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ABSTRACT : For recurrent service providers (fast-food, entertainment, medical care,...), retaining loyal
customers is obviously a key issue. The customers’ loyalty essentially depends on their service satisfaction
defined via an ad-hoc utility function. Among several criteria, the utility function strongly depends on the
past perceived waiting time. Moreover, the patience that customers consent to allow in waiting does often
decrease as a function of the successive utilizations of the service (i.e. weariness). We propose here an idealized
queueing model in which the customers’ loyalty is determined only by the individual experience gained during
the successive visits to a service (i.e. the waiting time and the number of services yet received). For regimes
where the law of large numbers holds, a deterministic approach enables to analytically discuss the resulting
multi-agent dynamics governing the customers’ flows. One is able, in particular, to fully calculate, analytically,
the characteristics of the emerging complex patterns (i.e. here structured temporal oscillations) which are
observed to be strongly structurally stable.

KEYWORDS : Recurrent Services, Leisure and Hospitality, Loyalty Loss, History-Based Routing,
Queueing Networks.

1. INTRODUCTION

Whatever the type of service, waiting in queues be-
fore being attended reduces the utility perceived by
the customers. As time is valued for both the server
and the customers, the complex relations between
the waiting times and the consumers’ satisfaction is
a central topic in marketing, (Bielen and Demoulin,
2007) and the references therein. Accordingly, when
for a given task, competing facilities are available,
a server’s ability to reduce the actual or perceived
waiting time of incoming customers increases its
attractiveness and may drastically modifies the
market sharing proportions, an example with two
servers is formalized in (Gallay and Hongler, 2007).
Lowering the service duration, to enhance customers’
satisfaction, does require investments which have
to be counterbalanced by an extra inflow of new
customers. A synthetic and quantitative formula-
tion of such heuristic observations requires a set
of mathematical tools available from a ”fusion”
between game and queueing theoretical approaches,
a general point of view adopted by R. Hassin and
M. Haviv in (Hassin and Haviv, 2003). One of the
fundamental lessons taught by game theory is that

the distinction between games played once only with
those played repeatedly is mandatory, as it leads
to drastically different optimal strategies (Aumann,
1987). Similarly, for competition between queueing
nodes, the fact that customers pay a single or several
successive visits to the servers does strongly influence
the resulting traffic flows. In (Hassin and Haviv,
2003), customers always pay a single visit to the
servers and the resulting stationary equilibria (i.e.
the Nash equilibria) are thoroughly discussed. In the
present paper, we will focus on the new dynamical
features emerging from repeated visits to a server.
Our modeling approach has been stimulated by
several recent (yet mostly experimental) studies of
systems where recurrent service requirements occur.
Among them, actual situations ranging from medical
care (Bielen and Demoulin, 2007) to leisure and
hospitality facilities such as fast-food restaurants
(Law et al., 2004), ski resorts (Pullman and Thomp-
son, 2002) and attraction parks (Kawamura et al.,
2004a), (Kawamura et al., 2004b), (Kataoka et al.,
2005) are some well-known illustrations. Often in
recurrent service systems, the cost of retaining an
existing customer is comparatively less than the cost
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of acquiring a new one and hence the customers’
loyalty is a central issue in optimizing gains.

Along the lines paved by these applications, let
us consider, as an illustration, an attraction park
in which, among other attractions, a roller-coaster
is offered. This roller-coaster entertains people at a
limited flow rate which, due to the high demand, is
responsible for the formation of a queueing process.
We here assume that the park entrance fare offers to
visitors the possibility to attend any attraction re-
peatedly and without limitation. Due to the exciting
sensations generated by the roller-coaster, customers
agree to line-up and are fairly patient when attending
the coaster for the first time. Repeated runs however
does wear their patience. The trade-off between
the excitement delivered by a roller-coaster trip
and the waiting burden incurred before boarding,
can be quantified by a (usually individual) utility
function. When the utility is negative, the customers
are deterred and leave the roller-coaster for another
spot. The previous roller-coaster example belongs
to the highly profitable leisure and hospitality
(L&H) sector, which includes the entertainment and
recreation, the tourism and accommodation, and
the food services. Far from being exceptional, note
that the previous customers’ behavior is in fact quite
common in the L&H sector. Ski traffic management
offers another world-wide illustration. Generically,
people will change slope either when they have
suffered a large waiting-time at the ski lift and/or
when they are bored of having done the same ski
run several times. Despite to the apparent simplicity
of the above roller-coaster illustration, the resulting
queueing dynamics is highly complex. It does indeed
simultaneously depend on a routing feedback loop,
i.e. an intrinsic non-linearity due to the customers
lining for a new trip and on history-based (HB)
routing decisions. The decision to come back (i.e.
to remain loyal) or to quit is taken according to a
patience threshold, itself depending on the number
of previous runs already achieved. The presence
of HB mechanisms (i.e. mechanisms in which
memory enters) gives a non-Markovian character to
the dynamics. Beside that, the individual routing
decisions confer to this queueing mechanism the
basic feature characterizing multi-agent systems
(Bonabeau, 2002). Indeed, the server is visited by
a population of autonomous decision-making

agents individually assessing their situation

and making decision on the basis of a HB

rule. At first sight, little hope is left regarding the
possibility to characterize analytically the traffic
flows resulting from this complex dynamics. Keeping
the central features, namely non-linearity and

HB decision making, we are nevertheless able, for
a somehow simplified class of models, to describe

analytically the resulting dynamics. Basically, two
simplifications of the original situation are intro-
duced. On one hand, we limit to agents having
a common utility function. On the other hand,
we decouple the role played by the waiting-time
and the number of repeated visits to the server by
introducing two separate utility thresholds. When
exceeded, these thresholds trigger the loss of the
agents’ loyalty. This simplified multi-agent dynamics
generates an emergence of generically stable

time-dependent periodic queue contents.

Our paper is organized as follows. In section 2,
we start by introducing the formal model and we
present experimental results obtained by simulation.
Section 3 is then devoted to the analytical approach
which produces a complete understanding of the
experimental results.

2. SIMPLIFIED MODEL OF A RECUR-

RENT SERVICE

We model the customers’ behavior faced to a recur-
rent service with a single queueing network (QN)
composed, as illustrated in figure 1, of a single server
and a feedback queue. An incoming flow of cus-

Figure 1: A single stage queueing system with feed-
back loop.

tomers, described by a renewal process with mean
inter-arrival time 1

λ
and probability distribution A(x)

with density dA(x), is served by a processing unit
which service times are i.i.d. random variables with
mean 1

µ
, probability distribution B(x) and density

dB(x). Accordingly, the parameters λ and µ are re-
spectively the incoming and service rates of the re-
newal processes. We assume that the distributions
A(x) and B(x) have finite moments. Here, we sup-
pose the traffic intensity ρ = λ

µ
< 1 ⇔ λ < µ,

which ensures the stability of the queueing system
when there is no feedback loop. Assume also that the
waiting room capacity is unlimited and that the ser-
vice discipline is first-in-first-out (FIFO). After being
served at the decision node n, each customer has to
choose among two possibilities, namely:

i) either to follow the feedback loop and line up
again for being served once more



MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

ii) or to quit the system definitively.

Several contributions (Takàcs, 1963), (D’Avignon
and Disney, 1976) and (Peköz, 2002) consider the
situation arising when the decision between the
choices i) and ii) is taken randomly. When this
is the case, by imposing a stationary flow balance
(i.e. incoming equals outgoing flow), we drive the
system into a self-consistant stationary regime. As
we will now see, such purely stationary flows strongly
differ from the queue dynamics that can be observed
when “intelligent” agents, able to take HB routing
decisions, circulate in the network.

Our simplified model of recurrent services as-
sumes that the customers’ loyalty is based on their
individual experience with the service provider.
More particularly, the decision of a customer, at n,
either to come back for another service or to leave
the system depends on

1) the last sojourn time W it has spent in the sys-
tem in order to be served (i.e. W is the sum of
the queueing and the processing times)

and on

2) the number of services Nit it has already received
(we say that the customer is at its ith iteration).

We suppose furthermore that the influence played by
these two measures is decoupled. The customers, who
share a common utility function (i.e. we consider ho-
mogenous customers), consider two separate thresh-
olds. They possess first a common patience parameter
P to which they will compare their last experienced
sojourn time W . Secondly, they will check that they
have received less services than a common weariness
parameter Nmax. It leads to the introduction of two
independent rules R1 and R2, that the customers will
apply when they decide their routing at decision node
n. The first one is controlled by the sojourn time and
is given by:

R1 =

{
follow alternative i) if W ≤ P,

follow alternative ii) if W > P.

The second rule is driven by the number of already
received services, it is defined as:

R2 =

{
follow alternative i) if Nit < Nmax,

follow alternative ii) if Nit ≥ Nmax.

Combining these two independent rules, the cus-
tomers will hence choose their routing at n following:

R = R1 ∩R2

=







follow alternative i) if W ≤ P and
Nit < Nmax,

follow alternative ii) otherwise.

When alternative i) is chosen, we speak of loyal

customers, as they are pleased with the server
and then return to it for another service. The rule
R states that, providing its sojourn time remains
below its patience parameter and providing it has
already received less than a limit number of services,
a customer comes back for another service.

The dynamics involving R1 alone is fully dis-
cussed in (Filliger and Hongler, 2005). In this case
and when P is large enough, quasi-deterministic
cyclo-stationary regimes emerge, i.e. stable temporal
oscillations of the queue level Q(t) are observed
and this independently of the detailed nature of the
probability laws A(x) and B(x).

Note that our simplified model assumes that
Pi, the customers’ common patience parameter when
they receive their ith service, has the following form:

Pi =

{
P if i ≤ Nmax,

0 if i > Nmax.

The next step to get closer to real-life customers be-
havior will be to consider more general forms for Pi.
Typically, this patience parameter could be monoton-
ically decreasing in i, denoting that the customers’
loyalty suffers from a progressive weariness over time.
Likewise, Nmax is here common to all customers. A
natural generalization would be to consider that each
customer possesses its own behavior when faced to
weariness.

2.1. Experimental Observations

Figures 2 and 3 show the typical dynamics of the
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Figure 2: Queue length dynamics when inter-arrival
times are uniformly distributed in [1, 17] with mean
1
λ

= 9 and CV = 0.51, service times are uniformly
distributed in [0.1, 1.7] with mean 1

λ
= 0.9 and CV =

0.51 (ρ = 0.1), P = 300 and Nmax = 12.
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Figure 3: Queue length dynamics when inter-arrival
times are Erlang(3) with mean 1

λ
= 9 and CV = 0.57,

service times are Erlang(3) with mean 1
µ

= 0.9 CV =

0.57 (ρ = 0.1), P = 300 and Nmax = 12.

queue length when customers follow the HB rule R

to choose their routing at n.

Independently of the inter-arrival and service
times distributions and when P is large enough (see
(Filliger and Hongler, 2005) for a detailed discussion
on the parameter P ), we observe the emergence
of quasi-deterministic cyclo-stationary regimes, i.e.
stable temporal oscillations of the queue content.
Indeed, despite to the presence of strong fluctuations,
this robust and quasi-deterministic behavior is a
direct consequence of the law of large numbers
(LLN). The smoothing effect due to the underlying
LLN is manifestly observable in figures 2 and 3,
a further discussion on this aspect can be found
in (Filliger and Hongler, 2005). According to the
above considerations, for sufficiently large P , the
dynamics can be approximatively discussed via a
deterministic approach. The dynamics resulting from
deterministic inter-arrival and service times is illus-
trated in figure 4. It is furthermore remarkable that
the oscillations exhibit an extra peak during their
increasing phase. This peak is entirely due to rule R2.

A restricted range of the values of the control
parameters (i.e. λ, µ, P and Nmax) produces the
fully complex dynamics visible in figures 2, 3 and 4.
Indeed, when Nmax is large, the customers remain
in the system for a long time before being wearied.
Hence, the queue length increases (new customers
arrivals) and eventually reaches a level implying
sojourn times larger than P . All the customers
hence leave the system due to routing rule R1 (i.e.
waiting-time) and none following R2 (i.e. maximum
number of received services). The resulting dynamics
is illustrated in figures 5 and 6 (random and de-
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Figure 4: Queue length dynamics for deterministic
inter-arrival times 1

λ
= 9, deterministic service times

1
µ

= 0.9 (ρ = 0.1), P = 300 and Nmax = 12.
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Figure 5: Queue length dynamics when inter-arrival
times are Erlang(3) with 1

λ
= 9, service times are

Erlang(3) with 1
µ

= 0.9 (ρ = 0.1), P = 300 and
Nmax = 25.

terministic cases). As we shall see later, the regime
where no extra peak appears, emerges when:

ρ (1 + ρ)Nmax−1
≥ 1. (1)

Whenever condition (1) holds, the model is similar to
the one where only rule R1 is implemented (Filliger
and Hongler, 2005).

We have focused here on homogenous agents
behavior. However, note that the emergence of
a global behavior does also arise for agents with
individual patience parameter, see (Filliger and
Hongler, 2005).
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Figure 6: Queue length dynamics for deterministic
inter-arrival times 1

λ
= 9, deterministic service times

1
µ

= 0.9 (ρ = 0.1), P = 300 and Nmax = 25.

3. ANALYTICAL DISCUSSION

As illustrated in section 2.1, experimental results
show that the dynamics exhibit stable temporal oscil-
lations of the queue content even in presence of strong
fluctuations. Hence from now on, we focus on de-
terministic dynamics. We decompose the oscillatory
dynamics in five distinct phases. Figure 7 gives an il-
lustration of these five phases on a generic oscillation
of the queue length.
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Figure 7: A generic oscillation of the queue content
dynamics for deterministic inter-arrival times 1

λ
= 9,

deterministic service times 1
µ

= 0.9 (ρ = λ
µ

= 0.1),
P = 300 and Nmax = 12.

• First Phase: Pure Feeding

As we will see in the fifth phase below, the queue
is initially populated with an offset of Pλ fresh
customers, who haven’t received any service yet.

During the first phase, which begins without loss
of generality at time t = 0, the queue length re-
mains small enough so that the customers wait
less than their patience parameter P (and hence
rule R1 is satisfied). Furthermore, since there is
initially only fresh customers, no customer leaves
the system due to the maximum number Nmax of
iterations. The queue length hence increases at
rate λ (arrival rate of new customers in the sys-
tem). This first phase ends when the original Pλ

customers have received Nmax services and thus
will start to leave the system. To compute the
resulting time T1, we focus on Q(k), the num-
ber of customers in the queue when all the Pλ

original customers have completed k iterations,
k = 0, ..., Nmax. We first have that:

Q(1) = Pλ
1

µ
λ + Pλ = Pλ (1 + ρ) .

Indeed, the necessary time to serve the Pλ orig-
inal customers is equal to T (0) = Pλ 1

µ
. During

that time, T (0)λ fresh customers join the queue,
which is still populated by the Pλ original cus-
tomers, who have now received one service. Fol-
lowing this iterative reasoning, we find that:

Q(k) = Pλ (1 + ρ)
k
, k = 0, ..., Nmax.

Accordingly, we find that:

T1 =
1

µ

Nmax−1∑

k=0

Q(k) = P
[

(1 + ρ)
Nmax − 1

]

.

2

• Second Phase: Offset Purging

During the second phase, beginning at T1, a pro-
portion of the customers receiving service leaves
the system because they have been provided the
maximum number of services (i.e. wearied cus-
tomers). At the end of the first phase, Q(Nmax)
customers populate the queue. Among them, Pλ

have already done Nmax iterations (the original
offset of customers). Accordingly, they will leave
the system after the next service. We define thus
the effective offset purging rate

µeff(Nmax) = µ
Pλ

Q(Nmax)
=

µ

(1 + ρ)
Nmax

as the rate at which the original customers leave
the system due to the maximum number of it-
erations. In the second phase, the slope of the
queue content is s = λ − µeff(Nmax). Note that,
as soon as s ≥ 0, the extra peak disappears. This
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phase ends when the Q(Nmax) initial customers
have been served. Its duration is given by:

T2 =
Q(Nmax)

µ
.

2

• Third Phase: First Residual Offset Purg-

ing

Again, in the third phase, weared customers
leave the system. In this phase, the presence
of the first Pλ original customers still influences
the dynamics. At the beginning of phase 3, there
are

Q(Nmax + 1) =

freshly arrived customers
︷ ︸︸ ︷

Q(Nmax)
1

µ
λ

+ Q(Nmax) − Pλ
︸ ︷︷ ︸

leaving customers
︸ ︷︷ ︸

loyal customers

populating the queue. After the passage of these
Q(Nmax + 1) initial customers, there is

Q(Nmax + 2) =

freshly arrived customers
︷ ︸︸ ︷

Q(Nmax + 1)
1

µ
λ

+ Q(Nmax + 1) − Pλ
1

µ
λ

︸ ︷︷ ︸

leaving customers
︸ ︷︷ ︸

loyal customers

customers in the queue. Iteratively, we find that:

Q(Nmax + k) = Pλ
[
(1 + ρ)Nmax+k

−(1 + ρ)k−2(1 + kρ)
]
,

1 ≤ k ≤ Nmax + 2,

where Q(Nmax +k) is the queue content after all
the Q(Nmax + k− 1) customers previously in the
queue have received service, 1 ≤ k ≤ Nmax + 2.
The resulting effective purging rate (here piece-
wise linear) reads as:

µeff(Nmax + k) = µ
ρ(1 + ρ)

(1 + ρ)Nmax+2 − (1 + kρ)
,

1 ≤ k ≤ Nmax + 1,

with λ − µeff(Nmax + k) is the rate at which
the queue raises between levels Q(Nmax +k) and
Q(Nmax + k + 1). The length of each iteration,

during which the queue content increases from
Q(Nmax + k) to Q(Nmax + k + 1), is given by:

T (Nmax+k) =
Q(Nmax + k)

µ
, 1 ≤ k ≤ Nmax+1.

Hence, the total duration of the third phase is
equals to:

T3 =

Nmax+1∑

k=1

T (Nmax + k)

= P
{
(1 + ρ)2Nmax+2

− [1 + ρ(Nmax + 2)] (1 + ρ)Nmax

}
.

2

• Fourth Phase: Following Residual Offset

Purging, Constant Growth

The influence played by the Pλ original cus-
tomers is further reduced and becomes, in a
first order approximation, negligible. This leads
to a quasi-constant queue content increase rate
λ − µCG. Note that, if required, higher order
approximations are analytically available. Ac-
cordingly, the rate of customers having reached
the maximum number of iterations and thus leav-
ing the system is quasi-constant over time. The
purging rate µeff(2Nmax + 2) (the exact value of
the rate at the beginning of this phase) yields a
good approximation for µCG. It is given by:

µeff(2Nmax + 2) =

µρ
[

(1 + ρ)
Nmax+1

− 1
]

(1 + ρ)
2Nmax+2

− (1 + ρ)
Nmax [1 + (Nmax + 2)ρ]

.

Table 1 gives the accuracy of this approximation
for several values of the control parameters.

External Parameters µeff(2Nmax + 2) µCG Error

1

λ
= 9, 1

µ
= 0.9, 0.0632 0.0656 4%

P = 300, Nmax = 12
1

λ
= 9, 1

µ
= 0.9, 0.0312 0.0297 5%

P = 300, Nmax = 17
1

λ
= 9, 1

µ
= 0.8, 0.0788 0.0836 6%

P = 300, Nmax = 12
1

λ
= 9, 1

µ
= 1.1, 0.0419 0.0425 1.5%

P = 300, Nmax = 12

Table 1: Comparison between the approximation and
the experimental value of the quasi-constant purging
rate of the fourth phase.

The queue length approximatively raises at rate
λ−µeff(Nmax +2) until it reaches a P -dependent
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siphoning threshold. This phase ends when the
queue length reaches the level, see (Filliger and
Hongler, 2005),

Q(2Nmax + 3) =

critical level
︷︸︸︷

Pµ

+ P (λ − µeff(2Nmax + 2))
︸ ︷︷ ︸

delay mechanism

.

Its duration is hence given by:

T4 =
Q(2Nmax + 3) − Q(2Nmax + 2)

λ − µeff(2Nmax + 2)
.

2

• Fifth Phase: Siphon Mechanism

At time

τ = T1 +T2 +T3 +T4−P (λ − µeff(2Nmax + 2)) ,

the queue length is large enough (= Pµ) to get
sojourn times W larger than P . As a conse-
quence, at time τ + P , a siphon purging with
rate µ − λ is triggered. When the queue con-
tent exceeds a critical level, it autonomously re-
leases its emptying. This behavior is fully anal-
ogous to the hydrodynamic self-siphoning device
discussed in (Pikovsky et al., 2001), When the
siphon purging happens before there are wearied
customers leaving the system, which happens
whenever condition (1) holds, regimes where only
phases 1 and 5 are visible emerge (see figures 5
and 6). Note that, in phase 5, all customers leave
the system due to rule R1. At the end of the fifth
phase, there remain Pλ customers in the queue
(Filliger and Hongler, 2005). All these Pλ cus-
tomers are new incomers, who have never been
served yet. The duration of this last phase is
given by:

T5 =
Q(2Nmax + 3) − Pλ

λ − µ

=
P [µ − µeff(2Nmax + 2)]

λ − µ
.

2

Resuming the situation and grouping the above in-
formations, it is possible to compute the period

Π = T1 + T2 + T3 + T4 + T5

and the amplitude

∆ = Q(2Nmax + 3) − Pλ

= P [µ − µeff(2Nmax + 2)]

of the stable temporal oscillations that the considered
dynamics exhibit.

Table 2 gives a comparison, for the numerical values
used in figure 7, between the analytical results given
by the formulas derived in this section and the simu-
lation results.

Analytical Matching With

Results Simulation

T1 = 641.46 below 1% error

Q(Nmax) = 104.61 below 1% error

λ − µeff(Nmax) = −0.2429 below 1% error

T2 = 94.15 below 1% error

Q(Nmax + 1) = 81.73 below 1% error

λ − µeff(Nmax + 1) = 0.0658 below 1% error

λ − µeff(2Nmax + 1) = 0.0295 below 1% error

Q(2Nmax + 2) = 146.18 below 1% error

T3 = 1315.81 below 1% error

λ − µeff(2Nmax + 2) = 0.0479 below 5% error

Q(2Nmax + 3) = 347.70 below 1% error

T4 = 4207.09 below 3% error

T5 = 314.37 below 1% error

Π = 6572.88 below 3% error

∆ = 314.37 below 1% error

Table 2: Comparison between analytical and sim-
ulation results for deterministic inter-arrival times
1
λ

= 9, deterministic service times 1
µ

= 0.9 (ρ = 0.1),
P = 300 and Nmax = 12..

4. PERSPECTIVES AND CONCLUSION

The present model is, by many aspects, oversimpli-
fied. In particular, to assume that all agents share
a common patience threshold is obviously a pale re-
flect of reality. Everybody has its own perception of
waiting time, which will directly affect the associated
utility function. To further approach real situations
and therefore to confer a more direct practical impact
to our present modeling framework, it will now be re-
quired to actually characterize the underlying utility
functions, a task which will obviously strongly depend
on the particular situations to be investigated. Never-
theless, our model has so far the merit to allow for an
analytical approach to a noticeably complex dynam-
ics. It shows, once more, the structural emergence
of macroscopic temporal patterns resulting from el-
ementary, though non-linear, individual interactions.
Similarly to ants which act according to the concen-
tration of pheromones, here our agents decide in view
of their waiting times and this feature confers to our
dynamics its stigmergic self-organizing character.

To close, let us emphasize that the very strong
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structural stability (i.e. the high insensitivity to
external noise sources) of the oscillations reported
in figures 2, 3 and 4 does definitely increase the
modeling power offered by this class of multi-agent
non-linear dynamics. Models that enjoy strong
structural stability evolution are the cornerstones of
a synergetic approach which, with a limited number
of salient relevant features, are able to encompass
under a common modeling framework a wide range
of transdisciplinary situations.
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