 2.3.5 The weak versions of the previously defined bisimilarities all
have blind environments:

1. (∅, ∅) is a blind consistent frame-theory pair.
2. (∅, ∅) is a blind pair of equivalent substitutions.
3. ∅ is a blind consistent hedge.

Proof. We only need to check that all detected process actions preserve the consis-
tency of the environment. This is trivially true if no process actions can be detected
by the environment.

1. A frame-theory pair with an empty frame can not detect any process actions.
Obviously, (∅, ∅) is consistent.

2. There is no expression F such that n(F) ⊆ dom(∅) = ∅. Trivially, ∅ ∼= ∅.

2.3. INTERMEZZO 43

3. We have that S (∅) = ∅, so ∅ can not detect any process actions. Clearly, ∅ is
a consistent hedge.

2

Note that the strong versions of the bisimilarities do not have any blind environ-
ments, since all environments can distinguish betwenn processes that are not τ

−→-
bisimilar.

The above propositions imply the following completeness and full abstraction
results.

Corollary 2.3.6 Here we let B be a metavariable for functions that maps all en-
vironments to a single blind environment ⊤, appropriate to the codomain of the
function. We also let ∼⊤:= {⊤}×P ×P, i.e., where ⊤ ⊢ P ∼⊤ Q for all processes
P,Q ∈ P. Then

• The weak versions of ∼a, ∼f , ∼#, ∼h and ∼s are B-complete w.r.t. ∼a, ∼f ,
∼#, ∼h and ∼s.

• The weak versions of ∼a, ∼f , ∼#, ∼h and ∼s are fully B-abstract w.r.t. ∼⊤.

The closest candidate to a dual of blindness turns out to be inconsistency. For
the sake of exhibiting this duality, we assume that the inconsistent environments
are also members of the environment sets of the bisimilarities.

Proposition 2.3.7 If there is a ∼y-inconsistent environment cy and Cy : Ex → Ey

has range(Cy) = {cy} then ∼y is Cy-sound w.r.t. ∼x.

Proof. Whenever Cy(ex) ⊢ P ∼y Q (i.e., never), we have that ex ⊢ P ∼x Q. 2

As we have seen, there are inconsistent environments of all types, so if inconsis-
tent environments are assumed to be in the environment domains we get this dual
to Corollary 2.3.6.

Corollary 2.3.8 Here we let C be a metavariable for functions that maps all envi-
ronments to a single inconsistent environment ⊥, as appropriate for its codomain.
We also let ∼⊥:= {⊥} × ∅× ∅, i.e., where ⊥ ⊢ P 6∼⊥ Q for all processes P,Q ∈ P.
Then

• ∼a, ∼f , ∼#, ∼h and ∼s are C-sound w.r.t. ∼a, ∼f , ∼#, ∼h and ∼s.
• ∼a, ∼f , ∼#, ∼h and ∼s are fully C-abstract w.r.t. ∼⊥.

As we saw above, functions that collapse all environments to a single trivial
environment give us the rather non-intuitive result that at least all the weak versions
of the bisimilarities defined in Section 2.1 are sound and complete with respect
to each other. To avoid this, we seek environment mappings that are sound for
blindness (i.e., an environment is blind if its image is blind) and inconsistency.

44 CHAPTER 2. COMPARING BISIMULATIONS

2.3.3 Full Abstraction and M-equivalence

Another property of all non-trivial environments is synthesis, i.e., the set of message
pairs that the environment considers to be equal. As we can see in the definitions of
the bisimulations, the synthesis of the environment is fundamental for its interactions
with process pairs. On process input, the environment can only generate message
pairs in its synthesis (possibly inventing some fresh names), and on process output,
the environment cannot accept a message pair which matches one in the synthesis
on only one side. We now proceed to prove that non-trivial environments relating
the same processes must have the same synthesis.

For the rest of this section, we consider only non-trivial environments, i.e., frame-
theory pairs, alleys and hedges and their corresponding bisimilarities of Section 2.1.
To compare the synthesis of environments of different types, we extend Defini-
tion 2.1.5 as follows.

Definition 2.3.9 If ex and ey are environments, than we write that ex ≤ ey if
ex ⊢ M ↔ N implies that ey ⊢ M ↔ N . We say that ex and ey are M-equivalent,
written ex ≷ ey, if ex ≤ ey and ey ≤ ex.

As we are mainly interested in full abstractions, it is convenient to have a short-
hand for “ex and ey relate the same processes”.

Definition 2.3.10 Two environments ex and ey are (∼x,∼y)-equivalent, written
ex ≡x

y ey if for all processes P and Q we have that ex ⊢ P ∼x Q if and only if
ey ⊢ P ∼y Q.

The relation between M-equivalence and (∼x,∼y)-equivalence is given by the
following proposition. This result implies that in order to be a full abstraction, the
environment mapping must be faithful for blindness and consistency, and map a
consistent non-blind environment to a M-equivalent counterpart.

Proposition 2.3.11 If ex and ey are (∼x,∼y)-equivalent then either

• ex ≷ ey or
• ex and ey are both inconsistent or
• ex is ∼x-blind and ey is ∼y-blind.

Proof. If ex is blind, but ey is not, then there exist P,Q such that ey ⊢ P ∼y Q
does not hold. As ex is blind, ex ⊢ P ∼x Q, so ex 6≡x

y ey. The case where ey is blind,
but ex is not, is handled in the same way.

If ex is inconsistent, but ey is not, then ex ⊢ 0 ∼x 0 does not hold. As ey is
consistent, ey ⊢ 0 ∼y 0, so ex 6≡x

y ey. The case where ey is inconsistent, but ex is
not, is handled in the same way.

2.4. COMPARING ENVIRONMENTS 45

If ex is neither blind nor inconsistent then there exist names a, b such that
ex ⊢ a ↔ b. Let P1 = a〈a〉. 0 and Q1 = (νk) b〈k〉. 0. We have that ex ⊢ P1 6∼x Q1,
since ex can see the difference between a known name and a fresh name (Compare
with Proposition 2.2.10 and Proposition 2.2.9, noting the difference between a known
and a used name.). Since ex ≡x

y ey we get that ey ⊢ P1 6∼y Q1, which implies that
ey ⊢ a ↔ n or ey ⊢ n ↔ b for some name n. However, if we let P2 = a(z). 0 and
Q2 = b(z). 0 we have that ex ⊢ P2 ∼x Q2. Since ex ≡x

y ey we get that ey ⊢ P2 ∼y Q2,
which implies that ey ⊢ a↔ b.

Now assume that ex ⊢M ↔ N . Let P3 = a(x).[x = M]a〈a〉. 0 andQ3 = b(x). 0.
We have that ex ⊢ P3 6∼x Q3, since ex can create and send M . Since ex ≡x

y ey we
get that ey ⊢ P3 6∼y Q3, which implies that there is e′y, obtained from ey by adding
fresh names, such that e′y ⊢M ↔ N ′ for some N ′. As n(M) ⊆ fn(P3) we have that
no name in n(M) can be created as fresh, so actually ey ⊢M ↔ N ′.

Let P4 = a〈M〉. 0 and Q4 = b〈N〉. 0. Since ex ⊢ P4 ∼x Q4 we must have
ey ⊢ P4 ∼y Q4 which is true only if ey ⊢ M ↔ N , since a consistent environment
can not consider M equivalent to two different messages N and N ′.

We have now shown that ex ≤ ey. By symmetry, we have that ex ≷ ey when
ex ≡x

y ey and neither ex nor ey is blind nor inconsistent. 2

To summarize: An environment mapping should be sound for blindness and
inconsistency and preserve the synthesis. We now turn to the task of finding such
mappings, and verifying whether they are full abstractions.

2.4 Comparing Environments

Our relations on environment-sensitive bisimulations are based on a comparison of
the various environments. In this section, we introduce mappings between frame-
theory pairs (FT), hedges (H) and substitution pairs (SS).

Accompanying these mappings, we assemble a “toolbox” of auxiliary results that
are used to relate hedges and the other kinds of environments, notably frames and
fences.

2.4.1 Properties of Hedges

As we intend to use hedged bisimilarity as the yardstick against which all other
bisimilarities are measured, we offer a preliminary investigation of the properties of
hedges is offered, that we will exploit in proofs later on.

From the definition of hedges, we immediately get

46 CHAPTER 2. COMPARING BISIMULATIONS

Lemma 2.4.1 If h ⊢M ↔ N and M ∈ N or N ∈ N , then (M,N) ∈ h.

Proof. Clearly Syn-enc can not derive h ⊢M ↔ N . 2

We define a pre-ordering on hedges as follows:

Definition 2.4.2 g ≤ h iff S (g) ⊆ S (h). If g ≤ h and h ≤ g we say that g and h
are M-equivalent, written g ≷ h.

≤ is transitive and reflexive by the same properties for ⊆. For results on antisym-
metry, see Corollary 2.4.12 and this example:

Example 2.4.3 Let

g1 = {(a, a), (c, k), (Ek(b),El(a)), (Ea(c),Ea(k))}

g2 = {(a, a), (c, k), (Ek(b),El(a)), (Ec(Ek(b)),Ek(El(a)))}

Then g1 ≷ g2. More generally, if h is a hedge, h1 ≤ h and h2 ≤ h then h∪h1 ≷ h∪h2.

An alternative characterization of ≤ is as follows:

Lemma 2.4.4 g ≤ h iff g ⊆ S (h)

Proof. g ≤ h⇒ g ⊆ S (h), since g ⊆ S (g) ⊆ S (h).
For the other direction, assume that g ⊆ S (h) and take any M,N such that

g ⊢ M ↔ N . By induction on the derivation of g ⊢ M ↔ N , we have that
h ⊢M ↔ N . 2

Corollary 2.4.5 Some properties relating ≤ and set operations:

1. If g ⊆ h then g ≤ h.
2. If g ≤ h and f ≤ h then (f ∪ g) ≤ h.
3. If g1 ≤ h1 and g2 ≤ h2 then (g1 ∪ g2) ≤ (h1 ∪ h2).

Irreducible Hedges

An interesting subset of H is the set of irreducible hedges. These are intuitively
hedges that are reduced as far as possible, in the sense that no pair of messages in
them can be decrypted using the information in the hedge. These results are later
used to relate hedges with other types of environments, especially regarding how the
environment reacts to process output.

Definition 2.4.6 A hedge h is irreducible if h = I (h). h is reducible if h is not
irreducible.

2.4. COMPARING ENVIRONMENTS 47

An alternative definition is as follows:

Lemma 2.4.7 A hedge h is irreducible iff the following condition holds:
If (Ea(M),Eb(N)) ∈ h then (a, b) 6∈ h.

Proof. If this holds then we can not apply Hedge-dec to any pair in h, so
A(h) = h. By the definition of I (h) we then have that I (h) = h.

If h is irreducible then the condition holds by the definition of I (h). 2

Corollary 2.4.8 I (h) is irreducible for all hedges h.

Example 2.4.9 All hedges defined in Example 2.1.17 are irreducible, but neither of
the hedges defined in Example 2.4.3. Moreover, if g is reducible and h is any hedge,
then g ∪ h is reducible.

As might be expected, the irreducibles of a hedge can be used to generate any
message that can be generated by the hedge.

Lemma 2.4.10 For any hedge h, h ≤ A(h) ≷ I (h).

Proof. As h ⊆ A(h) ⊇ I (h) Corollary 2.4.5(1) gives that h ≤ A(h) ≥ I (h).
What remains to be proved is A(h) ≤ I (h). By Lemma 2.4.4, it suffices to show
that A(h) ⊆ S (I (h)). Assuming that (M,N) ∈ A(h), we get I (h) ⊢ M ↔ N by
structural induction on M . 2

48 CHAPTER 2. COMPARING BISIMULATIONS

An irreducible hedge is a subset of any M-equivalent hedge.

Lemma 2.4.11 If g ≷ h and g is irreducible then g ⊆ h.

Proof. Take any (M,N) ∈ g. As g ≷ h, h ⊢M ↔ N . We have two cases:
If M ∈ N or N ∈ N then (M,N) ∈ h by Lemma 2.4.1.
Else, M = Ea(M

′) and N = Eb(N
′). Since g is irreducible (a, b) 6∈ g by

Lemma 2.4.7. By Lemma 2.4.1 g ⊢ a 6↔ b, so h ⊢ a 6↔ b and Syn-enc can
not derive h ⊢M ↔ N . This shows that (M,N) ∈ h. 2

Two M-equivalent irreducible hedges are equal, so the pre-order ≤ is an ordering
relation on the set of irreducible hedges.

Corollary 2.4.12 If g ≷ h and both g and h are irreducible, then g = h.

The ordering of hedges is preserved by I (·).

Lemma 2.4.13 If g ≤ h, then I (g) ≤ I (h).

Proof. According to Lemma 2.4.10 I (g) ≤ A(g), so by the transitivity of ≤ we
only need to show A(g) ≤ I (h). By Lemma 2.4.4 this holds iff A(g) ⊆ S (I (h)),
which we show by induction on the derivation of A(g). Take any (M,N) ∈ A(g).

The base case is that (M,N) ∈ g. By Lemma 2.4.10 h ≤ I (h), so g ≤ I (h) by
the transitivity of ≤. In particular, I (h) ⊢M ↔ N .

Otherwise we used Ana-dec (Definition 2.1.18) to derive (M,N) ∈ A(g), so
there are a and b such that (Ea(M),Eb(N)) ∈ A(g) and (a, b) ∈ A(g). By induction
I (h) ⊢ Ea(M) ↔ Eb(N) and I (h) ⊢ a ↔ b. By Lemma 2.4.1 (a, b) ∈ I (h), so
(Ea(M),Eb(N)) 6∈ I (h) by the definition of I (·). Then Syn-enc must have been
used to derive I (h) ⊢ Ea(M) ↔ Eb(N), which gives I (h) ⊢M ↔ N . 2

The irreducibles of two M-equivalent hedges are equal.

Lemma 2.4.14 If g ≷ h, then I (g) = I (h).

Proof. I (g) ≷ I (h) by Lemma 2.4.13. I (g) and I (h) are both irreducible by
Corollary 2.4.8. The equality then follows from Corollary 2.4.12. 2

We also have this more general variant of Corollary 2.4.8, that is used to prove
that hedges and alleys behave similarly on process output.

Lemma 2.4.15 If g and h are hedges, then I (I (h) ∪ g) = I (h ∪ g).

2.4. COMPARING ENVIRONMENTS 49

Proof. By Corollary 2.4.5(1) g ≤ h ∪ g, so I (g) ≤ I (h ∪ g) by Lemma 2.4.13. By
Lemma 2.4.10 g ≤ I (g), so by transitivity g ≤ I (h ∪ g). For I (h) we know that
I (h) ⊆ A(h) ⊆ A(h∪g) ≤ I (h∪g), where the last relation is due to Lemma 2.4.10.
By Corollary 2.4.5(2) I (h) ∪ g ≤ I (h ∪ g), so I (I (h) ∪ g) ≤ I (I (h ∪ g)) by
Lemma 2.4.13. I (h∪g) is irreducible by Corollary 2.4.8, so I (I (h)∪g) ≤ I (h ∪ g).

h ≤ I (h) by Lemma 2.4.10, so by Corollary 2.4.5(3) we have that h∪g ≤ I (h)∪g.
By Lemma 2.4.13 we have that I (h ∪ g) ≤ I (I (h) ∪ g), so I (h ∪ g) ≷ I (I (h) ∪ g).
The equality now follows from Corollary 2.4.12. 2

Proper Care for Consistent Hedges

As we have seen in Section 2.3, an environment mapping should preserve consistency.
In order to show that this holds for the environment mappings we will define, we
investigate consistent hedges and their properties.

Lemma 2.4.16 If h is consistent then h is irreducible.

Proof. By condition 3 for consistency, we have that (Ea(M),Eb(N)) ∈ h implies
(a, b) 6∈ h. By Lemma 2.4.7 this means that h is irreducible. 2

Note that we have only used a special case of condition 3 in the proof of
Lemma 2.4.16. The three conditions for consistency are pairwise disjoint (see Ex-
ample 2.1.17), so consistency is a much stronger constraint then irreducibility.

A generalized version of condition 2 for consistency is that a consistent hedge
can not generate two message pairs that differ in only one component.

Lemma 2.4.17 Let h be consistent with h ⊢ M ↔ N and h ⊢ M ′ ↔ N ′. Then
M = M ′ iff N = N ′.

Proof. By symmetry we need only study the case M = M ′. The proof is by
induction on the derivation of h ⊢M ↔ N .

If (M,N) ∈ h we will first show that (M,N ′) ∈ h. If M is a name this follows
from Lemma 2.4.1. Otherwise M = Ea(K), but since a 6∈ π1(h) by condition 3 of
consistency we can not use Syn-enc to derive h ⊢ M ↔ N ′. Now we know that
(M,N) ∈ h and (M,N ′) ∈ h, so N = N ′ by condition 2 for consistency.

If M = Ea(K), N = Eb(L), h ⊢ K ↔ L and h ⊢ a ↔ b then a ∈ π1(h)
by Lemma 2.4.1. As h is consistent, M 6∈ π1(h), so we must have used Syn-enc
to derive h ⊢ M ↔ N ′. This gives that N ′ = Ec(L

′) for some c, L′ such that
h ⊢ K ↔ L′ and h ⊢ a↔ c. By induction L = L′ and b = c. 2

Two M-equivalent consistent hedges are always equal.

50 CHAPTER 2. COMPARING BISIMULATIONS

Lemma 2.4.18 If g ≷ h and both g and h are consistent, then g = h.

Proof. g and h are irreducible by Lemma 2.4.16. The equality follows from
Corollary 2.4.12. 2

Any irreducible “trimming” of a consistent hedge is consistent.

Lemma 2.4.19 If h is consistent, g is irreducible and g ≤ h then g is consistent.

Proof. Assume that (M,N) ∈ g and note that h ⊢ M ↔ N . We only need to
show one direction of the symmetric conditions.

1. If M ∈ N then (M,N) ∈ h by Lemma 2.4.1, so N ∈ N as h is consistent.
2. See Lemma 2.4.17.
3. Assume that M = Ea(K). If (M,N) ∈ h then a 6∈ π1(h) by condition 3 for

consistency, so a 6∈ π1(g) by Lemma 2.4.1.
Else Syn-enc has been used to derive h ⊢ M ↔ N , so N = Eb(L) where
h ⊢ a ↔ b and h ⊢ K ↔ L. We then show that there is no N ′ such that
(a,N ′) ∈ g by contradiction. For N ′ = b, (a, b) ∈ g would contradict that g is
irreducible by Lemma 2.4.7. For any N ′ 6= b we have by Lemma 2.4.17 that
h ⊢ a 6↔ N ′, so (a,N ′) 6∈ g.

2

Disjoint consistent hedges may be directly combined.

Lemma 2.4.20 If g and h are consistent and n(g) ∩ n(h) = ∅, then g ∪ h is con-
sistent.

Proof. Take any (M,N) ∈ g ∪ h. By symmetry we may assume that (M,N) ∈ g.

1. M ∈ N ⇐⇒ N ∈ N is clear, since g is consistent.
2. Take any (M ′, N ′) ∈ g ∪ h. As n(M) 6= ∅ 6= n(N) we have that (M ′, N ′) ∈ g

whenever M = M ′ or N = N ′. As g is consistent, M = M ′ iff N = N ′.
3. If M = Ea(M

′) andN = Eb(N
′) then a 6∈ π1(g) and b 6∈ π2(g) as g is consistent.

As {a, b} ⊆ n(g) we have that {a, b} ∩ n(h) = ∅ and as a special case of this,
a 6∈ π1(h) and b 6∈ π2(h).

2

2.4. COMPARING ENVIRONMENTS 51

2.4.2 Frames and Hedges

Since the definitions of hedges and frame-theory pairs are similar, the correspondence
is fairly clear. However, as pointed out in Section 2.2, hedged and framed bisimilarity
do not coincide. In Section 2.5, we will prove that framed bisimularity implies hedged
bisimularity. We begin with some results relating frame-theory pairs and hedges.

Definition 2.4.21 The hedge corresponding to a frame-theory pair is defined by:

ψ : FT → H : ψ(fr, th) := Idfr ∪ th

Note that S (fr, th) = S (ψ(fr, th)), so (fr, th) ≤ (fr′, th′) iff ψ(fr, th) ≤ ψ(fr′, th′). We
thus have that ψ preserves the synthesis of frame-theory pairs, which was one of the
desirable properties mentioned in Section 2.3.

Since consistent frame-theory pairs have names only in the frame, we have this
obvious strengthening of Lemma 2.4.1.

Lemma 2.4.22 If (fr, th) is consistent and (fr, th) ⊢ M ↔ N where M ∈ N or
N ∈ N then M = N ∈ fr.

Proof. Since Syn-enc can not derive (fr, th) ⊢ M ↔ N we have that
(M,N) ∈ ψ(fr, th). There are no names in the theory by condition 1 for the consis-
tency of (fr, th), so M = N ∈ fr. 2

An important result is that if a frame-theory pair is consistent then its corre-
sponding hedge is also consistent. In other words, ψ preserves consistency.

Lemma 2.4.23 If (fr, th) is consistent then ψ(fr, th) is consistent.

Proof. Take any (M,N) ∈ ψ(fr, th). We show only one direction of the symmetric
conditions.

1. M ∈ N ⇐⇒ N ∈ N by Lemma 2.4.22.
2. Assume that (M,N ′) ∈ ψ(fr, th). If {M,N,N ′} ∩ N 6= ∅ then
M = N = N ′ ∈ fr by Lemma 2.4.22. Else, (M,N) ∈ th and (M,N ′) ∈ th, so
N = N ′ by condition 2 of the consistency of (fr, th).

3. If M = Ea(M
′) then according to Lemma 2.4.22 a ∈ π1(ψ(fr, th)) only if a ∈ fr,

which is false by condition 3 for the consistency of (fr, th).
2

Note that the reverse implication does not hold. For example, (∅, {(a, b)}) is not
a consistent frame-theory pair, but ψ(∅, {(a, b)}) = {(a, b)} is a consistent hedge.
We will also need an extension of Lemma 2.4.19 to consistent frame-theory pairs.

52 CHAPTER 2. COMPARING BISIMULATIONS

Lemma 2.4.24 If (fr, th) is consistent, h is irreducible and h ≤ ψ(fr, th) there exist
fr′, th′ such that h = ψ(fr′, th′) and (fr′, th′) is consistent.

Proof. We show that fr′ = π1(h ∩ (N × N)), th′ = h \ Idfr′ have the desired
properties. Note that h ⊆ S (ψ(fr, th)) by Lemma 2.4.4.

1. We first show that Idfr′ = h∩(N ×M) = h∩(M×N). Take (M,N) ∈ h such
that M ∈ N or N ∈ N . By Lemma 2.4.22 applied to ψ(fr, th) ⊢ M ↔ N
we have that M = N ∈ fr, so M = N ∈ fr′ by definition. On the other hand,
whenever a ∈ fr′ then there is by definition b such that (a, b) ∈ h. As above
a = b by Lemma 2.4.22.

2. We then show that ψ(fr′, th′) = h. By the definition of (fr′, th′) we have that
ψ(fr′, th′) = th′∪ Idfr′ = (h \ Idfr′) ∪ Idfr′ = h ∪ Idfr′ ⊇ h. We have equality if
Idfr′ ⊆ h, which follows from step 1.

3. Now we show the consistency of (fr′, th′). First ψ(fr, th) is consistent by
Lemma 2.4.23, so h is consistent by Lemma 2.4.19. Take any (M,N) ∈ th′

and note that ψ(fr, th) ⊢M ↔ N .

(a) If M ∈ N or N ∈ N then by step 1 we have that (M,N) 6∈ h\ Idfr′ = th′.
(b) If (M ′, N ′) ∈ th′ then we have that ψ(fr, th) ⊢ M ′ ↔ N ′, so

M = M ′ ⇐⇒ N = N ′ by Lemma 2.4.17.
(c) Assume that M = Ea(M

′) and N = Eb(N
′). By the consistency of h we

have that a 6∈ π1(h) and b 6∈ π2(h), so by step 1 we have that a, b 6∈ fr′.
2

2.4.3 Fences and Hedges

Informally, ξ (see Table 2.1 on page 23) is a function that extends a given consistent
frame-theory pair with a new pair of messages. If the resulting frame-theory pair
is not consistent, ξ returns ⊥. Since the results of [EHHO99] hold for a superset of
M it is easy to see that they hold for the message syntax of this paper. To show
the soundness of fenced bisimulation with respect to hedged we exhibit that ξ is a
sound approximation of I (·). We start with two results proved by [EHHO99].

Soundness : ξ always creates a consistent extension.

Lemma 2.4.25 If (fr, th) is consistent and ξ(fr, th,M,N) 6=⊥ then

1. ξ(fr, th,M,N) is consistent
2. ξ(fr, th,M,N) ⊢M ↔ N
3. (fr, th) ≤ ξ(fr, th,M,N)

Completeness : If there exists a consistent extension then ξ is defined and returns
the smallest of all consistent extensions.

2.4. COMPARING ENVIRONMENTS 53

Lemma 2.4.26 If (fr, th) and (fr′, th′) are consistent, (fr, th) ≤ (fr′, th′) and
(fr′, th′) ⊢M ↔ N then ξ(fr, th,M,N) 6=⊥ and ξ(fr, th,M,N) ≤ (fr′, th′).

Now we can show the relationship between ξ and I (·), namely that whenever a
consistent fence accepts a message pair, its corresponding hedge also does. That the
converse does not hold was shown in Section 2.2.

Lemma 2.4.27 If (fr, th) is consistent and ξ(fr, th,M,N) 6=⊥ then

I (ψ(fr, th) ∪ {(M,N)}) = ψ(ξ(fr, th,M,N))

Proof. Let g = ψ(fr, th), g′ = g ∪ {(M,N)} and hξ = ψ(ξ(fr, th,M,N)). We first
show that I (g′) ≤ hξ, then the other direction.

By Lemma 2.4.25 ξ(fr, th,M,N) ⊢ M ↔ N and (fr, th) ≤ ξ(fr, th,M,N).
After application of ψ this gives that hξ ⊢ M ↔ N and g ≤ hξ, so the combined
hedge g′ ≤ hξ by Corollary 2.4.5(3). Reducing both sides, Lemma 2.4.13 gives
I (g′) ≤ I (hξ). By Lemma 2.4.25 we have that ξ(fr, th,M,N) is consistent, so hξ is
consistent by Lemma 2.4.23. hξ is then irreducible by Lemma 2.4.16, so I (g′) ≤ hξ.

Since I (g′) is irreducible by Corollary 2.4.8 we can apply Lemma 2.4.24 to
I (g′) ≤ hξ, giving us a consistent (fr′, th′) such that I (g′) = ψ(fr′, th′). We have
by Lemma 2.4.10 that g′ ≤ I (g′), which can be divided into I (g′) ⊢ M ↔ N
and g ≤ I (g′). In the framed world, this means that (fr′, th′) ⊢ M ↔ N and
(fr, th) ≤ (fr′, th′). Lemma 2.4.26 then yields ξ(fr, th,M,N) ≤ (fr′, th′). Going back
to the hedges, this means that hξ ≤ I (g′).

We have now proved the inequality in both directions, so hξ ≷ I (g′) and the
equality follows from Corollary 2.4.12. 2

2.4.4 Hedges and Alleys

In this section we show that hedges are in a certain sense equivalent to the environ-
ments of alley bisimulation. As the theories are fairly different, we need a number
of auxiliary results to tie the two representations together.

Lemmas on Substitutions

We first recall some lemmas proved by [BDP02]:

Lemma 2.4.28 ∀σ, x ∈ dom(σ) : ∃G : n(G) ⊆ dom(σ)∧ e(Gσ) = C(σ, x)
(cf. Definition 2.1.9).

Lemma 2.4.29 For σ ∼= ρ where dom(σ) = {xi}i∈I we let Mi = C(σ, xi) and
Ni = C(ρ, xi). Then, for every G such that n(G) ⊆ dom(σ) either:

54 CHAPTER 2. COMPARING BISIMULATIONS

1. e(Gσ) = e(Gρ) =⊥, or
2. There are i and a tuple ι̃ of indices from I such that

e(Gσ) = EMιm
(· · ·EMι2

(EMι1
(Mi)) · · ·)

e(Gρ) = ENιm
(· · ·ENι2

(ENι1
(Ni)) · · ·) .

As an abbreviation, whenever dom(σ) = {xi}i∈I and {ι̃} ⊆ I we write Eι̃(σi) for
EC(σ,xιm)(· · ·EC(σ,xι2)(EC(σ,xι1)(C(σ, xi))) · · ·)

Lemma 2.4.30 If σ ∼= ρ and n(G) ⊆ dom(σ) with e(Gσ) 6=⊥

then σ
{e(Gσ)

/x
}
∼= ρ

{e(Gρ)
/x

}
.

Lemma 2.4.31 If σ
{M
/x

}
∼= ρ

{N
/x

}
then σ ∼= ρ.

Lemma 2.4.32 If M ∈ A(σ) then there are i and ι̃ such that M = Eι̃(σi).

Lemma 2.4.33 fn(σ) = n(I (σ))

From Alleys to Hedges

We first need some natural way to move back and forth between consistent hedges
and consistent pairs of substitutions. Recall that SS is the set of pairs of substitu-
tions with the same domain. Given such a substitution pair, we can use the cores
to get a hedge as follows:

Definition 2.4.34 The hedge corresponding to a substitution pair is defined by:

ϕ : SS → H : ϕ(σ, ρ) := { (C(σ, x), C(ρ, x)) | x ∈ dom(σ) }

Lemma 2.4.35 If σ ∼= ρ then ϕ(σ, ρ) is consistent.

Proof. Take any (M,N) ∈ ϕ(σ, ρ) and x ∈ dom(σ) such that M = C(σ, x) and
N = C(ρ, x).

1. By condition 1 for σ ∼= ρ we have that M ∈ N iff N ∈ N .
2. Take any (M ′, N ′) ∈ ϕ(σ, ρ) and x′ ∈ dom(σ) such that M ′ = C(σ, x′) and
N ′ = C(ρ, x′). By condition 2 for σ ∼= ρ we have that M = M ′ iff N = N ′.

3. Since M = C(σ, x) ∈ I (σ) it can not be decrypted by any key a ∈ A(σ). By the
definition of I (·), a ∈ A(σ) iff a ∈ I (σ) = {C(σ, x)|x ∈ dom(σ)} = π1(ϕ(σ, ρ)).
A symmetrical argument holds for C(ρ, xi).

2

2.4. COMPARING ENVIRONMENTS 55

Corollary 2.4.36 fn(σ) = n(π1(ϕ(σ, ρ))) and fn(ρ) = n(π2(ϕ(σ, ρ)))

The following lemma gives an alternative definition of ϕ(σ, ρ), showing that I (h)
computes exactly matching pairs of cores.

Lemma 2.4.37 Let σ ∼= ρ and h = { (σ(xi), ρ(xi)) | xi ∈ dom(σ) }.
Then ϕ(σ, ρ) = I (h).

Proof.

1. First we show that whenever M ∈ A(σ) there are i, ι̃ such that M = Eι̃(σi),
Eι̃(ρi) ∈ A(ρ) and (M,Eι̃(ρi)) ∈ A(h). We use induction on the derivation of
M ∈ A(σ).
If M = σ(xi) then we get i, ι̃ such that M = Eι̃(σi) and Eι̃(ρi) = ρ(xi) by
condition 3 of σ ∼= ρ. By definition, (M,Eι̃(ρi)) ∈ h ⊆ A(h)
Else, there is a such that Ea(M), a ∈ A(σ). By the induction assumption
there are i, ι̃ such that Ea(M) = Eι̃(σi), N = Eι̃(ρi), (Ea(M), N) ∈ A(h) and
(a, C(ρ, xιm)) ∈ A(h) where m = |ι̃|. If ι̃′ = ι1ι2 . . . ιm−1 then M = Eι̃′(σi) and
using Hedge-dec we get that (M,Eι̃′(ρi)) ∈ A(h). As C(ρ, xιm) ∈ A(ρ) we
have Eι̃′(ρi) ∈ A(ρ) by Set-dec.

2. We show that if (M,N) ∈ A(h) then there are i, ι̃ with M = Eι̃(σi) ∈ A(σ)
and N = Eι̃(ρi) ∈ A(ρ) by induction on the derivation of (M,N) ∈ A(h). The
base case follows from condition 3 of σ ∼= ρ.
Otherwise, there are a, b such that (a, b) ∈ A(h) and (Ea(M),Eb(N)) ∈ A(h).
By the induction assumption there are j, i, ι̃ with a = C(σ, xj) ∈ A(σ),
b = C(ρ, xj) ∈ A(ρ), Ea(M) = Eι̃(σi) ∈ A(σ) and Eb(N) = Eι̃(ρi) ∈ A(ρ). By
Set-dec M ∈ A(σ) and N ∈ A(ρ). Clearly M = Eι̃′(σi) and N = Eι̃′(ρi),
where ι̃′ = ι1ι2 . . . ιm−1, m = |ι̃|.

By 2, if (M,N) ∈ A(h) then there are i, ι̃ such that M = Eι̃(σi) and N = Eι̃(ρi).
If |ι̃| = m > 0, we have by 1 that (C(σ, xιm), C(ρ, xιm)) ∈ A(h), so (M,N) 6∈ I (h).
Using 1 we also have that ∀xi ∈ dom(σ) : (C(σ, xi), C(ρ, xi)) ∈ I (h). 2

From Hedges to Alleys

For the transformation of hedges into substitution pairs, we have to invent the
domain for the substitutions. However, it does not matter which particular domain
we select, since the domain of the substitutions is not important for the definition
of alley bisimulation. Note that M×M and V are both countably infinite, so there
is a bĳection between them. To invent the substitution domain, we may use any
such bĳection.

56 CHAPTER 2. COMPARING BISIMULATIONS

Definition 2.4.38 Fix a bĳection f : M×M → V. The alley corresponding to a
hedge is defined by:

θf : H → SS : θf(h) := (θf1 (h) , θf2 (h))

θf1 (h) := {
{M
/f(M,N)

}
| (M,N) ∈ h }

θf1 (h) := {
{N
/f(M,N)

}
| (M,N) ∈ h }

We sometimes use the projections hf1 := θf1 (h) and hf2 := θf2 (h) to denote the left
and right substitutions corresponding to h (under f).

In the following, we implicitly assume a suitable fixed bĳection f .

Lemma 2.4.39 If h is consistent then hf1
∼= hf2 and h = ϕ(θf (h)).

Proof. Clearly hf1 and hf2 have the same domain. By condition 3 for the consistency
of h we have that hf1(x) = C(hf1 , x) and hf2(xi) = C(hf2 , xi), so
h = { (C(hf1 , xi), C(hf2 , xi)) | xi ∈ dom(hf1) } as desired.

To show that hf1∼=h
f
2 we fix x ∈ dom(hf1).

1. C(hf1 , x) ∈ N iff C(hf2 , x) ∈ N by condition 1 of the consistency of h.
2. If y ∈ dom(hf1) then C(hf1 , x) = C(hf1 , y) and C(hf2 , x) = C(hf2 , y) iff x = y by

condition 2 of the consistency of h.
3. As above, hf1(x) = C(hf1 , x) and hf2(x) = C(hf2 , x).

2

Thus, θf preserves consistency. Also, since ϕ is an inverse of θf we get that if ϕ
preserves the synthesis, then so does θf . We now proceed to show that it is indeed
true that ϕ preserves environment synthesis.

Sending and Receiving Messages

In this paragraph we always implicitly assume that σ ∼= ρ and that h = ϕ(σ, ρ).
The following two lemmas show that the hedge derived from a consistent pair of

substitutions can generate exactly the same message pairs as the substitutions. In
other words, ϕ preserves the synthesis of environments.

Lemma 2.4.40 If (σ, ρ) ⊢M ↔ N then h ⊢M ↔ N .

Proof. By the definition of (σ, ρ) ⊢ M ↔ N we get that there exits G such that
n(G) ⊆ dom(σ), M = e(Gσ) and N = e(Gρ).

By Lemma 2.4.29 we get that (e(Gσ), e(Gρ)) = (Eι̃(σi),Eι̃(ρi)) for some i, ι̃. We
prove that h ⊢ e(Gσ) ↔ e(Gρ) by induction on |ι̃|.

2.4. COMPARING ENVIRONMENTS 57

• If |ι̃| = 0, then (e(Gσ), e(Gρ)) = (C(σ, xi), C(ρ, xi)) ∈ h.
• Else, if |ι̃| = m + 1 and ι̃′ = ι1ι2 . . . ιm then h ⊢ Eι̃′(σi) ↔ Eι̃′(ρi) by the

induction assumption. As (C(σ, xιm+1), C(ρ, xιm+1)) ∈ h we can use Eq-enc to
derive that h ⊢ Eι̃(σi) ↔ Eι̃(ρi).

2

Lemma 2.4.41 If h ⊢M ↔ N then (σ, ρ) ⊢M ↔ N .

Proof. The proof is by induction on the derivation of h ⊢M ↔ N . First note that
for each xi ∈ dom(σ) we can by Lemma 2.4.28 find an Fi such that n(Fi) ⊆ dom(σ)
and e(Fiσ) = C(σ, xi). By Lemma 2.4.29, (e(Fiσ), e(Fiρ)) = (C(σ, xi), C(ρ, xi)).

• If (M,N) ∈ h then there is i with (M,N) = (C(σ, xi), C(ρ, xi)) = (e(Fiσ), e(Fiρ)).
• Else, (M,N) = (Ea(M

′),Eb(N
′)) and by the induction assumption there exists

G such that (M ′, N ′) = (e(Gσ), e(Gρ)). By Lemma 2.4.1, (a, b) ∈ h, so there
exists i such that (a, b) = (C(σ, xi), C(ρ, xi)) = (e(Fiσ), e(Fiρ)). But then
(M,N) = (E

e(Fiσ)(e(Gσ)),E
e(Fiρ)

(e(Gρ))) = (e(EFi
(G)σ), e(EFi

(G) ρ)).
2

We now show that an environment represented by a consistent pair of substitu-
tions can accept a given message pair iff an environment represented by a hedge can
do it, and characterize the hedge derived under ϕ.

Lemma 2.4.42 If σ
{M
/x

}
∼= ρ

{N
/x

}
then I (h ∪ {(M,N)}) = ϕ(σ

{M
/x

}
, ρ

{N
/x

}
).

Proof. Let g = {(σ(xi), ρ(xi))|xi ∈ dom(σ)}. By Lemma 2.4.15 we have
I (I (g)∪{(M,N)}) = I (g∪{(M,N)}). By using Lemma 2.4.37 to (σ, ρ) we get that
I (g) = h, and substitution gives that I (h∪{(M,N)}) = I (g∪{(M,N)}). Applying
Lemma 2.4.37 to (σ

{M
/x

}
, ρ

{N
/x

}
) we get I (g ∪ {(M,N)}) = ϕ(σ

{M
/x

}
, ρ

{N
/x

}
).

Thus I (h ∪ {(M,N)}) = ϕ(σ
{M
/x

}
, ρ

{N
/x

}
), as desired. 2

Lemma 2.4.43 If I (h ∪ {(M,N)}) is consistent, then σ
{M
/x

}
∼= ρ

{N
/x

}
for any

x 6∈ dom(σ).

Proof. Let g = I (h ∪ {(M,N)}). By Lemma 2.4.39 gf1 ∼= gf2 . Take any injection
f ′ : dom(gf1) → N such that range(f ′) ∩ (dom(gf1) ∪ dom(σ) ∪ {x}) = ∅. We define
gfi = {g

f
i (x1)/f ′(x1), . . . ,

g
f
i (xn)/f ′(xn)}xj∈dom(gf

1)
. By iterated application of Lemma 2.4.30

we have that gf1 ◦ gf1
∼= gf2 ◦ gf2 , and Lemma 2.4.31 gives that gf1 ∼= gf2 . More-

over, since { (gf1 (xi), g
f
2 (xi)) | xi ∈ dom(gf1) } = { (gf1(xi), g

f
2(xi)) | xi ∈ dom(gf1) },

Lemma 2.4.37 gives that g = ϕ(gf1 , g
f
2).

58 CHAPTER 2. COMPARING BISIMULATIONS

By Lemma 2.4.40 we have that ∀xi ∈ dom(σ) : h ⊢ σ(xi) ↔ ρ(xi). By
Lemma 2.4.10 we have that h ∪ {(M,N)} ≤ g, so g ⊢ σ(xi) ↔ ρ(xi). By
Lemma 2.4.41 (gf1 , g

f
2) ⊢ σ(xi) ↔ ρ(xi), so by definition there are Fi such that

e(Fig
f
1) = σ(xi), e(Fig

f
2) = ρ(xi) and n(Fi) ⊆ dom(gf1).

Then, by iterated application of Lemma 2.4.30 we get that gf1 ◦ σ ∼= gf2 ◦ ρ.
Similarly, as g ⊢ M ↔ N we have by Lemma 2.4.41 that (gf1 , g

f
2) ⊢ M ↔ N .

By definition this means there is a G such that n(G) ⊆ dom(gf1), e(Ggf1) = M and
e(Ggf2) = N . By Lemma 2.4.30 gf1 ◦ σ

{M
/x

}
∼= gf2 ◦ ρ

{N
/x

}
. Finally, by iterated

application of Lemma 2.4.31 σ
{M
/x

}
∼= ρ

{N
/x

}
. 2

We also need to see what happens when the environment creates fresh names.

Lemma 2.4.44 If B = {b1, b2, . . . , bn} ⊂ N is finite and B ∩ fn(σ, ρ) = ∅

then h ∪ IdB = ϕ(σ
{b1/y1, . . . ,bn/yn

}
, ρ

{b1/y1 , . . . ,bn/yn

}
) for all sets of variables

Y = {y1, y2, . . . , yn} such that Y ∩ range(σ) = ∅.

Proof. We write
{B
/Y

}
for

{b1
/y1, . . . ,

bn/yn

}
. By Lemma 2.4.35 we have that h is

consistent, so since B is fresh we have that h ∪ IdB is consistent by Lemma 2.4.20.
By Lemma 2.4.43 we get that σ

{B
/Y

}
∼= ρ

{B
/Y

}
.

Since bi ∈ N we have that C(σ
{B
/Y

}
, bi) = bi and C(ρ

{B
/Y

}
, bi) = bi. Since B is

fresh we have for any xi ∈ dom(σ) that C(σ
{B
/Y

}
, xi) = C(σ, xi) and

C(ρ
{B
/Y

}
, xi) = C(ρ, xi), so σ

{B
/Y

}
∼= ρ

{B
/Y

}
and ϕ(σ

{B
/Y

}
, ρ

{B
/Y

}
) = h∪ IdB. 2

We use the preceding result to show a variant of Lemma 2.4.41, namely that
if a hedge augmented with some fresh names can create a pair of messages then
the same pair of messages can be produced by a corresponding consistent pair of
substitutions. Note that in the definition of alley bisimilarity, the fresh names are
required to occur in the expressions, while the other bisimilarities allow the creation
of fresh names that are not used.

Lemma 2.4.45 If B is a finite set of names such that B ∩ fn(σ, ρ) = ∅ and
h ∪ IdB ⊢ M ↔ N then there exists F such that n(F) \ dom(σ) = B and
e(Fσ) = M, e(Fρ) = N .

Proof. h ∪ IdB = ϕ(σ
{b1/y1 , . . . ,bn/yn

}
, ρ

{b1/y1 , . . . ,bn/yn

}
) by Lemma 2.4.44. Then,

according to Lemma 2.4.41 (σ
{b1
/y1, . . . ,

bn/yn

}
, ρ

{b1
/y1 , . . . ,

bn/yn

}
) ⊢ M ↔ N , so

there is G : n(G) ⊆ dom(σ) ∪ B and e(Gσ) = M, e(Gρ) = N . Clearly,
F = Db1

(Db2
(· · ·Dbn

(Ebn
(· · ·Eb2

(Eb1
(G)) · · ·)) · · ·)) has the desired properties. 2

2.4. COMPARING ENVIRONMENTS 59

2.4.5 Frames and Alleys

The missing component in our relations between the various kinds of environments
concerns the relation between frame-theory pairs and substitution pairs. As a matter
of fact, we are only interested in the case of strongly consistent substitution pairs.
This definition is in terms of ϕ, as defined in Definition 2.4.34.

Definition 2.4.46 The frame-theory pair corresponding to a (strongly consistent)
substitution pair is defined by:

γ : SS → FT : γ(σ, ρ) := (N ∩ π1(ϕ(σ, ρ)) , ϕ(σ, ρ) \ (N ×N))

Note that this definition indeed only makes sense in the case that σ ∼=s ρ, because
in it we consider for the frame only the names of π1(ϕ(σ, ρ)) while ignoring those
of π2(ϕ(σ, ρ)). Note further that all of the properties we need later on for γ will be
derived from the properties of ϕ.

2.4.6 Message Equivalence

As we saw in Section 2.3, two consistent non-blind environments can be (∼x,∼y)-
equivalent only if they are M-equivalent (see Definition 2.3.9). With the results of
this section, we can fully characterize M-equivalent frame-theory pairs and alleys
and, because of this, give necessary conditions on full abstractions on the corre-
sponding bisimilarities.

As showed in Lemma 2.4.18, two M-equivalent consistent hedges are equal.
Using this, we can show that M-equivalent consistent frame-theory pairs are equal.
First we need to show that ψ is injective when restricted to the set of consistent
frame-theory pairs.

Lemma 2.4.47 If (fr, th) and (fr′, th′) are consistent and ψ(fr, th) = ψ(fr′, th′) then
(fr, th) = (fr′, th′).

Proof. Let h = ψ(fr, th) = ψ(fr′, th′). By definition, (M,N) ∈ h iff M = N ∈ fr,
M = N ∈ fr′, (M,N) ∈ th or (M,N) ∈ th′.

Take (M,N) ∈ h. If M or N is a name then M = N ∈ fr and M = N ∈ fr′ by
Lemma 2.4.22. Otherwise we must have (M,N) ∈ th and (M,N) ∈ th′, since the
frame only contains names. 2

Two M-equivalent consistent frame-theory pairs are equal.

Lemma 2.4.48 If (fr, th) and (fr′, th′) are consistent and (fr, th) ≷ (fr′, th′) then
(fr, th) = (fr′, th′).

60 CHAPTER 2. COMPARING BISIMULATIONS

Proof. Note that ψ(fr, th) ≷ ψ(fr′, th′). ψ(fr, th) and ψ(fr′, th′) are both consistent
by Lemma 2.4.23, so ψ(fr, th) = ψ(fr′, th′) by Lemma 2.4.18. Then (fr, th) = (fr′, th′)
by Lemma 2.4.47. 2

Corollary 2.4.49 Lemma 2.4.48 together with Proposition 2.3.11 give that all full
abstractions from [framed, fenced] to [framed, fenced] must be the identity on con-
sistent, non-blind environments.

M-equivalent pairs of substitutions are exactly those that correspond to the same
hedge.

Lemma 2.4.50 (σ, ρ) ≷ (σ′, ρ′) if and only if ϕ(σ, ρ) = ϕ(σ′, ρ′).

Proof. By Lemma 2.4.40 and Lemma 2.4.41 we have that (σ, ρ) ≷ (σ′, ρ′) iff
ϕ(σ, ρ) ≷ ϕ(σ′, ρ′). ϕ(σ, ρ) and ϕ(σ′, ρ′) are consistent by Lemma 2.4.35, so
Lemma 2.4.18 gives that ϕ(σ, ρ) ≷ ϕ(σ′, ρ′) iff ϕ(σ, ρ) = ϕ(σ′, ρ′). 2

Corollary 2.4.51 Lemma 2.4.50 together with Proposition 2.3.11 give that all full
abstractions from [alley, trellis] to [alley, trellis] must preserve the image under ϕ of
all consistent, non-blind environments.

2.5 Comparing Bisimulations

Having established the relations between the different kinds of environment rep-
resentations, we may study the relations between the respective bisimulations. In
general, this is done by lifting the environment mapping functions to consistent
environmental relations. In general the lifting is defined as follows:

Definition 2.5.1 Assume that g : Ex → Ey is an environment mapping.
If ex is consistent for ∼x we let G(ex, P,Q) := (g(ex), P,Q).
If R is a consistent relation (for ∼x) we let G(R) := {G(ex, P,Q) | ex ⊢ P R Q }.
If S is a consistent relation (for ∼y) we let G−1(S) := {(ex, P,Q) | G(ex, P,Q) ∈ S}.
By abuse of notation, we write G−1(ey, P,Q) for G−1({(ey, P,Q)}).

For instance, recalling γ from Definition 2.4.46 we have Γ(R) = {(γ(σ, ρ), P,Q) |
((σ, ρ), P,Q) ∈ R} whenever R is a strongly consistent alley relation.

2.5. COMPARING BISIMULATIONS 61

2.5.1 Fenced vs. Trellis Bisimulation

These two bisimulations were compared by [FHJ01]. Here, we recapitulate and add
to their results. We use the environment mapping γ and its lifting Γ, as instances
of the above definition scheme.

These are the main results of [FHJ01]:

Theorem 2.5.2 Γ(∼s) is a fenced bisimulation.

Theorem 2.5.3 Γ−1(∼#) is a strongly consistent alley bisimulation.

Using the terminology of Definition 2.3.1, these results give us the following
Lemma.

Lemma 2.5.4 ∼# is fully γ-abstract w.r.t. ∼s.

Proof. Fix σ ∼=s ρ and take any P,Q. We need to check that (σ, ρ) ⊢ P ∼s Q if and
only if γ(σ, ρ) ⊢ P ∼# Q. By Theorem 2.5.3 we have the “if” and Theorem 2.5.2
gives the “only if”. 2

Intuitively, this means that ∼s can be embedded in ∼#. However, this is only one
of the full abstractions needed to prove fenced and trellis equivalent. For the other
direction, we must find an environment mapping going in the opposite direction of γ.
The composition of ψ (Definition 2.4.21) and θf (Definition 2.4.38) is a reasonable
candidate.

Lemma 2.5.5

1. If (fr, th) is consistent then θf1 (ψ(fr, th)) ∼=s θ
f
2 (ψ(fr, th)).

2. γ ◦ θf ◦ ψ = Id on the set of consistent frame-theory pairs.

Proof. ψ(fr, th) is consistent by Lemma 2.4.23, so θf1 (ψ(fr, th)) ∼= θf1 (ψ(fr, th))
according to Lemma 2.4.39. Since (fr, th) is consistent, the only pairs of names
in ψ(fr, th) are of the type (a, a) where a ∈ fr. This gives that we actually have
θf1 (ψ(fr, th)) ∼=s θ

f
1 (ψ(fr, th)).

By Lemma 2.4.39 we also have that ϕ(θf(ψ(fr, th))) = ψ(fr, th). Since (fr, th) is
consistent by assumption, we have that fr = N ∩ π1(ψ(fr, th)) and
th = ψ(fr, th) \ (N ×N). 2

Lemma 2.5.6 ∼s is fully θf ◦ ψ-abstract w.r.t. ∼#.

Proof. Fix a consistent frame-theory pair (fr, th), and take any P,Q. We need to
check that (fr, th) ⊢ P ∼# Q iff θf (ψ(fr, th)) ⊢ P ∼s Q.

We have by Lemma 2.5.5 that Γ(θf(ψ(fr, th)), P,Q) = ((fr, th), P,Q). Using this,
Theorem 2.5.2 gives the “if” and the “only if” follows from Theorem 2.5.3. 2

By combining Lemma 2.5.6 and Lemma 2.5.4, we have the desired equivalence.

Theorem 2.5.7 ∼s is (γ, θf ◦ ψ)-equivalent to ∼#.

62 CHAPTER 2. COMPARING BISIMULATIONS

2.5.2 Fenced vs. Hedged Bisimulation

The correspondence between fenced and hedged bisimulation is easy to find, since
they have similar environments and, according to Lemma 2.4.27, the same action
on process output. On the level of the environments the correspondence is given by
ψ, and we lift this to Ψ according to the above definition scheme.

We immediately get an embedding of fenced bisimulation in hedged.

Theorem 2.5.8 Ψ(∼#) is a hedged bisimulation.

Proof. Ψ(∼#) is a consistent hedged relation by Lemma 2.4.23 and is symmetric
by the symmetry of ∼#. Assume that (fr, th) ⊢ P ∼# Q.

1. If P τ
−→ P ′ then there is a Q′ such that Q τ

−→ Q′ and (fr, th) ⊢ P ′ ∼# Q′,
so (ψ(fr, th), P ′, Q′) ∈ Ψ(∼#).

2. Assume that P
a(x)
−−→ P ′, ψ(fr, th) ⊢ a ↔ b and B ⊂ N is finite such

that B ∩ (fn(P,Q) ∪ n(ψ(fr, th))) = ∅ and ψ(fr, th) ∪ IdB ⊢ M ↔ N . By
Lemma 2.4.1 (a, b) ∈ ψ(fr, th) and as (fr, th) is consistent we get a = b ∈ fr.

Clearly n(ψ(fr, th)) = fr∪ n(th). Then there is Q′ such that Q
a(x)
−−→ Q′ and

(fr∪B, th) ⊢ P ′
{M
/x

}
∼# Q′

{N
/x

}
, so (ψ(fr, th) ∪ IdB, P

′
{M
/x

}
, Q′

{N
/x

}
) ∈ Ψ(∼#).

3. Assume that P
(νc̃) aM
−−−−→ P ′, ψ(fr, th) ⊢ a↔ b and {c̃}∩(fn(P)∪n(π1(h))) = ∅.

As above a = b ∈ fr and n(π1(ψ(fr, th))) = fr∪ n(π1(th)) so there are Q′, N, d̃

where Q
(νd̃) bN
−−−−→ Q′, (fn(Q) ∪ fr∪ n(π2(th))) ∩ {d̃} = ∅ and

ξ(fr, th,M,N) ⊢ P ′ ∼# Q′. Clearly fr∪ n(π2(th)) = n(π2(ψ(fr, th))).
ψ(ξ(fr, th,M,N)) = I (ψ(fr, th) ∪ {(M,N)}) by Lemma 2.4.27, so
(I (ψ(fr, th) ∪ {(M,N)}), P ′, Q′) ∈ Ψ(∼#).

2

We may also state this as

Corollary 2.5.9 ∼h is ψ-complete w.r.t. ∼#.

Note that ψ satisfies the conditions we highlighted in Section 2.3, namely that
it preserves knowledge, consistency and non-blindness. However, as seen in Sec-
tion 2.2.1, ψ does not yield a full abstraction.

2.5.3 Fenced vs. Framed Bisimulation

One of the main results of [EHHO99] is the following:

Theorem 2.5.10 If (fr, th) ⊢ P ∼# Q then (fr, th) ⊢ P ∼f Q.

2.5. COMPARING BISIMULATIONS 63

The authors enunciate that the converse would also hold, but our counterexamples
in Section 2.2 show that this cannot be the case. Indeed, their proof is flawed3.
However, Theorem 2.5.10 can be restated as

Corollary 2.5.11 Let Id be the identity mapping on frame-theory pairs.

• ∼f is Id-complete w.r.t. ∼#.
• ∼# is Id-sound w.r.t. ∼f .

By transitivity, we also get

Corollary 2.5.12

• ∼f is γ-complete w.r.t. ∼s.
• ∼s is θf ◦ ψ-sound w.r.t. ∼f .

Also here, the examples in Section 2.2 show that neither of Id, γ and θf ◦ψ yield
a full abstraction.

2.5.4 Framed vs. Hedged Bisimulation

In framed bisimulation we can make arbitrary extensions to the environment on
process output, something that is not permitted in hedged bisimulation. Therefore,
we can only show a direct correspondence between framed bisimilarity and hedged
bisimilarity up to weakening. We need a lemma concerning extensions of frame-
theory pairs and their corresponding hedges.

Lemma 2.5.13 If (fr′, th′) is consistent, (fr, th) ≤ (fr′, th′) and
(fr′, th′) ⊢M ↔ N then I (ψ(fr, th) ∪ {(M,N)}) is consistent and
I (ψ(fr, th) ∪ {(M,N)}) ≤ ψ(fr′, th′).

Proof. By Corollary 2.4.5(2) ψ(fr, th) ∪ {(M,N)} ≤ ψ(fr′, th′). This gives by
Lemma 2.4.13 that I (ψ(fr, th) ∪ {(M,N)}) ≤ I (ψ(fr′, th′)). ψ(fr′, th′) is consistent
by Lemma 2.4.23, so ψ(fr′, th′) = I (ψ(fr′, th′)) according to Lemma 2.4.16.

I (ψ(fr, th)∪{(M,N)}) is irreducible by Corollary 2.4.8, so the consistency follows
from Lemma 2.4.19 applied to I (ψ(fr, th) ∪ {(M,N)}) ≤ ψ(fr′, th′). 2

Theorem 2.5.14 Ψ(∼f) is a hedged bisimulation up to weakening.

3In the proof of their Lemma 20, stating (roughly) soundness of framed up to weakening, actions
that must be simulated by the minimal environment but not by a larger one are not taken into
account (cf. the example in Section 2.2).

64 CHAPTER 2. COMPARING BISIMULATIONS

Proof. Assume that (fr, th) ⊢ P ∼f Q. Internal calculation and input is handled
as in the proof of Theorem 2.5.8.

Assume that P
(νc̃) aM
−−−−→ P ′, ψ(fr, th) ⊢ a ↔ b and {c̃} ∩ (fn(P) ∪ n(π1(h))) = ∅.

By Lemma 2.4.22 we have a = b ∈ fr.

n(π1(ψ(fr, th))) = fr∪ n(π1(th)) so there are Q′, N, d̃, fr′, th′ with Q
(νd̃) bN
−−−−→ Q′,

(fn(Q) ∪ fr∪ n(π2(th))) ∩ {d̃} = ∅, (fr, th) ≤ (fr′, th′), (fr′, th′) ⊢ M ↔ N and
(fr′, th′) ⊢ P ′ ∼f Q

′. Moreover fr∪ n(π2(th)) = n(π2(ψ(fr, th))).
We need to show that there is h′ ≥ I (ψ(fr, th) ∪ {(M,N)}) such that

h′ ⊢ P ′ Ψ(∼f) Q′. By Lemma 2.5.13 we have that I (ψ(fr, th) ∪ {(M,N)}) is
consistent and I (ψ(fr, th) ∪ {(M,N)}) ≤ ψ(fr′, th′), and since (fr′, th′) ⊢ P ′ ∼f Q

′

(see above) we get that ψ(fr′, th′) ⊢ P ′ Ψ(∼f) Q
′. 2

In proving this theorem, we needed to weaken the hedges on process output.
Actually, since fenced bisimilarity is not complete with respect to framed, construc-
tion of a non-minimal environment may be required to get a framed bisimulation.
Since ∼h only performs minimal extensions, we get that Ψ(∼f) is not a hedged
bisimulation.

We now proceed to show that up to weakening is a sound proof technique for
hedged bisimulation. The standard proof for this is to show that for an arbitrary
hedged bisimulation up to weakening R we have that Rw is a hedged bisimulation.
However, this is in fact not the case, as this example shows.

Example 2.5.15 We let

R
def
= {({(a, a), (Ek(a),Ek(a))}, (νl) a〈l〉. 0, (νl) a〈l〉. 0)}

∪{({(a, a), (Ek(a),Ek(a)), (l, l)}, 0, 0) | l 6= a, k}.

Then R is a hedged bisimulation and thus a hedged bisimulation up to weakening,
but Rw is not a hedged bisimulation similarly to Example 2.1.27.

We instead show that “up to bĳective renaming and weakening” is sound, which
using commutativity and Proposition 2.1.26 yields the soundness of up to weakening.
We first give a simpler definition of up to weakening for consistent relations.

Lemma 2.5.16 If R is a consistent hedged relation then h ⊢ P Rw Q iff h is
irreducible and there is h′ such that h′ ⊢ P R Q and h ≤ h′.

Proof: By Definition 2.4.2 h ≤ h′ iff S (h) ⊆ S (h′). We will use the ≤ notation
throughout this proof.

Assume that h ⊢ P Rw Q. By definition, there are h, h′ such that h = I (h),
h′ ⊢ P R Q and h ≤ h′. By Corollary 2.4.8 h is irreducible. Lemma 2.4.13 gives

2.5. COMPARING BISIMULATIONS 65

that h ≤ I (h′), but h′ is consistent by the consistency of R so h′ = I (h′) by
Lemma 2.4.16. Thus h ≤ h′.

Assume that h is irreducible and there is h′ such that h′ ⊢ P R Q and h ≤ h′.
By Definition 2.4.6 h = I (h), so h ⊢ P Rw Q. 2

Theorem 2.5.17 Hedged bisimulation is sound up to bĳective renaming and weak-
ening.

Proof: Let R be a hedged bisimulation up to bĳective renaming and weaken-
ing. We wish to show that R⊆∼h. We do this by showing that Rbw is a hedged
bisimulation; the result follows since R ⊆ Rbw because b and w are both expansions.

If σ is a bĳective substitution N → N we write σ−1 for its inverse. Since R is
consistent, we use the alternative definition of Rw due to Lemma 2.5.16.

Assume that h ⊢ P Rbw Q and that P
µ
−→ P ′. By the definition of Rbw, h is

irreducible and there are h, P ,Q and bĳective σ : N → N and ρ : N → N such
that h ⊢ P R Q, Pσ = P , Qρ = Q, and h ≤ h(σ, ρ).

1. Assume that µ = τ .
Since σ is bĳective P τ

−→ P ′σ−1. Since R is a hedged bisimulation up to bĳec-
tive renaming and weakening there is Q′ such that Q

τ
−→ Q′ and

h ⊢ P ′σ−1 Rbw Q′. This gives that h ⊢ P ′ Rbwb Q
′ρ. Since Rbwb = Rbw we

actually have h ⊢ P ′ Rbw Q
′ρ. We also have that Q τ

−→ Q′ρ since ρ is bĳective,
so Q can simulate the transition P

µ
−→ P ′.

2. Assume that µ = a(x), h ⊢ a ↔ b and B ⊂ N is finite such that
h ∪ IdB ⊢M ↔ N and B ∩ (fn(P,Q) ∪ n(h)) = ∅.
Since B are not necessarily fresh for h, P ,Q, we need to invent another set of
fresh names. Take C ⊂ N with |C| = |B| and C∩(n(h, h)∪fn(P,Q, P,Q)) = ∅.
Let σ′, ρ′ be bĳective substitutions such that σ′(C) = C = ρ′(C),
σ′|n(π1(h))∪fn(P) = σ|n(π1(h))∪fn(P) and ρ′|n(π2(h))∪fn(Q) = ρ|n(π2(h))∪fn(Q).
Let η : B → C be a bĳective function.
In this case, P = Pσ′, Q = Qρ′, P = Pη, Q = Qη, h ∪ IdC ⊢ Mη ↔ Nη

and h ≤ h(σ′, ρ′). Moreover, P
aMη
−−−→ P ′η. Since σ′ is bĳective, we then

get that P
(aσ′−1)Mησ′−1

−−−−−−−−−→ P ′ησ′−1. Since σ′ is bĳective, we then get that

P
(aσ′−1)Mησ′−1

−−−−−−−−−→ P ′σ′−1.
Since h ≤ h(σ′, ρ′) we have h ⊢ (aσ′−1) ↔ (bρ′−1b) and
h ∪ IdC ⊢ Mησ′−1 ↔ Nηρ′−1. Since R is a hedged bisimulation up to bi-

jective renaming and weakening there is Q′ such that Q
(bρ′−1)(x)
−−−−−→ Q′ and

h ∪ IdC ⊢ P ′
{x
/M

}
ησ′−1 Rbw Q

′
{x
/Nηρ′−1

}
.

By Corollary 2.4.5.3 we have h ∪ IdC ≤ h ∪ IdC . Moreover, since σ′η−1 and
ρ′η−1 are bĳective, we get that h ∪ IdB ⊢ P ′ Rbwbw Q′ρ′η−1. As above,

66 CHAPTER 2. COMPARING BISIMULATIONS

Rbwbw = Rbw, and Q can simulate the transition P
a(x)
−−→ P ′ since Q

b(x)
−−→ Q′ρ′.

3. Assume that µ = (νc̃) aM , h ⊢ a↔ b and {c̃} ∩ (fn(P) ∪ n(π1(h))) = ∅.

Since σ is bĳective, P
(νc̃σ−1) (aσ−1)Mσ−1

−−−−−−−−−−−−→ P ′σ−1. Since h ≤ h(σ, ρ) we have that
h ⊢ (aσ−1) ↔ (bρ−1). Since R is a hedged bisimulation up to bĳective renam-

ing and weakening we have that there are Q′, d̃, N such that Q
(νd̃) (bρ−1)N
−−−−−−−→ Q′

with {d̃} ∩ (fn(Q) ∪ n(π2(h))) = ∅ and I (h ∪ {(Mσ−1, N)}) ⊢ P ′σ−1 Rbw Q
′.

By Corollary 2.4.5.3 we get that h ∪ {(M,Nρ)} ≤ h(σ, ρ) ∪ {(M,Nρ)}.
Lemma 2.4.13 then gives that I (h ∪ {(M,Nρ)}) ≤ I (h(σ, ρ) ∪ {(M,Nρ)}),
so I (h ∪ {(M,Nρ)}) ⊢ P ′ Rbwbw Q′ρ, where Rbwbw = Rbw as above. Since ρ

is bĳective we get Q
(νd̃ρ) bNρ
−−−−−→ Q′ρ, so Q simulates the transition P

µ
−→ P ′.

2

Corollary 2.5.18 Hedged bisimulation is sound up to weakening.

Together with Corollary 2.5.18, this gives the desired completeness result.

Corollary 2.5.19 ∼h is ψ-complete w.r.t. ∼f .

Together with Proposition 2.1.25, we also get the following corollary.

Corollary 2.5.20 Let g ≤ h be irreducible. If h ⊢ P ∼h Q then g ⊢ P ∼h Q.

2.5.5 Alley vs. Hedged bisimulation

Now it is time to show the equivalence between alley bisimilarity and hedged bisim-
ilarity. Recall the environment mappings ϕ (Definition 2.4.34) and θf (Defini-
tion 2.4.38). We lift ϕ to Φ according to the definition schema above.

Theorem 2.5.21 Φ(∼a) is a hedged bisimulation.

Proof. Φ(∼a) is symmetric by the symmetry of ∼a and consistent by Lemma 2.4.35.
Assume that (σ, ρ) ⊢ P ∼a Q and that h = ϕ(σ, ρ).

1. If P τ
−→ P ′ there exists Q′ such that Q τ

−→ Q′ and (σ, ρ) ⊢ P ′ ∼a Q
′, so

Φ((σ, ρ), P ′, Q′) = (h, P ′, Q′) ∈ Φ(∼a).

2. Assume that P
a(x)
−−→ P ′, h ⊢ a ↔ b and B ⊂ N is finite such that

B ∩ (fn(P,Q) ∪ n(h)) = ∅ and h ∪ IdB ⊢M ↔ N .
By Lemma 2.4.41 we get that (σ, ρ) ⊢ a ↔ b. By Lemma 2.4.45 there is G
such that n(G) \ dom(σ) = B and e(Gσ) = M, e(Gρ) = N .

2.5. COMPARING BISIMULATIONS 67

As (σ, ρ) ⊢ P ∼a Q there exist Q′, ỹ such that Q
b(x)
−−→ Q′ and

(σ
{b1/y1 , . . . ,bn/yn

}
, ρ

{b1/y1 , . . . ,bn/yn

}
) ⊢ P ′

{M
/x

}
∼a Q

′
{N
/x

}
.

Let
{B
/Y

}
=

{b1/y1 , . . . ,bn/yn

}
.

By Lemma 2.4.44 we get that h ∪ IdB = ϕ(σ
{B
/Y

}
, ρ

{B
/Y

}
), so

Φ((σ
{B
/Y

}
, ρ

{B
/Y

}
), P ′, Q′) = (h ∪ IdB, P

′
{M
/x

}
, Q′

{N
/x

}
) ∈ Φ(∼a).

3. Assume that P
(νc̃) aM
−−−−→ P ′, h ⊢ a↔ b and (fn(P) ∪ n(π1(h))) ∩ {c̃} = ∅.

By Lemma 2.4.41 we get (σ, ρ) ⊢ a↔ b. By Corollary 2.4.36 n(π1(h)) = fn(σ),
so fn(P, σ) ∩ {c̃} = ∅. As (σ, ρ) ⊢ P ∼a Q there exists Q′, N, d̃ such that

Q
(νd̃) bN
−−−−→ Q′, fn(Q, ρ) ∩ {d̃} = ∅ and (σ

{M
/x

}
, ρ

{N
/x

}
) ⊢ P ′ ∼a Q

′.
By Corollary 2.4.36 fn(ρ) = n(π2(h)), so (fn(Q) ∪ n(π2(h))) ∩ {d̃} = ∅. Ac-
cording to Lemma 2.4.42 ϕ(σ

{M
/x

}
, ρ

{N
/x

}
) = I (h ∪ {(M,N)}), so

Φ((σ
{M
/x

}
, ρ

{N
/x

}
), P ′, Q′) = (I (h ∪ {(M,N)}), P ′, Q′) ∈ Φ(∼a).

2

Theorem 2.5.22 Φ−1(∼h) is an alley bisimulation.

Proof. Φ−1(∼h) is symmetric by the symmetry of ∼h. As Φ is only defined for
consistent pairs of substitutions Φ−1(∼h) is consistent. Assume that h ⊢ P ∼h Q
where h = ϕ(σ, ρ).

1. If P τ
−→ P ′ then there exists Q′ such that Q τ

−→ Q′ and h ⊢ P ′ ∼h Q
′. Clearly

((σ, ρ), P ′, Q′) ∈ Φ−1(h, P ′, Q′).
2. Assume that (σ, ρ) ⊢ a ↔ b and that B = n(G) \ dom(σ) is such that
B ∩ fn(P,Q, ρ, σ) = ∅. Furthermore, let e(Gσ) = M, e(Gρ) = N and assume

that P
a(x)
−−→ P ′. Assume that |B| = n and let Y = {c1, c2, . . . , cn} be any set

of names not in dom(σ). We write
{B
/Y

}
for

{b1
/y1, . . . ,

bn/yn

}
.

By Lemma 2.4.44 we have that h∪IdB = ϕ(σ
{B
/Y

}
, ρ

{B
/Y

}
). We also get that

h ⊢ a ↔ b and h ∪ IdB ⊢ M ↔ N by Lemma 2.4.40. Now, as h ⊢ P ∼h Q

there is Q′ such that Q
b(x)
−−→ Q′ and h ∪ IdB ⊢ P ′

{M
/x

}
∼h Q

′
{N
/x

}
. Note

that Φ((σ
{B
/Y

}
, ρ

{B
/Y

}
), P ′

{M
/x

}
, Q′

{N
/x

}
) = (h ∪ IdB, P

′
{M
/x

}
, Q′

{N
/x

}
).

3. Assume that (σ, ρ) ⊢ a ↔ b and P
(νc̃) aM
−−−−→ P ′ with fn(P, σ) ∩ {c̃} = ∅.

By Lemma 2.4.40 we have that h ⊢ a ↔ b, and by Corollary 2.4.36

fn(σ) = n(π1(h)). As h ⊢ P ∼h Q there are Q′, N, d̃ such that Q
(νd̃) bN
−−−−→ Q′,

(fn(Q) ∪ n(π2(h))) ∩ {d̃} = ∅ and I (h ∪ {(M,N)}) ⊢ P ′ ∼h Q
′. By Corol-

lary 2.4.36 fn(ρ) = n(π2(h)), so fn(Q, ρ) ∩ {d̃} = ∅.
Then I (h ∪ {(M,N)}) = ϕ(σ

{M
/x

}
, ρ

{N
/x

}
) by Lemma 2.4.42, so

Φ((σ
{M
/x

}
, ρ

{N
/x

}
), P ′, Q′) = (I (h ∪ {(M,N)}), P ′, Q′).

68 CHAPTER 2. COMPARING BISIMULATIONS

2

We now restate these results using the terminology of Definition 2.3.1.

Lemma 2.5.23 ∼h is fully ϕ-abstract w.r.t. ∼a.

Proof. Fix σ ∼= ρ, and take any P,Q. We need to check that (σ, ρ) ⊢ P ∼a Q if and
only if ϕ(σ, ρ) ⊢ P ∼h Q. By Theorem 2.5.22 we have the “if” and Theorem 2.5.21
gives the “only if”. 2

Lemma 2.5.24 ∼a is fully θf -abstract w.r.t. ∼h.

Proof. Fix a consistent hedge h. We need to check that for all processes P,Q we
have that h ⊢ P ∼h Q if and only if θf (h) ⊢ P ∼a Q. By Lemma 2.4.39 we have
that Φ(θf (h), P,Q) = (h, P,Q). Using this, Theorem 2.5.21 gives the “if” and the
“only if” follows from Theorem 2.5.22. 2

By combining these results, we have

Theorem 2.5.25 ∼a is (ϕ, θf)-equivalent to ∼h.

We can use this theorem to transfer results on hedged bisimilarity to alleys. For
instance, we have that M-equivalent alleys can be substituted for each other in
bisimulations.

Lemma 2.5.26 If (σ, ρ) ≷ (σ′, ρ′) then (σ, ρ) ⊢ P ∼a Q iff (σ′, ρ′) ⊢ P ∼a Q

Proof. By Lemma 2.4.50 we have that ϕ(σ, ρ) = ϕ(σ′, ρ′). The result follows from
Lemma 2.5.23 which states that (σ, ρ) ⊢ P ∼a Q iff ϕ(σ, ρ) ⊢ P ∼h Q. 2

2.5.6 Negative Results

Having found the full abstractions above, we can now disprove the existence of full
abstractions between other pairs of bisimilarities.

Proposition 2.5.27 In this proposition, we write “∼x is not fully abstract w.r.t. ∼y”
for “there is no mapping G such that ∼x is fully G-abstract w.r.t. ∼y”.

1. ∼f is not fully abstract w.r.t. ∼h, ∼#, ∼a or ∼s.
2. ∼# is not fully abstract w.r.t. ∼h, ∼f or ∼a.
3. ∼h is not fully abstract w.r.t. ∼f , ∼# or ∼s.
4. ∼a is not fully abstract w.r.t. ∼f , ∼# or ∼s.
5. ∼s is not fully abstract w.r.t. ∼f , ∼h or ∼a.

2.5. COMPARING BISIMULATIONS 69

Proof. To show that there is no function g : Ex → Ey satisfying ex ≡x
y g(ex), we

show that there is one consistent non-blind environment ex that is not (∼x,∼y)-
equivalent to any of its M-equivalent counterparts in Ey. Alternatively, we may use
the transitivity of full abstractness to derive a contradiction.

1. (a) h := {(a, a)} is consistent but not h-blind, since h ⊢ a〈a〉. 0 6∼h 0.
We look for a (∼h,∼f)-equivalent frame-theory pair (fr, th). Proposi-
tion 2.3.11 then gives that such a frame-theory pair must be consistent
and satisfy (fr, th) ≷ h.
Since (fr, th) is consistent we have by Lemma 2.4.23 that ψ(fr, th) is
consistent. We also have that (fr, th) ≷ ψ(fr, th), so the transitivity of
≷ gives that ψ(fr, th) ≷ h. Since both of these hedges are consistent,
Lemma 2.4.18 gives that ψ(fr, th) = h. Then Lemma 2.4.22 gives us that
(fr, th) = ({a}, ∅), which has been shown in Section 2.2.2 not to relate
the same processes as the hedge h.

(b) By Proposition 2.2.4 there exists a consistent non-blind (fr, th) such that
(fr, th) 6≡f

(fr, th). We try to find a frame-theory pair (fr′, th′) that is
(∼f ,∼#)-equivalent to (fr, th).
By Proposition 2.3.11 we have that such a frame-theory pair must be con-
sistent and non-blind, and that (fr′, th′) ≷ (fr, th) must hold. Lemma 2.4.48
then gives that (fr′, th′) = (fr, th), but (fr, th) 6≡f

(fr, th).
(c) Assume that ∼f is fully g-abstract w.r.t. ∼a. We have by Lemma 2.5.24

that ∼a is fully θf -abstract w.r.t. ∼h. By transitivity this implies that
∼f is fully g ◦ θf -abstract w.r.t. ∼h, which contradicts 1(a).

(d) Assume that ∼f is fully g-abstract w.r.t. ∼s. We have by Lemma 2.5.6
that ∼s is fully θf ◦ψ-abstract w.r.t. ∼#. By transitivity this implies that
∼f is fully g ◦ θf ◦ ψ-abstract w.r.t. ∼#, which contradicts 1(b).

2. As 1(a),(b),(c).
3. (a) By Proposition 2.2.12 there exists a consistent non-blind (fr, th) such that

(fr, th) 6≡f
h ψ(fr, th). We try to find a hedge h that is (∼f ,∼h)-equivalent

to (fr, th).
By Proposition 2.3.11 we have that such a hedge must be consistent and
non-blind, and that h ≷ (fr, th) must hold. Since (fr, th) ≷ ψ(fr, th)
we have by transitivity that h ≷ ψ(fr, th). Note that ψ(fr, th) is consis-
tent by Lemma 2.4.23. Then we can use Lemma 2.4.18 to derive that
h = ψ(fr, th), which is a contradiction.

(b) As 3(a).
(c) As 1(d).

4. (a) Assume that ∼a is fully g-abstract w.r.t. ∼f . We have by Lemma 2.5.23
that ∼h is fully ϕ-abstract w.r.t. ∼a. By transitivity this implies that ∼h

is fully ϕ ◦ g-abstract w.r.t. ∼f , which is false by 3(a).

70 CHAPTER 2. COMPARING BISIMULATIONS

Alley Hedged Framed Fenced Trellis ∼⊤ ∼⊥

Alley F s,C s,C s,C F F
Hedged F s,C s,C s,C F F
Framed s,c s,c s,C s,C F F
Fenced s,c s,c S,c F F F
Trellis s,c s,c S,c F F F
∼⊤ c c c c c c
∼⊥ s s s s s s

Table 2.2: Relations Between the Bisimilarities.

(b) As 4(a).
(c) As 1(d).

5. (a) Assume that ∼s is fully g-abstract w.r.t. ∼f . We have by Lemma 2.5.4
that ∼# is fully γ-abstract w.r.t. ∼s. By transitivity this implies that ∼#

is fully γ ◦ g-abstract with respect to ∼f , which is false by 2(b).
(b) As 5(a).
(c) As 5(a).

2

We summarize the relations between the bisimilarities in Table 2.2. Following the
discussion in Section 2.3, we consider environment mappings that preserve synthesis,
consistency and non-blindness as “good”. In the table, an “s” means that there is a
trivial function g making the bisimilarity leading the row sound with respect to the
one heading the column and “c” stands for trivial completeness. A “S” means that
there is a “good” sound environment mapping, “C” stands for the existence of a
“good” complete one and “F” for any full abstraction. We don’t show relations that
are subsumed by stronger ones. Note that there are no environment mappings from
alleys or hedges to frame-theory pairs preserving both soundness and the synthesis
(cf. Lemma 2.4.22).

2.6 Comparison in a Categorical Framework

Usually, bisimilarities are represented and studied as sets of process pairs; compar-
isons between bisimilarities are therefore based on set-theoretic comparisons. In the
previous sections, we have achieved a set-theoretic understanding of the relations be-
tween the various environment-sensitive bisimilarities, properly taking into account
the relations (represented by mappings) between the environment components. It
turns out that we can improve on this merely set-theoretic understanding and fur-

2.6. COMPARISON IN A CATEGORICAL FRAMEWORK 71

ther refine the comparison of the bisimilarities by not only studying the elements of
bisimilarities, but also the (pairs of matching) transitions that connect them. The
application of this technique to bisimilarities for other process calculi (e.g., the pi
calculus) is a subject of possible future work.

As we have seen, definitions of bisimulations typically contain statements such
as “If e ⊢ P R Q and P

τ
−→ P ′ then there exists Q′ such that Q τ

−→ Q′ and
e ⊢ P ′ R Q′”. This provides us with some internal structure on the set R, namely
transition pairs connecting the objects (e, P,Q) and (e, P ′, Q′). For bookkeeping
purposes, we label such arrows with the process actions. This procedure, more for-
mally defined below, turns each bisimulation itself into a labelled transition system,
which allows us to study the internal structure of the bisimilarities. As a standard
uniform framework for this kind of comparison, we use the language of category the-
ory. We straightforwardly redefine the bisimilarities as categories, then we lift the
environment mappings to functors between those categories and study the properties
of these functors.

Let A denote the set of actions defined by the following grammar:

µ, γ ::= τ | aM | aM

Note that new names are not explicitly mentioned on process output. However, by

inspection of the derivation of P
(νc̃) aM
−−−−→ P ′ we have that {c̃} ⊆ n(M). (Note that

c̃ = n(M) \ fn(P) may be false, due to the rules Sum, Let and Guard.) Since the
simulations only consider outputs where c̃ is fresh (see Section 2.1 for the precise
meaning in each particular case), we have that c̃ is simply the fresh names in n(M).

2.6.1 Redefinitions

The categorical definitions below all have a similar structure:

• The objects are process pairs under some kind of environment. Processes are
considered up to α-equivalence.

• The arrows are labelled, and correspond to matching transitions of the pro-
cess pair. Due to the closure requirement on the composition of arrows in a
category, the labels must be strings over the set of actions.

• Composition of arrows is concatenation of the labels, which clearly is as-
sociative. If A

µ̃
−→ B and B

γ̃
−→ C then we write A

µ̃γ̃
−→ C for the arrow

B
γ̃
−→ C ◦ A

µ̃
−→ B.

• Two arrows are considered equal if they have the same label, domain and
codomain.

• The identity arrows simply correspond to not doing any transition, and are
labelled with the empty string (different from τ , since identity arrows must be
idempotent and ττ 6= τ as strings).

72 CHAPTER 2. COMPARING BISIMULATIONS

Note that the arrows are only labelled with the actions of the first process in the
pair. Together with the codomain, this uniquely determines the actions of the second
process, since a given consistent environment can not consider a given message
equivalent to two different messages. We may now proceed to the redefinitions.

Framed Bisimulation

The category F has ∼f as set of objects. We say that there is a primitive F-arrow
from ((fr, th), P,Q) to ((fr′, th′), P ′, Q′) iff one of the following conditions holds:

1. P τ
−→ P ′, Q τ

−→ Q′ and (fr′, th′) = (fr, th). This arrow is labelled with τ .

2. P
a(x)
−−→ P ′′, Q

a(x)
−−→ Q′′, th′ = th and fr′ = fr∪B where a ∈ fr, B ⊂ N is

finite, B ∩ (fn(P,Q) ∪ fr∪ n(th)) = ∅, P ′ = P ′′
{M
/x

}
, Q′ = Q′′

{N
/x

}
and

(fr∪B, th) ⊢M ↔ N . This arrow is labelled with aM .

3. P
(νc̃) aM
−−−−→ P ′, Q

(νd̃) aN
−−−−→ Q′, (fr, th) ≤ (fr′, th′) and (fr′, th′) ⊢ M ↔ N where

a ∈ fr,{c̃}∩ (fn(P)∪ fr∪ n(π1(th))) = ∅ and {d̃}∩ (fn(Q)∪ fr∪ n(π2(th))) = ∅.
This arrow is labelled with aM .

The arrows in F are the identity arrows and the transitive closure of the primitive
F-arrows.

Fenced Bisimulation

The category F# has ∼# as set of objects. We say that there is a primitive F#-arrow
from ((fr, th), P,Q) to ((fr′, th′), P ′, Q′) iff one of the following conditions holds:

1. P τ
−→ P ′, Q τ

−→ Q′ and (fr′, th′) = (fr, th). This arrow is labelled with τ .

2. P
a(x)
−−→ P ′′, Q

a(x)
−−→ Q′′, th′ = th and fr′ = fr∪B, where a ∈ fr, B ⊂ N

is finite, B ∩ (fn(P,Q) ∪ fr∪ n(th)) = ∅, P ′ = P ′′
{M
/x

}
, Q′ = Q′′

{N
/x

}
and

(fr∪B, th) ⊢M ↔ N . This arrow is labelled with aM .

3. P
(νc̃) aM
−−−−→ P ′, Q

(νd̃) aN
−−−−→ Q′ and (fr′, th′) = ξ(fr, th,M,N) where a ∈ fr,

{c̃} ∩ (fn(P)∪ fr∪ n(π1(th))) = ∅ and {d̃} ∩ (fn(Q) ∪ fr∪ n(π2(th))) = ∅. This
arrow is labelled with aM .

The arrows in F# are the identity arrows and the transitive closure of the primitive
F#-arrows.

Alley Bisimulation

The category A has ∼a as set of objects. We say that there is a primitive A-arrow
from ((σ, ρ), P,Q) to ((σ′, ρ′), P ′, Q′) iff one of the following conditions holds:

2.6. COMPARISON IN A CATEGORICAL FRAMEWORK 73

1. P τ
−→ P ′, Q τ

−→ Q′, σ′ = σ and ρ′ = ρ. This arrow is labelled with τ .

2. P
a(x)
−−→ P ′′, Q

b(x)
−−→ Q′′, σ′ = σ

{B
/Y

}
and ρ′ = ρ

{B
/Y

}
where

B ∩ fn(P,Q, ρ, σ) = ∅, Y ∩ dom(σ) = ∅, (σ, ρ) ⊢ a ↔ b, P ′ = P ′′
{M
/x

}
,

Q′ = Q′′
{N
/x

}
and there exists G such that B = fn(G) \ dom(σ), e(Gσ) = M

and e(Gρ) = N . This arrow is labelled with aM .

3. P
(νc̃) aM
−−−−→ P ′, Q

(νd̃) bN
−−−−→ Q′, σ′ = σ

{M
/x

}
and ρ′ = ρ

{N
/x

}
where

fn(P, σ) ∩ {c̃} = ∅, fn(Q, ρ) ∩ {d̃} = ∅ and (σ, ρ) ⊢ a ↔ b. This arrow is
labelled with aM .

The arrows in A are the identity arrows and the transitive closure of the primitive
A-arrows.

Trellis Bisimulation

The category S is the sub-category of A obtained by restricting the set of objects
to ∼s.

Hedged Bisimulation

The category H has ∼h as set of objects. We say that there is a primitive H-arrow
from (h, P,Q) to (h′, P ′, Q′) iff one of the following conditions holds:

1. P τ
−→ P ′, Q τ

−→ Q′ and h′ = h. This arrow is labelled with τ .

2. P
a(x)
−−→ P ′′, Q

b(x)
−−→ Q′′ and h′ = h∪ IdB where h ⊢ a↔ b, h ∪ IdB ⊢M ↔ N ,

P ′ = P ′′
{M
/x

}
, Q′ = Q′′

{N
/x

}
, B ⊂ N is finite and B ∩ (fn(P,Q)∪ n(h)) = ∅.

This arrow is labelled with aM .
3. P

(νc̃) aM
−−−−→ P ′, Q

(νd̃) bN
−−−−→ Q′ and h′ = I (h ∪ {(M,N)}) where h ⊢ a ↔ b,

{c̃} ∩ (fn(P) ∪ n(π1(h))) = ∅ and {d̃} ∩ (fn(Q) ∪ n(π2(h))) = ∅. This arrow is
labelled with aM .

The arrows of H are the identity arrows and the transitive closure of the primitive
H-arrows.

2.6.2 Reinterpretation

We now attempt to lift our environment mappings to functors between the bisimi-
larities, and study the properties of these functors.

74 CHAPTER 2. COMPARING BISIMULATIONS

Framed and Fenced

We begin by comparing F and F#. Regarding the objects, ∼# (∼f by Propo-
sition 2.2.4 and Theorem 2.5.10. At process output we have that ((fr, th), P,Q)
aM
−−→ ((fr′, th′), P ′, Q′) in F# only if (fr′, th′) = ξ(fr, th,M,N). In F, we also have an

arrow aM
−−→ from ((fr, th), P,Q) to (ξ(fr, th,M,N), P ′, Q′) according to Lemma 2.4.25

and Theorem 2.5.10(1). As framed and fenced bisimulations behave identically on
process input and internal calculation, there is a trivial embedding functor F# → F.
However, in F we are allowed to further extend the frame-theory pair on process
output, giving rise to arrows not present in F#.

Example 2.6.1 Let P = a〈a〉. 0. Then ({a}, ∅) ⊢ P ∼# P and ({a}, ∅) ⊢ P ∼f P .
Except for the identity, the only arrow from (({a}, ∅), P, P) in F# is

(({a}, ∅), P, P)
a a
−→ (({a}, ∅), 0, 0). However, in F there are arrows

(({a}, ∅), P, P)
a a
−→ ((fr, th), 0, 0) whenever (fr, th) is consistent and a ∈ fr.

Fenced and Hedged

We define Ψ# : F# → H as Ψ#((fr, th), P,Q) = (ψ(fr, th), P,Q) and

Ψ#(((fr, th), P,Q)
µ̃
−→ ((fr′, th′), P ′, Q′)) = (ψ(fr, th), P,Q)

µ̃
−→ (ψ(fr′, th′), P ′, Q′). As

shown in the proof of Theorem 2.5.8, any primitive F#-arrow corresponds to a
primitive H-arrow with the same label, so by composing these we get that Ψ# is
a functor. Ψ# is full, since both bisimilarities perform minimal extensions, and
faithful, since arrows are equal iff they have the same labels, which are preserved
by Ψ#. However, there is a hedged process pair in range(Ψ#) with an H-arrow that
leads outside range(Ψ#).

Example 2.6.2 Let P = a〈a〉.(νl) a〈l〉. 0+a〈a〉.a〈k〉. 0 where k 6= a. We have that
({a}, ∅) ⊢ P ∼# P , intuitively since the simulating process can always mimic the

simulated. In H we have that ({(a, a)}, P, P)
a a
−→ ({(a, a)}, (νl) a〈l〉. 0, a〈k〉. 0) but

({a}, ∅, (νl) a〈l〉. 0, a〈k〉. 0) is not in ∼# by Proposition 2.2.10 and Theorem 2.5.10.

We also have that the obvious extension of Ψ# to F is not a functor, because of
the multitude of possible extensions of the frame-theory pair on process output (see
Example 2.6.1).

Hedged and Alley

We extend the definition of Φ to A → H by letting
Φ(((σ, ρ), P,Q)

µ̃
−→ ((σ′, ρ′), P ′, Q′)) := (ϕ(σ, ρ), P,Q)

µ̃
−→ (ϕ(σ′, ρ′), P ′, Q′). As shown

in the proof of Theorem 2.5.8, any primitive F#-arrow corresponds to a primitive

2.6. COMPARISON IN A CATEGORICAL FRAMEWORK 75

H-arrow with the same label, so by composing these we get that Ψ is a functor. Ψ
is faithful, since arrows are equal iff they have the same labels, which are preserved
by Ψ. However, Ψ is not full, since several different non-isomorphic alley process
pairs are mapped to a given hedged process pair.

We can also define Θf : H → A by letting Θf(h, P,Q) := (θf (h), P,Q) and

Θf((h, P,Q)
µ̃
−→ (h′, P ′, Q′)) := (θf(h), P,Q)

µ̃
−→ (θf (h′), P ′, Q′). Unfortunately Θf is

not a functor, since on process output the environments in A simply add message
pairs instead of reducing them and discarding duplicates.

Example 2.6.3 Let P = a〈Ea(a)〉. 0. Clearly {(a, a)} ⊢ P ∼h P . Assume that
f(a, a) = x where f is the function defining θf . As in the proof of Theorem 2.5.25

we have that (
{a
/x

}
,
{a
/x

}
) ⊢ P ∼a P . In H we have that ({(a, a)}, P, P)

a Ea(a)
−−−−→

({(a, a)}, 0, 0). A corresponding arrow in A is

((
{a
/x

}
,
{a
/x

}
), P, P)

a Ea(a)
−−−−→

(({
a/x,

Ea(a)/y
}
,
{
a/x,

Ea(a)/y
})
, 0, 0

)
. However, we have

that Θf({(a, a)}, 0, 0) = ((
{a
/x

}
,
{a
/x

}
), 0, 0) 6=

(({
a/x,

Ea(a)/y
}
,
{
a/x,

Ea(a)/y
})
, 0, 0

)
.

One way to fix this problem is the application of up-to techniques.

2.6.3 Up-to Techniques

The application of up-to techniques corresponds to adding up-to actions to A. The
following up-to techniques were defined for ∼a by [BDP02].

• Up to structural congruence, which corresponds to adding s to the set of
actions and adding all arrows ((σ, ρ), P,Q)

s
−→ ((σ, ρ), P ′, Q′) where P ≡ P ′

and Q ≡ Q′.
• Up to weakening, which corresponds to adding w to the set of actions and

adding all arrows ((σ, ρ), P,Q)
w
−→ ((σ

{M
/x

}
, ρ

{N
/x

}
), P,Q).

• Up to contraction, which corresponds to adding c to the set of actions and
adding all arrows ((σ

{M
/x

}
, ρ

{N
/x

}
), P,Q)

c
−→ ((σ, ρ), P,Q) where

(σ, ρ) ⊢M ↔ N .
• Up to restriction, which corresponds to adding r to the set of actions and

adding all arrows ((σ, ρ), (νm̃)P, (νñ)Q)
r
−→ ((σ, ρ), P,Q) where

{m̃} ∩ fn(σ) = ∅ and {ñ} ∩ fn(ρ) = ∅. When using this up-to technique
it is preferable not to record the creation of fresh names on process output,
since we want the output of a bound name to be equivalent to the composition
of the lifting of the corresponding restriction and a non-bound output of the
name.

• Up to parallel composition, which corresponds to adding p to the set of
actions and adding all arrows ((σ, ρ), P |Rσ,Q |Rρ)

p
−→ ((σ, ρ), P,Q) where

fn(R) ⊆ dom(σ).

76 CHAPTER 2. COMPARING BISIMULATIONS

The two equivalence relations on environments defined in Section 2.3 can also be
used to define up-to techniques.

• For a given bisimilarity ∼x we get the technique of up to (∼x,∼x)-equivalence,
which corresponds to adding an “up to (∼x,∼x)-equivalence” action e to the
set of actions and adding all arrows (ex, P,Q)

e
−→ (e′x, P,Q) where ex ≡x

x e
′
x.

• Up to M-equivalence, which means adding an “up to M-equivalence” action
m to the set of actions and adding all arrows (ex, P,Q)

m
−→ (e′x, P,Q) where

e′x ≷ e′x.

After adding arrows, we must ensure that all compositions are defined. A priori,
since we distinguish arrows having different labels we are sensitive to exactly where
and which up-to techniques were used in the composition of an arrow, which is
rarely desirable. However, we can make arrows that only differ in their use of up-to
techniques equal by taking the quotient with the following equivalence:

Definition 2.6.4 The arrows A
γ̃
−→ B and A

µ̃
−→ B are up-to equivalent, written

γ̃
−→≡u

µ̃
−→ iff γ̃\U = µ̃\U , i.e., γ̃ and µ̃ are equal after removal of names of “up-to

actions”.

In the resulting category, all arrows only labelled with reversible up-to actions are
isomorphisms.

Using up-to techniques as defined above, we can give a more precise relation
between framed and hedged bisimilarity expressed as categories.

Framed and Hedged

Apart from the environments the main difference between framed and hedged bisim-
ulations is that we in framed bisimulation may extend the process pair more than
strictly necessary on process output. Since we already have a mapping on the ob-
jects of the categories, to get an embedding it should intuitively suffice to permit
arbitrary extensions also on the hedged side. This corresponds to taking hedged
bisimilarity up to weakening.

We let Hw be H up to weakening and ≡u, i.e., the category obtained from H

by first adding all arrows of the type (h, P,Q)
w
−→ (h′, P,Q) where h ≤ h′ and the

codomain actually is an object in the category, then closing the set of arrows under
composition and finally taking the quotient with ≡u as defined in Definition 2.6.4.
The effect of this is that we may add information to the hedge at any time — not
only on process output! However, as we are only looking for an embedding of F in
Hw, the extra arrows resulting from our preference to use a standard up-to technique
will not cause any problems.

We then define Ψw : F → Hw as Ψw((fr, th), P,Q) = (ψ(fr, th), P,Q) on objects.
On primitive F-arrows, Ψw acts in the following way.

2.6. COMPARISON IN A CATEGORICAL FRAMEWORK 77

1. We define Ψw(((fr, th), P,Q)
τ
−→ ((fr, th), P ′, Q′))

as the arrow (ψ(fr, th), P,Q)
τ
−→ (ψ(fr, th), P ′, Q′).

2. We define Ψw(((fr, th), P,Q)
aM
−−→ ((fr′, th′), P ′, Q′))

as the arrow (ψ(fr, th), P,Q)
aM
−−→ (ψ(fr′, th′), P ′, Q′)).

3. If ((fr, th), P,Q)
aM
−−→ ((fr′, th′), P ′, Q′) then by definition there is N such that

(fr′, th′) ⊢M ↔ N . In H, there is an arrow
(ψ(fr, th), P,Q)

aM
−−→ (I (ψ(fr, th)∪{(M,N)}), P ′, Q′), so we have to bridge the

gap between the codomains of these arrows.
We have (fr, th) ≤ (fr′, th′) by the definition of framed bisimulation. By
Lemma 2.5.13 we then get that I (ψ(fr, th)∪{(M,N)}) ≤ ψ((fr′, th′)), so there
is a weakening arrow (I (ψ(fr, th) ∪ {(M,N)}), P ′, Q′)

w
−→ (ψ((fr′, th′)), P ′, Q′)

bridging the gap. We then define Ψw(((fr, th), P,Q)
aM
−−→)((fr′, th′), P ′, Q′) :=

w
−→

◦
aM
−−→, where the domains and codomains of the arrows on the right are as

seen above.

Inductively, the action of Ψw on composite F-arrows is just the composition of the
application of Ψw on the primitive decomposition. Ψw is a faithful functor, since it
is injective on both objects and labels.

2.6.4 Θf Again!

In the cases of framed, fenced and hedged bisimulation we have that two environ-
ments are M-equal iff they are equal, so all m-arrows will disappear under ≡u.
However, for substitutions we will see that “up to M-equivalence” buys us some-
thing.

We let Am be A up to M-equivalence and ≡u, i.e., the category obtained from A

by first adding all arrows of the type ((σ, ρ), P,Q)
m
−→ ((σ′, ρ′), P,Q) where (σ, ρ) ≷

(σ′, ρ′), then closing the set of arrows under composition and finally taking the
quotient with ≡u as defined in Definition 2.6.4. The effect of this is to make M–
equivalent environments isomorphic.

We define Φ : Am → H as Φ((σ, ρ), P,Q) := (ϕ(σ, ρ), P,Q) and

Φ(((σ, ρ), P,Q)
µ̃
−→ ((σ′, ρ′), P ′, Q′)) := (ϕ(σ, ρ), P,Q)

µ̃′

−→ (ϕ(σ′, ρ′), P ′, Q′). where
µ̃′ = µ̃ \m. The removal of the m–actions is valid since ϕ(σ, ρ) = ϕ(σ′, ρ′) if and
only if (σ, ρ) ≷ (σ′, ρ′) according to Lemma 2.4.50. As in the proof of Theorem 2.5.21
we have that Φ is a functor.

We also define Θf : H → Am by letting Θf(h, P,Q) := (θf(h), P,Q). The action
of Θf on the primitive H-arrows is as follows:

1. If (h, P,Q)
τ
−→ (h′, P ′, Q′) then we define Θf(

τ
−→) :=

τ
−→.

78 CHAPTER 2. COMPARING BISIMULATIONS

2. If (h, P,Q)
aM
−−→ (h′, P ′, Q′) we letB = π1(h

′\h). We have that Θf(h, P,Q)
aM
−−→

((hf1
{B
/Y

}
, hf2

{B
/Y

}
), P ′, Q′) by the proof of Theorem 2.5.21. By Lemma 2.4.44

there is an arrow ((hf1
{B
/Y

}
, hf2

{B
/Y

}
), P ′, Q′)

m
−→ (θf (h′), P ′, Q′). We then de-

fine Θf(
aM
−−→) :=

m
−→ ◦

aM
−−→.

3. If (h, P,Q)
aM
−−→ (h′, P ′, Q′) then we let b and N be the messages corresponding

to a respective M according to h′. As in the proof of Theorem 2.5.22 we have
that Θf(h, P,Q)

aM
−−→ ((hf1

{M
/x

}
, hf2

{N
/x

}
), P ′, Q′). By Lemma 2.4.42 we get

ϕ(hf1
{M
/x

}
, hf2

{N
/x

}
) = h′, so there is an arrow ((hf1

{M
/x

}
, hf2

{N
/x

}
), P ′, Q′)

m
−→

(θf (h′), P ′, Q′). We then define Θf (
aM
−−→) :=

m
−→ ◦

aM
−−→.

By the above definition, it is clear that Θf is a functor.

Theorem 2.6.5 Am and H are equivalent. More precisely, Φ◦Θf = IdH and Θf ◦Φ
is isomorphic to IdAm.

Proof. By Lemma 2.4.39 we have that h = ϕ(hf1 , h
f
2) whenever h is consistent, so

(Φ ◦ Θf)(h, P,Q) = (h, P,Q). Since Φ throws away all m-arrows introduced by Θf

we have that Φ ◦ Θf = IdH.
To show that Θf ◦ Φ is isomorphic to IdAm we need to find Am-isomorphisms to
complete the “naturality square” below. We use the m-arrows ((σ, ρ), P,Q)

m
−→

((θf1 (ϕ(σ, ρ)), θf2 (ϕ(σ, ρ))), P,Q). There are such arrows according to Lemma 2.4.39
and they are isomorphisms since we only identify ≡u-equivalent arrows and M-
equivalence is symmetric. To exhibit the functor isomorphism we need to show that
the following diagram commutes whenever ((σ, ρ), P,Q)

µ̃
−→ ((σ′, ρ′), P ′, Q′).

((σ, ρ), P,Q)
m

−−−→ Θf ◦ Φ((σ, ρ), P,Q)

µ̃

y
yΘf◦Φ(µ̃)

((σ′, ρ′), P ′, Q′)
m

−−−→ Θf ◦ Φ((σ′, ρ′), P ′, Q′)

Consider the arrows ((σ, ρ), P,Q)
µ̃m
−−→ Θf ◦ Φ((σ′, ρ′), P ′, Q′) and

((σ, ρ), P,Q)
mΘf◦Φ(µ̃)
−−−−−−→ Θf ◦ Φ((σ′, ρ′), P ′, Q′). As Θf and Φ only change labels by

inserting and removing m-actions we have that
µ̃m
−−→≡u

mΘf◦Φ(µ̃)
−−−−−−→. As the arrows in

Am are equivalence classes with respect to ≡u the diagram is commutative. 2

In other words, H is equivalent to “A up to M-equivalence and ≡u”, where
the isomorphism on the alley side is the normalization of environments given by
(σ, ρ) 7→ (θf1 (ϕ(σ, ρ)), θf2 (ϕ(σ, ρ))).

We can characterize the relationship between F# (fenced) and S (trellis) in the
very same way, namely that F# is equivalent to “S up to M-equivalence and ≡u”
(Sm), where the isomorphism on the alley side is the same normalization as above.

2.7. CONCLUSIONS 79

2.6.5 Summary

The relations between the different categories are graphically presented in Figure 2.2.
With these results, we have related the bisimulations not only based on the distin-
guishing power of the environments, but also based on their internal structure.

S

F# Sm

F A

H Am

Hw

_�

��

L
l

zztttttttt

_�

��

Ψ

L
l

zztttt
ttt

tt

oo //Θf◦Ψ

Γ _�

��

_�

��

Ψw

L
l

zztttttttt

L
l

zzttt
tt

tt
tt

oo //Θf

Φ

Figure 2.2: Categorical Relations

2.7 Conclusions

As an interpretation of the results of Section 2.2, we may underline two different
deficiencies in the original definition of framed bisimulation. In a sense, it is at the
same time both too weak and too strong with respect to barbed equivalence, for
orthogonal reasons.

1. The definition is too weak in the sense that its authors did not impose a mini-
mality requirement on the environment and argue that this “results in simpler
definitions, and does not compromise soundness (w.r.t. testing equivalence)”.
However, when adding the minimality requirement, as done in fenced bisimu-
lation, the relation becomes strictly stronger than barbed equivalence. As seen
in the example in Section 2.2.1, it is not obvious how to choose the non-minimal
extension on process output in order to get a bisimilar framed process pair.
Thus, for example the purpose of mechanization, we regard fenced bisimilarity
as better suited than framed, but both bisimilarities suffer from the second
problem of being too strong.

80 CHAPTER 2. COMPARING BISIMULATIONS

2. The definition is too rigid, because it requires the syntactic coincidence of
names received by the environment from the two processes under observation:
whereas framed bisimulation requires identity, hedged bisimulation allows the
environment to simply record that the names respectively received from the
processes in a bisimulation step correspond (c.f. Section 2.2.3). This is the
main reason why fenced bisimilarity does not coincide with barbed equivalence,
while hedged bisimilarity does.

In Section 2.3, we developed a uniform framework for comparing environment-
sensitive bisimilarities based on their environments, because the standard merely
set-theoretic framework turned out not to be sufficiently general. We then used this
new framework to reformulate and refine the results of the two previous comparisons
of environment-sensitive bisimilarities by [EHHO99] and [FHJ01]. We found that
[FHJ01] showed only the full abstraction of ∼# with respect to ∼s, but not the other
direction. Once this was clear, the missing full abstraction was easy to construct
(c.f. Lemma 2.5.6).

We exercised the comparison framework in Section 2.5. In particular, we found
that there exists a “framed-style” environment-sensitive bisimilarity, namely hedged,
that is equivalent to barbed equivalence. We then used the distinguishing examples
of Section 2.2 to show that we have fully characterized all full abstractions and
equivalences between the bisimilarities.

Furthermore, in Section 2.6 we proposed a novel method for comparing environment-
sensitive bisimilarities as categories. This technique allows us to study the internal
structures of the bisimilarities. In particular, it allows us to highlight the fact that
the non-minimality of framed bisimilarity distinguishes it conceptually from the
other bisimilarities. After redefining some up-to techniques in this setting, we are
at least able to embed framed bisimilarity into “hedged bisimilarity up to weak-
ening”. We also show that hedged bisimilarity is categorically equivalent to “alley
bisimilarity up to M-equivalence”, thus refining the merely set-theoretic bisimilarity
equivalence proved in Section 2.5.

The spi-calculus defined in Section 1.4 has a very simple expression language.
However, our results are easy to adopt to a calculus with pairing, and we have found
no reason to expect that compound keys or public-key cryptography would be more
difficult to treat. We chose the more restricted setting only in order to focus the
attention on the various bisimilarities. Moreover, although we only treat strong late
bisimulations, the results carry over directly to the early and/or weak versions.

From a rather subjective point of view, when working with concrete examples
we find hedged bisimulation easier to work with than alley bisimulation, because the
knowledge of the environment in each reachable configuration is arguably easier to
understand, and the verification of consistency is more straightforward. Moreover,
the simpler structure of hedges allows a less complex proof of soundness up to

2.7. CONCLUSIONS 81

weakening than alley bisimilarity. On the other hand, alley bisimilarity benefits
from an attractive logical characterization of environment consistency.

82 CHAPTER 2. COMPARING BISIMULATIONS

Chapter 3

Extending the Message Language

The spi calculus defined in Section 1.4 works with a minimal message language,
only containing symmetric encryption with atomic keys. In order to model a cryp-
tographic protocol we clearly need to extend this language, at the very least with
tuples.

The formal cryptography tradition [DY83] is moving towards a more complete
treatment of algebraic properties of cryptographic primitives [CDL06]. Examples
also include a more fine-grained treatment of “compound primitives” such as block
encryption algorithms used in electronic code book or cipher block chaining mode,
and message authentication codes [KR04]. However, algorithms for these complex
message algebras are often defined ad-hoc [CKRT03] and/or without termination
guarantees (e.g., as ad-hoc additions to ProVerif [Bla01]). Recent work [BB05,
AC06, Bau07] aims at finding a usefully large class of message algebras with a
uniform decision procedure for secrecy properties. There are two main ways of
specifying secrecy for a cryptographic protocol [CRZ07].

(1) One common approach is to see if the attacker can deduce the value of a
secret parameter of the protocol, after some interaction with the protocol
participants. This disclosure-based approach is taken in, e.g., [Low96, Sch96,
KMM94].

(2) The other approach is to check whether the attacker can notice any difference
between protocol runs with different values of the secret parameter. This
indistinguishability-based approach is commonly used in the spi calculus.

In Section 3.1, we formally define disclosure and indistinguishability as state prop-
erties, i.e., at some point during a protocol run. In Section 3.2 we then prove that
there exist message algebras in which disclosure is decidable but indistinguishability
is not. The proof is by reducing the ambiguity problem for context-free grammars
to an indistinguishability problem. Abadi and Cortier [AC04a, AC04b] gave a proof
sketch for this separation result, based on another undecidable problem relating two

84 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

pairs of Turing machines. The work in Section 3.2 is, to the knowledge of the author,
the first full proof.

In Section 3.3, we then define a class of constructor-destructor expression lan-
guages. This class is a subclass of the subterm-convergent expression languages [AC06],
with similarities to the data term languages used by Baldamus et al. [BPV05]. The
virtue of our class of languages (compared to both of the above) is that it allows
a smooth generalization of the notions of analysis, synthesis and irreducibles (Def-
inition 3.3.4, Lemma 3.3.12), and enables a symbolic operational semantics that is
faithful with respect to scope extrusions (Theorem 4.1.18). We validate our defini-
tions by showing that consistency for hedges over one of these message languages
corresponds to static equivalence over a closely related language (Theorem 3.3.24).
In relation to the process language, the two sides of an irreducible hedge can be
distinguished by some guard formula iff the hedge is inconsistent (Theorem 3.3.25).

Finally, in Section 3.4 we redefine the spi calculus for any class of expression
languages that admit a reasonable notion of evaluation. This notably includes the
constructor-destructor and subterm-convergent expression languages.

3.1 Message Algebras

Definition 3.1.1 A signature Σ = (F , ar) over N with variables from V is a finite
set of function symbols F ∋ f, and a function ar : F → N giving their arity (which
may be 0). The set of terms TΣ is then defined by
t, u ::= a | x | f(t1, . . . , tn) where ar(f) = n. Let |t|u be the number of occurrences
of u in t. We let n(t) be the set of names and v(t) the set of variables occurring in
a term t. The concrete terms T c

Σ are those that do not contain any variables.

In algebras for cryptography, message equality is typically induced by some set of
equations. In the case of symmetric cryptography, this may be as simple as the single
rule Dk(Ek(x)) = x previously seen, stating that a message x encrypted under the
key k can be decrypted using the same key. If this equation is oriented from left
to right we obtain a rewrite rule, where the resulting rewrite system is subterm
convergent (i.e., the rewriting of any term converges to some subterm of the initial
term).

In order to add more operations and more accurately model the behavior of
particular implementations of cryptographic primitives, one can simply add to and
modify the rule set. One drawback with such refinements is that the rewrite sys-
tem might no longer be convergent (e.g., when adding associative and commutative
operators like xor), so even the decidability of equality must be proven for each
additional operation. (However, composition of disjoint message algebras preserves
decidability [ACD07].)

3.1. MESSAGE ALGEBRAS 85

Since we make a distinction between channel names and non-name expressions
in the semantics of the spi calculus, we correspondingly permit rewrite rules that
apply only to names.

Definition 3.1.2 A rewrite rule is of the form “t1 → t2 if φ“, where t1, t2 ∈ TΣ and
φ is a conjunction of membership predicates xi ∈ N .We require v(t2)∪ v(φ) ⊆ v(t1)
and n(t1) = n(t2) = ∅. A term t matches a rewrite rule of the form above if there
is a substitution σ : v(t1) → TΣ such that t = t1σ and φσ is true. If E is a (finite)
set of rewrite rules containing this rule, t can be head rewritten to t2σ under E,
which we write t →H

E t2σ. We let →E be the closure of →H
E under contexts, →∗

E be
the transitive and reflexive closure of →E, and ≡E be the transitive, reflexive and
symmetric closure of →E. When E is clear from the context, we often omit it.

In what follows, we will assume that ≡E is decidable; this is notably the case if
the rewrite system →E is confluent and terminating. For these (convergent) rewrite
systems, we write t↓E for the unique term such that t→∗

E t↓ 6→E.

3.1.1 Frames and Operations

The most important dynamic characteristic of a Dolev-Yao adversary is the set
of messages that it has learned by communicating with the legitimate partici-
pants of the protocol. This message set is the only information needed to verify
if the adversary/environment knows a particular (confidential) datum. For the
indistinguishability-based approach we want to compare results of corresponding
operations on the knowledge of two adversaries, so we need some way of relating the
corresponding messages. One way of doing this, used for alley bisimulation [BDP02],
is to represent the knowledge as a substitution (called a knowledge environment).
Here, messages known to two different adversaries (i.e., in the range of the corre-
sponding substitutions) are related if they have the same pre-image.

As usual, the adversary can apply any combination of cryptographic functions
to the messages it possesses. It can also generate names subject to a freshness
constraint. In [AC06], this constraint is made explicit, in that the adversary knowl-
edge is augmented with a set of names that may not be freshly generated. For
simplicity and continuity with the preceding chapter, we instead follow Boreale et
al. [BDP02] in requiring that whenever an environment constructs a message, the
freshly generated names (nonces and keys) must be different from all the names in
the environment (n(range(σ))).

Definition 3.1.3 The knowledge environment σ can primitively generate the mes-
sage (term) t, written σ ⊢p t, if there is t′ such that n(t′) ∩ n(range(σ)) = ∅,
v(t′) ⊆ dom(σ) and t′σ = t. Given an equational theory E, the environment σ
generates t in E, written σ ⊢E t, if there is u such that σ ⊢p u and u ≡E t.

86 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

Two environments σ1 and σ2 where dom(σ1) = dom(σ2) are indistinguishable
under E, written σ1

∼=E σ2, if for all t, u with n(t, u)∩ n(range(σ1)∪ range(σ2)) = ∅
and (v(t) ∪ v(u)) ⊆ dom(σ1), we have tσ1 ≡E uσ1 iff tσ2 ≡E uσ2.

In regard to automated verification, since TΣ is enumerable we immediately get that
the message construction problem is semidecidable and the indistinguishability prob-
lem is co-semidecidable (by enumerating all t, u and checking the conditions) when-
ever ≡E is decidable. An important question for automated verification is finding
message algebras in which these problems are (efficiently) decidable. In [AC06], the
authors proved that in message algebras containing a function symbol not present in
rewrite rules (e.g., hashing), decidability of ∼=E implies decidability of ⊢E. Moreover,
they gave an example of a convergent rewrite system EAC, and gave a proof sketch
for the result that ⊢EAC

was decidable but ∼=EAC
undecidable. We now exhibit an-

other rewrite system with the same properties but in a simpler setting (context-free
grammars versus Turing machines), and develop a full proof.

3.2 Static Equivalence is Harder than Knowledge

Our example message algebra, where deduction is decidable but static equivalence is
not, is based on leftmost derivations of context-free grammars in Chomsky normal
form. We first recall some definitions for such grammars.

A context-free grammar G = (AG, XG, sG, TG ∪ NG) in Chomsky normal form
(CNF) consists of terminal symbols AG, non-terminal symbols XG

(with AG ∩XG = ∅), an initial symbol sG ∈ XG, and two kinds of derivation rules:
terminal and non-terminal rules. Terminal rules (n→ t) ∈ TG take a non-terminal
symbol n to a terminal symbol t, whereas non-terminal rules (n→ n1n2) ∈ NG take
a non-terminal symbol to two non-terminal symbols.

A leftmost derivation of w̃ ∈ A∗
GX

∗
G is a word r1 · · · rk ∈ (TG ∪ NG)∗ where

there exist words ã0, ã1, . . . , ãk ∈ A∗
G and x̃0, x̃1, . . . , x̃k ∈ X∗

G such that ã0x̃0 = sG,
ãkx̃k = w̃ and for all i = 1, . . . , k we have that either ri = (n → t) ∈ TG, ãi = ãi−1t
and nx̃i = x̃i−1, or ri = (n → n1n2) ∈ NG, ãi = ãi−1 and x̃i−1 = nỹ and x̃i = n1n2ỹ
for some ỹ. It is easy to show that k above (the length of the derivation) is equal
to |w̃| + |ãn| − 1. Such a derivation is called partial if w̃ 6∈ A∗

G. The language of a
grammar L(G) is the set of words over AG that have a leftmost derivation.

A grammar in CNF has no dead-end non-terminals, in the sense that
∀x ∈ XG ∃w̃ ∈ L(AG, XG, x, TG ∪ NG). Moreover, all non-terminals are reach-
able from the initial symbol, meaning that ∀x ∈ XG ∃w̃1, w̃2, r̃ such that r̃ is a
leftmost G-derivation of w̃1xw̃2

A grammar G is ambiguous if there exists a word w̃ ∈ L(G) that has two different
leftmost derivations. A classical result in formal language theory is the undecidabil-
ity of whether a given context-free grammar (in CNF) is ambiguous. In what follows,

3.2. STATIC EQUIVALENCE IS HARDER THAN KNOWLEDGE 87

we define a rewrite system such that a grammar G is ambiguous iff a pair of knowl-
edge environments (depending on G) are indistinguishable under the equivalence
induced by the rewrite system.

Example 3.2.1 As a running example, let us consider a context-free grammar
for a parenthesis language. Let Gp := ({l, r, a}, {S, S′, L, R}, S, TG ∪ NG) where
TG := {S → a, L → l, R → r} and NG := {S → SS, S → LS′, S′ → SR}. It is
straightforward to verify that Gp is in CNF. GP is ambiguous, since there are two
different leftmost derivations of the word aaa:

S → SS → aS → aSS → aaS → aaa

S → SS → SSS → aSS → aaS → aaa

3.2.1 Message Algebra

We introduce a message algebra intended to model given leftmost derivations ac-
cording to the rules of context-free grammars in Chomsky normal form. Let Σ be
the following signature.

Symbol Arity Intuitive meaning
Nil 0 Nil
id 1 Non-terminal identifier
(· . ·) 2 Pair
OK 2 Name type check
T 2 Terminal grammar rule
N 3 Non-terminal grammar rule
dc 5 Derivation context

Definition 3.2.2 We define the following shorthand notations for terms.

lists Let [ǫ] := Nil and [w̃v] := (v . [w̃]).
grammar rules Let rule(k → lm) := N(k, l,m) and rule(n→ a) := T(n, a).
derivations Let derx(ǫ) := x and derx(r1s̃) := (rule(r1) . derx(s̃)).
derivation lengths Let dl(0) := Nil and dl(n + 1) := (OK(Nil, Nil) . dl(n)).

The five arguments of the derivation context (dc) have the following meanings:

1 The symbol with which a derivation started.
2 Ensures that rewriting does not reduce the size of terms, and counts the num-

ber of rules that have been applied. (After k rule applications, this argument
should contain the term dl(k).)

3 A list of terminals forming a prefix of the word that is derived.

88 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

4 A list of the non-terminal suffix that remains to be rewritten.
5 A list of the derivation rules to apply in order.

Let ECNF be the equational theory on Σ induced by the following rewrite rules:

dc(Nil, Nil, Nil, Nil, (T(y, t) . u)) →

dc(y, (OK(Nil, Nil) . Nil), (t . Nil), Nil, u) (3.1)

dc(Nil, Nil, Nil, Nil, (N(y, t1, t2) . u)) →

dc(y, (OK(Nil, Nil) . Nil), Nil, (t1 . (t2 . Nil)), u) (3.2)

dc(v, w, x, (y . z), (T(y, t) . u)) → dc(v, (OK(y, y) . w), (t . x), z, u) (3.3)

dc(v, w, x, (y . z), (N(y, t1, t2) . u)) →

dc(v, (OK(y, y) . w), x, (t1 . (t2 . z)), u) (3.4)

OK(m,n) → OK(Nil, Nil) when m,n ∈ N (3.5)

Note that these rules are terminating and confluent when oriented left to right, so
the equality problem is clearly decidable. Intuitively, the rules denote the following
operations related to leftmost derivations:

(1) Initial derivation step, using a terminal rule.
(2) Initial derivation step, using a nonterminal rule.
(3) Subsequent derivation step, using a terminal rule.
(4) Subsequent derivation step, using a nonterminal rule.
(5) Hiding of the non-terminal that is discharged (iff it is a name). Here, the term

on the right-hand side is chosen to be “inert” and of the same syntactic size
as the left-hand side.

Theorem 3.2.3 The construction problem for ECNF is decidable.

Proof. By inspection, the rewrite rules have the property that T → T ′ implies that
|T | ≤ |T ′|, so no term is of greater syntactic size than its normal form. Thus, all
equivalence classes are finite modulo injective renaming. To check deductibility, we
check if any of a finite (modulo injective renaming as above) number of terms can
be primitively generated, which clearly is decidable. 2

3.2. STATIC EQUIVALENCE IS HARDER THAN KNOWLEDGE 89

3.2.2 Translation

Given the rewrite system above and a context-free grammar, we look for a pair of
knowledge environments that are indistinguishable if and only if the grammar is
unambiguous. The idea is that one environment (σG below) contains the actual
grammar rules, whereas the other contains their names. The domains of the sub-
stitutions are chosen arbitrarily. The two environments should then be statically
equivalent if and only if different leftmost derivations always yield different results.

Definition 3.2.4 If G := (AG, XG, sG, TG ∪ NG) is in CNF, AG ∪ XG ⊂ N and
fX : N ×N → X and gX : N ×N ×N → X for X = V,N are injective functions
with range(fX) ∩ range(gX) = ∅, then we let

σG :=
({{T(a,b)

/fV (a,b)

} ∣∣ (a→ b) ∈ TG

}

∪
{{N(a,b,c)

/gV(a,b,c)

} ∣∣ (a→ bc) ∈ NG

})
,

ρG :=
({{id(fN (a,b))

/fV (a,b)

} ∣∣ (a→ b) ∈ TG

}

∪
{{id(gN (a,b,c))

/gV(a,b,c)

} ∣∣ (a→ bc) ∈ NG

})

Example 3.2.5 For the grammar Gp, the corresponding environments are

σGp =
{T(S,a)

/x1

}{T(L,l)
/x2

}{T(R,r)
/x3

}{N(S,S,S)
/x4

}{N(S,L,S′)
/x5

}{N(S′,S,R)
/x6

}

ρGp =
{id(a1)

/x1

}{id(a2)
/x2

}{id(a3)
/x3

}{id(a4)
/x4

}{id(a5)
/x5

}{id(a6)
/x6

}

where x1, x2, x3, x4, x5, x6 (a1, a2, a3, a4, a5, a6) are pairwise different variables (names).

At the corresponding point in the proof of [AC04a] (Proposition 5, page 17) the
authors conclude with: “Then we can verify that two machines M(M1,M2) and
M(M ′

1,M
′
2) verify the [undecidable] property (P) [. . .] if and only if φM(M1,M2)

∼=
φM(M ′

1,M
′
2)

.” However, they say nothing of how to verify that. To clarify this for
ourselves and others, we devote the remainder of this section to a proof of this
proposition in our setting.

3.2.3 Derivations

In what follows, we assume a fixed context-free grammar G in CNF where
G := (AG, XG, sG, TG ∪NG). The following lemma shows that partial derivations of
G can be simulated by the rewrite system.

Lemma 3.2.6 Let tailk(w̃) := wk+1 . . . w|w|. Then sG →k
G ãñ using the partial

leftmost derivation r̃ := r1r2 . . . rk, where ã ∈ A∗
G and ñ ∈ X∗

G, iff for any term t,

dc(Nil, Nil, Nil, Nil, dert(r̃)) →
2k−1 dc(sG, dl(k), [ã], [ñ], t).

90 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

Proof. By induction on k. 2

Example 3.2.7 A leftmost derivation of the word lara by Gp is given by
r̃ := S → SS, S → LS, L → L, S′ → SR, S → a, R → r, S → a

(i.e., S → SS → LS′S → lS′S → lSRS → laRS → larS → lara). Moreover,

dc(Nil, Nil, Nil, Nil, derNil(r̃))

= dc(Nil, Nil, Nil, Nil, (N(S, S, S) . derNil(tail1(r̃))))

→ dc(S, dl(1), Nil, (S . (S . Nil)), (N(S, L, S′) . derNil(tail2(r̃))))

→ dc(S, (OK(S, S) . dl(1)), Nil, (L . (S′ . (S . Nil))), derNil(tail2(r̃)))

→ dc(S, dl(2), Nil, (L . (S′ . (S . Nil))), (T(L, l) . derNil(tail3(r̃))))

→ dc(S, (OK(L, L) . dl(2)), (l . Nil), (S′ . (S . Nil)), derNil(tail3(r̃)))

→ · · · → dc(S, dl(7), (a . (r . (a . (l . Nil)))), Nil, Nil).

Lemma 3.2.6 can be generalized to show that σG ⊢ECNF
accurately models leftmost

derivations of the grammar G.

Proposition 3.2.8 If w ∈ A∗
G then w ∈ L(G) iff

σG ⊢ECNF
dc(sG, dl(1 + 2|w|), [w], Nil, Nil).

Proof.

⇒ Assume that w ∈ L(G). Then there exists a leftmost derivation sG →∗ w
described by the tuple r̃ := r1r2 . . . r2|w|−1. By Lemma 3.2.6 we have

dc(Nil, Nil, Nil, Nil, derNil(r̃)) →
4|w|−3

dc(sG, dl(1 + 2|w|), [w], Nil, Nil).

Clearly σG ⊢p dc(Nil, Nil, Nil, Nil, derNil(r̃)).
⇐ Assume that σG ⊢ECNF

U := dc(sG, dl(1 + 2|w|), [w], Nil, Nil). Then
there exists U ′ ≡ECNF

U such that σG ⊢p U ′. Note that no rule creates a dc

function symbol at the top level if there was not already one. Thus, since
the environment does not contain any dc symbols, at the top level of U ′ there
must be a dc function application.
By inspection of the grammar rules, no subterm of [w] except for Nil is de-
ducible. Thus, by inspection of the rewrite rules, the subterm [w] of U must
have been generated by repeated application of rule (3.1) or (3.3), consuming
T(x, t) terms where t ∈ AG.
Note that all terms in the environment σG are in normal form. Since no
rewrite rule introduces a T function symbol, any T(x, t) where t ∈ AG are from
range(σG), and thus x ∈ XG.

3.2. STATIC EQUIVALENCE IS HARDER THAN KNOWLEDGE 91

In other words, whenever the third argument to the top-level dc function
symbol grows (rules (3.1) and (3.3)), it is by using a terminal rule of G. Since
the fourth argument only shrinks by application of rule (3.3), we can conclude
that it always is a list of non-terminal symbols of the grammar.
By a similar argument, whenever the fourth argument to the top-level dc

function symbol grows (rules (3.2) and (3.4)), it is by using a non-terminal rule
of G. From this follows that there must exist r̃ such that the last argument of
the top-level dc function symbol of U ′ is equal to derNil(r̃).
The subterm sG of U is not fresh, so it is not deducible. By inspection
of the rules, it must have been generated using rule (3.1) or (3.2). Thus,
U ′ = dc(Nil, Nil, Nil, Nil, derNil(r̃)), so by Lemma 3.2.6 sG →∗ w.

2

Our main technical lemma is a full characterization of the terms that can be derived
by σG, in the case where G is unambiguous. When starting from a primitively
generated term that was in normal form before applying the substitution, rewrite
rules can only be applied as intended (derivation steps of the grammar G). To show
this, we define and use a deterministic rewrite strategy.

Lemma 3.2.9 Let G be fixed as above, and assume that G is unambiguous. Let L′
0

be the set of (possibly open) terms in normal form that do not contain any name in
AG ∪XG. Let D0(x) := {dc(Nil, Nil, Nil, Nil, x)} and for k > 0

Dk(x) := {dc(n, dl(k), [ã], [ñ], x) | ã ∈ A∗
G ∧ ñ ∈ X∗

G ∧

n→k
G ãñ using a leftmost partial derivation}

Let the sets L′
k for k > 0 be the smallest sets satisfying the rule (der) below.

(der)
U ∈ L′

k

U
{W
/x

}
∈ L′

k+l·|U |x

if k ≥ 0, l > 0 and ∃V ∈ L′
0 with W ∈ Dl(V)

Let Lk := {UσG | U ∈ L′
k ∧ v(U) ⊆ dom(σG)} and L := ∪k∈NLk.

Note that the Lk are disjoint for different k. We then have:

1. If σG ⊢ECNF
U , then U↓ ∈ L.

2. If U,U ′ ∈ L0 and U ≡ECNF
U ′, then U = U ′.

Proof. Assume a well-ordering on contexts compatible with the partial well-ordering
induced by the depth of the hole, and let be rewriting where the redex with
the greatest context is always chosen. Note that this strategy is deterministic and
complete (meaning that if t→ then t).

Let P (i) be the conjunction of (I) and (II) below:

92 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

(I) If U0 ∈ L0 and U0
∗ Ui ∈ Li where Ui then one of (a) to (d) holds.

(a) Ui (1) Ui+1 ∈ Li+1 by some D0((T(y, t) . u)) ∋ U →H
(1)∈ D1(u) where

T(y, t) ∈ range(σG); or
(b) Ui (2) Ui+1 ∈ Li+1 by some D0(N(y, t1, t2)) ∋ U →H

(2)∈ D1(u) where
N(y, t1, t2) ∈ range(σG); or

(c) Ui (3) Ui.5 (5) Ui+1 ∈ Li+1 by some
Dj((T(y, t) . u)) ∋ U →H

(3)→∈ Dj+1(u) where T(y, t) ∈ range(σG); or
(d) Ui (4) Ui.5 (5) Ui+1 ∈ Li+1 by some

Dj((N(y, t1, t2) . u)) ∋ U →H
(4)→∈ Dj+1(u) where

N(y, t1, t2) ∈ range(σG).

(II) For each U ′
0 ∈ L0 such that U ′

0
∗ U ′

i ∈ Li and Ui
∗ U ′

i+1 ∈ Li+1 as above,
we have that U ′

i+1 = Ui+1 implies U ′
0 = U0.

We now show that P (i) holds for all i ∈ N, by induction on i.

• Base case: i = 0; we seek to show P (0). Take U0 ∈ L0, and let U ∈ L′
0 be

such that U0 = UσG. Let U0 be the redex of U0 with the greatest context C0,
such that U0 = C0[U0] and U0 →

H V .

(I) Since U is in normal form, range(ϕG) ∩ N = ∅ and range(ϕG) does not
contain OK symbols, we have that U0 6→H

(3.5). We show that U0 6→H
(3,4) by

contradiction.
– Assume that U0 = dc(v, w, x, (y . z), (t . u)) where
t = N(y, t1, t2) or t = T(y, t1) for some x, y, z, t1, t2, u, v, w.
If t 6∈ range(σG), then U = C[dc(v′, w′, x′, (y′ . z′), (t′ . u′))] where
t′ = N(y′, t′1, t

′
2) or t′ = T(y′, t′1) for some C, x′, y′, z′, t′1, t

′
2, u

′, v′, w′,
by the injectivity of σG and since range(σG) does not contain dc or
(· . ·) symbols. Thus U →, which is a contradiction.
If t ∈ range(σG) then y can not be generated due to freshness con-
straints. By inspection of range(σG) we can only generate y inside a
T or N, which contradicts the assumption on the structure of U0.

We may then assume that U0 = dc(Nil, Nil, Nil, Nil, (x . u)) where
x = T(y, t) or x = N(y, t1, t2). Clearly U0 ∈ D0((x . u)). As above,
if x 6∈ range(σG) then U →, which is a contradiction. We then have
U0 →H∈ D1(u), so U0 U1 ∈ L1.

(II) Take U ′
0 ∈ L0 such that U ′

0
∗ U ′

1 ∈ L1 where U ′
1 = U1. Let U

′

0 be
the redex of U0 with the greatest context C ′

0, such that U ′
0 = C ′

0[U
′

0] and
U

′

0 →H V ′. By (I) above, U
′

0 6→H
(3,4,5) and V ′ ∈ D1(TΣ). Since V (resp.

V ′) is the only subterm of U1 (resp U ′
1) in D1(TΣ), we must have C0 = C ′

0

and V = V ′. Since the rules (1) and (2) are injective, we have U0 = U
′

0.
Thus U0 = U ′

0.

3.2. STATIC EQUIVALENCE IS HARDER THAN KNOWLEDGE 93

• Induction case: Assume that U0 ∈ L0 and U0
∗ Ui ∈ Li where Ui .

Moreover, let U ∈ L′
0 be such that U0 = UσG. Let Ui be the redex of Ui with

the greatest context Ci, such that Ui = Ci[Ui] and Ui →H.
To compare terms in different stages of -rewriting, we let ∼=C for a context
C relate terms (or contexts) that coincide down to (exclusive) the depth of
the “hole” in C and on the content (or position) of the “hole”.

(I) Let U ∈ L′
0 be such that U0 = UσG. By the properties of , U0 = C0[W]

for some W ∗ Ui and C0
∼=C0 Ci. There are five possibilities for Ui →h.

1 If Ui →H
(1), then Ui = dc(Nil, Nil, Nil, Nil, (T(y, t) . u)). By

inspection of the rewrite rules, 6→H Ui, 6→H Nil, 6→H T(y, t) and
6→H (T(y, t) . u). By the properties of we then have
W = dc(Nil, Nil, Nil, Nil, (x′ . u′)) where x′↓ = T(y, t) and
u′↓ = u. Since range(σG) does not contain any dc symbols, we get
that U = C[dc(Nil, Nil, Nil, Nil, (x′′ . u′′))] for some C, x′′, u′′

such that C0 = CσG and (x′ . u′) = (x′′ . u′′)σG. Since U is in normal
form, we must have x′′ ∈ dom(σG) and thus x′ = T(y, t) ∈ range(σG),
because otherwise U →.
By Lemma 3.2.6, we then have Ui →H∈ Dk+1, so Ui ∈ Li+1.

2 As 1 above.
3 If Ui →h

(3), then Ui = dc(v, w, x, (y . z), (T(y, t) . u)) for some
x, y, z, t, u, v, w. We prove that Ui is in some Dk((T(y, t) . u)) by
contradiction.

– We may assume that this is the first time that rules (1-4) are
applied to some redex not in Dl(TΣ). By induction, we have that
redexes in Dl(TΣ)∩Lj only -rewrite to terms in Dl+1(TΣ)∩Lj+1

in two steps for j < i.
By the properties of , there are x′, y′, y′′, z′, t′, u′, v′, w′ ∈ L0

such that U0
∼=C Ci[dc(v′, w′, x′, (y′ . z′), (T(y′′, t′) . u′))],

y′ i1 y and y′′ i2 y. By strong induction, we then have that
y′ = y′′, so since σG is injective we also have U →, which is a
contradiction.

We thus have Ui ∈ Dk((T(y, t) . u)), and then (y . z) = [ñ] for some
ñ ∈ X∗

G, so specifically y ∈ XG. By inspection of the rewrite rules,
6→h (T(y, t) . z), 6→h T(y, t), and 6→h y. By freshness constraints,
we must have T(y, t) ∈ range(σG). By Lemma 3.2.6, we then have
Ui →h∈ Dk+1, so Ui ∈ Li+1.

4 As 3 above.
5 By inspection, Li 6→(5).

(II) Assume that U ′
0 ∈ L0 such that U ′

0
∗ U ′

i ∈ Li and U ′
i

∗ U ′
i+1 ∈ Li+1 as

94 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

above. Let C ′
i be the greatest context of a redex U

′

i such that U ′
i = C ′

i[U
′

i]
and V, V ′ be such that Ui+1 = Ci[V] and U ′

i+1 = C ′
i[V

′]. By (I), there exist
k, k′ ≥ 0 and y, y′ such that Ui ∈ Dk(TΣ), U

′

i ∈ Dk′(TΣ), V ∈ Dk+1(y)
and V ′ ∈ Dk′+1(y

′). We show that Ci = C ′
i by contradiction.

– Assume that C ′
i 6= Ci. By symmetry we may assume that

C ′
i < Ci. By the properties of , we then have (by induction) that

U0
∼=C′

i
C ′
i[V0] for some V0 ∈ Dk′+1(TΣ). Since σG does not contain

any dc symbol we must have V0 ∈ L0, but L0 ∩ Dl = ∅ for l > 0.
Since Ci[V] = Ui+1 = U ′

i+1 = C ′
i[V

′], Ci = C ′
i gives that V = V ′. Since

the Ll are disjoint for different l, we also have k = k′. Since the Dk(x)
are disjoint for different x, y = y′.
(a) If k = 0, we have by (I) that Ui →h

(1,2) V and U
′

i →h
(1,2) V . Since

the rules (1,2) are injective, Ui = U
′

i and thus Ui = U ′
i . By P(i-1),

U0 = U ′
0.

(b) If k > 0, we assume that V = dc(v, dl(k + 1), [ã], [ñ], y). By
induction (using the properties of) there are r̃, r̃′ of length k + 1
such that

Ui−k =Ci[dc(Nil, Nil, Nil, Nil, dery(r̃))]

U ′
i−k =Ci[dc(Nil, Nil, Nil, Nil, dery(r̃

′))]

By Lemma 3.2.6, v →k
G ãñ using the partial leftmost derivations

described by either of r̃ and r̃′. Since G is unambiguous and in CNF,
we must have r̃ = r̃′. Thus Ui = U

′

i , so Ui = U ′
i . By P (i− 1) we get

U0 = U ′
0.

Given this, the statement of the lemma follows quickly.

1. Assume that σG ⊢ECNF
U with U in normal form. Since equality is based on a

convergent rewrite system and preserved by arbitrary substitution of terms for
variables, we have that σG ⊢ECNF

U iff there is U ′ ∈ L0 such that U ≡ECNF
U ′.

By ∀i ∈ N. P (i), U ′↓ ∈ L, so U ∈ L by confluence.
2. Assume that U1, U2 ∈ L0 and U1 ≡ECNF

U2. By definition there is V such that
V 6→, and U1

∗ V and U2
∗ V . By ∀i ∈ N. P (i) there is k such that

V ∈ Lk, and U1
∗ V as by P . Since the Lk are disjoint for different k, we

also have U2
∗ V as by P . P (k − 1) then yields U1 = U2.

2

Note that the statement of this lemma does not hold if G is ambiguous since in that
case, two different elements in L0 can rewrite to the same term. For this reason,
a similar characterization is hard to find in the general case. For instance, in the
setting of [AC04b] it is often the case that two different terms (in the counterpart
to our L0) can rewrite to the same term.

3.2. STATIC EQUIVALENCE IS HARDER THAN KNOWLEDGE 95

3.2.4 Reduction

We now know in sufficient detail how the grammar G relates to σG, and can proceed
to the main result:

Theorem 3.2.10 A grammar G in CNF is unambiguous iff σG ∼=ECNF
ρG.

Proof. As above, we write G := (AG, XG, sG, TG ∪NG).

⇐ We prove the contrapositive of the implication from right to left. Assume
that G is ambiguous. Then there exists w ∈ A∗

G with two different leftmost
derivations r̃1 and r̃2. Let varOf(k → lm) := gV(k, l,m), varOf(n → a) :=
fV(n, a) and ti := dc(Nil, Nil, Nil, Nil, [varOf(r̃i)]) for i = 1, 2. By
Lemma 3.2.6, we have that

t1σG →∗ dc(sG, dl(1 + 2|w|), [w], Nil, Nil) and

t2σG →∗ dc(sG, dl(1 + 2|w|), [w], Nil, Nil),

so t1σG = t2σG. By inspection, t1ρG 6→ and t2ρG 6→, so t1ρG 6= t2ρG. Thus σG
and ρG are not statically equivalent.

⇒ Assume that G is unambiguous. Let M and N be terms in normal form such
that n(M,N)∩ n(range(σG)∪ range(ρG)) = ∅ and (v(M)∪ v(N)) ⊆ dom(ρG).
Let M1 := MσG, M2 := MρG, N1 := NσG, and N2 := NρG.

• Since ρG is injective, range(ρG) is in normal form, N ∩ range(ρG) = ∅
and range(ρG) does not contain any function symbols that appear in
rewrite rules, we have that M2 and N2 are in normal form. Then, by the
injectivity of ρG, M2 ≡ECNF

N2 implies that M = N , so M1 ≡ECNF
N1.

• Assume instead that M2 6≡ECNF
N2. Then M 6= N , so by the injectivity

of σG, we do not have M1 = N1. By Lemma 3.2.9, M1 6≡ECNF
N1.

2

Corollary 3.2.11 Since the ambiguity problem for context-free grammars is unde-
cidable, ∼=ECNF

is undecidable.

Example 3.2.12 The grammar Gp is ambiguous, so σGp and ρGp should not be
statically equivalent. Indeed, let t = dc(Nil, Nil, Nil, Nil, [x1, x1, x4, x1, x4]) and
u = dc(Nil, Nil, Nil, Nil, [x1, x1, x1, x4, x4]).
Then tσGp↓ECNF

= dc(S, dl(5), [a, a, a], Nil, Nil) = uσGp↓
but tρGp↓ECNF

= tρGp 6= uρGp = uρGp↓ECNF
.

In conclusion, we have showed that there exists a message language where the
construction problem is decidable but the indistinguishability problem is not. Since
⊢E can be reduced to ≈E in the presence of encryption [AC04a] or hashing [AC06],
this means that there is a price to pay for the more sophisticated indistinguishability-
based definition of secrecy: Static equivalence is harder than knowledge!

96 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

3.3 Constructor-Destructor Languages

In the previous section, we have seen that even convergent rewrite systems where de-
duction is decidable can yield undecidable static equivalence. Abadi and Cortier [AC06]
have proved that both of these problems are decidable for the class of sub-term con-
vergent rewrite systems. However, for this class of systems, the set of contexts
that need to be considered to give all possible rewritings from a given knowledge
set is dependent on the contents of that set (cf. σ-patterns, Definition 3.3.18). We
propose the use of a subclass of these languages, constructor-destructor languages,
that enable a uniform definition of the notions of synthesis and analysis. This class
generalizes the message language of Section 1.4 by allowing arbitrary constructor
symbols with matching destructor symbols.

Definition 3.3.1 We work with a signature Σ = (F+⊎F−, ar) where we split the set
of function symbols F into constructors f ∈ F+ and destructors f ∈ F−. Messages
M,N ∈ M only contain constructor symbols (i.e., they are terms over (F+, ar |F+)),
while expressions F,G ∈ E := TΣ can also contain destructors. We assume that for
all destructors f , we have ar(f) ≥ 1.

We label the constructors with integers as fi. Each destructor is associated to a
single constructor in the following way: For every destructor f there is exactly one
rewrite rule, that is of the form f(fi(M̃), Ñ) →E M ′, where n(f(fi(M̃), Ñ)) = ∅,
|M̃ | = ar(fi), |Ñ | + 1 = ar(f) and M ′ ∈ {M̃} ∪ {Ñ}. We let j = min({l | M ′ =
Ml} ∪ {l + ar(fi) | M ′ = Nl}), and uniquely label such a destructor as f−1

ijk , writing
LHSijk (RHSijk) for the left-hand (right-hand) side of its rewrite rule.

In keeping with the operational flavor of this language, we define term evaluation
as e(F) := F↓E whenever G↓E ∈ M for all subterms G of F , i.e., we require all
destructors in F to succeed.

In the remainder of this Section, we assume a fix constructor-destructor language
Σ,→E where the constructors, destructors and the terms occuring in rewrite rules
are labelled as above.

Note that any constructor-destructor language is subterm convergent. As a com-
parison, the data term languages of [BPV05] constrain rewrite rules to be of the form
f(M̃) → x (where x ∈ v(f(M̃))), yielding a special case of (possibly non-convergent)
subterm languages. We conjecture that the techniques of the above-mentioned pa-
per could be straightforwardly adapted to constructor-destructor message languages,
yielding a translation into the pi-calculus that is fully abstract with respect to may-
testing.

The unicity of destructor rules in constructor-destructor languages was chosen
to syntactically ensure a well-defined (deterministic) notion of evaluation, as well as
strengthening the correspondence results between concrete and symbolic operational

3.3. CONSTRUCTOR-DESTRUCTOR LANGUAGES 97

semantics in Chapter 4. The constraint on the depth of RHSijk in LHSijk was chosen
to yield the partial commutativity results of Lemma 3.3.11 and related results.

Example 3.3.2 The nondeterministic choice rules either((x . y)) → x and
either((x . y)) → y cannot both be present in a constructor-destructor language,
but are permitted in a data term language. They also do not yield a convergent
rewrite system.

On the other hand, the limited inverse rule f(g(h(x))) → h(x) can be part of a
constructor destructor language (if g and h are constructors and f a destructor),
but is not permitted in a data term language.

The idempotent rule f(f(x)) → f(x) or the self-inverse rule f(f(x)) → x can be
part of a subterm-convergent rewrite system, but are not permitted in a constructor-
destructor language nor a data term language.

The parameterized choice rules pick((x . y), 1) → x and pick((x . y), 2) → y
are permitted in a data term language and yield a convergent rewrite system, but are
not permitted in a constructor-destructor language (but see the definition of π1 and
π2 below).

As a running example language, we extend the shared-key cryptographic system
of Section 1.4 with hashing (H(·)) and public-key encryption (E+

· (·), E−
· (·)) and

decryption (D+
· (·), D−

· (·)). We also add primitive constructs for pairing and pair
splitting ((· . ·), π1, π2), generalizing the possibility of the polyadic π-calculus to send
several channel names atomically. Furthermore, we no longer prohibit compound
keys.

Example 3.3.3 The example language has ΣDY = (F+ ∪ F−, ar) where
F+ = {E,E+,E−,H, (· . ·)}, F− = {D,D+,D−, π1, π2},
1 = ar(H) = ar(π1) = ar(π2) and
2 = ar(E) = ar(E+) = ar(E−) = ar((· . ·)) = ar(D) = ar(D+) = ar(D−).
The rewrite system →DY is given by the rules

Dy(Ey(x)) → x

D+
y (E+

pub(y)(x)) → x

D−
pub(y)(E

−
y (x)) → x

π1(x . y) → x

π2(x . y) → y

Note that this language also is a data term language.

98 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

3.3.1 Hedges, Revisited

Since we use a richer message language than in Chapter 2, we will also need to extend
the operations on hedges that were defined there. We also extend the domain of
hedges to cover expressions, in order to enable reasoning on not fully evaluated
expressions.

The notion of analysis becomes slightly more complicated in the current setting,
since we do not constrain the arguments of destructors (“keys”) to be names. For
a given destructor f−1

ijk , the rule ana-ijk attempts to apply f−1
ijk to both sides of a

pair in the analysis, constructing “keys” from the material that already has been
analyzed.

Definition 3.3.4 (Hedges) A hedge is a subset of E ×E . We denote by H the set
of all hedges. The synthesis S (h) of a hedge h is the smallest hedge containing h
and satisfying the rules

(syn)
(Fj , Gj) ∈ S (h) for j ∈ {1, . . . , ar(fi)}

(fi(F̃), fi(G̃)) ∈ S (h)

Let S+(h) := {(fi(F̃), f(G̃)) | fi ∈ F+ ∧ (Fj , Gj) ∈ S (h) for j ∈ {1, . . . , ar(f)}}.
The analysis A(h) of a hedge h is defined by mutual induction with an auxiliary

set SA(h) by the following rules

(ana-known)
(F,G) ∈ h

(F,G) ∈ A(h)

(ana-ijk)

(fi(F̃), fi(G̃)) ∈ A(h)
(F ′

l , G
′
l) ∈ SA(h) for l ∈ {1, . . . ar(f−1

ijk) − 1}

(Fj , Gj) ∈ A(h)

f−1
ijk(fi(F̃), F̃ ′) →H

E Fj

f−1
ijk(fi(G̃), G̃′) →H

E Gj

(ana-s-known)
(F,G) ∈ A(h)

(F,G) ∈ SA(h)

(ana-s-i)
(Fj , Gj) ∈ SA(h) for j ∈ {1, . . . , ar(fi)}

(fi(F̃), fi(G̃)) ∈ SA(h)

The irreducibles I (·) of a hedge are defined as

I (h) := A(h) \ S+(A(h))

We write h ⊢ F ↔ G for (F,G) ∈ S (h). If h is a hedge, we let
ht := { (G,F) | (F,G) ∈ h } and πi(h) := {Fi | (F1, F2) ∈ h } when i ∈ {1, 2}.

A hedge h is irreducible iff h = I (h).

3.3. CONSTRUCTOR-DESTRUCTOR LANGUAGES 99

The only purpose of the set SA is to ensure that A(H) is well-founded. If we
replaced SA(h) by S (A(h)) in ana-ijk the definition would no longer be inductive,
since we would need to argue about the presence or absence of certain expression
pairs in A(h) before applying the rule.

Lemma 3.3.5 For all hedges h, SA(h) = S (A(h)).

Proof. By induction on derivations of (F,G) ∈ SA(h) and (F,G) ∈ S (A(h)). 2

These definitions and the following results are trivially transferable to message
sets (or substitutions) by working with the corresponding hedges.

Definition 3.3.6 If κ ⊂ M, we let X(κ)
def
= π1(X(Idκ)) for X ∈ {S,S+,A, I}.

Example 3.3.7 We work with the constructor-destructor language ΣDY, ≡DY, and
let h = {(pub(k), pub(k)), (E−

k ((m . n)),E−
k ((m . m))), (E−

k (m),E−
l (m))}.

Applying Definition 3.3.4 to h with this language, we get
A(h) = h ∪ {((m . m), (m . n)), (m,m), (m,n)} and I (h) = h ∪ {(m,m), (m,n)}.

Since A and S are defined point-wise they possess the following algebraic prop-
erties, that are useful in proofs.

Proposition 3.3.8 A and S are idempotent monotonous expansions, i.e.

1. A(A(h)) = A(h) and S (S (h)) = S (h).
2. A(g ∪ h) ⊇ A(g) ∪ A(h) ⊇ A(h) and S (g ∪ h) ⊇ S (g) ∪ S (h) ⊇ S (h).
3. h ⊆ A(h) and h ⊆ S (h).

As before, if h can generate g then h can generate all messages generated by g,
and conversely.

Lemma 3.3.9 g ≤ h iff g ⊆ S (h)

Proof: Assume that g ⊆ S (h). Since S is idempotent and monotonous, we get
S (g) ⊆ S (S (h)) = S (h).

Assume that g ≤ h. Since g ⊆ S (g) we immediately get g ⊆ S (h). 2

We can then show that the generalized definition of irreducibles still permits to
create all messages that can be created by the analysis.

Lemma 3.3.10 I (h) ≷ A(h) ≥ h

Proof: By I (h) ⊆ A(h) ⊇ h and the monotonicity of S we get
I (h) ≤ A(h) ≥ h. Since A(h) \ I (h) ⊆ S (I (h)), we get A(h) ⊆ S (I (h)), so
A(h) ≤ I (h) by Lemma 3.3.9. 2

100 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

Since our destructors only extract the direct arguments of the constructor, iter-
ated application of S and A does not bring any new knowledge.

Lemma 3.3.11

1. S (A(h)) = S (A(S (h)))
2. S (A(h)) = A(S (A(h)))

Proof:

1. By monotonicity of A and S we get S (A(h)) ⊆ S (A(S (h))). To prove
S (A(h)) ⊇ S (A(S (h))), by Lemma 3.3.9 it suffices to prove
S (A(h)) ⊇ A(S (h)). We show that S (A(h)) ⊇ S (h) ∪ A(h) ⊇ A(S (h)).
The left inclusion follows from monotonicity and expansion properties. We
prove the right inclusion in two steps:

(a) We first show that whenever we analyze a message pair in S+(h), the one-
step analysis lies in S (h). Assume that we derive (F,G) ∈ A(S (h)) by ap-
plying ana-ijk to (fi(F̃), fi(G̃)) ∈ S+(h) and some (F ′

l , G
′
l) ∈ SA(S (h)).

Then there is j ∈ {1, . . . , ar(f)} such that F = Fj and G = Gj . Thus
(F,G) ∈ S (h).

(b) We now show that whenever we analyze something in A(h), the result
always is in A(h). Assume that we derive (F,G) ∈ A(S (h)) by applying
ana-ijk to (fi(F̃), fi(G̃)) ∈ A(h) and some (F ′

l , G
′
l) ∈ SA(S (h)).

Assume that at least one (F ′
l , G

′
l) 6∈ S (A(h)) = SA(h), and that this is

the first time in the derivation that this holds. We derive a contradiction:
By monotonicity and idempotence of S, and A being an expansion, we
get

S (A(h)) ⊆ S (A(h) ∪ S (h)) ⊆ S (S (A(h) ∪ h)) = S (A(h))

Thus S (S (h) ∪ A(h)) = S (A(h)), and since by the assumption we
have only derived message pairs in S (h) ∪ A(h) so far we get that all
(F ′

l , G
′
l) ∈ S (A(h)), so (F,G) ∈ A(h).

Thus, the one-step analysis of a message pair in S+(h)∪A(h) = S (h)∪A(h) is
always itself contained in S (h)∪A(h), so by induction A(S (h)) ⊆ S (h)∪A(h).

2. By monotonicity of A we get S (A(h)) ⊆ A(S (A(h))). For the other inclusion,
we seek to prove that S (A(h)) = S (A(S (A(h)))) ⊇ A(S (A(h))), where the
right inclusion holds by S being an expansion. By idempotence of A we get
S (A(h)) = S (A(A(h))), and by 1 we have S (A(A(h))) = S (A(S (A(h)))).

2

3.3. CONSTRUCTOR-DESTRUCTOR LANGUAGES 101

Using this, we can show that the following results, previously seen in Chapter 2,
also hold for the full class of message languages. In particular, the irreducible hedges
are the unique ⊆-minimal representatives of their equivalence classes modulo ≷.

Lemma 3.3.12

1. If g ≤ h then I (g) ≤ I (h)
2. If g ≷ I (h) then g ⊇ I (h).
3. If I (g) ≷ I (h) then I (g) = I (h)
4. I (I (h)) = I (h)
5. I (h ∪ g) = I (I (h) ∪ g)

Proof:

1. Assume that g ≤ h. We get

g ⊆ S (h) by Lemma 3.3.9
A(g) ⊆ A(S (h)) by monotonicity of A

A(g) ≤ A(S (h)) by monotonicity of S
A(g) ≤ A(h) by Lemma 3.3.11.1
I (g) ≤ I (h) by Lemma 3.3.10.

2. By contradiction: Let (F,G) ∈ I (h) \ g. Since (F,G) ∈ I (h) ≤ g we have
(F,G) ∈ S (g), so by the assumption (F,G) ∈ S+(g). By Lemma 3.3.9 we have
g ⊆ S (I (h)), so by monotonicity and idempotence (F,G) ∈ S+(I (h)). By
monotonicity S+(I (h)) ⊆ S+(A(h)), so (F,G) ∈ S+(A(h)). But
I (h) ∩ S+(A(h)) = ∅, so we cannot have (F,G) ∈ I (h).

3. By 2 we get I (g) ⊆ I (h) and I (g) ⊇ I (h).
4. By definition and the monotonicity and idempotence of A,

I (h) ⊆ A(I (h)) ⊆ A(A(h)) = A(h) and I (h) ∩ S+(A(h)) = ∅. Then

I (h) = I (h) \ S+(A(h))

⊆ A(I (h)) \ S+(A(h))

⊆ A(h) \ S+(A(h))

= I (h),

so I (h) = A(I (h)) \ S+(A(h)). We now seek to show that
A(I (h)) \ S+(A(h)) = I (I (h)). By Lemma 3.3.10 A(h) ≷ I (h), so by 1
I (A(h)) ≷ I (I (h)). By Lemma 3.3.10 we get A(A(h)) ≷ A(I (h)), and by the
idempotence of A we get A(h) ≷ A(I (h)). Then S+(A(h)) = S+(A(I (h))),
so A(I (h)) \ S+(A(h)) = A(I (h)) \ S+(A(I (h))) = I (I (h)).
Note that we do not have A(I (h)) = I (h) in all cases.

5. As Lemma 2.4.15.

2

102 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

3.3.2 Knowledge

Given these preliminary results, we can show that our definitions actually correspond
to the notion of generatability of Section 3.1. The main difference is that concrete
evaluation e requires that all subterms also evaluate to messages.

However, since the rewrite rules do not contain any destructor function symbols
except at top level, we can safely replace all minimal subterms that do not normalize
to messages by a fresh variable. The resulting expression may rewrite further than
the original expression, and in particular always normalizes to a message.

Definition 3.3.13 Take F, y and σ : V ⇀ M with dom(σ) ⊇ v(F) and y 6∈
dom(σ). We let Ry

σ(F) be defined inductively by the rules

(Rmsg) Ry
σ(M) = M

(Rsyn)
Ry
σ(Fj) = Gj for j ∈ {1, . . . , ar(fi)}

Ry
σ(fi(F̃)) = fi(G̃)

(Rana-ijk)
Ry
σ(Fl) = Gl for l ∈ {1, . . . , ar(f−1

ijk)}

Ry
σ(f

−1
ijk(F̃)) = f−1

ijk(G̃)
f−1
ijk(G̃σ)↓ ∈ M

(Rrepl-ijk)
Ry
σ(Fl) = Gl for l ∈ {1, . . . , ar(f−1

ijk)}

Ry
σ(f

−1
ijk(F̃)) = y

f−1
ijk(G̃σ)↓ 6∈ M

Lemma 3.3.14 If F, y and σ : V ⇀ M are such that dom(σ) ⊇ v(F) and y 6∈
dom(σ) ∪ v(range(σ)), then Ry

σ(F)σ↓ = Ry

∅(Fσ)↓ = Ry

∅(Fσ↓)↓ ∈ M.

Proof. By induction on the nesting level of destructors and the depth of con-
structor function symbols at top level of F . If F ∈ M then Fσ↓ = Fσ ∈ M, so
Ry
σ(F)σ↓ = Ry

∅(Fσ)↓ = Ry

∅(Fσ↓)↓ ∈ M.

If F = fi(F̃) with Ry
σ(Fj) = Gj for j ∈ {1, . . . , ar(fi)}, then by induction

Ry
σ(Fj)σ↓ = Ry

∅(Fjσ)↓ = Ry

∅(Fjσ↓)↓ ∈ M for all j. Then
fi(G̃σ↓) = Ry

σ(F)σ↓ = Ry

∅(Fσ)↓ = Ry

∅(Fσ↓)↓ ∈ M.

If F = f−1
ijk(F̃) with Ry

σ(Fl) = Gl for l ∈ {1, . . . , ar(f−1
ijk)}, then by induction

Ry
σ(Fl)σ↓ = Ry

∅(Flσ)↓ = Ry

∅(Flσ↓)↓ = Nl ∈ M for all l. If f−1
ijk(G̃σ)↓ 6∈ M then

3.3. CONSTRUCTOR-DESTRUCTOR LANGUAGES 103

Ry
σ(F)σ↓ = y = Ry

∅(Fσ)↓. Moreover,

f−1
ijk(

˜Ry

∅(Flσ↓)↓)↓ = f−1
ijk(R̃

y
σ(Fl)σ↓)↓

= f−1
ijk(G̃σ↓)↓

= f−1
ijk(G̃σ)↓ 6∈ M,

so we may apply Rrepl-ijk to derive Ry

∅(Fσ↓) = y = y↓.
Otherwise, if f−1

ijk(G̃σ)↓ = Mj ∈ M with G1σ↓ = fi(M̃) then

Ry
σ(F)σ = f−1

ijk(G̃σ) = Ry

∅(Fσ) by Rana-ijk, so Ry
σ(F)σ↓ = Mj = Ry

∅(Fσ)↓. There

are two cases for Fσ↓ = f−1
ijk(F̃σ↓)↓. If f−1

ijk(F̃ σ↓) 6→H then

f−1
ijk(

˜Ry

∅(Flσ↓))↓ = f−1
ijk(

˜Ry

∅(Flσ↓)↓)↓

= f−1
ijk(R̃

y
σ(Fl)σ↓)↓

= f−1
ijk(G̃σ↓)↓

= f−1
ijk(G̃σ)↓ = Mj ∈ M

so we may apply Rana-ijk with Ry

∅(Fσ↓)↓ = Mj .
If f−1

ijk(F̃ σ↓) →H F ′
j with F1σ↓ = fi(F̃

′) we take ρ : v(LHSijk) → E with

LHSijk ρ = f−1
ijk(F̃ σ↓) where v(LHSijk) ∩ v(σ, y) = ∅. We then let

ρ′ = {x 7→ Ry

∅(ρ(x)) | x ∈ dom(ρ)}. By induction range(ρ′) ⊂ M. By repeated
use of Rsyn we have f−1

ijk(R
y

∅(Fiσ↓)↓) = LHSijk ρ
′ and Ry

∅(F
′
jσ)↓ = RHSijk ρ

′. By
induction Ry

∅(Fiσ↓)↓ = Ry
σ(Fi)σ↓, so

LHSijk ρ
′ = f−1

ijk(R
y
σ(Fi)σ↓) →H Ry

σ(F)σ↓ = RHSijk ρ
′ = Ry

∅(Fσ↓)↓. 2

Corollary 3.3.15 Let F, y, σ be as above.
If Fσ↓ = M ∈ M, then e(Ry

σ(F)σ) = M .

Example 3.3.16 Let F = Dπ1(a)
(D+

x (E+
z (Eπ1(a)

(m)))) and σ =
{k
/x

}{pub(k)
/z

}
. Then

Ry
σ(F) = Dy(D

+
x (E+

z (Ey(m)))) and e(Ry
σ(F)σ) = m = Fσ↓, although e(Fσ) is un-

defined.

We can now show that the notions of irreducibles, analysis and synthesis accu-
rately capture the notion of generatability of messages.

Theorem 3.3.17 Let σ : V ⇀ M be injective and idempotent. For all M ∈ M,
σ ⊢E M iff M ∈ S (I (range(σ) ∪ (n(M) \ n(range(σ))))).

Proof: We let κ = range(σ) ∪ (n(M) \ n(range(σ))).

104 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

⇒ Assume that σ ⊢ M . Then there is F such that n(F) ∩ n(range(σ)) = ∅,
v(F) ⊆ dom(σ) and Fσ↓M . We let F ′ = Ry

σ(F)
{x
/y

}
for some x ∈ dom(σ),

y 6∈ v(σ, κ). Then e(F ′σ) = M
{σ(x)

/y
}

= M .
We have I (κ) ≷ A(κ) ≥ κ by Lemma 3.3.10. We prove that M ∈ S (A(κ)) by
induction on F ′. If F ′ ∈ dom(σ) ∪ (n(M) \ n(range(σ))) then F ′σ ∈ κ and we
are done.
If F ′ = fi(F̃) then F ′σ↓ = fi(F̃ σ↓) and by induction {F̃σ↓} ⊂ S (A(κ)). By
syn we then get fi(F̃ σ↓) ∈ S (A(κ)).
If F ′ = f−1

ijk(F̃) then f−1
ijk(F̃σ↓) →H F ′σ↓ and by induction {F̃ σ↓} ⊂ S (A(κ)).

By ana-ijk F ′σ↓ ∈ A(S (A(κ))) = S (A(κ)), where the equality follows from
Lemma 3.3.11.2.

⇐ Assume that M ∈ S (I (κ)) = S (A(κ)). We find F such that e(Fσ) = M by
induction on the derivation of M ∈ S (A(κ)). If σ(x) = M , we let F = x. If
M ∈ N \ n(range(σ)), we let F = M .
If M = fi(M̃) ∈ S (A(κ)) was derived using syn, then by induction there are
Fl with e(Flσ) = Ml for all l ∈ {1, . . . , ar(fi)}. Letting F = fi(F), we get
e(Fσ) = fi(e(F̃σ)) = fi(M̃) = M .
If M ∈ A(κ) was derived using ana-ijk, then there are fi(M̃) ∈ A(κ) and
Ñ with Nl ∈ S (A(κ)) for all l ∈ {1, . . . , ar(f−1

ijk)} and f−1
ijk(fi(M̃), Ñ) →H M .

By induction there are G,Fl with e(Gσ) = fi(M̃) and e(Flσ) = Nl for all
l ∈ {1, . . . , ar(f−1

ijk)}. Letting F = f−1
ijk(G, F̃), we get

e(Fσ) = e(f−1
ijk(fi(M̃), Ñ)) = M .

2

3.3.3 Consistency

In order to define a notion of consistency for concrete hedges, we use the notion of
a pattern for a rewrite rule, intuitively a more abstract version of the LHS of the
rule. As an extension of patterns, σ-patterns also track the possibilities to generate
subterms of known messages (in range(σ)). The definition is carefully chosen in
order for Lemma A.1.2.2 to hold.

Definition 3.3.18 An expression f−1
ijk (M̃) is a pattern if f−1

ijk(M̃) 6→H and there are

σ : V → (M\V) with f−1
ijk(M̃)σ = LHSijk. If f−1

ijk(M̃) is a pattern and σ, ρ : V ⇀M,

then f−1
ijk(M̃ρ) is a σ-pattern whenever

range(ρ) ⊆ {M 6∈ V | n(M) = ∅ ∧ v(M) ⊆ dom(σ) ∧ ∃N ∈ range(σ) Mσ ≺ N}

Example 3.3.19 Modulo renaming of variables, the patterns for our example rewrite
system are π1(x), π2(x), Dy(x), D+

y (x), D−
y (x), D+

x (E+
z (y)), D−

x (E−
z (y)) and D−

pub(x)(y).

3.3. CONSTRUCTOR-DESTRUCTOR LANGUAGES 105

Compared to the previous definition (2.1.16) of consistency, we split the third con-
dition into one construction and one destruction constraint (3 and 4 below).

Definition 3.3.20 An irreducible hedge h ⊂ M×M is left consistent iff

1. if (a,N) ∈ h with a ∈ N then N ∈ N ; and
2. if (M,N), (M ′, N ′) ∈ h such that M = M ′ then N = N ′; and
3. if (M,N) ∈ h there is no N ′ with (M,N ′) ∈ S+(h); and
4. Take σ1, σ2 with h = {(σ1(x), σ2(x)) | x ∈ dom(σ1)} and

dom(σ1) = dom(σ2). If f−1
ijk(M̃) is a σ1-pattern and f−1

ijk(M̃)σ1 →H then

f−1
ijk(M̃)σ2 →H.

h is consistent iff h and ht are both left consistent.

Since there are only finitely many σ-patterns for any given σ, consistency is decid-
able.

Example 3.3.21 Continuing Example 3.3.7, we let
h = {(pub(k), pub(k)), (E−

k ((m . n)),E−
k ((m . m))), (E−

k (m),E−
l (m))} and g = I (h) =

h ∪ {(m,m), (m,n)}.
Then g violates condition 2 for consistency since h ⊃ {(m,m), (m,n)}. g also

violates condition 4 for consistency since E−
k (m), but not E−

l (m), can be decrypted by
pub(k). Moreover, I (g ∪ {(k, k)}) violates condition 3, since
(E−

k (m),E−
l (m)) ∈ S+(I (g ∪ {(k, k)})).

When extending a (left) consistent hedge with fresh names, the resulting hedge
is also (left) consistent.

Lemma 3.3.22 If h is left consistent and B ⊂ N with n(h) ∩B = ∅ then h ∪B is
left consistent.

Proof: First, g is irreducible, since A(g) ∩ S+(A(g)) = A(h) ∩ S+(A(h)) and
A(g) = A(h) ∪ Idn(F). Then, conditions 1,2 and 3 of definition 3.3.20 trivially
follow. Condition 4 holds since the applicability of rewrite rules in E is preserved
by arbitrary substitution of terms for names. 2

We show the validity of this notion of consistency in two ways. Firstly, it corre-
sponds to static equivalence in an augmented message algebra, where we can directly
check for each rewrite rule if it can be applied.

Definition 3.3.23 Let Σ = (F+ ⊎ F−, ar) and E be as above. We define a new
signature Σ′ and equivalence relation E ′ based on a rewrite system →E′ as follows.
We let Σ′ = (F+ ⊎ F− ⊎ F ?, ar′) where F ? def

= {name, OK} ⊎ {f ?
ijk | f

−1
ijk ∈ F−} and

ar′ = ar∪{name 7→ 1, OK 7→ 0}∪{f ?
ijk 7→ ar(f−1

ijk)+1}. We also let →E′ be the exten-

sion of →E with the rules f ?
ijk(fi(M̃), Ñ , OK) →E′ OK whenever f−1

ijk(fi(M̃), Ñ) →E,
and the rule name(x) →E′ x when x ∈ N .

106 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

The correspondence theorem then looks as follows.

Theorem 3.3.24 If σ1, σ2 : V ⇀M with dom(σ1) = dom(σ2), then
σ1

∼=E′ σ2 iff I ({(σ1(x), σ2(x)) | x ∈ dom(σ1)}) is consistent.

Proof: When I ({(σ1(x), σ2(x)) | x ∈ dom(σ1)}) is consistent we get that σ1
∼=E′

σ2 by extending the result of Theorem 3.3.17 to the present setting. We treat the
case where I ({(σ1(x), σ2(x)) | x ∈ dom(σ1)}) is not left consistent by deriving
expressions that are equated by σ1 but distinguished by σ2. The proof can be found
in Appendix A.1. 2

Secondly, precisely the same formulae are validated by the different sides of a
consistent hedge.

Theorem 3.3.25 If σ1, σ2 : V ⇀M with dom(σ1) = dom(σ2) and
h = {(σ1(x), σ2(x)) | x ∈ dom(σ1)}, then I (h) is consistent iff
for all φ satisfying n(φ) ∩ n(range(σ1) ∪ range(σ2)) = ∅ and v(φ) ⊆ dom(σ1)
it holds that [[φσ1]] iff [[φσ2]].

Proof:

⇒: Assume that I (h) is consistent. Then σ1
∼=E′ σ2 by Theorem 3.3.24. Let

g = I (h)∪Idn(φ), which is consistent by Lemma 3.3.22. We prove the statement
by induction on the structure of φ and its syntactic depth.

[F :N]: Proof by contradiction: Assume that [[φσ1]] and not [[φσ2]].
Since Fσ1↓E = Fσ1↓E′ = name(Fσ1)↓E′ we have Fσ2↓E′ = name(Fσ2)↓E′

by σ1
∼=E′ σ2, so Fσ2↓E′ = Fσ2↓E ∈ N .

Since e(Fσ1) is defined, Gσ1↓ ∈ M for all G ∈ {G | G ≺ F}. Thus
[[[G = G]σ1]], so by induction [[[G = G]σ2]] and e(Gσ2) ∈ M. Then
e(Fσ2) is defined and by definition equal to Fσ2↓ ∈ N .

[F = G]: Proof by contradiction: Assume that [[φσ1]] and not [[φσ2]].
Since Fσ1↓ = Gσ1↓ and σ1

∼=E′ σ2, we have Fσ2↓ = Gσ2↓. Since e(Fσ1)
is defined, Fiσ1↓ ∈ M for all Fi ∈ {Fi | Fi ≺ F}. Thus [[[Fi = Fi]σ1]],
so by induction [[[Fi = Fi]σ2]] and e(Fiσ2) ∈ M. Then [[Fσ2]] is defined
and by definition equal to Fσ2↓. Similarly, [[Gσ2]] = Gσ2↓.

¬ψ: By induction [[ψσ1]] iff [[ψσ2]], so [[¬ψσ1]] iff [[¬ψσ2]].
ψ1 ∧ ψ2: By induction [[ψ1σ1]] iff [[ψ1σ2]], and [[ψ2σ1]] iff [[ψ2σ2]]. Thus [[ψ1 ∧ ψ2σ1]]

iff [[ψ1 ∧ ψ2σ2]].

⇐: By symmetry we assume that I (h) is not left consistent. There are four
possibilities for left inconsistency of I (h).

1. If (a,N) ∈ I (h) with a ∈ N and N 6∈ N , then there is x ∈ dom(σ1) with
σ1(x) = a and σ2(x) = N . We let φ = name(x).

3.4. A FAMILY OF SPI CALCULI 107

2. If (M,N), (M,N ′) ∈ I (h) such that N 6= N ′, then there are x, y with
σ1(x) = M , σ2(x) = N , σ1(y) = M ′ and σ2(y) = N ′. We let φ = [x = y].

3. If (M,N) ∈ I (h) and (M,N ′) ∈ S+(I (h)), then by monotonicity
S+(I (h)) ⊆ S+(A(h)), and since I (h) ∩ S+(A(h)) = ∅ we cannot have
(M,N) ∈ S+(I (h)). Thus N 6= N ′.
There is x ∈ dom(σ1) with σ1(x) = a and σ2(x) = N . By Lemma A.1.3
there is F with n(F) = ∅, (e(Fσ1), e(Fσ2)) = (M,N ′).
We let φ = [x = F].

4. Otherwise, there is a σ1-pattern f−1
ijk(M̃) with f−1

ijk(M̃)σ1 →H M ′ and

f−1
ijk(M̃)σ2 6→H. We let φ = [f−1

ijk(M̃) = f−1
ijk(M̃)], where

[[[f−1
ijk(M̃) = f−1

ijk(M̃)]σ2]] does not hold since e(f−1
ijk(M̃)σ2) is undefined.

2

Example 3.3.26 Continuing Example 3.3.21, we let

σ1 =
{pub(k)

/x1

}{E−

k
((m . n))

/x2

}{E−

k
(m)
/x3

}
, σ2 =

{pub(k)
/x1

}{E−

k
((m . m))

/x2

}{E−

l
(m)
/x3

}

and h = {(σ1(x), σ2(x)) | x ∈ dom(σ1)}. We have seen that I (h) is not consis-
tent. The substitutions σ1 and σ2 are distinguished by the guards
φ = [π1(D

+
x1

(x2)) = π2(D
+
x1

(x2))] and ψ = [D+
x1

(x3)) = D+
x1

(x3))]: We have [[φσ1]]
and [[ψσ1]], but neither [[φσ2]] nor [[ψσ2]] hold.

3.4 A Family of Spi Calculi

The difference between the spi calculus and the applied pi calculus from a modelling
perspective is that the latter admits an arbitrary equivalence relation on expressions
(subject to some type constraints), while the former distinguishes between expres-
sions and messages, and has a notion of evaluating an expression to a message.

If messages model bit strings (or values of some ADT), expressions model recipes
for computation on messages, and evaluation is then simply the deterministic execu-
tion of the expression. The evaluation of an expression may be undefined, signifying
an exceptional situation such as type mismatch, pattern mismatch or failed check-
sum test.

In this section, we give some constraints on what we consider to be valid notions
of evaluation, give some (non-)examples and redefine the spi calculus in this setting.

Definition 3.4.1 Let Σ be a signature over N and V and ≡E an equivalence on
T c

Σ . We say that e : T c
Σ ⇀ T c

Σ is an evaluation function for Σ and ≡E if:

1. e is idempotent: range(e) ⊆ dom(e) and for all F ∈ range(e), F = e(F).
2. All names are messages: N ⊆ range(e).

108 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

3. e respects term equivalence: If F ≡E G with F,G ∈ dom(e),
then F ≡E e(F) = e(G).

4. e does not invent names: If F ∈ dom(e) and a ∈ n(e(F)) then a ∈ n(F).
5. e is insensitive to renaming: If σ : N → N is injective and F ∈ dom(e), then

Fσ ∈ dom(e) and e(Fσ) ≡E e(F)σ.
6. e can be applied recursively: If σ : v(F) → dom(e) and

ρ = {x 7→ e(σ(x)) | x ∈ v(F)} then

(a) Fσ ∈ dom(e) iff Fρ ∈ dom(e); and
(b) e(Fσ) = e(Fρ) if both are defined.

We then write M,N for elements of M := range(e).

Example 3.4.2 If →E is a confluent rewrite system over Σ such that
∀a ∈ N a 6→E, then e(F) := F↓ is an evaluation function for Σ,≡E.

1. F↓ = F↓↓.
2. a↓ = a by assumption.
3. If F ≡E G then F ≡E F↓ = G↓.

4,5. Since v(t2)∪v(φ) ⊆ v(t1) and n(t1) = n(t2) = ∅ for any rewrite rule “t1 →E t2
if φ”.

6. By the confluence and closure under contexts of →E.

Example 3.4.3 If Σ,≡E is a constructor-destructor algebra, then e as defined in
Definition 3.3.1 is an evaluation function for Σ and ≡E .

1. e(M) = M for all messages M .
2. e(a) = a since a is a message.

3,4. Since →E is confluent, as above.
5. Assume that e(F) is defined. Since n(LHSijk) = n(RHSijk) = ∅ we get

Gσ↓ = G↓σ ∈ M for all subterms G of F , and thus e(Fσ) = e(F)σ.
6. By induction on F .

F = a : In this case, e(Fσ) = e(a) = a = e(Fρ).
F = x : In this case, e(Fσ) = e(σ(x)) = ρ(x) = Fρ = e(Fρ).
F = fi(F̃) : By induction, we have e(Flσ) = Gl iff e(Flρ) = Gl for all G̃ and

l ∈ {1, . . . , ar(fi)}. Then, iff all evaluations e(Flσ) are defined, we get
e(Fσ) = fi(G̃) = e(Fρ).

F = f−1
ijk(F̃) : By induction, we have e(Flσ) = Gl iff e(Flρ) = Gl for all G̃

and l ∈ {1, . . . , ar(fi)}. Then e(Fσ) = e(f−1
ijk(G̃)) is defined iff

e(Fρ) = e(f−1
ijk(G̃)) is defined.

A non-example, showing that the so-called data term languages [BPV05] do not
in general admit an evaluation function.

3.4. A FAMILY OF SPI CALCULI 109

Example 3.4.4 The equivalence induced by the rewrite rules either((x . y)) → x
and either((x . y)) → y can be part of a data term language but does not admit
a notion of evaluation. Otherwise, we would need a ≡E either((a . b)) ≡E b so
e(a) = e(b) by 4. By 2 e(a) = a and e(b) = b, so a = b for all names a and b, which
is a contradiction.

The notion of evaluation is, however, broad enough to cover associative and
commutative operators. We conjecture that every equivalence of [CDL06] can be
equipped with a suitable evaluation function.

Example 3.4.5 Let Σ = ({(· . ·)}, {(· . ·) 7→ 2}) and let ≡E be induced by the
rewrite rules (x . y) → (y . x) and ((x . y) . z) → (x . (y . z)). We assume a total
order < on N and let e yield the left-associative expression where smaller names
occur earlier (shallower) than greater names.

We check one case of condition 5 on F = (a . b), to illustrate the choice of ≡E

rather than =. Assume that a < b, so that e(F) = F . Let σ = {a 7→ b, b 7→ a}.
Then e(F)σ = Fσ = (b . a) ≡E F = e(Fσ).

The following result is a variation of condition 5, showing that you need to
evaluate messages again after (α-)renaming.

Lemma 3.4.6 If e is an evaluation function for Σ,≡E, σ : N → N is injective
and F ∈ dom(e), then Fσ ∈ dom(e) and e(Fσ) = e(e(F)σ).

Proof: e(F) ∈ dom(e) by 1, so e(F)σ ∈ dom(e) by 5. Since F ∈ dom(e) 5
also yields that e(Fσ) ≡E e(F)σ. We then get e(e(Fσ)) = e(e(F)σ) by 3 where
e(e(Fσ)) = e(Fσ) by 1. 2

The spi calculus is then defined as before, using any expression language with a
notion of evaluation.

Definition 3.4.7 Given a signature Σ, we let spi calculus guards and processes
over Σ be given by the grammars in Table 1.1 (p. 11), with F and G interpreted as
elements of TΣ.

Assume that e is an evaluation function for Σ and ≡E. We define

α-equivalence on transitions as follows: If P
(νb̃) aM
−−−−→ P ′, c̃ is a tuple of pair-wise

different names with ({c̃} \ {b̃}) ∩ (n(a,M) ∪ fn(P ′)) = ∅ and σ : {b̃} → {c̃} is

bĳective then (P
(νb̃) aM
−−−−→ P ′) =α (P

(νec) a e(Mσ)
−−−−−−−→ P ′σ). We can then give a (concrete)

operational semantics to the corresponding spi calculus following Table 1.4 (p. 13)
and Table 1.5 (p. 14).

One reason that we prefer to use a structural operational semantics with an
explicit notion of evaluation over the reduction-style semantics of the applied pi
calculus [AF01] is the following.

110 CHAPTER 3. EXTENDING THE MESSAGE LANGUAGE

Example 3.4.8 In the applied pi calculus, the processes a〈F 〉 and a〈G〉 are struc-
turally equivalent whenever F ≡DY G. Letting F = π1(b . c) and G = π1(b . x), where
F ≡DY b ≡DY G, we see that structural equivalence preserves neither the free names
nor the free variables of a process.

We also extend the notions of labelled (Definition 1.4.4) and hedged (Defini-
tion 2.1.19) bisimulation to this setting, by interpreting evaluation e, irreducibles I
and synthesis S as defined in Section 3.3. In the next chapter, we turn to the
problem of efficiently verifying hedged bisimilarity using symbolic techniques.

Chapter 4

Symbolic Semantics for the Spi
Calculus

In this chapter, we give a general symbolic operational semantics, not using aux-
iliary environments or explicit substitutions, for any spi calculus. We show that
it corresponds to the concrete semantics, up to restriction. We also give a refine-
ment for the case of a constructor-destructor expression language, where the set of
names that will be extruded under different instantiations is unchanged and easy to
compute. We also define a set of process environments that yield a fully abstract
correspondence to the early labelled semantics of processes.

Moving to symbolic bisimilarity, we define a notion of symbolic environments
that each corresponds to a set of hedges via instantiation. We define decompositions,
notably the notion of full decomposition of an environment into environments with
unique solutions. We also give an argument that infinite decompositions may be
needed to achieve completeness.

We then proceed to define a corresponding notion of symbolic bisimulation. As
discussed in the introduction, the bisimulation is significantly more demanding than
a straightforward adaptation of existing approaches in less complex calculi. We
finally prove that this bisimulation is sound and complete with respect to its concrete
counterpart.

At an earlier stage [BBN04] of this work, we considered only a single fixed ex-
pression language and did not have a notion of decomposition, making the resulting
bisimilarity incomplete with respect to the concrete case.

4.1 Symbolic Operational Semantics

The idea behind the symbolic operational semantics is to defer instantiation on
input and the evaluation of expressions and guards. Name freshness conditions are

112 CHAPTER 4. SYMBOLIC SEMANTICS

still expressed as side conditions of the derivation rules, but all other conditions are
simply collected in transition constraints. These constraints are the same as in the
concrete semantics, namely the following.

• Guards.
• Channel equality for internal communication.
• Expressions standing for transmitted messages should evaluate correctly.
• Expressions used as channels should evaluate to names, not to compound

messages.

Our symbolic semantics is similar to the symbolic operational semantics for the
pi-calculus by Boreale and De Nicola [BD96]. The main difference is that we do not
remove restricted names from the transition label as the transition is derived, due to
the complex expression language. Because of this, a given transition constraint may
be unsatisfiable, on its own or in conjunction with earlier transition constraints,
somthing which we resolve at the level of environment-sensitive bisimulations or
traces. The form of a symbolic transition is P

µs
−→
φ
P ′, where µs is a symbolic action

and φ is a constraint.

Definition 4.1.1 We define symbolic actions µs ∈ As as
µs ::= (νc̃)F (x) | (νc̃)F G | (νc̃) τ . We define α-equivalent symbolic transitions in
the following way: (P

µs
−→
φ
P ′) =α (P

µsσ
−−→
φσ

P ′σ) if σ : N → N is injective such that

spt(σ) ⊆ bn(µs), (range(σ) \ dom(σ))∩ (n(φ)∪ fn(P ′)) = ∅, φ′ = φσ, P ′′ = P ′σ and
µsσ is µs with every (both free and bound) name n replaced by σ(n).

We define the channel of an action (where applicable) as ch((νc̃) τ) = ∅,
ch((νc̃)F (x)) := {F} and ch((νc̃)F G) := {F}. Symbolic transitions P

µs
−→
φ

P ′

are defined inductively by the rules of Table 4.1.

Compared to the concrete semantics, in the rules (Sout) and (Sinp) the ex-
pressions are constrained rather than evaluated. In the rule Scom-l we need to
keep the restriction on the action, since the transition guard contains the restricted
names. When we encounter a guard, then rule (Sguard) simply adds it to the
transition constraint.

The resulting processes after concrete resp. symbolic transitions differ in which
names are restricted. We make their relationship precise in the remainder of the
Section. We illustrate this with an example.

Example 4.1.2 Let P := (νb) a〈π1(a . b)〉.P ′ for some P ′. Concretely,

P
a a
−→ (νb)P ′. Symbolically we have that P

(νb) a π1(a . b)
−−−−−−−−−−−−→
[a :N]∧[π1(a . b) :M]

P ′, where the pro-

cesses after the step only differ in the restriction of the name b. Also note that the

4.1. SYMBOLIC OPERATIONAL SEMANTICS 113

(Sout) G〈F 〉.P
GF

−−−−−−−−−→
[G :N]∧[F :M]

P (Sinp) G(x).P
G(x)

−−−−→
[G :N]

P

(Srep) !G(x).P
G(x)

−−−−→
[G :N]

P | !G(x).P
(Sguard)

P
µs
−→
φ
P ′

φ′P
µs

−−→
φ∧φ′

P ′

(Scom-l)
P

(νb̃)G(x)
−−−−−→

φ1

P ′ Q
(νc̃)G′ F
−−−−−→

φ2

Q′

P |Q
(νb̃c̃) τ

−−−−−−−−−→
φ1∧φ2∧[G=G′]

P ′
{F
/x

}
|Q′

if {c̃} ∩ fn(P) = ∅

and {b̃} ∩ fn(Q) = ∅

and {c̃} ∩ {b̃} = ∅

(Scom-r)
P

(νb̃)GF
−−−−→

φ1

P ′ Q
(νc̃)G′(x)
−−−−−→

φ2

Q′

P |Q
(νb̃c̃) τ

−−−−−−−−−→
φ1∧φ2∧[G=G′]

P ′ |Q′
{F
/x

}
if {c̃} ∩ fn(P) = ∅

and {b̃} ∩ fn(Q) = ∅

and {c̃} ∩ {b̃} = ∅

(Ssum-l)
P

µs
−→
φ
P ′

P +Q
µs
−→
φ
P ′

(Ssum-r)
Q

µs
−→
φ
Q′

P +Q
µs
−→
φ
Q′

(Spar-l)
P

µs
−→
φ
P ′

P |Q
µs
−→
φ
P ′ |Q

if (bn(µs)) ∩ fn(Q) = ∅

(Spar-r)
Q

µs
−→
φ
Q′

P |Q
µs
−→
φ
P |Q′

if (bn(µs)) ∩ fn(P) = ∅

(Sopen)
P

µs
−→
φ
P ′

(νa)P
(νa)µs

−−−−→
φ

P ′
if (fn(µs) ∪ n(φ)) ∋ a 6∈ bn(µs)

(Sres)
P

µs
−→
φ
P ′

(νa)P
µs
−→
φ

(νa)P ′
if a 6∈ n(µs) ∪ n(φ)

(Salp)
P

µs
−→
φ
P ′

P
µ′s−→
φ′

P ′′
if (P

µs
−→
φ

P ′) =α (P
µ′s−→
φ′

P ′′)

Table 4.1: Symbolic Operational Semantics

114 CHAPTER 4. SYMBOLIC SEMANTICS

scope of the binder for b in the symbolic transition extends to both the transition
constraint and the resulting process.

Let Q = (νc, d)¬[a = c]π1((a . d))(x).Q
′. Then Q

a(x)
−−→ (νc, d)Q′ and

P |Q
τ
−→ (νb)P ′ | (νc, d) (Q′

{a
/x

}
). Symbolically, Q

(νc,d) π1((a . d))(x)
−−−−−−−−−−−−→
[π1(a . d) :N]∧¬[a=c]

Q′ and

P |Q
(νb,c,d) τ
−−−−−→

φ
P ′ |Q′

{π1(a . b)
/x

}
where

φ = [a = π1(a . d)] ∧ [a :N] ∧ [π1(a . b) :M] ∧ [π1(a . d) :N] ∧ ¬[a = c]. Here [[φ]]
(defined in Table 1.4) is true.

Since the processes P and Q above are closed (assuming that P ′ and Q′ are closed),
the guards of symbolic counterparts of concrete transitions simply evaluate to true.

4.1.1 A Single Step

We can use the symbolic semantics to verify if certain assignments to input variables,
represented by a substitution σ, enable a concrete transition. We do this by com-
paring the effects of applying the substitution before and after a transition, both
on the resulting processes and the transition constraints. The problem with this
approach is that the symbolic semantics allow the communication of non-message
terms, which after substitution need to be evaluated to coincide with the messages
that are communicated in the concrete semantics.

Example 4.1.3 Now consider Q := a〈π1(x)〉 | a(y).a〈y〉. We can derive
Q

τ
−→
φ

0 | a〈π1(x)〉 =: Q′ with φ := [a :N]∧[π1(x) :M]∧[a :N]∧[a = a].

We do not have [[φ]], but the substitution σ :=
{(a . a)

/x
}

enables the transition. Con-

cretely, Q
{(a . a)

/x
} τ
−→ 0 | a〈a〉, but 0 | a〈a〉 6= 0 | a〈π1(a . a)〉 = Q′σ.

To cope with the problem outlined above and the fact that the symbolic semantics
extrude more names (Example 4.1.2), we introduce the partial order >a (“more
abstract than”), which would be a subset of structural equivalence in an applied
pi-style semantics [AF01].

Definition 4.1.4 We let >a be the least reflexive and transitive precongruence on
expressions, guards and processes satisfying

1. Fσ >a Mσ whenever e(F) = M and σ : N → N is injective;
2. (νa) (νb)P >a (νb) (νa)P ; and
3. (νa) (P |Q) >a ((νa)P) |Q when a 6∈ fn(Q); and
4. (νa) (P |Q) >a P | ((νa)Q) when a 6∈ fn(P).

Example 4.1.5 Relating the effects of substituting before and after the transition
in Example 4.1.3, we have Q′σ = (0 | a〈π1((a . a))〉. 0) >a (0 | a〈a〉. 0).

4.1. SYMBOLIC OPERATIONAL SEMANTICS 115

Lemma 4.1.6

1. If F >a G then e(F) = e(G); and
2. if φ >a ψ then [[φ]] iff [[ψ]]; and
3. if P >a Q then fn(P) ⊇ fn(Q).

Proof:

1. By Lemma 3.4.6 and Definition 3.4.1.6.
2. By 1, since the base cases of [[·]] are defined entirely in terms of e.
3. By n(F) ⊇ n(e(F)), fn((νa) (νb)P) = fn((νb) (νa)P), and

fn((νa) (P |Q)) = fn(((νa)P) |Q) and fn((νa) (Q |P)) = fn(Q | ((νa)P)) when
a 6∈ fn(Q).

2

The relation >a is a labelled bisimulation (Definition 1.4.4).

Lemma 4.1.7 >a is a standard labelled bisimulation. More precisely, if P >a Q
then

1. If P
µ
−→ P ′ then there is Q′ such that Q

µ
−→ Q′ and P ′ >a Q

′; and
2. if Q

µ
−→ Q′ such that bn(µ)∩ fn(P) = ∅ then there is P ′ such that P

µ
−→ P ′ and

P ′ >a Q
′; and

3. Pσ >a Qσ for all substitutions σ : V ⇀M.

Proof: The proof is by induction on the derivation of P >a Q and the transition
of P (or Q). The core idea is that the only operations performed on expressions are
e and fn(·), and that name clashes always can be avoided using α-renaming. Using
Lemma 4.1.6.3, we do not need to assume bn(µ) ∩ fn(Q) = ∅ in condition 1 of this
lemma. For the full proof, see Appendix A.2. 2

We also need to be sure that the α-renaming of guards does not change the
substitutions that validate them.

Lemma 4.1.8 For all formulae φ, if ρ : N → N is injective and σ : V ⇀ M
satisfies n(range(σ)) ∩ (spt(ρ) ∪ range(ρ)) = ∅ then [[φσ]] iff [[φρσ]].

Proof: We prove the statement by induction on φ.
First, given ρ, σ, we choose an injective ρ′ with ρ′ ◦ ρ ⊇ {a 7→ a | a ∈ n(φ)} and

n(range(σ))∩(spt(ρ′)∪range(ρ′)) = ∅. Since φσ = (φρ)ρ′σ we only need to show one
direction, [[φσ]]. Moreover, φρσ = φσρ by the assumption that
n(range(σ)) ∩ (spt(ρ) ∪ range(ρ)) = ∅.

The nontrivial cases are:

116 CHAPTER 4. SYMBOLIC SEMANTICS

[F :N] Assume that e(Fσ) = a ∈ N , and that aρ = b. By Definition 3.4.1.5,
we have e(Fσρ) = G ≡E b. By Definition 3.4.1.(2,1) e(b) = b, so by Defini-
tion 3.4.1.(1,3) G = e(G) = e(b) = b ∈ N .

[F :M] Assume that e(Fσ) = G. By Definition 3.4.1.5, we have that e(Fσρ) is
defined.

[F1 = F2] Assume that e(F1σ) = G = e(F2σ). By Definition 3.4.1.5, we have
that e(F1σρ) = G1 ≡E Gρ and e(F2σρ) = G2 ≡E Gρ. Since G1 ≡E G2,
Definition 3.4.1.(1,3) gives that e(F1σρ) = e(F2σρ).

2

Note that the above is not true for injective ρ : N → M:

Example 4.1.9 [[¬[π1(b) :M]]], but we do not have [[¬[π1(a . a) :M]]].

Using this, we can now show the relationship between concretely substituting
inputs and our symbolic semantics.

Definition 4.1.10 We let e(·) : As ⇀ A be the partial function defined as
e((νb̃) τ) := τ , e((νb̃)F (x)) := e(F)(x) when {b̃} ∩ n(e(F)) = ∅, and
e((νb̃)F G) := (νc̃) e(F) e(G) when c̃ is a tuple of pairwise different names satisfy-
ing {c̃} = {b̃} ∩ n(e(G)) and {c̃} ∩ n(e(F)) = ∅.

Lemma 4.1.11

1. If P
µs
−→
φ
P1 and σ is idempotent and satisfies n(range(σ)) ∩ bn(µs) = ∅, [[φσ]]

and e(µsσ) = µ then there are c̃, P2 with bn(µs) = {bn(e(µsσ))} ⊎ {c̃} and
Pσ

µ
−→ P2 with (νc̃)P1σ >a P2.

2. If σ is idempotent and Pσ
µ
−→ P1 with n(range(σ)) ∩ bn(µ) = ∅ then there are

c̃, P2, φ, µs such that bn(µs) = {c̃} ⊎ bn(µ), µ = e(µsσ), [[φσ]], P
µs
−→
φ

P2 and

(νc̃)P2σ >a P1.

Proof: By induction on the derivation of the transition (see A.2). 2

Example 4.1.12 Why n(range(σ)) ∩ bn(µs) = ∅ in the above? Consider
P = (νn) [n = x]a〈n〉. 0. There is a substitution

{n
/x

}
that validates the transition

constraint of P
(νn) an

−−−−−−−−−−−−−→
[a :N]∧[n :M]∧[n=x]

0 but does not enable a lazy transition when

applied to P , due to α-renaming (n ∈ bn(µs)).

4.1. SYMBOLIC OPERATIONAL SEMANTICS 117

Example 4.1.13 Recall the parameterized choice rules pick((x . y), 1) → x and
pick((x . y), 2) → y, and let P = (νb, c) a〈pick((b . c), x)〉.P ′. Then

P
(νb,c) a pick((b . c),x)
−−−−−−−−−−−−→

φ
P ′ for some φ.

Depending on whether we instantiate x with 1 or 2, the corresponding con-

crete transitions are P
{1
/x

} (νb) a b
−−−−→ (νc)P ′

{1
/x

}
and P

{2
/x

} (νc) a c
−−−−→ (νb)P ′

{2
/x

}
,

where different names are extruded in the two transitions. Moreover, we have

P
{a
/x

} (νb,c) a pick((b . c),a)
−−−−−−−−−−−−→ P ′

{a
/x

}
.

A Refinement for Constructor-Destructor Languages

As seen in Example 4.1.2, the symbolic semantics may extrude the scope of more
names than the concrete semantics. However, when working with a constructor-
destructor expression language, we can compute exactly which names would be
extruded by the concrete semantics, using a notion of “abstract evaluation”. This
abstract evaluation, ea : E → E , intuitively reduces a term wherever possible, with-
out checking that e.g. decryption and encryption keys correspond.

Definition 4.1.14 If Σ, E is a constructor-destructor message algebra, we define a
new rewrite system →A on TΣ through the rules f−1

ijk(fi(x̃), ỹ) →A z where z = xj if

j ≤ ar(fi), otherwise z = yj−ar(fi). We then let ea(F)
def
= F↓A.

We let the extruded names of an expression en(F) be defined inductively by
en(a) = {a}, en(x) = ∅, en(f−1

ijk(G̃)) = ∅ and en(fi(G̃)) = ∪j en(Gj).

Example 4.1.15 Let F := π1(x) and σ :=
{(a . a)

/x
}

. We have
ea(F) = π1(x), ea(F)σ = π1(a . a) and ea(Fσ) = a.

We then have e(F) = ea(F) for all F ∈ dom(e), or in other words, ea extends
e to the entire set of expressions. Moreover, abstract evaluation commutes with
substitution (modulo concrete evaluation).

Lemma 4.1.16

1. If F ∈ dom(e) then ea(F) = e(F).
2. If σ : v(F) → M satisfies e(Fσ) = M then e(ea(F)σ) = M and

en(ea(F)) ⊆ n(M) ⊆ en(ea(F)) ∪ n(range(σ)).

Proof:

1. For all expressions G, G→H
A G

′ whenever G→H
E G

′, so F↓E = F↓A whenever
F↓E = M ∈ M (since M 6→A).

118 CHAPTER 4. SYMBOLIC SEMANTICS

2. First, since →A ∪ →E is a convergent rewriting system preserved by substitu-
tion we have e(Fσ) = e(ea(F)σ). We proceed by induction on G = ea(F).

• If G = a then en(G) = {a} = n(e(Gσ)).
• If G = x then en(G) = ∅ and n(e(Gσ)) = n(σ(x)) ⊆ n(range(σ)).
• If G = fi(G̃) then en(G) = ∪j en(Gj) and n(e(Gσ)) = ∪j n(e(Gjσ)). By

induction en(Gi) ⊆ n(e(Gi)σ) ⊆ en(Gi) ∪ n(range(σ)).
• If G = f−1

ijk(G̃) then en(G) = ∅. Since G 6→A, we have j ≤ ar(fi) and

G1 6= fi(F̃) for all F̃ . Since f−1
ijk(e(G̃σ)) →H

E, e(G1σ) = fi(M̃) for some

M̃ . Then G1 6∈ N and G1 6= fl(F̃) for all l, F̃ , so en(G1) = ∅. By
induction n(fi(M̃)) ⊆ n(range(σ)), so n(e(Gσ)) = n(Mj) ⊆ n(range(σ)).

2

Motivated by this lemma, we define a version of the symbolic transition system
that adds back restrictions to the resulting process, yielding a stronger correspon-
dence.

Definition 4.1.17 We define the transition relation
µ
−→
φ
s by

CDtau
P

(νb̃) τ
−−−→
φ

P ′

P
(νb̃) τ
−−−→
φ

s (νb̃)P ′
CDinp

P
(νb̃)F (x)
−−−−−→

φ
P ′

P
(νb̃)F (x)
−−−−−→

φ
s (νb̃)P ′

if {b̃} ∩ en(ea(F)) = ∅

CDout
P

(νc̃)F G
−−−−→

φ
P ′

P
(νc̃)F G
−−−−→

φ
s (νb̃)P ′

if b̃ are pair-wise different

and {b̃} = {c̃} \ en(ea(G))
and {c̃} ∩ en(ea(F)) = ∅

We then immediately get

Theorem 4.1.18

1. If P
µs
−→
φ

s P1 and σ is idempotent and satisfies n(range(σ))∩ bn(µs) = ∅, [[φσ]]

and µ := e(µsσ) is defined, then there is P2 with Pσ
µ
−→ P2 and P1σ >a P2.

2. If σ is idempotent and Pσ
µ
−→ P1 with n(range(σ)) ∩ bn(µ) = ∅ then there are

φ, µs, P2 such µ = e(µsσ), [[φσ]], P
µs
−→
φ

s P2 and P2σ >a P1.

4.1. SYMBOLIC OPERATIONAL SEMANTICS 119

Proof:

1. Assume that P
µs
−→
φ

s P1 and σ is idempotent and satisfies

n(range(σ)) ∩ bn(µs) = ∅ and [[φσ]]. By definition there are b̃, P ′
1 such that

{b̃} ⊆ bn(µs), P1 = (νb̃)P ′
1 and P

µs
−→
φ
P ′

1.

Assume that µ = e(µsσ). By Lemma 4.1.16 we get that
bn(µs) = {bn(e(µsσ))} ⊎ {b̃}. By Lemma 4.1.11 there are c̃, P2 with

bn(µs) = {bn(e(µsσ))} ⊎ {c̃} and Pσ
e(µsσ)
−−−→ P2 with (νc̃)P ′

1σ >a P2. Since
{c̃} = {b̃} we get P1σ = (νb̃)P ′

1σ >a (νc̃)P ′
1σ, so P1σ >a P2 by transitivity.

2. Assume that σ is idempotent and Pσ
µ
−→ P1 with n(range(σ)) ∩ bn(µ) = ∅.

By Lemma 4.1.11 there are c̃, P2, φ, µs such that bn(µs) = {c̃} ⊎ bn(µ),
µ = e(µsσ), [[φσ]], P

µs
−→
φ
P2 and (νc̃)P2σ >a P1.

By definition there are b̃, P ′
1 such that {b̃} ⊆ bn(µs), P1 = (νb̃)P ′

1 and P
µs
−→
φ
P ′

1.

By Lemma 4.1.16 we get that bn(µs) = {bn(e(µsσ))} ⊎ {b̃}.
Thus {c̃} = {b̃} and we get P1σ = (νb̃)P ′

1σ >a (νc̃)P ′
1σ, so P1σ >a P2 by

transitivity.

2

We now have a symbolic operational semantics that is sound and complete with
respect to the concrete one (modulo >a, which is a labelled bisimulation) and is
finitely branching (modulo choices of bound names and variables).

4.1.2 The Early Labelled Transition System

We now add the possibility of processes to receive messages from an outside observer
that, like in the pi calculus, can use all the free names of the process. This simpler
setting mainly serves to introduce some of the concepts of the symbolic bisimilarity.

Lemma 4.1.11 shows that the symbolic semantics work fine for modelling indi-
vidual steps, but as in the pi calculus we need a slightly more complicated model
to model sequences of transitions, in order to keep track of the ordering of scope
extrusions and inputs. Each process will be associated with a process environment,
intuitively containing a condensed account of the history of the process. In the pro-
cess environment we will store previous transition constraints, input variables and
extruded names. We must also store information related to when the scope of a
given name was extruded, as highlighted in the following example.

Example 4.1.19 Let P := a(x).(νk) a〈k〉.[x = k]a〈a〉. Since k is restricted in
P , and comes only into existence after the input along a has been performed, it is

120 CHAPTER 4. SYMBOLIC SEMANTICS

impossible for the input variable x to have become equal (by substitution) to k. Now,
P has a symbolic trace

P
ax

−−−−→
[a :N]

s

(νk) a k
−−−−−−−−→
[a :N]∧[k :M]

s
a a

−−−−−−−−−−−−−→
[x=k]∧[a :N]∧[a :M]

s 0

where the substitution
{k
/x

}
satisfies the conjunction of the transition guards but

does not correspond to a possible concrete trace, since k could not be input before it
was extruded.

Since we (in this section) are only concerned with scope extrusions this problem
could also be solved with distinctions following [MPW92]. As a preparation for
the bisimulation environments to come, we will not pursue this direction, but in-
stead use a process environment with explicit timing information. We use a process
environment with three components.

1. A finite map tn : N ⇀ N containing bound names in messages sent by the
process and the time they were sent.

2. A finite map tv : N ⇀ N containing input variables and the time they were
input.

3. A constraint ψ assembled from all transition constraints up to this point.

Definition 4.1.20 We define early input transitions as P aM
−−→ Q iff P

a(x)
−−→ P ′ and

there is M ∈ M such that Q = P ′
{M
/x

}
. We define σ@µs where µs is a symbolic

late input action such that bn(µs)∩n(range(σ)) = ∅ as the early input action defined
as follows: σ@(νb̃) τ = τ , σ@(νb̃)F G = (ν{bi | bi ∈ n(e(Fσ))}) e(Fσ) e(Gσ) and
σ@(νb̃)F (x) = e(Fσ) xσ.

We write pe for the process environment (tn, tv, ψ), pe′ for (tn′, tv′, ψ′) and so
on. A process environment pe is said to be well-formed if n(ψ) ⊆ dom(tn) and
v(ψ) ⊆ dom(tv).

From here on, we only consider well-formed process environments. The role
of the environment is to place constraints on substitutions σ instantiating input
variables.

Definition 4.1.21 σ : V ⇀M respects the environment pe, written pe ⊢ σ if

• dom(σ) ⊇ dom(tv)
• [[ψσ]]
• If v ∈ tv and n ∈ n(σ(v)) ∩ dom(tn), then tn(n) < tv(v).

We say that pe is possible if ∃σ : pe ⊢ σ.

4.1. SYMBOLIC OPERATIONAL SEMANTICS 121

Using this notion of possibility, we can perform symbolic early input transitions
as follows:

(Sym-early)

P
µs
−→
φ

s P
′

tn′ = tn ∪ {n 7→ i+ 1 | n ∈ bn(µs)} bn(µ) ∩ dom(tn) = ∅
tv′ = tv ∪ {x 7→ i+ 1 | x ∈ bv(µs)} bv(µ) ∩ dom(tv) = ∅
ψ′ = ψ∧ φ pe′ is possible
i = max(range(tn) ∪ range(tv) ∪ {0})

(pe, P)
µs
−→ (pe′, P ′)

Note that constraints are accumulated, possibly further restricting the choice of
previous inputs.

Lemma 4.1.22 If (pe, P)
µ
−→ (pe′, P ′) and pe′ ⊢ σ then pe ⊢ σ.

Proof: By ψ′ = ψ∧φ, tn′ ⊇ tn and tv′ ⊇ tv. 2

Example 4.1.23 If P := a(x).[x = a]a(y). 0, then the concrete semantics gives

that P
a(x)
−−→ [x = a]a(y). 0, which is not a closed process. Correspondingly, a

symbolic transition of P is P
a(x)

−−−−→
[a :N]

s [x = a]a(y). 0, where [[[a :N]]] holds. We

then have [x = a]a(y). 0
a(y)

−−−−−−−−−→
[a :N]∧[x=a]

s 0, where [[[x = a]]] is satisfied by
{a
/x

}
.

Looking at the early input semantics, we have P a a
−→ [a = a]a(y). 0, where the

resulting process is free to go on: [a = a]a(y). 0
a a
−→ 0. Starting from an empty

process environment, we get

((∅, ∅, tt), P)
a(x)
−−→ ((∅, {[x 7→ 1]}, [a :N]), [x = a]a(y). 0).

Let φ := [a :N] ∧ [x = a] and tv := {[x 7→ 1]}.
Since (∅, tv, [a :N] ∧ φ) ⊢

{a
/x

}
and [[[x = a]

{a
/x

}
]] we have

((∅, tv, [a :N]), [x = a]a(y). 0)
a(y)
−−→ ((∅, tv ∪ {[y 7→ 2]}, [a :N] ∧ φ), 0).

The environment-sensitive semantics is sound and complete with respect to con-
crete early input semantics in the the sense that all instances of a symbolic trace
correspond to a concrete trace, and vice versa.

Proposition 4.1.24

1. If (pe, P)
µ̃
−→ (pe′, P ′) and pe′,⊢ σ then Pi

σ@µi−−−→ Pi+1 for 0 ≤ i ≤ n and
P ′σ >a Pn+1, where P0 = Pσ and µ̃ = µ0µ1 · · ·µn.

122 CHAPTER 4. SYMBOLIC SEMANTICS

2. If fn(P) ⊆ dom(tn), pe ⊢ σ and Pσ
µ̃
−→ Pn+1 such that

(dom(tn) ∪ fn(Pσ)) ∩ bn(µ̃) = ∅ and bn(µi) ∩ bn(µj) = ∅ for 0 ≤ i < j ≤ n

then (pe, P)
µ̃′

−→ (pe′, P ′) such that ∃ρ : pe′ ⊢ ρ, ∀v ∈ dom(tv) : ρ(v) = σ(v),
P ′ρ >a Pn+1 and µi = σ@µ′

i for 0 ≤ i ≤ n where µ̃ = µ0µ1 · · ·µn and
µ̃′ = µ′

0µ
′
1 · · ·µ

′
n.

Proof: By induction on n. For the full proof, see Appendix A.2. 2

4.2 Symbolic Bisimulation

We now turn to the main topic of this chapter. In order to avoid the infinite
branching of hedged bisimulation on process input, we define a notion of symbolic
bisimulation that is sound and complete with respect to hedged (concrete) bisim-
ulation, and thus with respect to barbed equivalence. The main ingredient of this
definition is the symbolic environments that, as seen in Section 4.1.2, need to keep
track of the accumulated transition constraints and the time relationships between
inputs and outputs in order to make a proper accounting of the knowledge of the
adversary.

4.2.1 Symbolic Environments

A symbolic environment is a concise description of a set of concrete environments,
differing only in the instantiations of variables. Here, a variable instantiation is a
pair of substitutions, that must respect the symbolic environment. The concrete
environments that we get from instantiating variables in an environment-respecting
way are called concretizations.

For symbolic bisimulation, the environments are similar to the ones used for
symbolic early input. The main difference is that since we deal with two processes,
we need to keep twice the amount of information. Of course, we still need to keep
timing information relating knowledge and input variables. A symbolic environment
consists of the following three elements.

1. A timed hedge th : E × E ⇀ N containing pairs of messages considered equal
by the environment and the time they were received.

2. A timed variable set tv : V ⇀ N+ containing input variables and the time they
were input.

3. A pair of restricted formulae ((νC)φ, (νD)ψ) representing the accumulated
transition constraints and sets of fresh names.

4.2. SYMBOLIC BISIMULATION 123

Definition 4.2.1 We write se for the environment (th, tv, ((νC)φ, (νD)ψ)). By
abuse of notation, we write φ for (ν∅)φ and (νa)φ for (ν{a})φ in environments.
We let tht := {(F,G) 7→th(G,F) | (G,F) ∈ dom(th)} in order to swap the sides of a
timed hedge. We let n1(se) := n(π1(dom(th)))∪C∪n(φ), n2(se) := n(π2(dom(th)))∪
D ∪ n(ψ) and n(se) := n1(se) ∪ n2(se).

Intuitively, if the environment knows the pair (F,G) it must have learned about
it with the help of the processes at time th(F,G); if this pair contains an input
variable x, then the process must have performed this input at the strictly earlier
time tv(x).

Definition 4.2.2 The environment se is well-formed if dom(th) is finite,
0 ∈ range(th), v(range(th), φ, ψ) ⊆ dom(tv), and whenever (F,G) ∈ dom(th) such
that x ∈ v(F,G) then tv(x) < th(F,G).

From here on we only consider well-formed symbolic environments, the set of which
is denoted SE.

By instantiating the input variables of the symbolic environment, we can get
a concrete (non-timed) hedge. However, such an instantiation must be subject to
several constraints, e.g., timing, guard satisfaction and freshness of invented names.
For instance, an input performed at time t must be synthesizable from the knowledge
of the environment at that time. Similarly to the symbolic early input semantics, we
define environment respectfulness for substitutions. Naturally, with the bisimulation
environments we need two (possibly different) substitutions, one for each process.
We also create some fresh names B.

Definition 4.2.3 A substitution pair (σ, ρ) is se-respecting with B ⊆ N , written
se ⊢ σ ↔B ρ iff

1. dom(σ) = dom(ρ) = dom(tv); and
2. [[φσ]] and [[ψρ]]; and
3. if tv(x) = t then (σ(x), ρ(x)) ∈ S (I ({(Fσ↓, Gρ↓) | th(F,G) ≤ t} ∪ IdB)); and
4. B is fresh and minimal in the sense that (n(range(th)) ∪C ∪D) ∩B = ∅ and

if a ∈ B then a ∈ n(range(σ)) or a ∈ n(range(ρ)).

If se ⊢ σ ↔B ρ we can concretize the knowledge th of the symbolic environment se
by letting C

B
σ,ρ(th) := I ({(e(Fσ), e(Gρ)) | (F,G) ∈ dom(th)} ∪ IdB).

In condition 3 of the above definition we use Fσ↓ rather than e(Fσ) since the latter
may be undefined. Indeed, C

B
σ,ρ(th) may be undefined, signifying that a received

message was in fact a non-message expression. This cannot happen when using the
symbolic semantics, since the requirement for the transmitted expression to be a
message is always added to the transition constraint. This yields a concretizable
symbolic environment (defined below), that always has well defined concretizations.

124 CHAPTER 4. SYMBOLIC SEMANTICS

Example 4.2.4 Let th := {(x, x) 7→ 2}, tv := {x 7→ 1} and
σ := ρ :=

{Ea(a)
/x

}
. Then we have (th, tv, (tt , tt)) ⊢ σ ↔{a} ρ, and

C
{a}
σ,ρ (th) = {(a, a)} is consistent. If the definition of C

·
·,·(·) did not use I (·), then

C
{a}
σ,ρ (th) = {(Ea(a),Ea(a)), (a, a)} would not be consistent.

Since the se-respecting substitution pairs describe all admissible (with respect to the
knowledge and constraints of se) instantiations of input variables, it is interesting
to apply all of them to a pair of formulae (e.g., transition constraints) and study
the results. If the formulae are only satisfied simultaneously, they are equivalent
from the point of view of the environment. For an environment to be consistent, we
require any concretization of its knowledge to be a consistent hedge. Moreover, we
also require that the accumulated constraints are satisfied simultaneously on both
sides (condition 2 below).

Definition 4.2.5 We write se � φ′ ⇔ ψ′ if for all B, σ, ρ : se ⊢ σ ↔B ρ im-
plies that [[φ′σ]] iff [[ψ′ρ]]. se is concretizable if when (F,G) ∈ dom(th) we have
se � [F :M] ⇔ tt and se � tt ⇔ [G :M].

A concretizable symbolic environment se is consistent if for all B, σ, ρ,

1. se ⊢ σ ↔B ρ implies that C
B
σ,ρ(th) is consistent; and

2. (th , tv, ((νC) tt , (νD) tt)) ⊢ σ ↔B ρ implies that [[φσ]] iff [[ψρ]].

Note that if se is concretizable and se ⊢ σ ↔B ρ then C
B
σ,ρ(th) is always defined

and σ and ρ are both idempotent.
When simulating a transition, we often need to consider different cases. In order

to split a symbolic environment according to these cases, we may decompose the con-
straints [Bor95, HL95]. Since we keep constraints for both sides of the environment
we may require that the split is consistent, following [JV07].

Definition 4.2.6 Let se = (th , tv, ((νC)φ, (νD)ψ)) be a concretizable symbolic en-
vironment. The set {sei}i∈I is a decomposition of se if each sei is consistent and of
the form (th , tv, ((νC)φi, (νD)ψi), and whenever se ⊢ σ ↔B ρ there is i ∈ I such
that sei ⊢ σ ↔B ρ. A decomposition {sei}i∈I is concretizable/consistent if each sei
is concretizable/consistent.

Example 4.2.7 {se} is a decomposition of se.
Let se(φ) := ({(a, a) 7→ 0}, {x 7→ 1}, (φ, φ)). Then {se([x = a]), se(¬[x = a])}

is a decomposition of se(tt).

4.2. SYMBOLIC BISIMULATION 125

We can restrict a decomposition to the environments that have solutions, and we
can combine decompositions in the following way.

Lemma 4.2.8

1. If {sei}i∈I is a decomposition of se, then
S = {sei | i ∈ I ∧ ∃(σ, ρ, B) sei ⊢ σ ↔B ρ ∧ se ⊢ σ ↔B ρ} is a decomposition
of se. Moreover, if {sei}i∈I is concretizable/consistent, then S also is.

2. If {sei}i∈I and {sej}j∈J are consistent decompositions of se, then
S = {seij}(i,j)∈I×J where φij = φi ∧ φj and ψij = ψi ∧ ψj is a consistent
decomposition of se.

Proof:

1. Whenever se ⊢ σ ↔B ρ there is i ∈ I such that sei ⊢ σ ↔B ρ. By definition
sei ∈ S.

2. Whenever seij ⊢ σ ↔B ρ there is i ∈ I such that sei ⊢ σ ↔B ρ. C
B
σ,ρ(th) is

then consistent by the consistency of sei.
Whenever (th, tv, ((νC) tt , (νD) tt)) ⊢ σ ↔B ρ we have that [[φiσ]] iff [[ψiρ]]
by the consistency of sei and and [[φjσ]] iff [[ψjρ]] by the consistency of sej .
Thus [[(φi ∧ φj)σ]] iff [[(ψi ∧ ψj)ρ]].
Whenever se ⊢ σ ↔B ρ there is i ∈ I such that sei ⊢ σ ↔B ρ and j ∈ J such
that sej ⊢ σ ↔B ρ. Then seij ⊢ σ ↔B ρ.

2

Every consistent environment can be decomposed into environments with unique
solutions.

Definition 4.2.9 A formula φ gives a unique solution for a finite set of variables X
if there is exactly one substitution σ : X → M such that [[φσ]].
A consistent symbolic environment se = (th, tv, ((νC)φ, (νD)ψ)) has the unique
solution (σ, ρ, B) if se ⊢ σ ↔B ρ and φ and ψ both give a unique solution for
dom(tv).

We will mainly use the trivial/degenerated cases of this definition.

Example 4.2.10 If φ =
∧
x∈X [x = Mx] with v(Mx) = ∅ for all x ∈ X, then

φ gives a unique solution for X. If h is a consistent hedge with v(h) = ∅, then
se = ({(F,G) 7→ 0 | (F,G) ∈ h}, ∅, ((ν∅) tt , (ν∅) tt)) has the unique solution
(∅, ∅, ∅).

126 CHAPTER 4. SYMBOLIC SEMANTICS

We can fully decompose a consistent environment into an infinite set of environments
with unique solutions as follows.

Lemma 4.2.11 Let se = (th , tv, ((νC)φ, (νD)ψ)) be a consistent environment and
I = {(σ, ρ, B) | se ⊢ σ ↔B ρ}. Then {se(σ,ρ,B)}(σ,ρ,B)∈I where
φ(σ,ρ,B) =

∧
x∈dom(tv)[x = σ(x)] and ψ(σ,ρ,B) =

∧
x∈dom(tv)[x = ρ(x)]

is a decomposition of se, and each se(σ,ρ,B) has the unique solution (σ, ρ, B).

Proof: We need to show that each se(σ,ρ,B) is consistent and that
se(σ,ρ,B) ⊢ σ ↔B ρ. Clearly, if se(σ,ρ,B) ⊢ σ′ ↔B ρ′ then σ = σ′ and ρ = ρ′.

By assumption (th, tv, ((νC) tt , (νD) tt)) ⊢ σ ↔B ρ. C
B
σ,ρ(th) is consistent by

assumption, so by Lemma A.1.2. 1 M = σ(x) (or N = ρ(x)) whenever
C
B
σ,ρ(th) ⊢M ↔ ρ(x) (or C

B
σ,ρ(th) ⊢ σ(x) ↔ N , by symmetry). 2

In the pi calculus, it is always sufficient to consider a finite number of cases in the
decomposition [Bor95]. However, in a spi calculus an infinite split may be needed
when treating processes with replication.

Example 4.2.12 We take a simple expression language that allows us to encode
integers. Let Σ = ({s} ∪ {p}, {s 7→ 1, p 7→ 1}) and let →E be induced by the single
rewrite rule p(s(x)) → x. This language is a constructor-destructor language, and
would also be admissible as a data term language. We write na for the message
sn(a).

We define two processes P and Q with the same behavior (i.e., P ∼ Q, where
∼ is labelled bisimulation). Upon input of a message na, P non-deterministically
decides whether to diverge or to perform an output on a after n more steps. On the
other hand, upon input of na Q non-deterministically decides to become either Q1

or Q2, where Q1 performs an output on a after n steps if n is odd and diverges if n
is even, while Q2 performs an output on a after n steps if n is even and diverges if
n is odd.

After the choice of the first process we need to make a choice in the second
process, dependent on whether n is even or odd. Symbolically, in order to make the
choice in the second process we need to describe the the condition “n is even (odd)”
using a disjunction of formulas. We conjecture that this cannot be done with a finite
disjunction (of finite formulas) in this guard and expression language.

P = a(x).Ω + a(x).(νc) (P ′(x) | !c(y).P ′(y))

P ′(y) = y〈a〉 + c〈p(y)〉

Q = (νc) ((a(x).Q1(x) + a(x).Q2(x)) | !c(y).Q2(y))

Q1(x) = [x :N]Ω + c〈p(x)〉)

Q2(x) = x〈a〉 + (νd) (d〈p(x)〉 | d(z).Q1(z))

Ω = (νc) (c〈c〉 | !c(z).c〈c〉)

4.2. SYMBOLIC BISIMULATION 127

The question then arises if it would be possible to extend the logical language used
in environments to always enable a finite decomposition. However, this would need
a more powerful logic: A more sophisticated version of this example would use that
the (finite-control) spi calculus (with symmetric encryption and pairing) is Turing-
complete [Hüt02]. We could then let P receive a Turing machine and its input (in
some suitable encoding) and choose between diverging or simulating the machine,
signalling failure or success upon termination. Q would make an initial choice and
simulate the machine in both cases, diverging on failure (resp. success) and signalling
success (resp. failure). In this way, a finite decomposition (in an exogenous logic,
i.e., one where the process terms are not part of the logical language) would require
representing the predicate
“t ∈ {(M . N) where M codes for a Turing machine that accepts (rejects) N}”.
This is clearly also an issue for automated verification. However, in our experiments
with simple security protocols (described in Appendix B) we have not had use for
any decomposition, suggesting that the actual impact of this issue is highly domain-
dependent.

4.2.2 Symbolic Bisimulation

A symbolic relation R is a subset of SE × P × P. We write se ⊢ P R Q
for (se, P,Q) ∈ R. R is symmetric if whenever se ⊢ P R Q we have that
(tht, tvt, ((νD)ψ, (νC)φ)) ⊢ Q R P . R is consistent if se is consistent and
fv(P,Q) ⊆ dom(tv) whenever se ⊢ P R Q.

Intuitively, for two processes to be bisimilar under a given environment every
possible and detectable transition of one of the processes must be simulated by a
transition of the other process on a corresponding channel such that the updated
environment is consistent. The consistency of the updated environment implies
that the simulating transition is also possible and detectable.

Definition 4.2.13 A symmetric consistent symbolic relation R is a symbolic bisim-
ulation if whenever se ⊢ P R Q with t = max(range(th) ∪ range(tv)) then

• If P
(νc̃) τ
−−−→
φ′

s P
′ with {c̃}∩ n1(se) = ∅, and there are σ, ρ, B with se ⊢ σ ↔B ρ,

[[φ′σ]] and ({c̃} ∪ fn(P,Q)) ∩ B = ∅,
then there is a decomposition {sei}i∈I of (th , tv, ((νC ∪ {c̃})φ ∧ φ′, (νD)ψ))

such that for each i ∈ I, there are {ẽ}, ψ′, Q′ with Q
(νẽ) τ
−−−→
ψ′

s Q′,

{ẽ} ∩ (n2(se) ∪ B) = ∅ and (th, tv, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)) ⊢ tt ↔ ψ′.
Finally, we require (th, tv, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)) ⊢ P

′ R Q′.

• If P
(νc̃)F (x)
−−−−−→

φ′
s P

′ with {c̃}∩n1(se) = ∅ and x 6∈ dom(tv), and there are σ, ρ, B

with se ⊢ σ ↔B ρ, [[φ′σ]], e(Fσ) ∈ π1(C
B
σ,ρ(th)) and ({c̃}∪ fn(P,Q))∩B = ∅,

128 CHAPTER 4. SYMBOLIC SEMANTICS

then there are y 6∈ (dom(tv) ∪ {x}) and a decomposition {sei}i∈I of
(th , tv′, ((νC ∪ {c̃})φ ∧ φ′ ∧ [y = F], (νD)ψ)) where
tv′ = tv ∪ {x 7→ t+1, y 7→ t+1}

such that for each i ∈ I, there are {ẽ}, ψ′, Q′, F ′ with Q
(νẽ)F ′(x)
−−−−−→

ψ′
s Q

′,

{ẽ} ∩ (n2(se) ∪B) = ∅ and
(th , tv′, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)) ⊢ tt ↔ ψ′ ∧ [y = F ′]. Finally, we re-
quire (th , tv′, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)) ⊢ P ′ R Q′.

• If P
(νc̃)F G
−−−−→

φ′
s P

′ with {c̃} ∩ n1(se) = ∅, and

there are σ, ρ, B with se ⊢ σ ↔B ρ, [[φ′σ]], e(Fσ) ∈ π1(C
B
σ,ρ(th)), x 6∈ dom(tv)

and ({c̃} ∪ fn(P,Q)) ∩ B = ∅,
then there are y 6∈ dom(tv) and a decomposition {sei}i∈I of
(th , tv′, ((νC ∪ {c̃})φ ∧ φ′ ∧ [y = F], (νD)ψ)) where tv′ = tv ∪ {y 7→ t+1}

such that for each i ∈ I, there are {ẽ}, ψ′, Q′, F ′, G′ with Q
(νẽ)F ′G′

−−−−−→
ψ′

s Q
′,

{ẽ} ∩ (n2(se) ∪B) = ∅ and
(th ′, tv′, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)) ⊢ tt ↔ ψ′ ∧ [y = F ′] where
th ′ = th ∪ {(G,G′) 7→ i+1} if G,G′ 6∈ dom(th), th ′ = th otherwise.
Then (th ′, tv′, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)) ⊢ P ′ R Q′.

Symbolic bisimilarity, written ∼s, is the union of all symbolic bisimulations.

Soundness

Symbolic bisimilarity is sound with respect to concrete bisimilarity.

Lemma 4.2.14 For all processes P,Q, consistent symbolic environments se, and
substitution pairs (σ, ρ) satisfying se ⊢ σ ↔B ρ where fn(P,Q) ∩ B = ∅ we have
that

1. Any concrete transition (up to α-equivalence) of Pσ that must be simulated
by Qρ under the concrete environment C

B
σ,ρ(th) has a corresponding symbolic

transition of P that must be simulated by Q under se.
2. If a symbolic transition (up to α-equivalence) of P is simulated by Q under se,

and has a corresponding concrete transition of Pσ that must be simulated by
Qρ under C

B
σ,ρ(th), then Qρ can simulate the concrete transition.

Furthermore, there are substitutions σ′, ρ′ such that if (h′′, P ′′, Q′′) is the result-
ing hedged process pair, P ′ and Q′ are the resulting processes after the symbolic
step and se′ is the resulting symbolic environment, then
se′ ⊢ σ′ ↔B ′ ρ′, fn(P ′, Q′) ∩ B′ = ∅, h′′ = th ′(σ′, ρ′), P ′σ′ >a P ′′ and
Q′ρ′ >a Q

′′.
Here (σ′, ρ′) are dependent on the type of transition:

4.2. SYMBOLIC BISIMULATION 129

• If it is tau then (σ′, ρ′) = (σ, ρ),
• If it is an output then (σ′, ρ′) = (σ

{a
/y

}
, ρ

{b
/y

}
) where y is a fresh variable

and (a, b) are the channels of the concrete transitions.
• If it is an input then (σ′, ρ′) = (σ

{M
/x

}{a
/y

}
, ρ

{N
/x

}{b
/y

}
) where x is the

variable in the symbolic input transitions, y is a fresh variable and (a, b)
are the channels and (M,N) are the messages (created by the environ-
ment) of the concrete early input transitions.

(se, P,Q) (se′, P ′, Q′)

(CB
σ,ρ(th), Pσ,Qρ) (th ′′, P ′′, Q′′)

���
�
�
�
�
�
�
�

σ,ρ

//

���
�
�
�
�
�
�
�

σ′,ρ′

//

Proof:

1. We have three cases depending on the type of the transition of Pσ.

tau If Pσ
τ
−→ P ′′ then by Theorem 4.1.18 there are φ′, d̃, P ′ such that

P
(νd̃) τ
−−−→
φ′

s P
′, [[φ′σ]] and P ′σ >a P ′′. By Salp we may choose the d̃

such that {d̃} ∩ (n(se) ∪ B) = ∅. Since [[φ′σ]] the transition must be
simulated by Q.

input Assume that Pσ
a(x)
−−→ P ′′ and (a, b) ∈ C

B
σ,ρ(th). We choose a transition

α-equivalent to this one where x 6∈ dom(tv).
By Theorem 4.1.18 there are φ′, P ′, F, d̃ such that a = e(Fσ),

P
(νd̃)F (x)
−−−−−→

φ′
s P

′ and [[φ′σ]]. By Salp we may choose the d̃ such that

{d̃} ∩ (n(se) ∪ B) = ∅. Since [[φ′σ]] and a ∈ π1(C
B
σ,ρ(th)) the transition

must be simulated by Q.

output If Pσ
(νb̃) aM
−−−−→ P ′′ and (a, b) ∈ C

B
σ,ρ(th) we choose a transition

α-equivalent to this one where {b̃}∩ (n(se)∪B) = ∅. By Theorem 4.1.18

there are φ′, P ′, d̃, F,G such that (νb̃) aM = e((νd̃)F G), P
(νd̃)F G
−−−−→

φ′
s P

′

and [[φ′σ]]. By Salp we may choose the d̃ such that {d̃}∩(n(se)∪B) = ∅.
Since [[φ′σ]] and a ∈ π1(C

B
σ,ρ(th)) the transition must be simulated by Q.

2. We have three cases depending on the type of the transition of P .

tau Assume that P
(νd̃) τ
−−−→
φ′

s P ′, {d̃} ∩ (n1(se) ∪ B) = ∅, [[φ′σ]] and that

{sei}i∈I is a decomposition of (th , tv, ((νC∪{c̃})φ∧φ′, (νD)ψ)) such that

130 CHAPTER 4. SYMBOLIC SEMANTICS

sei ⊢ σ ↔B ρ, Q
(νẽ) τ
−−−→
ψ′

s Q′′ and {ẽ} ∩ (n2(se) ∪ B) = ∅. Letting

se′ = (th , tv, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)), assume that se′ ⊢ tt ↔ ψ′

and se′ ⊢ P ′ R Q′.
Since fn(P ′) ⊆ (fn(P) ∪ {d̃}) and fn(Q′) ⊆ (fn(Q) ∪ {ẽ}) we get
fn(P ′, Q′) ∩ B = ∅.
By Theorem 4.1.18 Pσ

τ
−→ P ′′ where P ′σ >a P

′′ and Qρ
τ
−→ Q′′ where

Q′ρ >a Q
′′. By assumption C

B
σ,ρ(th) is consistent.

input Assume that P
(νd̃)F (x)
−−−−−→

φ′
s P

′, {d̃} ∩ (n1(se) ∪ B) = ∅,

x, y 6∈ dom(tv), [[φ′σ]], e(Fσ) = a ∈ π1(C
B
σ,ρ(th)). By the consistency of

C
B
σ,ρ(th) there is b such that (a, b) ∈ C

B
σ,ρ(th). By Lemma A.1.2(1) we

get G = b whenever (a,G) ∈ S (h) with h consistent and (a, b) ∈ h.
Assume that {sei}i∈I is a decomposition of
(th , tv′, ((νC ∪ {c̃})φ ∧ φ′ ∧ [y = F], (νD)ψ)) where
tv′ = tv ∪ {x 7→ t+1, y 7→ t+1}.

Take i,M,N,B′ such that sei ⊢ σ′ ↔B∪B ′ ρ′ and Q
(νẽ)F ′(x)
−−−−−→

ψ′
s Q

′ where

σ′ = σ
{M
/x

}{a
/y

}
, ρ′ = ρ

{N
/x

}{b
/y

}
, b = e(F ′ρ), {ẽ} ∩ (n2(se) ∪B) = ∅.

Let se′ = (th , tv′, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)) and assume that
se′ ⊢ tt ↔ ψ′ ∧ [y = F ′]. Since x, y 6∈ v(ψ′) we have [[ψ′ρ]]. Since
se′ ⊢ σ′ ↔B∪B ′ ρ′ we get
(M,N) ∈ S (I ({(e(F ′′σ), e(G′′ρ)) | (F ′′, G′′) ∈ dom(th)}∪IdB∪B′)). Since
fn(P ′) ⊆ fn(P) and fn(Q′) ⊆ fn(Q) we also have that
fn(P ′, Q′) ∩ (B ∪B′) = ∅.

By Theorem 4.1.18 Pσ
a(x)
−−→ P ′′ where P ′σ >a P ′′ and Qρ

b(x)
−−→ Q′′

where Q′ρ >a Q
′′. Then P ′σ′ >a P

′′
{M
/x

}
and Q′ρ′ >a Q

′′
{N
/x

}
. By

Lemma 3.3.22) C
B∪B′

σ′,ρ′ (th) = C
B
σ,ρ(th) ∪B′ is consistent.

output Assume that P
(νd̃)F G
−−−−→

φ′
s P

′, {d̃} ∩ (n1(se) ∪ B) = ∅, y 6∈ dom(tv),

[[φ′σ]], e(Fσ) ∈ π(CB
σ,ρ(th)).

By the consistency of C
B
σ,ρ(th) there is b such that (a, b) ∈ C

B
σ,ρ(th). By

Lemma A.1.2(1) we get N = b whenever (a,N) ∈ S (h) with h consistent
and (a, b) ∈ h.
Assume that {sei}i∈I is a decomposition of
(th ∪ th ′, tv′, ((νC ∪ {c̃})φ ∧ φ′ ∧ [y = F], (νD)ψ)) where
th ′ := {(G,G′) 7→ i+1 | (G,G′) 6∈ dom(th)} and
tv′ = tv∪{y 7→ t+1}, and let σ′ = σ

{a
/y

}
and ρ′ = ρ

{b
/y

}
. By assumption

Q
(νẽ)F ′G′

−−−−−→
ψ′

s Q
′′ with {ẽ} ∩ (n2(se) ∪ B) = ∅ and

4.2. SYMBOLIC BISIMULATION 131

b = e(F ′ρ).
We let se′ = (th ∪ th ′, tv′, ((νC ∪ {c̃})φi, (νD ∪ {ẽ})ψi)). By assumption
se′ ⊢ tt ↔ ψ′ ∧ [y = F ′].
Because of the name freshness conditions and since we only add infor-
mation to the environment, se′ ⊢ σ′ ↔B ρ′, so since y 6∈ v(φ′) we have
[[ψ′ρ]].
By Theorem 4.1.18 there are b̃, c̃, P ′′, Q′′, a, b,M,N such that {b̃} ⊆ {ẽ},

{c̃} ⊆ {ẽ} and Pσ
(νb̃) aM
−−−−→ P ′′, where e(Fσ) = a, e(Gσ) = M and

P ′σ >a P ′′, and Qρ
(νc̃) bN
−−−−→ Q′′, where e(F ′ρ) = b, e(G′ρ) = N and

Q′ρ >a Q
′′. C

B
σ′,ρ′(th ∪ th ′) is consistent by the consistency of se′. There

are two cases for th ′.
If th ′ = ∅, i.e., (G,G′) ∈ dom(th), then (M,N) ∈ S (CB

σ,ρ(th)), so
C
B
σ′,ρ′(th ∪ th ′) = C

B
σ,ρ(th) = I (CB

σ,ρ(th) ∪ {(M,N)}). Otherwise,
th ′ = {(G,G′) 7→ i+1} and using Lemma 3.3.12(5)

C
B
σ′,ρ′(th ∪ th ′)

= I ({(e(Fσ), e(Gρ)) | (F,G) ∈ dom(th)} ∪ {(M,N ′)} ∪ IdB)

= I (I ({(e(Fσ), e(Gρ)) | (F,G) ∈ dom(th)} ∪ IdB) ∪ {(M,N ′)})

= I (CB
σ,ρ(th) ∪ {(M,N)}).

2

Since we are reasoning up to bĳective renaming and labelled bisimilarity, we need
to show the soundness of these up-to techniques for concrete hedged bisimulation.

Lemma 4.2.15 Hedged bisimulation is sound up to bĳective renaming and labelled
bisimulation.

Proof: Let R be a hedged bisimulation up to bĳective renaming and labelled
bisimulation. We wish to show that R ⊆ ∼h. We do this by showing that Rbl is
a hedged bisimulation; the result follows since R ⊆ Rbl because “up to bĳective
renaming and labelled bisimulation” is an expansion. The proof is standard, and
present in Section A.2. 2

Finally, we have the soundness theorem.

Theorem 4.2.16 For all processes P,Q, and symbolic environments se such that
se ⊢ P ∼s Q we have that
C
B
σ,ρ(se) ⊢ Pσ ∼h Qρ for all B ⊂ N with fn(P,Q) ∩ B = ∅ and substitution pairs

(σ, ρ) satisfying se ⊢ σ ↔B ρ.

132 CHAPTER 4. SYMBOLIC SEMANTICS

Proof: By Lemma 4.2.14 and Lemma 4.1.7,

R := {(CB
σ,ρ(th), Pσ,Qρ) | se′ ⊢ P ∼s Q and ∃B : se′ ⊢ σ ↔B ρ}

is a hedged bisimulation up to bĳective renaming and labelled bisimilarity. By
Lemma 4.2.15, R ⊆ ∼h. 2

Completeness

We show that a symbolic bisimulation that always fully decomposes environments
is complete with respect to hedged bisimilarity.

Theorem 4.2.17 Assume that se, P,Q are such that se is consistent and
C
B
σ,ρ(se) ⊢ Pσ ∼h Qρ whenever se ⊢ σ ↔B ρ with B ∩ fn(P,Q) = ∅. Then

se ⊢ P ∼s Q.

Proof: We prove that the set R = {(se, P,Q) | se is consistent and
C
B
σ,ρ(se) ⊢ Pσ ∼h Qρ whenever se ⊢ σ ↔B ρ with B ∩ fn(P,Q) = ∅} is a sym-

bolic bisimulation. R is symmetric, by the symmetry of ∼h and the definitions of
consistency, se ⊢ σ ↔B ρ and C

B
σ,ρ(se). Assume that se ⊢ P R Q, P

µs
−→
φ′

s P
′ and

t = max(range(th) ∪ range(tv)). We consider three cases for µs.

tau Assume that P
(νc̃) τ
−−−→
φ′

s P
′ and se ⊢ σ ↔B ρ with {c̃} ∩ (n1(se) ∪ B) = ∅ and

[[φ′σ]]. We let {se(σ,ρ,B)}(σ,ρ,B)∈I be the full decomposition of
(th , tv, ((νC ∪ {c̃})φ ∧ φ′, (νD)ψ)). Take (σ, ρ, B) with B ∩ fn(P,Q) = ∅.
Note that se ⊢ σ ↔B ρ and C

B
σ,ρ(se) = C

B
σ,ρ(se(σ,ρ,B)). Then

C
B
σ,ρ(se(σ,ρ,B)) ⊢ Pσ ∼h Qρ.

By Theorem 4.1.18 Pσ τ
−→ P ′′ where P ′σ >a P

′′.
By bisimilarity Qρ τ

−→ Q′′ where C
B
σ,ρ(se) ⊢ P

′′ ∼h Q
′′.

By Theorem 4.1.18 Q
(νẽ) τ
−−−→
ψ′

s Q
′ such that [[ψ′ρ]] and Q′ρ >a Q

′′. Using Salp

we may choose {ẽ} ∩ (n2(se) ∪ B) = ∅.
Since >a is a labelled bisimulation (Lemma 4.1.7) and ∼h is sound up to
labelled bisimulation (Lemma 4.2.15), C

B
σ,ρ(se(σ,ρ,B)) ⊢ P ′σ ∼h Q′ρ. Thus

C
B
σ,ρ(se(σ,ρ,B)) is consistent.

Since fn(P ′) ⊆ fn(P) and fn(Q′) ⊆ fn(Q) we get fn(P ′, Q′) ∩ B = ∅.
Let se′ = (th , tv, ((νC ∪ {c̃})φ(σ,ρ,B), (νD ∪ {ẽ})ψ(σ,ρ,B) ∧ ψ′)). Then se′ has
the unique solution (σ, ρ, B), so se′ ⊢ P ′ R Q′.

output Assume that P
(νb̃)F G
−−−−→

φ′
s P

′, se ⊢ σ ↔B ρ, {b̃} ∩ (n1(se) ∪ B) = ∅, [[φ′σ]]

and y 6∈ dom(tv).

4.2. SYMBOLIC BISIMULATION 133

We let tv′ = tv ∪ {y 7→ t+1} and th ′ = th ∪ {(G,G′) 7→ i+1} if
G,G′ 6∈ dom(th), th ′ = th otherwise. We then let {se(σ,ρ,B)}(σ,ρ,B)∈I be the
full decomposition of (th , tv′, ((νC ∪ {c̃})φ ∧ φ′ ∧ [y = F], (νD)ψ)).
Take any (σ, ρ, B) ∈ I and let σ = σ′

{F
/y

}
and ρ = ρ′

{G
/y

}
. Note that F = a

and G = b with se ⊢ σ′ ↔B ρ′, (a, b) ∈ C
B
σ′,ρ′(se) and

C
B
σ′,ρ′(se) = C

B
σ,ρ(se(σ,ρ,B)). Then C

B
σ,ρ(se(σ,ρ,B)) ⊢ Pσ ∼h Qρ.

By Theorem 4.1.18 Pσ
(νc̃) aM
−−−−→ P ′′ where a = e(Fσ), M = e(Gσ),

{c̃} = {b̃} ∩ en(ea(G)) and P ′σ >a P
′′. By bisimilarity Qρ

(νd̃) bN
−−−−→ Q′′ where

C
B
σ,ρ(se) ⊢ a ↔ b and I (CB

σ,ρ(se) ∪ {(M,N)}) ⊢ P ′′ ∼h Q
′′. Using alp we

may choose {d̃} ∩ (n2(se) ∪ B) = ∅.

By Theorem 4.1.18 Q
(νẽ)F ′G′

−−−−−→
ψ′

s Q′ such that b = e(F ′ρ), N = e(G′ρ),

{d̃} = {ẽ} ∩ en(ea(G)), [[ψ′ρ]] and Q′ρ >a Q
′′. Using Salp we may choose

{ẽ} ∩ (n2(se) ∪B) = ∅.
Since ∼h is sound up to >a (Lemma 4.1.7, Lemma 4.2.15),
I (CB

σ,ρ(se) ∪ {(M,N)}) ⊢ Pσ ∼h Qρ. Thus I (CB
σ,ρ(se) ∪ {(M,N)}) is con-

sistent. Since fn(P ′) ⊆ (fn(P) ∪ {c̃}) and fn(Q′) ⊆ (fn(Q) ∪ {d̃}) we get
fn(P ′, Q′) ∩B = ∅. Then
se′ = (th∪th ′, tv, ((νC∪{c̃})φ(σ,ρ,B)(νD∪{ẽ})ψ(σ,ρ,B))) has the unique solution
(σ, ρ, B) where C

B
σ′,ρ′(se

′) = I (CB
σ,ρ(se) ∪ {(M,N)}), so

se′ ⊢ P ′ R Q′. Moreover, se′ ⊢ tt ↔ ψ′ ∧ [y = G].

input Assume that P
(νc̃)F (x)
−−−−−→

φ′
s P ′ and that se ⊢ σ ↔B ρ with

{b̃} ∩ (n1(se) ∪ B) = ∅, a = e(Fσ), C
B
σ,ρ(se) ⊢ a ↔ b and [[φ′σ]] and that

x, y 6∈ dom(tv).
We let {se(σ,ρ,B)}(σ,ρ,B)∈I be the full decomposition of
{(th, tv∪{y 7→ t+1}, ((νC∪{c̃})φ∧φ′∧[y = F], (νD)ψ))}. Take (σ, ρ, B) ∈ I.
We let J(σ,ρ,B) = {(B′,M,N) with B′ ∩ (B ∪ {b̃} ∪ n(se) ∪ n(P,Q)) = ∅,
C
B
σ,ρ(se) ∪ IdB′ ⊢ M ↔ N and B′ ⊆ n(M,N)}. We also let

tv′ = tv ∪ {x 7→ t+1, y 7→ t+2}, φM = φ(σ,ρ,B) ∧ [x = M] and
ψN = ψ(σ, ρ, B) ∧ [x = N]. Then
{(th, tv′, ((νC ∪ {c̃})φM , (νD)ψN)) | (σ, ρ, B) ∈ I ∧ (B′,M,N) ∈ J(σ,ρ,B)} is a
consistent decomposition of {(th , tv′, ((νC ∪ {c̃})φ ∧ φ′ ∧ [y = F], (νD)ψ))}.
Take any (B′,M,N) ∈ J(σ,ρ,B).

By Theorem 4.1.18 Pσ
a(x)
−−→ P ′′ where P ′σ >a P

′′. By bisimilarity Qρ
b(x)
−−→ Q′′

where C
B
σ,ρ(se) ∪ IdB′ ⊢ P ′′

{M
/x

}
∼h Q

′′
{N
/x

}
.

By Theorem 4.1.18 Q
(νẽ)F ′(x)
−−−−−→

ψ′
s Q

′ such that [[ψ′ρ]] and Q′ρ >a Q
′′. Using

Salp we may choose {ẽ} ∩ (n2(se) ∪B) = ∅.

134 CHAPTER 4. SYMBOLIC SEMANTICS

Since ∼h is sound up to >a (Lemma 4.1.7, Lemma 4.2.15),
C
B
σ,ρ(se) ∪ B

′ ⊢ Pσ
{M
/x

}
∼h Qρ

{N
/x

}
. Since fn(P ′) ⊆ (fn(P) ∪ B′) and

fn(Q′) ⊆ (fn(Q) ∪B′) we get fn(P ′, Q′) ∩B = ∅.
Then se′ = (th , tv′, ((νC ∪ {c̃})φM , (νD ∪ {ẽ})ψN)) has the unique solu-
tion (σ′, ρ′, B ∪ B′) where σ′ = σ

{M
/x

}{a
/y

}
and ρ′ = ρ

{N
/x

}{b
/y

}
since

C
B∪B′

σ′,ρ′ (se′) = C
B
σ,ρ(se) ∪ IdB′ is consistent, so se′ ⊢ P ′ R Q′. Moreover,

se′ ⊢ tt ↔ ψ′ ∧ [y = F ′].

2

4.3 Examples

4.3.1 Potential Sources of Incompleteness

The processes in the following examples are taken from [BBN04], where they were
given as examples of the incompleteness of the earlier version of symbolic bisimilarity
(lacking distinctions) proposed in that paper. All these examples start from the same
symbolic environment se := ({(a, a) 7→ 0}, ∅, (tt , tt)). Since se has no variables,
it has the unique solution h := C

∅
ǫ,ǫ({(a, a) 7→ 0}) = {(a, a)}. We assume that

x, y, z, a, k, n are pair-wise different wherever they occur below.

Guard Decomposition

The first example shows how decompositions permit a simple case split.

Example 4.3.1 Let

P1 := a(x).a〈a〉

Q1 := a(x).Q′
1 Q′

1 := ([x = a]a〈a〉 + ¬[x = a]a〈a〉).

Then se ⊢ P1 ∼s Q1. Specifically, the symmetric closure of the set

R := {(se, P1, Q1), (se1, a a,Q
′
1), (se2, 0, 0), (se3, 0, 0) | x, y, z ∈ V}

where

se1 := ({(a, a) 7→ 0}, {x 7→ 1, y 7→ 1}, ([y = a], [y = a]))

se2 := ({(a, a) 7→ 0}, {x 7→ 1, y 7→ 1, z 7→ 2}, ([x = a] ∧ [y = a] ∧ [z = a],

[x = a] ∧ [y = a] ∧ [z = a]))

se3 := ({(a, a) 7→ 0}, {x 7→ 1, y 7→ 1, z 7→ 2}, ((¬[x = a]) ∧ [y = a] ∧ [z = a],

(¬[x = a]) ∧ [y = a] ∧ [z = a]))

4.3. EXAMPLES 135

is a symbolic bisimulation. We consider (se1, a a,Q
′
1). The symbolic transition

P
a〈a〉

−−−−−−−−→
[a :N]∧[a :M]

0 is possible and detectable: Letting σ =
{a
/x

}{a
/y

}
we have

se1 ⊢ σ ↔∅ σ, a ∈ π1(C
∅
σ,σ(se1)) = {a} and [[([a :N] ∧ [a :M])σ]].

We choose {se2, se3} as a decomposition of ({(a, a) 7→ 0}, {x 7→ 1, y 7→ 1, z 7→
2}, ([y = a]∧ [a :N]∧ [a :M]∧ [z = a], [y = a])): se2 and se3 are both consistent
since they are symmetric, and for all ρ : {x, y, z} → M we have either [[[x = a]ρ]]
or [[¬[x = a]ρ]].

Considering se2, Q′
2

a〈a〉
−−−−−−−−−−−−−→
[a :N]∧[a :M]∧[x=a]

0 where trivially

se2 ⊢ tt ↔ [a :N] ∧ [a :M] ∧ [x = a] ∧ [z = a].

Similarly, Q′
2

a〈a〉
−−−−−−−−−−−−−→
[a :N]∧[a :M]∧¬[x=a]

0 with

se3 ⊢ tt ↔ [a :N] ∧ [a :M] ∧ (¬[x = a]) ∧ [z = a].

Delayed instantiation

In general, symbolic bisimulations let us postpone the “instantiation” of input vari-
ables until the moment they are actually used, leading to a stronger relation.

Example 4.3.2 Let

P2 := a(x).P ′
2 P ′

2 := (νc) (c〈c〉 | c(z) | c(z).[x = a]a〈a〉)

Q2 := a(x).Q′
2 Q′

2 := (νc) (c〈c〉 | c(z) | [x = a]c(z).a〈a〉).

Then se ⊢ P2 ∼s Q2. Similarly to before, the symmetric closure of the set

R := {(se, P1, Q1)}

∪{(se1, a a,Q
′
1) | x, y ∈ V}

∪{(se2, 0, 0 | ¬[x = a]a〈a〉) | x, y, z ∈ V}

∪{(se3, 0, [x = a]a〈a〉 | 0) | x, y, z ∈ V}

where

se1 := ({(a, a) 7→ 0}, {x 7→ 1, y 7→ 2}, ([y = a], [y = a]))

se2 := ({(a, a) 7→ 0}, {x 7→ 1, y 7→ 2, z 7→ 3}, ([x = a] ∧ [y = a] ∧ [z = a],

[x = a] ∧ [y = a] ∧ [z = a]))

se3 := ({(a, a) 7→ 0}, {x 7→ 1, y 7→ 2, z 7→ 3}, ((¬[x = a]) ∧ [y = a] ∧ [z = a],

(¬[x = a]) ∧ [y = a] ∧ [z = a]))

is a symbolic bisimulation.

136 CHAPTER 4. SYMBOLIC SEMANTICS

Detecting Process Actions

Orthogonally to the possibility to decompose, we have added the condition that the
environment can detect the process action.

Example 4.3.3 Let

P3 := a(x).(νk) a〈Ek(x)〉.(νn) a〈EEk(a)(n)〉.n a

Q3 := a(x).(νk) a〈Ek(x)〉.(νn) a〈EEk(a)(n)〉.[x = a]na.

Then se ⊢ P3 ∼s Q3: After the first three transitions we have the symbolically hedged
process pair (se′, n a, [x = a]n a) where

se′ := (th ′, tv′, ((ν{k})φ′, (ν{k})ψ′)

th ′ := ({(a, a) 7→ 0, (Ek(x),Ek(x)) 7→ 2, (EEk(a)(n),EEk(a)(n)) 7→ 3}

tv′ := {x 7→ 1, y1 7→ 1, y2 7→ 2, y3 7→ 3}

φ′ := [y1 = a] ∧ [y2 = a] ∧ [y3 = a]

ψ′ := φ′

The symbolic transitions of n a and [x = a]n a are

n a
n a

−−−−−−−−→
[n :N]∧[a :M]

s 0 [x = a]n a
na

−−−−−−−−−−−−−→
[n :N]∧[a :M]∧[x=a]

s 0

Let σ :=
{a
/x

}
. As se′ ⊢ σ ↔∅ σ and C

∅
σ,σ(th

′) = {(a, a), (Ek(a),Ek(a)), (n, n)},
we have that n ∈ π1(C

∅
σ,σ(th

′))), so the transition of na must be simulated by
[x = a]n a. The environment after the step is
se′′ := (th ′, tv′ ∪ {z 7→ 5}, ((ν{k, n})φ′ ∧ [z = n], (ν{k, n})φ′ ∧ [z = n])).

We need to show that se′′ ⊢ tt ↔ [n :N] ∧ [a :M] ∧ [x = a], i.e., that ρ′(x) = a
whenever se′′ ⊢ σ′ ↔B ρ′. First note that [[(φ′ ∧ [z = n])ρ]] iff
a = ρ(y1) = ρ(y2) = ρ(y3) and ρ(z) = n; we let ρ =

{a
/y1

}{a
/y2

}{a
/y3

}{n
/z

}
.

Assume that σ′ =
{M
/x

}
and ρ′ =

{N
/x

}
such that se′′ ⊢ ρσ′ ↔B ρρ′. We let

h′ = {(a, a), (Ek(M),Ek(N)), (EEk(a)(n),EEk(a)(n))}. In order to have ρ(z) = n we
must have (n, n) ∈ S (CB

ρσ′,ρρ′(th
′)) = S (I (h′ ∪ IdB)). Since {k, n} is restricted we

cannot have k, n ∈ B.
Then the only way to derive (n, n) ∈ A(h′ ∪ IdB) is by generating

(Ek(a),Ek(a)) ∈ SA(h′ ∪ IdB) to analyze (EEk(a)(n),EEk(a)(n)). Since we cannot
derive (k, k) ∈ SA(h′∪ IdB) we must have (Ek(a),Ek(a)) ∈ A(h′∪ IdB). This is the
case iff M = a = N , yielding σ′ =

{a
/x

}
= ρ′.

Finally, se′′ is concretizable since dom(th ′) ⊂ M×M and consistent since it is
symmetric.

4.3. EXAMPLES 137

4.3.2 A Simple Cryptographic Protocol

We consider the simple cryptographic protocol

(νk) (A |B) where A := a〈Ek(m)〉 and B := a(x).f〈Dk(x)〉

consisting of the participant A sending on channel a the message m, encrypted
under the secret shared symmetric key k, to the participant B who tries to decrypt
the received message and, in case of successful decryption, outputs the result on
channel f . We may compare this protocol with its specification

(νk) (A |B) where A := a〈Ek(m)〉 and B := a(y).[Dk(y) :M]f〈m〉

where B transmits the correct message m on channel f whenever the dummy
message (on reception bound to y) can be decrypted (as expressed by the guard
[Dk(y) :M]). If the equation (νk) (A |B) = (νk) (A |B) holds, then no context is
able to influence the authenticity (more precisely: integrity) of the message m.

We start with a symbolic environment in which the message m is a variable: We
let th := {(a, a) 7→ 0, (f, f) 7→ 0}, tv := {(m,m) 7→ 1} and se := (th , tv, (tt , tt)).
Note that we give m a later time than a and f , in order to permit occurrences of a
and f in the message.

Proposition 4.3.4 se ⊢ (νk) (A |B) ∼s (νk) (A |B)

Proof: We let gF (x) := [F :N], gF G := [F :N] ∧ [G :M] and
gF

′G
F (x) := gF (x) ∧ g

F ′G ∧ [F = F ′]. We write pwd(ũ) to denote that ũ is a tuple of
pair-w ise d ifferent names and/or variables.

The specification process (νk) (A |B) and its derivatives have their symbolic
transitions given in Table 4.2. The process (νk) (A |B) and its derivatives have
their symbolic transitions given in Table 4.3. The symmetric closure of the set R
defined in Table 4.4 is a symbolic bisimulation.

Note that R is infinite, but that this infinity only arises from the possible different
choices of bound names. Effectively, the bisimulation contains only 8·2 = 16 process
pairs. We only check the fourth element in R, namely

((th, tv ∪ {x 7→ 2, y1 7→ 2}, ([y1 = a], [y1 = a])),

(νk) (A | [Dk(y) :M]f〈m〉), (νk) (A | f〈Dk(x)〉))

of which we denote the environment by se′.

Consistency se′ is clearly well-timed. se′ is concretizable since dom(th) only con-
tains messages. C

B
σ,ρ(th) = IdB ∪{(a, a), (f, f)} whenever defined, which is

consistent since {a, f} ∩B = ∅.

138 CHAPTER 4. SYMBOLIC SEMANTICS

(νk) (A |B)
τ

−−−−−−−−→
(νkn) g

a E
k
(n)

a(y)

(νkn) (0 | [Dk(Ek(n)) :M]f〈m〉)

(νk) (A |B)
(νkn) a Ek(n)
−−−−−−−→

g
a E

k
(n)

0 |B

(νk) (A |B)
a(y)
−−→
ga(y)

(νk) (A | f〈Dk(y)〉)

(νkn) (0 | [Dk(Ek(n)) :M]f〈m〉)
f m

−−−−−−−−−−−−−−−−−−→
(νk′n′) gf m∧[D

k′
(E

k′
(n′)) :M]

(νkn) (0 | 0)

0 |B
a(y)
−−→
ga(y)

0 | [Dk(y) :M]f〈m〉

0 | [Dk(y) :M]f〈m〉
f m

−−−−−−−−−−→
gf m∧[Dk(y) :M]

0 | 0

(νk) (A | [Dk(y) :M]f〈m〉)
(νkn) a Ek(n)
−−−−−−−→

g
a E

k
(n)

0 | [Dk(y) :M]f〈m〉

(νk) (A | [Dk(y) :M]f〈m〉)
f m

−−−−−−−−−−−−−−−−−−→
(νk′n′) gf m∧[D

k′
(E

k′
(n′)) :M]

(νk) (A | 0)

(νk) (A | 0)
(νkn) a Ek(n)
−−−−−−−→

g
a E

k
(n)

0 | 0

Table 4.2: Symbolic Transitions of Specification Process

4.3. EXAMPLES 139

(νk) (A |B)
τ

−−−−−−−→
(νk) g

a E
k
(m)

a(y)

s (νk) (0 | f〈Dk(Ek(m))〉)

(νk) (A |B)
(νk) a Ek(m)
−−−−−−−→
g

a E
k
(m)

s 0 |B

(νk) (A |B)
a(y)
−−→
ga(y)

s (νk) (A | f〈Dk(y)〉)

(νk) (0 | f〈Dk(Ek(m))〉)
f m

−−−−−−−−−−−→
(νk′) g

f D
k′

(E
k′

(m))
s (νk) (0 | 0)

0 |B
a(y)
−−→
ga(y)

s 0 | f〈Dk(y)〉

0 | f〈Dk(y)〉
f Dk(y)
−−−−→
g

f D
k
(y)

s 0 | 0

(νk) (A | f〈Dk(y)〉)
(νk) a Ek(m)
−−−−−−−→
g

a E
k
(m)

s 0 | f〈Dk(y)〉

(νk) (A | f〈Dk(y)〉)
f m

−−−−−−−−→
(νk′) g

f D
k′

(y)
s (νk) (A | 0)

(νk) (A | 0)
(νk) a Ek(m)
−−−−−−−→
g

a E
k
(m)

s 0 | 0

Table 4.3: Symbolic Transitions of Implementation Process

140 CHAPTER 4. SYMBOLIC SEMANTICS

R := {((th , tv, tt , tt), (νk) (A |B), (νk) (A |B)),

((th , tv, ((νk) tt , (νk) tt)),

(νk) (0 | [Dk(Ek(m)) :M]f〈m〉), (νk) (0 | f〈Dk(Ek(m))〉)),

((th ∪ {(m,Dk(Ek(m))) 7→ 2}, tv ∪ {y1 7→ 2},

((ν{k, k′}) [y1 = f], (ν{k, k′}) [y1 = f])),

(νk) (0 | 0), (νk) (0 | 0)),

((th , tv ∪ {x 7→ 2, y1 7→ 2}, ([y1 = a], [y1 = a])),

(νk) (A | [Dk(y) :M]f〈m〉), (νk) (A | f〈Dk(x)〉)),

((th ∪ {(Ek(m),Ek(m)) 7→ 3}, tv ∪ {x 7→ 2, y1 7→ 2, y2 7→ 3},

((νk) [y1 = a] ∧ [y2 = a], (νk) [y1 = a] ∧ [y2 = a])),

(0 | [Dk(y) :M]f〈m〉), (0 | f〈Dk(x)〉)),

((th ∪ {(Ek(m),Ek(m)) 7→ 2}, tv ∪ {y1 7→ 2},

((νk) [y1 = a], (νk) [y1 = a])), (0 |B), (0 |B)),

((th ∪ {(Ek(m),Ek(m)) 7→ 2}, tv ∪ {y1 7→ 2, y2 7→ 3, x 7→ 3},

((νk) [y1 = a] ∧ [y2 = a], (νk) [y1 = a] ∧ [y2 = a])),

(0 | [Dk(y) :M]f〈m〉), (0 | f〈Dk(x)〉)),

((th ∪ {(Ek(m),Ek(m)) 7→ 2, (m,Dk(x)) 7→ 4},

tv ∪ {y1 7→ 2, y2 7→ 3, x 7→ 3, y3 7→ 4},

((νk) [y1 = a] ∧ [y2 = a] ∧ [y3 = f] ∧ [Dk(x) :M],

(νk) [y1 = a] ∧ [y2 = a] ∧ [y3 = f] ∧ [Dk(x) :M]),

(0 | 0), (0 | 0))

| pwd(a, f,m, x, y1, y2, y3, k, k
′)}

Table 4.4: A Symbolic Bisimulation

4.3. EXAMPLES 141

Assume that (th , tv ∪ {x 7→ 2, y1 7→ 2}, (tt , tt)) ⊢ σ ↔B ρ. By the symmetry
of se′ we need only consider the case [[[y1 = a]σ]]. Then σ(y1) = a, and by the
consistency of C

B
σ,ρ(th) we get ρ(y1) = a.

Thus se′ is consistent.
Transition 1 (νk) (A | [Dk(y) :M]f〈m〉)

(νk) a Ek(m)
−−−−−−−→
g

a E
k
(m)

s 0 | [Dk(y) :M]f〈m〉 has to

be simulated, since if we let σ′ := ρ′ :=
{a
/m

}{a
/x

}{a
/y1

}
then

se′ ⊢ σ′ ↔∅ ρ
′ and a ∈ {a, f} = π1(C

∅
σ′,ρ′(th)). Now

{(th, tv ∪ {x 7→ 2, y1 7→ 2, y2 7→ 3},

((νk) [y1 = a] ∧ [y2 = a], [y1 = a] ∧ [y2 = a]))}

is a decomposition of

(th, tv ∪ {x 7→ 2, y1 7→ 2, y2 7→ 3},

((νk) [y1 = a] ∧ [y2 = a], [y1 = a])).

We simulate the transition by (νk) (A | f〈Dk(x)〉)
(νk) a Ek(m)
−−−−−−−→
g

a E
k
(m)

s 0 | f〈Dk(x)〉.

We let

se′′ = (th , tv ∪ {x 7→ 2, y1 7→ 2, y2 7→ 3},

((νk) [y1 = a] ∧ [y2 = a], (νk) [y1 = a] ∧ [y2 = a]))

Then se′′ ⊢ tt ↔ ga Ek(m) ∧ [y2 = a] since ga Ek(m)σ = [a :N] ∧MEk(σ(m))
holds.

Transition 2 First we α-rename to avoid clashes with environment names.
(νk′) (A | [Dk′(y) :M]f〈m〉)

(νk′) f m
−−−−−−−−−−→
gf m∧[D

k′
(y) :M]

s (νk) (A | 0) does not need to be

simulated: [[[Dk′(σ(y)) :M]]] holds iff σ(y) = Ek′(M) for some M , but k′

cannot be in n(range(σ)) since it is bound in the transition.

2

142 CHAPTER 4. SYMBOLIC SEMANTICS

Chapter 5

Conclusions

We set out to address the problem of automatic verification of observational equiv-
alence in channel-passing calculi with expression languages.

In Chapter 2, we studied the different environment-sensitive bisimilarities that
had been defined for the spi calculus. We developed a general framework for com-
paring environment-sensitive relations, and showed how to leverage counterexamples
to yield impossibility results in this framework. We gained a good understanding
of how to define environment-sensitive relations without introducing unnecessary
incompleteness.

Our hedged bisimulation has been used in more recent work [Tiu07, Bri08,
KM07]. For future work in this area, the question of whether to work in a “hedged”
or an “alley” style remains open, but the latter seems more straightforward when
working with complex expression languages.

In Chapter 3, we investigated extensions of the spi calculus expression language.
We gave the first full proof that static equivalence is harder to decide than knowl-
edge, in a simpler setting than [AC06]. We defined a class of constructor-destructor
expression languages that enabled a smooth extension of proof techniques for the
simple spi expression language of Section 1.4. We characterized synthesis and consis-
tency over these constructor-destructor languages in terms of knowledge and static
equivalence over a related language. Besides validating our definitions, this inves-
tigation also makes more precise the equivalence hinted at in [AF01]. Finally, we
made a significant generalization of the concept of spi calculus, permitting any ex-
pression language with a deterministic evaluation function satisfying some natural
constraints.

Finally, in Chapter 4 we addressed the problem of infinite branching on process
input. We defined a general symbolic operational semantics for any spi calculus.
Restricting ourselves to the constructor-destructor languages, we defined symbolic
environments and decompositions of them, and showed through an example that
infinite distinctions or powerful logics are needed even for binary case splits. We

144 CHAPTER 5. CONCLUSIONS

defined a symbolic bisimilarity and proved it sound and complete with respect to
concrete hedged bisimilarity, and thus also with respect to barbed equivalence.

Baudet [Bau07] proved that symbolic consistency is decidable for positive guards
and subterm-convergent languages; One possibility for future work is to investigate
whether these techniques can yield decidability also for guards with negation, at
least in the simpler case of constructor-destructor languages.

Another possibility for future work is to redefine the notion of concretization of
a symbolic environment to instead yield a pair of statically equivalent substitutions,
allowing symbolic bisimilarity to be applied to all expression languages with a notion
of evaluation rather than just the constructor-destructor languages.

Finally, to reach the goal of fully automated verification one could investigate
heuristics, logics and/or language restrictions for generating finite decompositions
of symbolic environments.

Acknowledgments

Thanks first to Uwe, for providing me with the opportunity to do a PhD in the
first place, as well as many other opportunities along the way. Thanks to my office
mates at EPFL: Rachele, for many alpine hikes, Cleo, for her enthusiasm, Sébastien,
for challenging my assumptions, definitions and proofs, and Simon, for the example
he set. The lampions and the basement republic provided a very social climate.
Martín Abadi graciously hosted my work on Section 3.2. Andy Gordon supervised
me during a summer internship at Microsoft Research in Cambridge, which was a
great experience. Many thanks to Sonja, last but not least for supporting me while
I was writing up.

During my PhD, I received funding from the Swiss NSF project “Theory and
Tool Support for the Formal Verification of Cryptographic Protocols”, grants no.
200020-101720.1 and 21-65180.1, and the EU project PEPITO (IST-2001-33234).

Appendix A

Proofs

A.1 Proofs of Chapter 3

We first extend the notion of synthesis in order to be able to generate non-message
expressions from a hedge, and prove some results for consistent hedges on this ex-
tended synthesis.

Definition A.1.1 If h is a hedge, we let S ′(h) be the smallest set containing h and
satisfying the following rule.

(syn′)
(Fj , Gj) ∈ S ′(h) for j ∈ {1, . . . , ar(f)}

(f(F̃), f(G̃)) ∈ S ′(h)

f ∈ F ′

f(F̃) 6→H
E′

f(G̃) 6→H
E′

Lemma A.1.2 If h is left consistent then

1. If (F,G), (F ′, G′) ∈ S ′(h) and F = F ′ then G = G′.
2. If f ∈ F ′ and (F 1

j , F
2
j) ∈ S ′(h) for j ∈ {1, . . . , ar(f)} with f(F̃ 1) →H

E′ F 1 then
f(F̃ 2) →H

E′ F 2 and (F 1, F 2) ∈ S ′(h).

Proof:

1. By induction on the shortest derivation of either of (F,G) ∈ S ′(h) and
(F ′, G′) ∈ S ′(h). By symmetry we may assume that this is a derivation of
(F,G) ∈ S ′(h).
If (F,G) = (M,N) ∈ h and F ′ = M then there are two possibilities. If
(M,G′) ∈ h then G = G′ by condition 2 of Definition 3.3.20. Otherwise, since
M only contains function symbols in F+, we have (M,G′) ∈ S+(h) which
yields a contradiction to condition 3.
If we used syn′ to derive (F,G) ∈ S ′(h) we also used syn′ to derive
(F ′, G′) ∈ S ′(h), so there are f ∈ F ′ and (Fj, Gj), (F

′
j, G

′
j) ∈ S ′(h) for

146 APPENDIX A. PROOFS

j ∈ {1, . . . , ar(f)} such that (F,G) = (f(F̃), f(G̃)) and (F ′, G′) = (f(F̃ ′), f(G̃′)).
Since F = F ′ we have Fj = F ′

j for every j, so by induction every Gj = G′
j and

thus G = G′.
2. We begin by a case analysis on f ∈ F ′.

f ∈ F+ ∪ {OK} : In this case, f(F̃) 6→H.
f = name : If (F,G) ∈ S ′(h) and name(F) →H F , then F ∈ N , so syn′ cannot

have been used to derive (F,G) ∈ S ′(h). Thus (F,G) ∈ h, so G ∈ N
by condition 1 for consistency. Then name(G) →H G, and by assumption
(F,G) ∈ S ′(h).

f = f−1
ijk ∈ F− : Let σ1, σ2 be injective with dom(σ1) = dom(σ2) and
h = {(σ1(x), σ2(x)) | x ∈ dom(σ1)}. Then for each l there is Fl with
F 1
l = Flσ1 6→E and F 2

l = Flσ2 6→E.
We first show that if f−1

ijk(F̃
1) →H F 2 for some F 2, then (F 1, F 2) ∈ S ′(h).

If j > ar(fi) we have (F 1, F 2) = (F 1
j+1−ar(fi)

, F 2
j+1−ar(fi)

) ∈ S ′(h). Oth-
erwise, if F 1

1 ∈ π1(h) then (F 1
1 , F

2
1) ∈ h by condition 3 for consis-

tency. Since LHSijk only contains function symbols in F+ there are
(Ml, Nl) ∈ S (h) such that f−1

ijk(F
1
1 , M̃) →H F 1 and f−1

ijk(F
2
1 , Ñ) →H F 2.

Then (F 1, F 2) ∈ A(h) by ana, so by Lemma 3.3.12.4 and Lemma 3.3.10
we have (F 1, F 2) ∈ S (h) ⊆ S ′(h). Otherwise, syn′ was used to derive
(F 1

1 , F
2
1) ∈ S ′(h), so (F 1, F 2) ∈ S ′(h).

To show that f−1
ijk(F̃

1) →H, we adapt a proof of [AC04a] (Lemma 2)

to the present setting. We let G = f−1
ijk(Ñ) be a greatest expression

with v(G,LHSijk) fresh (i.e., not present in any expression previously
mentioned) and v(G) ∩ v(LHSijk) = ∅ such that there are substitutions
ρ′, ρ′′ : v(G) → E with Gρ′ = LHSijk and Gρ′′ = F . By 1, for all
x, y ∈ v(G) with xρ′′σ1 = yρ′′σ1 we have xρ′′σ2 = yρ′′σ2. We divide v(G)
into three disjoint sets as follows:

v(G) = {xi | ρ
′(xi) 6∈ V}

⊎ {yi | ρ
′(yi) ∈ V ∧ ρ′(yi) 6∈ v(range(ρ′) \ V)}

⊎ {zi | ρ
′(zi) ∈ V ∧ ∃xzi

∈ {xi} | ρ′(zi) ∈ v(ρ′(xzi
))}

Assume that ρ1 : v(LHSijk) → E satisfies f−1
ijk(F̃

1) = LHSijk ρ1. For any
xi, there is txi

∈ dom(σ1) with ρ′′(xi) = txi
. For any zi, we have that

ρ1(ρ
′(zi)) is a subterm of σ1(ρ

′′(xzi
)). We let

γ = {xi 7→ ρ′′(xi)} ∪ {yi 7→ ρ′(yi)} ∪ {zi 7→ ρ′′(zi)} and consider Gγ.
First, if ρ′1 = {x 7→ ρ1(x) | x ∈ dom(ρ1) \ {ρ′(zi)}} then
Gγσ1 = LHSijk ρ

′
1, so Gγσ1 →H

E . Then, Gγ is a π1(h)-pattern, so
Gγσ2 →H

E and thus Gρ′′σ2 →H
E.

A.1. PROOFS OF CHAPTER 3 147

f = f ?
ijk ∈ F ? : Assume that f ?

ijk(F̃
1) →H F 1, i.e., F 1

ar(f?
ijk

)
= F 1 = OK and

f−1
ijkF

1
1 , . . . , F

1
ar(f?

ijk
)−1

→H. As above f−1
ijkF

2
1 , . . . , F

2
ar(f?

ijk
)−1

→H. Since

F 1
ar(f?

ijk
)
= OK 6∈ M then F 2

ar(f?
ijk

)
= OK, so f ?

ijkF̃
2 →H OK. By syn′ we have

(OK, OK) ∈ S ′(h).

2

We can then extend the result of Theorem 3.3.17 to the present setting.

Lemma A.1.3 If σ1, σ2 : V ⇀ M with dom(σ1) = dom(σ2), and
h = {(σ1(x), σ2(x)) | x ∈ dom(σ1)} then

1. if (M1,M2) ∈ S (I (h)) then
there is F ∈ TΣ with n(F) = ∅, e(Fσ1) = M1 and e(Fσ2) = M2; and

2. if (F1, F2) ∈ S ′(I (h)) then
there is F ∈ TΣ with n(F) = ∅, Fσ1↓ = F1 and Fσ2↓ = F2; and

3. if h is consistent and F ∈ TΣ′ with n(F) ∩ n(h) = ∅ then
(Fσ1↓, Fσ2↓) ∈ S ′(h ∪ Idn(F)).

Proof.

1. By Lemma 3.3.10 we have that A(h) ⊆ S (I (h)) ⊆ S ′(I (h)). We prove
that whenever (M1,M2) ∈ S ′(A(h)), there is F ∈ TΣ with Fσ1↓E = M1

and Fσ2↓E = M2 by induction on the derivation. If (M1,M2) ∈ h there is
x ∈ dom(σ1) such that M1 = σ1(x) and M2 = σ2(x).
If (M1,M2) ∈ A(h) was derived using ana, there are f−1

ijk , Ñ
1, Ñ2 with

f−1
ijk(Ñ

1) →H
E M1, f−1

ijk(Ñ
2) →H

E M2 and (N1
j , N

2
j) ∈ S (A(h)) for

j ∈ {1, . . . , ar(f−1
ijk)}. By induction we get G̃ such that Ñ1 = ẽ(Gσ1) and

Ñ2 = ẽ(Gσ2). Then M1 = e(f−1
ijk(G̃)σ1) and M2 = e(f−1

ijk(G̃)σ2).

If (M1,M2) ∈ S ′(A(h)) was derived using syn, there are fi, Ñ
1, Ñ2 with

M1 = fi(Ñ
1), M2 = fi(Ñ

2) and (N1
j , N

2
j) ∈ S (A(h)) for j ∈ {1, . . . , ar(fi)}.

By induction we get G̃ such that Ñ1 = ẽ(Gσ1) and G̃2 = ẽ(Gσ2). Then
M1 = e(fi(G̃)σ1) and M2 = e(fi(G̃)σ2).

2. We prove the statement by induction on the derivation of (F1, F2) ∈ S ′(I (h)).
By 1, whenever (F1, F2) ∈ I (h) there is F ∈ TΣ with n(F) = ∅,
F1 = e(Fσ1) = Fσ1↓ and F2 = e(Fσ2) = Fσ2↓.
If (F1, F2) ∈ S ′(A(h)) was derived using syn′, there are f, G̃1, G̃2 with
F1 = f(G̃1) 6→H

E′, F2 = f(G̃2) 6→H
E′ and (G1

j , G
2
j) ∈ S ′(A(h)) for

j ∈ {1, . . . , ar(fi)}. By induction we get G̃ such that G̃1 = G̃σ1↓ and
G̃2 = G̃σ2↓. Then F1 = fi(G̃σ1↓) = fi(G̃)σ1↓ and F2 = fi(G̃σ2↓) = fi(G̃)σ2↓.

148 APPENDIX A. PROOFS

3. By Lemma 3.3.22 h∪Idn(F) = g is consistent. We prove the statement by induc-
tion on F . If F = a is a name, then Fσ1 = a = Fσ2 and
(a, a) ∈ Idn(a) ⊆ S ′(g). If F = x ∈ dom(σ1) is a variable, then
(Fσ1, Fσ2) ∈ h ⊆ S ′(g).
Otherwise, there are are f ∈ F ′ and Gj for j ∈ {1, . . . , ar(f)} such that
F = f(G̃). By induction (Giσ1↓, Giσ2↓) ∈ S ′(g). The statement then follows
directly from Lemma A.1.2.2 applied to g and gt.

2

We can now prove Theorem 3.3.24, restated below.

Theorem A.1.4 (Theorem 3.3.24) If σ1, σ2 : V ⇀ M with dom(σ1) = dom(σ2),
then σ1

∼=E′ σ2 iff I ({(σ1(x), σ2(x)) | x ∈ dom(σ1)}) is consistent.

Proof:

⇒: If σ1
∼=E′ σ2 then h = I ({(σ1(x), σ2(x)) | x ∈ dom(σ1)}) is irreducible by

Lemma 3.3.12.4. We test the four conditions of semi-consistency.

1. Assume that (a,N) ∈ h with a ∈ N . By Lemma A.1.3 there is F with
n(F) = ∅, Fσ1↓ = a and Fσ2↓ = N . Let G = name(F). We have
Fσ1↓ = a = Gσ1↓, so N = Fσ2↓ = Gσ2↓ = name(N)↓, which holds iff
N ∈ N .

2,3 Assume that (M,N) ∈ h and (M ′, N ′) ∈ S (h) such that M = M ′. By
Lemma A.1.3 there are F,G with n(F,G) = ∅,
(Fσ1↓, Fσ2↓) = (M,N) and (Gσ1↓, Gσ2↓) = (M ′, N ′). By static equiv-
alence N = N ′. By monotonicity S+(I (h)) ⊆ S+(A(h)), and since
I (h) ∩ S+(A(h)) = ∅ we cannot have (M,N) ∈ S+(I (h)).

4 Take ρ1, ρ2 with I (h) = {(ρ1(x), ρ2(x)) | x ∈ dom(ρ1)} and
dom(ρ1) = dom(ρ1). Let f−1

ijk(M̃) be a ρ1-pattern and assume that

f−1
ijk(M̃)ρ1 →H M ′.

By Lemma A.1.3 there is for each x ∈ dom(ρ1) an expression Fx with
n(Fx) = ∅, Fxσ1↓ = ρ1(x) and Fxσ2↓ = ρ2(x). We let
γ = {x 7→ Fx | x ∈ dom(ρ1)} and F = f−1

ijk(M̃)γ.
By Lemma A.1.3 we have (Fσ1↓, Fσ2↓) ∈ S ′(h). Since
Fσ1↓ = M ′ ∈ M we must have (Fσ1↓, Fσ2↓) ∈ S (h), so Fσ2↓ ∈ M

and thus f−1
ijk(M̃)ρ2 →H.

The consistency of h follows by symmetry.
⇐: Assume that h = I ({(σ1(x), σ2(x)) | x ∈ dom(σ1)}) is consistent. Take

any F,G with n(F,G) ∩ n(σ1, σ2) = ∅. Then g = h ∪ Idn(F,G) is consis-
tent by Lemma 3.3.22. We also have (Fσ1↓, Fσ2↓), (Gσ1↓, Gσ2↓) ∈ S ′(g)
by Lemma A.1.3, so Fσ1↓ = Gσ1↓ iff Fσ2↓ = Gσ2↓ by Lemma A.1.2.1.

A.2. PROOFS OF CHAPTER 4 149

2

A.2 Proofs of Chapter 4

The relation >a is a standard labelled bisimulation.

Lemma A.2.1 (Lemma 4.1.7) If P >a Q then

• If P
µ
−→ P ′ then Q

µ
−→ Q′ and P ′ >a Q

′.
• If Q

µ
−→ Q′ such that bn(µ) ∩ fn(P) = ∅ then P

µ
−→ P ′ and P ′ >a Q

′.

Proof: We assume that P >a Q and that P
µ
−→ P ′ is derived without using

bound names that are free in Q, and conversely for transitions of Q. We proceed by
induction on the derivation of P >a Q and the derivation of transitions.

Certain cases of the inner induction are independent of the outer induction hy-
pothesis for their proof:

out Here P = F1〈F2〉.P ′ and Q = G1〈G2〉.Q′ where F1 >a G1, F2 >a G2 and
P ′ >a Q

′.

P
aM
−−→ P ′ : Here e(F1) = a and e(F2) = M . By Lemma 4.1.6.1, e(G1) = a

and e(G2) = M so Q aM
−−→ Q′ where P ′ >a Q

′.
Q

aM
−−→ Q′ : Here e(G1) = a and e(G2) = M . By Lemma 4.1.6.1, e(F1) = a

and e(F2) = M so P aM
−−→ P ′ where P ′ >a Q

′.

inp Here P = F (x).P ′ and Q = G(x).Q′ where F >a G and P ′ >a Q
′.

P
a x
−→ P ′ : Here e(F) = a. By Lemma 4.1.6.1, e(G) = a, so Q a x

−→ Q′. Then
P ′

{M
/x

}
>a Q

′
{M
/x

}
.

Q
ax
−→ Q′ : Here e(G) = a. By Lemma 4.1.6.1, e(F) = a, so P ax

−→ P ′. Then
P ′

{M
/x

}
>a Q

′
{M
/x

}
.

rep Here P =!F (x).P ′ and Q =!G(x).Q′ where F >a G and P ′ >a Q
′.

P
a x
−→ P ′ |P : Here e(F) = a. By Lemma 4.1.6.1, e(G) = a, so Q ax

−→ Q′ |Q.
Then P ′

{M
/x

}
|P >a Q

′
{M
/x

}
|Q.

Q
ax
−→ Q′ |Q : Here e(G) = a. By Lemma 4.1.6.1, e(F) = a, so P ax

−→ P ′ |P .
Then P ′

{M
/x

}
|P >a Q

′
{M
/x

}
|Q.

alp

P
(νc̃) aM
−−−−→ P ′ : Here P

(νb̃) aN
−−−−→ P ′′ and σ : {b̃} → {c̃} is bĳective with ({c̃} \

{b̃}) ∩ (n(a,M) ∪ fn(P ′′)) = ∅, M = Nσ and P ′ = P ′′σ. By assumption

150 APPENDIX A. PROOFS

({b̃} ∪ {c̃}) ∩ fn(Q) = ∅ so by induction Q
(νb̃) aN
−−−−→ Q′ with P ′′ >a Q

′.

Since fn(Q′) ⊆ fn(Q) ∪ {b̃}, (Q
(νb̃) aN
−−−−→ Q′) =α (Q

(νc̃) aM
−−−−→ Q′σ). By

Definition 4.1.4.1 P ′ >a Q
′σ.

Q
(νc̃) aM
−−−−→ Q′ : Here Q

(νb̃) aN
−−−−→ Q′′ and σ : {b̃} → {c̃} is bĳective with ({c̃} \

{b̃}) ∩ (n(a,M) ∪ fn(Q′′)) = ∅, M = Nσ and Q′ = Q′′σ. By assumption

({b̃} ∪ {c̃}) ∩ fn(P) = ∅ so by induction P
(νb̃) aN
−−−−→ P ′ with P ′ >a Q

′′.

Since fn(P ′) ⊆ fn(P) ∪ {b̃}, (P
(νb̃) aN
−−−−→ P ′) =α (P

(νc̃) aM
−−−−→ P ′σ). By

Definition 4.1.4.1 P ′ >a Q
′σ.

grd

P = φP ′ µ
−→ P ′′ : Here P ′ µ

−→ P ′′, [[φ]] and Q = ψQ′ with φ >a ψ and P ′ >a Q
′.

By induction Q′ µ
−→ Q′′ with P ′′ >a Q

′′. Then [[ψ]] by Lemma 4.1.6.1, so
ψQ′ µ

−→ Q′′ by grd.
Q = ψQ′ µ

−→ Q′′ : Here Q′ µ
−→ Q′′, [[ψ]] and P = φP ′ with φ >a ψ and P ′ >a Q

′.
By induction P ′ µ

−→ P ′′ with P ′′ >a Q
′′. Then [[φ]] by Lemma 4.1.6.1, so

ψP ′ µ
−→ P ′′ by grd.

We now return to the outer induction, where the cases where the last rule used
in the derivation of the transition is grd, inp, out, rep or alp have already been
treated.

reflexivity If P = Q then P ∼ Q.
base cases

1. By the inp, out and grd cases.
2. If P = (νa) (νb)R and Q = (νb) (νa)R, we only consider transitions of
P by symmetry.
(a) If a = b then P = Q and we are in the reflexive case treated above.
(b) If P

τ
−→ (νa) (νb)R′ by R

τ
−→ R′ and res (twice), then

Q
τ
−→ (νb) (νa)R′ where (νb) (νa)R′ >a (νb) (νa)R′.

(c) If P
c x
−→ (νa) (νb)R′ by R

c x
−→ R′ and res (twice), then

Q
c x
−→ (νb) (νa)R′ where (νb) (νa)R′ >a (νb) (νa)R′.

(d) For output transitions, we can collapse zero or more sequential uses
of the alp rule to a single use since =α is an equivalence relation on
transitions. The case where alp is the last rule to be used has been
treated above. Then there remain four cases.
res,res Assume that R

(νb̃) cM
−−−−→ R′ with b 6∈ n(c,M), that σ : {b̃} →

{c̃} is injective with a 6∈ n(c, e(Mσ)) and ({c̃} \ {b̃})∩ (n(c,M)∪

fn(R′)) = ∅, so P
(νc̃) c e(Mσ)
−−−−−−−→ (νa) (((νb)R′)σ). By assumption,

A.2. PROOFS OF CHAPTER 4 151

{b̃} ∪ {c̃} ∩ fn(Q) = ∅. By alp R
(νc̃) c e(Mσ)
−−−−−−−→ R′σ. By res

(νa)R
(νc̃) c e(Mσ)
−−−−−−−→ (νa) (R′σ).

If b 6∈ {c̃} then b 6∈ n(c, e(Mσ)) and Q
(νc̃) c e(Mσ)
−−−−−−−→ (νb) (νa) (R′σ)

by res.
If b ∈ {c̃} then b 6∈ fn(R′) and we can take d, e 6∈ {b̃} ∪ {c̃} ∪
{a, b, c}∪fn(P,R′) and let ρ = {b 7→ d}∪{n 7→ n | n ∈ {c̃}\{b}}.

Then (νa)R
(νecσ) c e(e(Mσ)ρ)
−−−−−−−−−−→ ((νa)R′)σρ by alp.

By res (νb) (νa)R
(νecσ)
−−−→ c e(e(Mσ)ρ)(νb) (((νa)R′)σρ), and by

alp (νb) (νa)R
(νec) c e(e(e(Mσ)ρ)ρ−1)
−−−−−−−−−−−−−→ ((νb) (((νa)R′)σρ))ρ−1.

Here e(e(e(Mσ)ρ)ρ−1) = e(e(Mσ)) = e(Mσ), ((νb)R′)σ =
(νe) (R′σ) and ((νb) (((νa)R′)σρ))ρ−1 = (νe) (νa) (R′σ) where
(νa) (νe) (R′σ) >a (νe) (νa) (R′σ).

res,open Assume that R
(νb̃) cM
−−−−→ R′ with b 6∈ n(c,M), that σ :

{b̃} → {c̃} is injective with ({c̃} \ {b̃}) ∩ (n(c,M) ∪ fn(R′)) =

∅ and that n(e(Mσ)) ∋ a 6∈ {c, b̃}, yielding P
(νa) (νc̃) c e(Mσ)
−−−−−−−−−−→

((νb)R′)σ). By alp R
(νc̃) c e(Mσ)
−−−−−−−→ R′σ. By open

(νa)R
(νa,ec) c e(Mσ)
−−−−−−−−→ R′σ.

If b 6∈ {c̃} then b 6∈ n(c, e(Mσ)) and Q
(νa,ec) c e(Mσ)
−−−−−−−−→ (νb) (R′σ) by

res.
If b ∈ {c̃} then b 6∈ fn(R′) and we can take d, e 6∈ {b̃} ∪ {c̃} ∪
{a, b, c}∪fn(P,R′) and let ρ = {b 7→ d}∪{n 7→ n | n ∈ {c̃}\{b}}.

Then (νa)R
(νaecσ)
−−−−→ c e(e(Mσ)ρ)R′σρ by alp.

By res (νb) (νa)R
(νa,ecσ)
−−−−→ c e(e(Mσ)ρ)(νb) (R′σρ), and by alp

(νb) (νa)R
(νa,ec) c e(e(e(Mσ)ρ)ρ−1)
−−−−−−−−−−−−−−→ ((νb) (R′σρ))ρ−1.

Here e(e(e(Mσ)ρ)ρ−1) = e(e(Mσ)) = e(Mσ), ((νb)R′)σ =
(νe) (R′σ) and ((νb) (R′σρ))ρ−1 = (νe) (R′σ).

open,res Assume that R
(νb̃) cM
−−−−→ R′ with n(M) ∋ b 6∈ {c, b̃}, that σ :

{b, b̃} → {c̃} is injective with ({c̃}\{b, b̃})∩(n(c,M)∪fn(R′)) = ∅

and that a 6∈ n(c, e(Mσ)), yielding P
(νc̃) c e(Mσ)
−−−−−−−→ (νa) (R′σ).

If a ∈ {b̃} then a 6∈ fn(R′σ). We then take d 6∈ {b̃} ∪ {c̃} ∪
{a, b, c}∪ fn(P,R′) and let ρ = {n 7→ n | n ∈ {b̃}∧n 6= a}∪{a 7→

d}. By alp R
(νebρ) c e(Mρ)
−−−−−−−→ R′ρ. By res (νa)R

(νebρ) c e(Mρ)
−−−−−−−→

(νa) (R′ρ). By open (νb) (νa)R
(νb) (νebρ) c e(Mρ)
−−−−−−−−−−→ (νa) (R′ρ). Let

σ′ = {n 7→ σ(n) | n ∈ {b̃, b} ∧ n 6= a} ∪ {d 7→ σ(a)}. By alp

152 APPENDIX A. PROOFS

(νb) (νa)R
(νc̃) c e(Mσ)
−−−−−−−→ ((νa) (R′ρ))ρ−1σ. Here ((νa) (R′ρ))ρ−1σ =

((νd)R′)σ = (νa) (R′σ).

open,open Assume that R
(νb̃) cM
−−−−→ R′ with n(M) ∋ b 6∈ {c, b̃},

that σ : {b, b̃} → {c̃} is injective with ({c̃} \ {b, b̃}) ∩ (n(c,M) ∪
fn(R′)) = ∅ and that n(e(Mσ)) ∋ a 6∈ {c, c̃}, yielding

P
(νa) (νc̃) c e(Mσ)
−−−−−−−−−−→ R′σ.

Take d 6∈ {b̃} ∪ {c̃} ∪ {a, b, c} ∪ fn(P,R′) and let ρ = {n 7→ n |
n ∈ {b̃} ∧ n 6= a} ∪ {n 7→ d | n ∈ {b̃} ∧ n = a}. By alp

R
(νebρ) c e(Mρ)
−−−−−−−→ R′ρ.

By open (νa)R
(νa) (νebρ) c e(Mρ)
−−−−−−−−−−→ R′ρ. Agan by open

(νb) (νa)R
(νb) (νa) (νebρ) c e(Mρ)
−−−−−−−−−−−−→ R′ρ. Let σ′ = {a 7→ a} ∪ {n 7→

σ(n) | n ∈ {b̃, b}∧n 6= a}∪{d 7→ σ(a) | a ∈ {b̃}} and ẽ = ac̃. By

alp (νb) (νa)R
(νẽ) c e(Mσ)
−−−−−−−→ R′σ.

3. Here P = (νa) (R1 |R2) and Q = R1 | (νa)R2 where a 6∈ fn(R1). As
above, for output transitions we consider only derivations with exactly
one application of alp between the uses of any two other rules. There
are the following cases for transitions of P .
par-l,res Assume that P

µ
−→ (νa) (R′

1 |R2) by R1
µ
−→ R′

1 and µ = τ or
µ = c x. Then c 6= a so Q

µ
−→ R′

1 | (νa)R2 by par-l.

par-l,alp,res Assume that P
(νc̃) c e(Mσ)
−−−−−−−→ (νa) (R′

1 |R2) by R1
(νb̃) cM
−−−−→

R′
1, {b̃} ∩ fn(R2) = ∅ and that σ : {b̃} → {c̃} is injective with

({c̃} \ {b̃}) ∩ (n(c,M) ∪ fn(R′
1 |R2)) = ∅ and a 6∈ n(c, e(Mσ)).

Then Q
(νc̃) c e(Mσ)
−−−−−−−→ R′

1 | (νa)R2 by par-l,alp.
par-r,res Assume that P

µ
−→ (νa) (R1 |R′

2) by R2
µ
−→ R′

2 and µ = τ or
µ = c x with c 6= a. Then Q

µ
−→ R1 | (νa)R′

2 by res,par-r.

par-r,alp,res Assume that P
(νc̃) c e(Mσ)
−−−−−−−→ (νa) (R1 |R

′
2) by R2

(νb̃) cM
−−−−→

R′
2, {b̃} ∩ fn(R1) = ∅ and that σ : {b̃} → {c̃} is injective with

({c̃} \ {b̃}) ∩ (n(c,M) ∪ fn(R1 |R′
2)) = ∅ and a 6∈ n(c, e(Mσ)).

Then Q
(νc̃) c e(Mσ)
−−−−−−−→ R1 | (νa)R

′
2 by alp,res,par-r.

par-r,alp,open Assume that P
(νa) (νc̃) c e(Mσ)
−−−−−−−−−−→ R1 |R′

2 by R2
(νb̃) cM
−−−−→

R′
2, {b̃} ∩ fn(R1) = ∅ and that σ : {b̃} → {c̃} is injective with

({c̃} \ {b̃})∩ (n(c,M)∪ fn(R1 |R′
2)) = ∅ and n(e(Mσ)) ∋ a 6∈ n(c, c̃).

Then Q
(νa) (νc̃) c e(Mσ)
−−−−−−−−−−→ R1 |R′

2 by alp,open,par-l.

com-l,res Assume that P τ
−→ (νa) (νb̃) (R′

1 |R
′
2

{M
/x

}
)) by R1

(νb̃) cM
−−−−→ R′

1

and R2
c x
−→ R′

2 with {b̃} ∩ fn(R′
2) = ∅ and a 6∈ fn(R1) ∋ c.

A.2. PROOFS OF CHAPTER 4 153

If a 6∈ {b̃} then we get Q τ
−→ (νb̃) (R′

1 | (νa) (R′
2

{M
/x

}
)) by res,com-l,

where (νa) (νb̃) (R′
1 |R

′
2

{M
/x

}
)) >a (νb̃) (R′

1 | (νa) (R′
2

{M
/x

}
)).

If a ∈ {b̃} then a 6∈ fn(R′
2). We take d 6∈ {b̃} ∪ n(a,M) ∪ fn(R′

1, R
′
2).

By res,com-l Q τ
−→ (νb̃) (R′

1 | (νd) (R′
2

{M
/x

}
)) where

(νa) (νb̃) (R′
1 |R

′
2

{M
/x

}
)) =α (νd) (νb̃) (R′

1 |R
′
2

{M
/x

}
)) >a

(νb̃) (R′
1 | (νd) (R′

2

{M
/x

}
)).

com-r,res Assume that P τ
−→ (νa) (νb̃) (R′

1

{M
/x

}
|R′

2) by R2
(νb̃) cM
−−−−→ R′

2

and R1
c x
−→ R′

1 with {b̃} ∩ fn(R′
1) = ∅ and a 6∈ fn(R1) ∋ c.

If a 6∈ {b̃} ∪ n(M) then we get Q τ
−→ (νb̃) (R′

1

{M
/x

}
| (νa)R′

2) by
res,com-l, where
(νa) (νb̃) (R′

1 |R
′
2

{M
/x

}
)) >a (νb̃) (R′

1 | (νa) (R′
2

{M
/x

}
)).

If a ∈ n(M) \ {b̃} then we get Q
τ
−→ (νa) (νb̃) (R′

1

{M
/x

}
|R′

2) by
open,com-l.
If a ∈ {b̃} then we take d 6∈ {b̃} ∪ n(a,M) ∪ fn(R′

1, R
′
2) and let

σ = {a 7→ d} ∪ {n 7→ n | n ∈ {b̃} ∧ n 6= a}. By alp and res

(νa)R2
(νb̃sigma) c e(Mσ)
−−−−−−−−−−→ (νa) (R′

2σ). (νa)R2
(νb̃) cM
−−−−→ (νd)R′

2 by alp,
and by com-r Q

τ
−→ (νb̃) (R′

1

{M
/x

}
| (νd)R′

2) where

(νa) (νb̃) (R′
1

{M
/x

}
|R′

2)) =α (νd) (νb̃) (R′
1

{M
/x

}
|R′

2)) >a

(νb̃) (R′
1 | (νd) (R′

2

{M
/x

}
)).

There are the following cases for transitions of Q.

par-l Assume that Q
µ
−→ R′

1 | (νa)R2 by R1
µ
−→ R′

1 and
bn(µ) ∩ fn((νa)R2) = ∅. If a 6∈ bn(µ) then P

µ
−→ (νa) (R′

1 |R2)
by par-l,res.
If µ = (νb̃) cM and a ∈ {b̃} then we take d 6∈ {b̃} ∪ n(a,M) ∪
fn(R′

1, R2) and let σ = {a 7→ d} ∪ {n 7→ n | n ∈ {b̃} ∧ n 6= a}.

By alp and par-l P
(νebσ) c e(Mσ)
−−−−−−−−→ (νa) (R′

1σ |R2). P
(νb̃) c e(M)
−−−−−−→

(νd) (R′
1 |R2σ) by alp.

res,par-r Assume that Q
µ
−→ R1 | (νa)R′

2) by R2
µ
−→ R′

2 and µ = τ or
µ = c x with c 6= a. Then P

µ
−→ (νa) (R1 |R′

2) by par-r,res.

res,alp,par-r Assume that Q
(νc̃) c e(Mσ)
−−−−−−−→ R1 | (νa)R′

2 by R2
(νb̃) cM
−−−−→ R′

2,
a 6∈ n(c,M) and that σ : {b̃} → {c̃} is injective with ({c̃} \ {b̃}) ∩
(n(c,M) ∪ fn(R′

2)) = ∅ and {c̃} ∩ fn(R1) = ∅. By assumption {b̃} ∩
fn(R1) = ∅.

Then P
(νc̃) c e(Mσ)
−−−−−−−→ (νa) (R1 |R′

2) by par-r,res,alp.

open,alp,par-r Assume that Q
(νa) (νc̃) c e(Mσ)
−−−−−−−−−−→ R1 |R′

2 by R2
(νb̃) cM
−−−−→

154 APPENDIX A. PROOFS

R′
2, n(M) ∋ a 6∈ {c, b̃} and that σ : {b̃} → {c̃} is injective with

({c̃} \ {b̃}) ∩ (n(c,M) ∪ fn(R′
2)) = ∅ and {c̃} ∩ fn(R1) = ∅. By

assumption {b̃} ∩ fn(R1) = ∅.

Then P
(νa) (νc̃) c e(Mσ)
−−−−−−−−−−→ R1 |R′

2 by par-r,open,alp.

com-l Assume that Q τ
−→ (νb̃) (R′

1 | (((νa)R
′
2)

{M
/x

}
)) by R1

(νb̃) cM
−−−−→ R′

1

and R2
c x
−→ R′

2 with {b̃} ∩ fn((νa)R2) = ∅ and c 6= a.
If a 6∈ {b̃} then ((νa)R′

2)
{M
/x

}
= (νa) (R′

2

{M
/x

}
), and by com-l,res

we get P τ
−→ (νa) (νb̃) (R′

1 | (R
′
2

{M
/x

}
)) >a (νb̃) (R′

1 | (νa) (R′
2

{M
/x

}
)).

If a ∈ {b̃} then we take d 6∈ {b̃} ∪ n(a,M) ∪ fn(R′
1, R

′
2), let σ =

{a 7→ d, d 7→ a} and get ((νa)R′
2)

{M
/x

}
= (νd) (R′

2σ
{M
/x

}
). By

alp,com-l,res we get

P
τ
−→ (νa) (νb̃σ) (R′

1σ | (R
′
2

{e(Mσ)
/x

}
))

=α (νd) (νb̃) (R′
1 | (R

′
2

{e(Mσ)
/x

}
σ))

>a (νb̃) (R′
1 | (νd) (R′

2σ
{M
/x

}
))

res,alp,com-r Assume that Q
τ
−→ (νc̃) (R′

1

{e(Mσ)
/x

}
| (νa)R′

2) by

R2
(νb̃) cM
−−−−→ R′

2, R1
c x
−→ R′

1, a 6∈ {b̃, c}∪n(M) and σ : {b̃} → {c̃} bĳec-
tive with ({c̃}\{b̃})∩(n(c,M)∪fn((νa)R′

2)) = ∅ and {c̃}∩fn(R′
1) = ∅.

If a 6∈ {c̃} we get P τ
−→ (νa) (νc̃) (R′

1

{e(Mσ)
/x

}
|R′

2σ) by alph,com-
r,res.
If a ∈ {c̃} then we take d 6∈ {b̃} ∪ n(a,M) ∪ fn(R′

1, R
′
2), and let

σ′ = {n 7→ d | n ∈ {b̃}∧σ(n) = a}∪{n 7→ σ(n) | n ∈ {b̃}∧σ(n) 6= a}
and ρ = {a 7→ d, d 7→ a}. By alph,com-r,res

P
τ
−→ (νa) (νb̃σ′) (R′

1

{
e(Mσ′)

/x
}
|R′

2σ
′)

=α (νd) (νc̃) (R′
1

{e(Mσ′)ρ
/x

}
| (R′

2σ
′ρ))

>a (νc̃) (R′
1

{e(Mσ)
/x

}
| (νd) (R′

2σ
′ρ))

=α (νc̃) (R′
1

{e(Mσ)
/x

}
| (νa)R′

2σ)

open,alp,com-r Assume that Q
τ
−→ (νc̃) (R′

1

{e(Mσ)
/x

}
|R′

2) by

R2
(νb̃) cM
−−−−→ R′

2, R1
c x
−→ R′

1, n(M) ∋ a 6∈ {b̃, c} and that σ : {b̃, a} →
{c̃} is bĳective with ({c̃} \ {b̃, a}) ∩ (n(c,M) ∪ fn(R′

2)) = ∅ and
{c̃} ∩ fn(R′

1) = ∅.
We take d 6∈ {b̃, c̃, a} ∪ n(M) ∪ fn(R′

1, R
′
2), and let σ′ = {n 7→ d |

n ∈ {b̃} ∧ σ(n) = a} ∪ {n 7→ σ(n) | n ∈ {b̃} ∧ σ(n) 6= a} and

A.2. PROOFS OF CHAPTER 4 155

ρ = {a 7→ σ(a), d 7→ a}. By alp,com-r,res

P
τ
−→ (νa) (νb̃σ′) (R′

1

{e(Mσ′)
/x

}
|R′

2σ
′)

=α (νc̃) (R′
1

{
e(Mσ′)ρ

/x
}
| (R′

2σ
′ρ))

>a (νc̃) (R′
1

{e(Mσ)
/x

}
| (R′

2σ))

4. As 3, by rule symmetry.

context cases The (replicated) input, output and guard prefix cases have already
been treated.

P = P1 |P2 : In this case, Q = Q1 |Q2 with P1 >a Q1 and P2 >a Q2. By rule
symmetry and the prior proof for the alp rule, we need to consider two
cases.

par-l Assume that P1
µ
−→ P ′

1 with bn(µ) ∩ fn(P2) = ∅, yielding P
µ
−→

P ′
1 |P2. By assumption bn(µ) ∩ fn(Q) = ∅.

By induction Q1
µ
−→ Q′

1 with P ′
1 >a Q

′
1, yielding Q

µ
−→ Q′

1 |Q2 with
P ′

1 |P2 >a Q
′
1 |Q2.

com-l Assume that P1
(νb̃) aM
−−−−→ P ′

1 and P2
a x
−→ P ′

2 with {b̃} ∩ fn(P ′
2) = ∅,

yielding P τ
−→ (νb̃) (P ′

1 |P
′
2

{M
/x

}
). By assumption {b̃} ∩ fn(Q) = ∅.

By induction Q1
(νb̃) aM
−−−−→ Q′

1 with P ′
1 >a Q

′
1 and Q2

a x
−→ Q′

2 with
P ′

2 >a Q
′
2, yielding Q τ

−→ (νb̃) (Q′
1 |Q

′
2

{M
/x

}
) where

(νb̃) (P ′
1 |P

′
2

{M
/x

}
) >a (νb̃) (Q′

1 |Q
′
2

{M
/x

}
).

P = (νa)P1 : In this case, Q = (νa)Q1 with P1 >a Q1. By induction, if
P1

µ
−→ P ′

1 then Q1
µ
−→ Q′

1 with P ′
1 >a Q

′
1 and conversely. Assume that

P
µ
−→ P ′; the case where Q

µ
−→ Q′ is treated in the same way. The last

rule used in the derivation is either alp, open or res, where the alp
case has already been treated.

res If a 6∈ n(µ) then P
µ
−→ (νa)P ′

1 and Q
µ
−→ (νa)Q′

1.

open If µ = (νb̃) cM with n(M) ∋ b 6∈ {c, b̃} then P
(νa) (νb̃) cM
−−−−−−−→ P ′

1 and

Q
(νa) (νb̃) cM
−−−−−−−→ Q′

1.

transitive case In this case, P >a R >a Q.

• Assume that P
µ
−→ P ′. By the outer induction R

µ
−→ R′ with P ′ >a R

′.
Again, by the outer induction Q

µ
−→ Q′ with R′ >a Q

′. By transitivity
P ′ >a Q

′.

156 APPENDIX A. PROOFS

• Assume that Q
µ
−→ Q′ with bn(µ)∩ fn(P) = ∅. By Lemma 4.1.6.3 bn(µ)∩

fn(R) = ∅. By the outer induction R
µ
−→ R′ with R′ >a Q

′. Again, by the
outer induction P

µ
−→ P ′ with P ′ >a R

′. By transitivity P ′ >a Q
′.

2

Lemma A.2.2 (Lemma 4.1.11)

1. If P
µs
−→
φ
P1 and σ is idempotent and satisfies n(range(σ)) ∩ bn(µs) = ∅, [[φσ]]

and n(e(Fσ)) ∩ bn(µs) = ∅ whenever F ∈ ch(µs) then there are c̃, P2 with

bn(µs) = {bn(e(µ)sσ)} ⊎ {c̃} and Pσ
e(µsσ)
−−−→ P2 with (νc̃)P1σ >a P2.

2. If σ is idempotent and Pσ
µ
−→ P1 with n(range(σ)) ∩ bn(µ) = ∅ then there are

c̃, P2, φ, µs such that bn(µs) = {c̃} ⊎ bn(µ), µ = e(µsσ), [[φσ]], P
µs
−→
φ

P2 and

(νc̃)P2σ >a P1.

Proof:

1. Proof by induction on the derivation of the transition. We first α-rename P
to ensure that no names in n(range(σ)) or variables in dom(σ) are bound.

Sout Assume that G〈F 〉.P GF
−−−−−−−−−→
[G :N]∧[F :M]

P , and that [[([G :N] ∧ [F :M])σ]].

Thus, e(Gσ) ∈ N ⊂ M and e(Fσ ∈ M).
We then get Gσ〈Fσ〉.Pσ aM

−−→ Pσ by out.

Sinp Assume thatG(x).P
G(x)

−−−−→
[G :N]

P , and that [[[Gσ :N]]]. Then there is a ∈ N

such that a = e(Gσ). Applying inp we get Gσ(x).Pσ
ax
−→ Pσ.

Sguard Assume that φ′P
µs

−−→
φ∧φ′

P1, bn(µs)∩ n(φ′) = ∅, [[(φ∧ φ′)σ]], n(range(σ))∩

bn(µs) = ∅ and n(e(Fσ)) ∩ bn(µs) = ∅ whenever F ∈ ch(µs).
By induction there are c̃, P2 with bn(µs) = {bn(e(µsσ))} ⊎ {c̃} and

Pσ
e(µsσ)
−−−→ P2 with (νc̃)P1σ >a P2.

Since [[φ′σ]] we may apply grd, yielding φ′σPσ
e(µsσ)
−−−→ P2.

Scom Assume that P |Q
(νb̃c̃) τ

−−−−−−−−−−−→
φ1∧φ2∧[G=G′]

P ′
{F
/x

}
|Q′, [[(φ1 ∧ φ2 ∧ [G = G′])σ]]

and n(range(σ)) ∩ {b̃c̃} = ∅.

We then have {b̃} ∩ fn(P) = {c̃} ∩ fn(Q) = {c̃} ∩ {b̃} = ∅, P
(νc̃)G(x)
−−−−−→

φ1

P ′

and Q
(νb̃)G′ F
−−−−−→

φ2

Q′.

By [[(φ1 ∧ φ2 ∧ [G = G′])σ]], we have [[[Gσ :N]]], [[[G′σ :N]]] and [[[G =
G′]σ]]. Thus there is a such that e(Gσ) = a = e(G′σ), and particularly

A.2. PROOFS OF CHAPTER 4 157

a ∈ n(Gσ) ∩ n(G′σ) ⊆ n(range(σ)) ∪ (n(G) ∩ n(G′)). Thus a 6∈ {b̃c̃}, so

by induction there are b̃1, b̃2, P2, Q2 with {b̃} = {b̃1} ⊎ {b̃2}, Pσ
a(x)
−−→ P2

and Qσ
(ν eb1) aM
−−−−−→ Q2 with (νc̃)P ′σ >a P2 and (νb̃2)Q

′σ >a Q2.
By com we then have Pσ |Qσ τ

−→ (νb̃1) (P2

{M
/x

}
|Q2), where

(νc̃)P ′
{F
/x

}
σ = (νc̃)P ′σ

{Fσ
/x

}

>a P2

{M
/x

}
(νb̃1b̃2c̃) (P ′

{F
/x

}
σ |Q′σ)

>a (νb̃1b̃2) (((νc̃)P ′
{F
/x

}
σ) |Q′σ)

>a (νb̃1) (P2

{M
/x

}
| (νb̃2)Q

′σ)

>a (νb̃1) (P2

{M
/x

}
|Q2).

Sopen Assume that (νa)P
(νa)µs
−−−−→

φ
P1, n(range(σ)) ∩ ({a} ∪ bn(µs)) = ∅, [[φσ]]

and n(e(Fσ))∩ bn(µs) = ∅ whenever F ∈ ch(µs). By the side conditions
on the transition we get (fn(µs) ∪ n(φ)) ∋ a 6∈ bn(µs).
By induction there are c̃, P2 with bn(µs) = {bn(e(µsσ))} ⊎ {c̃} and

Pσ
e(µsσ)
−−−→ P2 with (νc̃)P1σ >a P2.

If a 6∈ n(e(µsσ)) we use res, yielding (νa)Pσ
(νeb) e(µsσ)
−−−−−−→ (νa)P2. By

congruence (νa) (νc̃)P1σ >a (νa)P2. Moreover, a 6∈ n(e(Fσ)) ⊆ n(F) ∪
n(range(σ)).
Otherwise, µs = (νẽ)GF for some ẽ, F, G and Then e(µsσ) = b̃dM

with a ∈ n(M) and a 6∈ {b̃, d} since d = e(Fσ) and a 6∈ n(e(Fσ)) by

assumption. We use open to derive (νa)Pσ
(νaeb) e(µsσ)
−−−−−−−→ P2.

Sres Assume that (νa)P
µs
−→
φ

(νa)P1, [[φσ]], n(range(σ)) ∩ bn(µs) = ∅ and

n(e(Fσ)) ∩ bn(µs) = ∅ whenever F ∈ ch(µs).
By assumption a 6∈ n(range(σ)). By the side conditions on the transition
we get a 6∈ n(µs) ∪ n(φ).

Then a 6∈ n(e(µsσ)), and res yields (νa)Pσ
(νeb) e(µsσ)
−−−−−−→ (νa)P2. By

congruence (νa) (νc̃)P1σ >a (νa)P2. Moreover, a 6∈ n(e(Fσ)) ⊆ n(F) ∪
n(range(σ)).

Spar Take P |Q and assume that P
µs
−→
φ

P ′ with n(range(σ)) ∩ bn(µs) = ∅,

[[φσ]] and n(e(Fσ))∩bn(µs) = ∅ whenever F ∈ ch(µs), and that bn(µs)∩
fn(Q) = ∅ = bv(µs) ∩ fv(Q).

By induction there are c̃, P2 with bn(µs) = bn(e(µsσ))⊎{c̃} and Pσ
e(µsσ)
−−−→

P2 with (νc̃)P1σ >a P2.

158 APPENDIX A. PROOFS

Since fn(Qσ) ⊆ n(range(σ))∪ fn(Q) we have bn(e(µsσ))∩ fn(Qσ) = ∅, so
we may apply par.

Ssum Take P + Q and assume that P
µs
−→
φ

P ′ with n(range(σ)) ∩ bn(µs) = ∅,

[[φσ]] and n(e(Fσ)) ∩ bn(µs) = ∅ whenever F ∈ ch(µs).

By induction there are c̃, P2 with bn(µs) = bn(e(µsσ))⊎{c̃} and Pσ
e(µsσ)
−−−→

P2 with (νc̃)P1σ >a P2. We may then apply sum.

Srep Assume that !G(x).P
G(x)

−−−−→
[G :N]

P | !G(x).P and [[[Gσ :N]]]. Then ∃a ∈ N

such that a = e(Gσ). rep yields Gσ(x).Pσ
ax
−→ Pσ.

Salp Assume that P
µs
−→
φ
P ′ with n(range(σ))∩bn(µs) = ∅, [[φσ]] and n(e(Fσ))∩

bn(µs) = ∅ whenever F ∈ ch(µs), and that ρ : bn(µs) → N is injective
such that (range(ρ) \ dom(ρ)) ∩ (n(φ) ∪ n(range(σ)) ∪ fn(P ′)) = ∅.
Then P

µsρ
−−→
φρ

P ′ρ.

By induction there are c̃, P2 with bn(µs) = {bn(e(µsσ))} ⊎ {c̃} and

Pσ
e(µsσ)
−−−→ P2 with (νc̃)P1σ >a P2. If {b̃} 6= ∅, there are b̃, a,M such

that e(µsσ) = (νb̃) aM , and we let ρ′ = {n 7→ ρ(n) | n ∈ {b̃}}. Then

Pσ
(νb̃) aM
−−−−→ P2 ≡α Pσ

(νebρ′) aMρ′

−−−−−−−→ P2ρ
′, so by alp Pσ

(νebρ′) aMρ′

−−−−−−−→ P2ρ
′.

Moreover, (νc̃ρ)P1σρ >a P2ρ
′.

2. Proof by induction on the derivation of the transition. We first α-rename Pσ
to ensure that no names in n(range(σ)) or variables in dom(σ) are bound.

out Assume that Gσ〈Fσ〉.Pσ aM
−−→ Pσ with e(Gσ) = a and e(Fσ) = M ,

so [[([G :N] ∧ [F :M])σ]]. Sout yields G〈F 〉.P GF
−−−−−−−−−→
[G :N]∧[F :M]

P . By

reflexivity Pσ >a Pσ.

inp Assume that Gσ(x).Pσ
a(x)

−−−−−→
[Gσ :N]

Pσ. Then e(Gσ) = a, so [[[Gσ :N]]].

By Sin we have G(x).P
Gx

−−−−→
[G :N]

P . By reflexivity Pσ >a Pσ.

guard Assume that φσPσ
µ
−→ P1 where [[φσ]]. By induction there are c̃, P2, φ

′, µs
such that bn(µs) = {c̃} ⊎ bn(µ), µ = e(µsσ), [[φ′σ]] and P

µs
−→
φ′

P2 where

(νc̃)P2σ >a P1. We use Salp to ensure that bn(µs) ∩ n(φ) = ∅, allowing
us to apply Sguard. We then have φP

µs
−−→
φ∧φ′

P2.

com Assume that Pσ |Qσ τ
−→ (νb̃) (P1

{M
/x

}
|Q1), i.e., that there is a with

{b̃} ∩ fn(Pσ) = ∅, P
a(x)
−−→ P1σ and Q

(νb̃) aM
−−−−→ Q1σ.

By induction there are b̃1, b̃2, c̃, F, G,G′, P2, Q2, φ1, φ2 such that {b̃2} =

A.2. PROOFS OF CHAPTER 4 159

{c̃}⊎{b̃}, e(Gσ) = a = e(G′σ), e(Fσ) = M , [[φ1σ]], [[φ2σ]], and P
(ν eb1)G′ x
−−−−−→

φ1

P2 and Q
(ν eb2)GF
−−−−−→

φ2

Q2 with (νb̃1)P2σ >a P1 and (νc̃)Q2σ >a Q1. We use

Salp to ensure that {b̃1}∩ fn(Q) = {c̃}∩ fn(P) = {b̃1}∩{b̃2} = ∅ in order

to apply Scom. We then have P |Q
(ν eb1 eb2) τ

−−−−−−−−−→
φ1∧φ2∧[G=G′]

P2

{F
/x

}
|Q2. Finally,

(νb̃1b̃2) (P2

{F
/x

}
σ |Q2σ) >a (νb̃c̃) (((νb̃2)P2

{F
/x

}
σ) |Q2σ)

= (νb̃c̃) (((νb̃2)P2σ
{Fσ

/x
}
) |Q2σ)

>a (νb̃c̃) (P1

{M
/x

}
|Q2σ)

>a (νb̃) (P1

{M
/x

}
| (νc̃)Q2σ)

>a (νb̃) (P1

{M
/x

}
|Q1)

open Assume that (νn)Pσ
(νnb̃) aM
−−−−−→ P1 where n(M) ∋ n 6∈ {a} ∪ {b̃}.

By induction, there are F,G, d̃, c̃, P2, φ such that {d̃} = {c̃}⊎{b̃}, e(F) =

M , e(G) = a, {b̃} = {d̃} ∩ n(e(FΣ)), [[φσ]] and P
(ν ed)GF
−−−−→

φ
P2 with

(νc̃)P2σ >a P1. We apply Salp to ensure that n 6∈ {d̃}. By assumption
n 6∈ n(range(σ)), so n ∈ n(F), and we can apply Sopen.

res Assume that (νn)Pσ
µ
−→ (νn)P1 since n 6∈ n(µ). there are c̃, P2, φ, µs

such that bn(µs) = {c̃} ⊎ bn(µ), µ = e(µsσ), [[φσ]] and P
µs
−→
φ

P2 with

(νc̃)P2σ >a P1. We apply Salp to ensure that n 6∈ bn(µs).
If n 6∈ n(µs), Sres yields that (νn)P

µs
−→
φ

(νn)P2 where (νc̃) (νn)P2σ >a

(νn) (νc̃)P2σ >a P1.

If n ∈ n(µs), Sopen yields that (νn)P
(νn)µs
−−−−→

φ
P2 where (νn) (νc̃)P2σ >a

(νn)P1. Moreover, if µs = (νd̃)GF then n 6∈ n(M) = n(e(Fσ)).
par Assume that P |Q

µ
−→ P1 |Q. By induction there are c̃, P2, φ, µs such that

bn(µs) = {c̃} ⊎ bn(µ), µ = e(µsσ), [[φσ]] and P
µs
−→
φ
P2 where (νc̃)P2σ >a

P1. The side conditions for Spar are satisfied if bn(µs) ∩ fn(Q) = ∅,
which can be assured using Salp.

sum Assume that Pσ+Qσ
µ
−→ P1. By induction there are c̃, P2, φ, µs such that

bn(µs) = {c̃} ⊎ bn(µ), µ = e(µsσ), [[φσ]] and P
µs
−→
φ
P2 where P2σ >a P1.

By Ssum P +Q
µs
−→
φ
P2.

rep Assume that !Gσ(x).Pσ
a(x)
−−→ P | !Gσ(x).P . Then !Gσ(x).P

G(x)
−−−−→
[G :N]

P2

160 APPENDIX A. PROOFS

by Srep, and e([G :N]σ).

alp Assume that Pσ
(νb̃) aM
−−−−→ P ′ and (P

µ
−→ P ′) =α (P

(νebρ) aMρ
−−−−−−→ P ′ρ) where

ρ : {b̃} → N is injective such that (range(ρ) \ {b̃}) ∩ (n(a,M) ∪ fn(P)′ ∪
n(φ)) = ∅.
By induction there are c̃, P2, φ, µs such that bn(µs) = {c̃} ⊎ {b̃}, µ =

e(µsσ), [[φσ]] and P
µs
−→
φ
P2 where P2σ >a P1 and [[φσ]].

By Salp we may choose {c̃} ∩ (range(ρ)) = ∅. Then (P
µs
−→
φ

P ′) =α

(P
µsρ
−−→
φρ

P ′ρ), P2ρσ >a P1ρ and [[φρσ]].

2

Proposition A.2.3 (Proposition 4.1.24)
We define σ@µs where µs is a symbolic late input action such that bn(µs) ∩

n(range(σ)) = ∅ as the concrete early input action defined as follows: σ@(νb̃) τ = τ ,
σ@(νb̃)F G = (ν{bi | bi ∈ n(e(Fσ))}) e(Fσ) e(Gσ) and σ@(νb̃)F (x) = e(Fσ) σ(x).
We then have that

1. If (pe, P)
µ̃
−→ (pe′, P ′) and pe′,⊢ σ then Pi

σ@µi−−−→ Pi+1 for 0 ≤ i ≤ n and
P ′σ >a Pn+1, where P0 = Pσ and µ̃ = µ0µ1 · · ·µn.

2. If fn(P) ⊆ dom(tn), pe ⊢ σ and Pσ
µ̃
−→ Pn+1 such that (dom(tn) ∪ fn(Pσ)) ∩

bn(µ̃) = ∅ and bn(µi)∩ bn(µj) = ∅ for 0 ≤ i < j ≤ n then (pe, P)
µ̃′

−→ (pe′, P ′)
such that ∃ρ : pe′ ⊢ ρ, ∀v ∈ dom(tv) : ρ(v) = σ(v), P ′ρ >a Pn+1 and µi =
σ@µ′

i for 0 ≤ i ≤ n where µ̃ = µ0µ1 · · ·µn and µ̃′ = µ′
0µ

′
1 · · ·µ

′
n.

Proof:

1. By induction on |µ̃| = n. If n = 0 there is nothing to prove. If n = k + 1

we have that (pe, P)
µ̃
−→ (pe′, P ′)

µ
−→ (pe′′, P ′′) and pe′′ ⊢ σ then P ′ µ

−−−→
(νc̃)φ

s P
′′

where

• bn(µ) ∩ dom(tn′) = ∅
• tn′′ = tn′ ∪ {x 7→ i+ 1 | x ∈ bn(µ)}
• tv′′ = tv′ ∪ {x 7→ i+ 1 | x ∈ bv(µ)}
• ψ′′ = ψ′ ∧φ
• i = max(range(tn′) ∪ range(tv′) ∪ {0})

This gives that pe′ ⊢ σ, so by induction Pi
σ@µi−−−→ Pi+1 for 0 ≤ i ≤ k and

P ′σ >a Pk+1, where P0 = Pσ and µ̃ = µ0µ1 · · ·µk. Since n(range(σ)) ∩ ({c̃} ∪

bn(µ)) = ∅ Theorem 4.1.18.1 gives that P ′σ
e(µσ)
−−−→ Q and P ′′σ >a Q. By

Lemma 4.1.7 we then have that Pk+1
e(µσ)
−−−→ Q′ where Q >a Q

′. By transitivity
P ′′σ >a Q

′. We now have three different cases for µ.

A.2. PROOFS OF CHAPTER 4 161

τ : Then e(µσ) = τ = σ@µ.
(νb̃)F G: Then e(µσ) = (ν en(ea(F))) e(Fσ) e(Gσ) = σ@µ since {bi | bi ∈

n(e(Fσ))} = en(ea(F)) by Lemma 4.1.16.2.
F (x): Then e(µσ) = e(Fσ)(x) and σ@µ = e(Fσ) σ(x). Moreover,

Pk+1
e(Fσ) σ(x)
−−−−−−→ Q′

{σ
/x

}
. Since σ is idempotent and dom(σ)∩fn(Q′) ⊆ {x}

we have that P ′′σ >a Q
′
{σ(x)

/x
}

.

2. By induction on n. If n = −1 we take ρ = σ. If n = k+1 and pe ⊢ σ and Pσ
µ̃
−→

Pk+1
µk+1
−−−→ Pk+2 such that dom(tn) ∩ bn(µ̃µk+1) = ∅ and bn(µi) ∩ bn(µj) = ∅

for 0 ≤ i < j ≤ k + 1 then by induction (pe, P)
µ̃′

−→ (pe′, P ′) and ρ′ satisfies
pe′ ⊢ ρ′, ∀v ∈ dom(tv) : ρ′(v) = σ(v), P ′ρ′ >a Pk+1 and µi = σ@µ′

i for
0 ≤ i ≤ n where µ̃ = µ0µ1 · · ·µk and µ̃′ = µ′

0µ
′
1 · · ·µ

′
k. We have three different

cases for µk+1.

τ : Since P ′ρ′ >a Pk+1 we have by Lemma 4.1.7 that P ′ρ′
τ
−→ P ′′ such that

P ′′ >a Pk+2. By Theorem 4.1.18.2 we have that P ′ (νc̃) τ
−−−→
φ

s Q where [[φσ]]

and Qσ >a P
′′. By Lalp-grd we may choose c̃ ∩ dom(tn) = ∅. Then

we have that (pe′, P ′)
(νc̃) τ
−−−→ (tn′, tv′, ψ′ ∧ φ,Q) where Qρ >a Pk+2 by

transitivity. For ρ we can then choose ρ′.

(νb̃) aM : Since P ′ρ′ >a Pk+1 Lemma 4.1.7 gives that P ′ρ′
(νb̃) aM
−−−−→ P ′′ such

that P ′′ >a Pk+2. By Theorem 4.1.18.2 we have P ′ (νc̃)F G
−−−−→

φ
s Q where

µk+1 = e((νc̃)F G) = σ@(νc̃)F G, [[φσ]] and Qσ >a P
′′. By Lalp-grd

we may choose c̃ ∩ dom(tn) = ∅. Then we have that (pe′, P ′)
(νc̃)F G
−−−−→

(tn′ ∪ {b̃ 7→ i+ 1}, tv′, ψ′ ∧φ,Q) where Qρ >a Pk+2 by transitivity. For ρ
we can then choose ρ′.

aM : Then Pk+1
a(x)
−−→ Q where Pk+2 = Q

{M
/x

}
. Since P ′ρ′ >a Pk+1 we have by

Lemma 4.1.7 that P ′ρ′
a(x)
−−→ P ′′ such that P ′′ >a Q. By Theorem 4.1.18.2

we have that P ′ (νc̃)F (x)
−−−−−→

φ
s Q

′ where µk+1 = e(Fσ)(M), [[φσ]] and Q′σ >a

P ′′. By Lalp-grd we may choose c̃ ∩ (n(M) dom(tn)) = ∅.

Then (pe′, P ′)
(νc̃)F (x)
−−−−−→ (tn′, tv′ ∪ {x 7→ i+ 1}, ψ′∧φ,Q′) where i =

max(range(tv) ∪ range(tn)).
Now let σ′ : (n(ψ′ ∧φ)\(dom(tv′)∪dom(tn′))) → N be injective such that
range(σ′)∩(fn(Pσ)∪n(M)∪n(range(ρ))∪dom(tv′)∪dom(tn′)∪n(φ)) = ∅.

By Lemma 4.1.8 [[(ψ′ ∧φ)σ′ρ′]], so (tn, tv, ψσ, P)
µ̃′F (x)
−−−−→ (tn′, tv′ ∪ {x 7→

i+ 1}, (ψ′ ∧φ)σ′, Q′).
For ρ we then choose ρ′

{M
/x

}
. We then have that (tn′, tv′ ∪ {x 7→

162 APPENDIX A. PROOFS

i+ 1}, (ψ′ ∧φ)σ′) ⊢ ρ, ρ@F (x) = aM and Q′ρ >a Pk+2 by transitiv-
ity.

2

Lemma A.2.4 (Lemma 4.2.15) Hedged bisimulation is sound up to bĳective re-
naming and labelled bisimulation. In particular, if R is a hedged bisimulation up to
bĳective renaming and labelled bisimulation then Rbl is a hedged bisimulation.

Proof: We first note that “up to injective renaming” and “up to labelled bisim-
ilarity” commute and are both idempotent. If σ is a bĳective renaming N → N we
write σ−1 for its inverse.

Let R be a hedged bisimulation up to bĳective renaming and labelled bisimula-
tion. Assume that h ⊢ P Rbl Q and that P

µ
−→ P ′. By the definition of Rbl, there

are Pbl, Qbl and bĳective σ : N → N and ρ : N → N such that Pblσ ∼ P , Qblρ ∼ Q,
and h′ ⊢ Pbl R Qbl where h′ = {(Mσ−1, Nρ−1) | (M,N) ∈ h}.

1. Assume that µ = τ . By bisimilarity Pblσ
τ
−→ P ′

bl ∼ P ′. Since σ is bĳective
Pbl

τ
−→ P ′

blσ
−1 ∼ P ′σ−1.

Since R is a hedged bisimulation up to bĳective renaming and labelled bisim-
ulation there is Q′

bl such that Qbl
τ
−→ Q′

bl and h′ ⊢ P ′
blσ

−1 Rbl Q
′
bl.

Since ρ is bĳective Qblρ
τ
−→ Q′

blρ. By bisimilarity Q
τ
−→ Q′ with Q′

blρ ∼ Q′, so
h ⊢ P ′ Rblbl Q

′ where Rblbl = Rbl by commutativity and idempotence.
2. Assume that µ = a(x), and h ⊢ a ↔ b and B ⊂ N is finite such that
h ∪ IdB ⊢M ↔ N and B ∩ (fn(P,Q) ∪ n(h)) = ∅.
Since B are not necessarily fresh for Pbl, Qbl, we need to invent another set of
fresh names. Let C ⊂ N such that C ∩ (n(h, σ, ρ)∪ fn(Pbl, Qbl, P,Q)) = ∅ and
|C| = |B|. Letting η : B → C be any bĳective function, we get h′ ∪ IdC ⊢
Mσ−1η ↔ Nρ−1η.

By bisimilarity Pblσ
a(x)
−−→ P ′

bl with P ′
bl

{M ′

/x
}
∼ P ′

{M ′

/x
}

for all M ′ ∈ M. Since

σ is bĳective Pbl
aσ−1(x)
−−−−→ P ′

blσ
−1 with P ′

blσ
−1

{Mσ−1η
/x

}
∼ P ′σ−1

{Mσ−1η
/x

}
.

Since R is a hedged bisimulation up to bĳective renaming and labelled bisimu-

lation there isQ′
bl such thatQbl

bρ−1(x)
−−−−→ Q′

bl and h′ ∪ IdC ⊢ P ′
blσ

−1
{Mσ−1η

/x
}
Rbl

Q′
bl

{Nσ−1η
/x

}
. By applying η−1 we get h′ ∪ IdB ⊢ P ′

bl

{M
/x

}
σ−1 Rblb Q

′
bl

{Nρ−1

/x
}

.

Since ρ is bĳective Qblρ
b(x)
−−→ Q′

blρ. By bisimilarity Q
b(x)
−−→ Q′ with Q′

blρ
{N
/x

}
∼

Q′
{N
/x

}
. Thus h ∪ IdB ⊢ P ′

{M
/x

}
Rblbbl Q

′
{N
/x

}
where Rblbbl = Rbl by

commutativity and idempotence.
3. Assume that µ = (νc̃) aM , h ⊢ a↔ b and {c̃} ∩ (fn(P) ∪ n(π1(h))) = ∅.

A.2. PROOFS OF CHAPTER 4 163

As above, we may not have {c̃} fresh for Pbl. We take c̃′ with {c̃′}∩(fn(P, Pbl)∪
n(σ, π1(h))) = ∅, |c̃| = |c̃′| and a bĳective η : {c̃} → {c̃′}. By alp

P
(νc̃′) aMη
−−−−−→ P ′η.

By bisimilarity Pblσ
(νc̃′) aMη
−−−−−→ P ′

bl ∼ P ′η. Since σ is bĳective

Pbl
(νc̃′) aσ−1Mησ−1

−−−−−−−−−−→ P ′
blσ

−1 ∼ P ′ησ−1.
Since R is a hedged bisimulation up to bĳective renaming and labelled bisim-
ulation there are Q′

bl, d̃, N such that {d̃} ∩ (fn(Q) ∪ n(π2(h))) = ∅,

Qbl

(νd̃) bρ−1N
−−−−−−→ Q′

bl and h′ ⊢ P ′
blσ

−1 Rbl Q
′
bl.

Again, we may not have {d̃} fresh for Q. We take d̃′ with {d̃′} ∩ (fn(Q,Qbl) ∪

n(ρ, π2(h))) = ∅, |d̃| = |d̃′| and a bĳective ζ : {d̃} → {d̃′}. By alp

Qbl

(νd̃′) bρ−1Nζ
−−−−−−−→ Q′

blζ .

Since ρ is bĳective Qblρ
(νd̃′) bρ−1Nζ
−−−−−−−→ Q′

blζρ. By bisimilarity Q
(νd̃′) bρ−1Nζ
−−−−−−−→ Q′

with Q′
blζρ ∼ Q′, so h ⊢ P ′ Rblbl Q

′ where Rblbl = Rbl by commutativity and
idempotence.

Then R⊆∼h since R ⊆ Rbl because b and l are both expansions. 2

164 APPENDIX A. PROOFS

Appendix B

A Prototype Implementation

As it stands, the definition of symbolic bisimulation is not directly mechanizable.
The definition of environment consistency, in particular, contains several universal
quantifications over environment-respecting substitution pairs. During the course
of our work, we implemented a prototype that checks for a slightly more concrete
notion of bisimulation (some variable instantiations are made) for a simple expression
language guard language without negation.

Language and Semantics Inspired by the Mobility Workbench [VM94], we add
abstractions and concretions to the language. Processes are kept in a standard
form and de Bruĳn indices [Hir99] are used to handle bound names. To simplify
the writing of processes we encoded a let construct using abstractions and
[· :M].

Semantics There are no real difficulties to adapt the symbolic semantics to abstrac-
tions and concretions. The most tricky part is to manage de Bruĳn indices
properly.

Environments The usual functions (synthesis, analysis et c.) on hedges are easy
to implement. It is also straightforward to check that a pair of substitutions
(σ, ρ) respects a symbolic environment se. In this prototype, we did not im-
plement environment decompositions, yielding some incompletess wit hrespect
to barbed equivalence.
The major problem for mechanization is verifying environment consistency. To
check if all concretizations of an environment are consistent, it is not sufficient
to consider only the most general unifiers, due to the presence of complex keys
(c.f. Example 4.3.3). We used a brute-force approach, calculating decryption
conditions for all message pairs in the environment, intended to reduce this
problem to formula equivalence. However, we did not acheive a correctness
proof for our algorithm (a recent proof of a similar result takes up 90 pages
in [Bau07]).

166 APPENDIX B. A PROTOTYPE IMPLEMENTATION

Bisimulation For the bisimulation, we need to check if a transition is detectable
and possible. Using the same algorithm as for checking the consistency of all
concretizations of an environment, we calculated conditions under which there
is a concretization that knows the channel. We also have that a transition is
impossible iff its transition guard is equivalent to false.

We successfully validated our prototype on the subset of protocols of the Security
Protocols Online REpository [Cac] that only use symmetric encryption. Our proto-
type was used in conjunction with the then-current version of Spyer [BN07] and an
ad-hoc tool for generating specifications in process format from implementations,
inspired by the examples of [AG98]. Symbolic bisimilarity improves considerably on
the size of the bisimulation relations compared to the decision procedure of [Hüt02]
(which also can be used for concrete hedged bisimilarity). Using our prototype im-
plementation, there are 219 states in the bisimulation showing the secrecy of the
Wide-mouthed Frog protocol of [AG99] with one participant. In contrast, the de-
cision procedure mentioned above generates ≫ 2220

branches for each of the five
inputs of a run of the protocol.

Bibliography

[AB05] Martín Abadi and Bruno Blanchet. Analyzing security protocols with
secrecy types and logic programs. Journal of the ACM, 52(1):102–146,
2005.

[AC04a] Martín Abadi and Véronique Cortier. Deciding knowledge in security
protocols under equational theories. In Josep Díaz, Juhani Karhumäki,
Arto Lepistö, and Donald Sannella, editors, Proceedings of ICALP ’04,
volume 3142 of LNCS, pages 46–58. Springer, 2004.

[AC04b] Martín Abadi and Véronique Cortier. Deciding knowledge in security
protocols under equational theories. Technical Report RR-5169, INRIA,
2004.

[AC06] Martín Abadi and Véronique Cortier. Deciding knowledge in secu-
rity protocols under equational theories. Theoretical Computer Science,
367(1-2):2–32, 2006.

[ACD07] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Combin-
ing algorithms for deciding knowledge in security protocols. In Boris
Konev and Frank Wolter, editors, Proceedings of FroCoS ’07, volume
4720 of LNCS, pages 103–117. Springer, 2007.

[AF01] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Proceedings of POPL ’01, pages 104–115, 2001.

[AG98] Martín Abadi and Andrew D. Gordon. A bisimulation method for cryp-
tographic protocols. Nordic Journal of Computing, 5(4):267–303, 1998.

[AG99] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The Spi calculus. Journal of Information and Computation,
148(1):1–70, 1999.

[AH85] Charles Antony and Tony Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

168 BIBLIOGRAPHY

[AL00] Roberto M. Amadio and Denis Lugiez. On the reachability problem in
cryptographic protocols. In Catuscia Palamidessi, editor, Proceedings of
CONCUR ’00, pages 380–394, 2000.

[AN95] Ross Anderson and Roger Needham. Programming Satan’s computer. In
Jan Wan Leeuwen, editor, Computer Science Today: Recent Trends and
Developments, volume 1000 of LNCS, pages 426–441. Springer, 1995.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verifi-
cation of selected equivalences for security protocols. Journal of Logic
and Algebraic Programming, 75(1):3–51, 2008.

[Bau07] Mathieu Baudet. Sécurité des protocoles cryptographiques : aspects
logiques et calculatoires. PhD thesis, École Normale Supérieure de
Cachan, 2007.

[BB05] Michele Boreale and Maria Grazia Buscemi. A method for symbolic anal-
ysis of security protocols. Theoretical Computer Science, 338(1-3):393–
425, 2005.

[BBN04] Johannes Borgström, Sébastien Briais, and Uwe Nestmann. Symbolic
bisimulation in the spi calculus. In Philippa Gardner and Nobuko
Yoshida, editors, Proceedings of CONCUR ’04, volume 3170 of LNCS,
pages 161–176. Springer, 2004.

[BD96] Michele Boreale and Rocco De Nicola. A symbolic semantics for the
π-calculus. Information and Computation, 126(1):34–52, 1996.

[BDP99] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof tech-
niques for cryptographic processes. In Giuseppe Longo, editor, Proceed-
ings of LICS ’99, pages 157–166. IEEE, Computer Society Press, July
1999.

[BDP02] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof tech-
niques for cryptographic processes. SIAM Journal on Computing,
31(3):947–986, 2002.

[BFGP03] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and
Riccardo Pucella. Tulafale: A security tool for web services. In
Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.
de Roever, editors, Proceedings of FMCO ’03, volume 3188 of LNCS,
pages 197–222. Springer, 2003.

BIBLIOGRAPHY 169

[BFGT06] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and
Stephen Tse. Verified interoperable implementations of security pro-
tocols. In Proceedings of CSFW ’06, pages 139–152. IEEE Computer
Society, 2006.

[BG02] Michele Boreale and Daniele Gorla. On compositional reasoning in the
spi-calculus. In Mogens Nielsen and Uffe Engberg, editors, Proceedings
of FoSSaCS ’02, volume 2303 of LNCS, pages 67–81. Springer, 2002.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on
Prolog rules. In Proceedings of CSFW’01, pages 82–96. IEEE, 2001.

[BN07] Sébastien Briais and Uwe Nestmann. A formal semantics for protocol
narrations. Theoretical Computer Science, 389(3):484–511, 2007.

[Bor95] Michele Boreale. Process Algebraic Theories for Mobile Systems. PhD
thesis, Università degli Studi di Roma “La Sapienza”, 1995.

[Bor01] Michele Boreale. Symbolic trace analysis of cryptographic protocols.
In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
Proceedings of ICALP ’01, pages 667–681, 2001.

[Bor04] Micele Boreale. Erratum of Proof techniques for cryptographic processes.
Unpublished manuscript, August 2004.

[BPV05] Michael Baldamus, Joachim Parrow, and Björn Victor. A fully abstract
encoding of the pi-calculus with data terms. In Luís Caires, Giuseppe F.
Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
Proceedings of ICALP ’05, volume 3580 of LNCS, pages 1202–1213.
Springer, 2005.

[Bri08] Sébastien Briais. Theory and Tool Support for the Formal Verification
of Cryptographic Protocols. PhD thesis, EPFL, 2008.

[Cac] LSV Cachan. Security Protocols Online REpository. Accessed on Febru-
ary 23, 2008, http://www.lsv.ens-cachan.fr/spore/.

[CDL06] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A sur-
vey of algebraic properties used in cryptographic protocols. Journal of
Computer Security, 14(1):1–43, 2006.

[CKRT03] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Tu-
ruani. Deciding the security of protocols with Diffie-Hellman exponenti-
ation and products in exponents. In Paritosh K. Pandya and Jaikumar

170 BIBLIOGRAPHY

Radhakrishnan, editors, Proceedings of FSTTCS ’03, volume 2914 of
LNCS, pages 124–135. Springer, 2003.

[Cor02] Veronique Cortier. Observational equivalence and trace equivalence in
an extension of spi-calculus. Technical Report LSV-02-3, Laboratoire de
Specification and Verification, ENS de Cachan, March 2002.

[Cor03] Véronique Cortier. Vérification automatique des protocoles cryp-
tographiques. PhD thesis, École Normale Supérieure de Cachan, 2003.

[CRZ07] Véronique Cortier, Michaël Rusinowitch, and Eugen Zalinescu. Relating
two standard notions of secrecy. Logical Methods in Computer Science,
3, 2007.

[CS02] Hubert Comon and Vitali Shmatikov. Is it possible to decide whether a
cryptographic protocol is secure or not? Journal of Telecommunications
and Information Technology, 4:5–15, 2002.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Coercion-
resistance and receipt-freeness in electronic voting. In Proceedings of
CSFW’06, pages 28–39. IEEE Computer Society Press, July 2006.

[DKR07] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic bisim-
ulation for the applied pi-calculus. In V. Arvind and Sanjiva Prasad,
editors, Proceedings of FSTTCS’07, LNCS. Springer, December 2007.
To appear.

[dNH84] Rocco de Nicola and Matthew Hennessy. Testing equivalence for pro-
cesses. Theoretical Computer Science, 34:81–133, 1984.

[DSV03] Luca Durante, Riccardo Sisto, and Adriano Valenzano. Automatic test-
ing equivalence verification of spi-calculus specifications. ACM Trans-
actions on Software Engineering and Methodology, 12(2):222–284, April
2003.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key proto-
cols. IEEE Transactions on Information Theory, 29(2):198–208, March
1983.

[EHHO99] Anders Strandløv Elkjær, Micheal Höhle, Hans Hüttel, and Kasper Over-
gaard. Towards automatic bisimilarity checking in the spi calculus. In
Combinatorics, Computation & Logic, volume 21(3) of Australian Com-
puter Science Communications, pages 175–189. Springer, January 1999.

BIBLIOGRAPHY 171

[FA01] Marcelo Fiore and Martín Abadi. Computing symbolic models for verify-
ing cryptographic protocols. In Proceedings of CSFW ’01, pages 160–173,
2001.

[FHJ01] Ulrik Frendrup, Hans Hüttel, and Jesper Nyholm Jensen. Two notions
of environment sensitive bisimilarity for spi-calculus processes. Unpub-
lished manuscript, 2001.

[GJ04] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric
cryptographic protocols. Journal of Computer Security, 12(3-4):435–483,
2004.

[GJ05] Andrew D. Gordon and Alan Jeffrey. Secrecy despite compromise:
Types, cryptography, and the pi-calculus. In Martín Abadi and Luca
de Alfaro, editors, Proceedings of CONCUR ’05, volume 3653 of LNCS,
pages 186–201. Springer, 2005.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[Hir99] Daniel Hirschkoff. Mise en Œuvre de Preuves de Bisimulation. PhD
thesis, École Nationale des Ponts et Chaussées, 1999.

[HJ06] Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus. Infor-
mation and Computation, 204(8):1195–1263, 2006.

[HL95] Matthew Hennessy and Huimin Lin. Symbolic bisimulations. Theoretical
Computer Science, 138(2):353–389, 1995.

[Hui99] Antti Huima. Efficient infinite-state analysis of security protocols. In
FLOC Workshop on Formal Methods and Security Protocols, 1999.

[Hüt02] Hans Hüttel. Deciding framed bisimilarity. In Antonín Kučera and
Richard Mayr, editors, Pre-proceedings of INFINITY ’02, pages 1–20,
june 2002.

[JV07] Magnus Johansson and Björn Victor. A fully abstract symbolic seman-
tics for the applied pi-calculus. Unpublished manuscript, May 2007.

[KM07] Temesghen Kahsai and Marino Micu-
lan. Spi calculus in Isabelle/HOL-Nominal.
http://www.cs.swan.ac.uk/̃ csteme/SpiInIsabelle/SpiInIsabelle.html,
2007.

172 BIBLIOGRAPHY

[KMM94] R. Kemmerer, C. Meadows, and J. Millen. Three systems for crypto-
graphic protocol analysis. Journal of Cryptology, 7(2):79–130, 1994.

[KR04] Steve Kremer and Mark D. Ryan. Analysing the vulnerability of proto-
cols to produce known-pair and chosen-text attacks. ENTCS, 128(5):87–
104, 2004. Proceedings of SecCo ’04.

[LCFW05] Yinhua Lü, Xiaorong Chen, Luming Fang, and Hangjun Wang. Towards
a symbolic bisimulation for the spi calculus. In Xiaohua Jia, Jie Wu, and
Yanxiang He, editors, Mobile Ad-Hoc and Sensor Networks, volume 3794
of LNCS, pages 1095–1102. Springer, 2005.

[Lin94] Huimin Lin. Symbolic bisimulations and proof systems for the pi-
calculus. Technical Report 94:07, COGS, University of Sussex, 1994.

[Liu94] Xinxin Liu. Characterizing bisimulation congruence in the pi-calculus
(extended abstract). In Bengt Jonsson and Joachim Parrow, editors,
Proceedings of CONCUR ’94, volume 836 of LNCS, pages 331–350.
Springer, 1994.

[LMBG05] Kevin D. Lux, Michael J. May, Nayan L. Bhattad, and Carl A. Gunter.
WSEmail: Secure internet messaging based on web services. In Proceed-
ings of ICWS ’05, pages 75–82. IEEE Computer Society, 2005.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In Tiziana Margaria and Bernhard Steffen, edi-
tors, Proceedings of TACAS ’96, volume 1055 of LNCS, pages 147–166.
Springer, 1996.

[Mar99] Fabio Martinelli. Formal methods for the analysis of open systems with
applications to security properties. PhD thesis, University of Siena, 1999.

[Mar02] Fabio Martinelli. Symbolic semantics and analysis for crypto-ccs with
(almost) generic inference systems. In Krzysztof Diks and Wojciech
Rytter, editors, Proceedings of MFCS ’02, volume 2420 of LNCS, pages
519–531. Springer, 2002.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer, 1980.

[Mil81] Robin Milner. A modal characterisation of observable machine-
behaviour. In Egidio Astesiano and Corrado Böhm, editors, Proceedings
of CAAP ’81, volume 112 of LNCS, pages 25–34. Springer, 1981.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

BIBLIOGRAPHY 173

[Mil99] Robin Milner. Communicating and Mobile Systems: The pi-Calculus.
Cambridge University Press, 1999.

[Mit01] John C. Mitchell. Probabilistic polynomial-time process calculus and
security protocol analysis. In David Sands, editor, Proceedings of ESOP
2001, volume 2028 of LNCS, pages 23–29. Springer, 2001.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/II. Journal of Information and Computation, 100:1–77,
September 1992.

[MPW93] Robin Milner, Joachim Parrow, and David Walker. Modal logics for
mobile processes. Theoretical Computer Science, 114:149–171, 1993.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich,
editor, Proceedings of ICALP ’92, volume 623 of LNCS, pages 685–695.
Springer, 1992.

[Par81] David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Proceedings of the 5th GI-Conference on Theoretical
Computer Science, volume 104 of LNCS, pages 167–183. Springer, 1981.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6:85–128, 1998.

[Ros97] A. William Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1997.

[San96] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta
Informatica, 33:69–97, 1996.

[San98] Davide Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8(5):447–479, 1998.

[Sch96] Steve Schneider. Security properties and CSP. In Proceedings of SP ’96,
pages 174–187, Washington, DC, USA, 1996. IEEE Computer Society.

[SR01] Steve A. Schneider and Peter Ryan. The Modelling and Analysis of
Security Protocols. Addison-Wesley, 2001.

[SW01] Davide Sangiorgi and David Walker. The pi-Calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

[Tiu07] Alwen Tiu. A trace based bisimulation for the spi calculus: An extended
abstract. In Zhong Shao, editor, Proceedings of APLAS ’07, volume 4807
of LNCS, pages 367–382. Springer, 2007.

174 BIBLIOGRAPHY

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — a tool for
the π-calculus. In David L. Dill, editor, Proceedings of CAV ’94, volume
818 of LNCS, pages 428–440. Springer, 1994.

[WL93] Tomac Y.C. Woo and Simon S. Lam. A semantic model for authen-
tication protocols. In Proceedings of IEEE Symposium on Research in
Security and Privacy, pages 178–194, 1993.

Curriculum Vitæ

Personal Information

Full name: Eric Johannes Borgström
Birth date: 1978-12-29
Swedish citizen, born in Sweden.

Education

I hold a Master of Science in Engineering from the Royal Institute of Technology
(KTH), Stockholm, awarded in June 2003. My field of studies was Computer Science
and Computer Engineering.

School Subject Period ECTS credits

KTH, Stockholm Computer science 1998-09 – 2003-06 186
EPFL, Lausanne Computer science 2000-10 – 2001-07 58
Stockholm University Mathematics 1998-04 – 2000-02 97.5
Stockholm University History of ideas 1998-09 – 1999-05 30

Full-time Professional Experience

Employer Job description Period

TU Berlin Research Assistant 2005-10 –
Microsoft Research, Cambridge Research Intern 2006-07 – 2006-09
EPFL, Lausanne Research Assistant 2002-09 – 2005-09
Swedish military R&D 1999-06 – 1999-09,

1998-06 – 1998-07
Military service Communications 1997-06 – 1998-05

Publications

Johannes Borgström, Andrew D. Gordon and Andrew Phillips, A Chart Seman-
tics for the pi Calculus. In Proceedings of EXPRESS 2007, ENTCS 194(2), pages
3-29, Elsevier 2008.

Johannes Borgström, Simon Kramer and Olga Grinchtein, Timed Calculus of
Cryptographic Communication. In Proceedings of FAST 2006, LNCS 4691, Springer
2007.

Johannes Borgström, Simon Kramer and Uwe Nestmann, Calculus of Crypto-
graphic Communication. Presented at FCS-ARSPA 2006.

Johannes Borgström, Static Equivalence is Harder than Knowledge. In Proceed-
ings of EXPRESS 2005, ENTCS 154(3), pages 45-57, Elsevier 2006.

Johannes Borgström and Uwe Nestmann, On Bisimulations for the Spi-calculus.
In Mathematical Structures in Computer Science 15, pages 482-552. Cambridge
University Press 2005. Short version in Proceedings of AMAST 2002, LNCS 2422,
Springer 2002.

Johannes Borgström, Sébastien Briais and Uwe Nestmann, Symbolic Bisimula-
tion in the Spi Calculus. In Proceedings of CONCUR 2004, LNCS 3170, Springer
2004.

Johannes Borgström, Uwe Nestmann, Luc Onana Alima and Dilian Gurov, Ver-
ifying a Structured Peer-to-peer Overlay Network: The Static Case. In Proceedings
of Global Computing 2004, LNCS 3267, Springer 2004. Long version available as
EPFL Technical report IC/2004/76.

