
Combinatorial Algorithms for Web Search Engines - Three Success Stories

Monika Henzinger∗

Abstract

How much can smart combinatorial algorithms improve web

search engines? To address this question we will describe

three algorithms that have had a positive impact on web

search engines: The PageRank algorithm, algorithms for

finding near-duplicate web pages, and algorithms for index

server loadbalancing.

1 Introduction.

With an estimated 20% of the work population being
online web search has become a huge application, only
surpassed by email in the number of users. Being
a fairly new research area an obvious question what
combinatorial research problems arise in web search
engines and how much combinatorial algorithms have
already contributed to the success of web search engines.
In this paper we will present three “success stories”,
i.e., three problem areas where combinatorial algorithms
have had a positive impact.

The biggest “success story” is certainly the PageR-
ank algorithm [2], which can be viewed as the stationary
distribution of a special random walk on the web graph.
It led to a significant improvement in search quality
and gave rise to the creation of the Google search en-
gine. Google currently serves about half of all the web
searches. Furthermore, together with the HITS algo-
rithm [12] the PageRank algorithm initiated research
in hyperlink analysis on the web, which has become a
flourishing area of research. We will briefly describe
PageRank in Section 2.

Combinatorial techniques were also successfully ap-
plied to the problem of finding near-duplicate web
pages. Both the shingling algorithm [4, 5] and a
projection-based approach [6] are used by or were cre-
ated at successful web search engines. We will discuss
them and their practical performance in Section 3.

Web search engines build a data structure, called
inverted index, to answer user queries. This data
structure stores a record for every word in every web
page that the web search engine “has indexed”, i.e., that
it can return as search result. When indexing billions or
tens of billions of web pages the inverted index has to be
distributed over many machines (called index servers) in

∗Ecole Polytechnique Fédéral de Lausanne (EPFL) & Google

a way that (1) reduces the number of machines needed,
and (2) maximizes the number of user queries that can
be answered. The resulting optimization problem and
algorithms to solve it are discussed in Section 4.

2 Hyperlink Analysis

The first generation web search engines performed
quite poorly, especially for broad queries or homepage
searches. For a given user query they found hundreds
or thousands of documents containing the keywords of
the query, but they rarely returned the most relevant
documents first. The problem was that they employed
techniques that were developed and tested on a very dif-
ferent set of documents, namely on homogeneous, high-
quality collections, like newspaper collections. On the
web, however, the quality of pages is highly variable and
techniques are needed to find the highest-quality pages
that contain the query keywords. PageRank [2] is one
such technique. It is defined as follows. A web graph
(V,E) contains one node for every web page and a di-
rected edge from u to v in E iff there is a hyperlink from
the page represented by node u to the page represented
by node v. Let n = |V | be the total number of web
pages, let d be a small constant, like 1/8, let outdeg(v)
denote the outdegree of node v and let PR(u) denote
the PageRank value of the page represented by node u.
Then the PageRank of the page represented by node v
is defined recursively as

PR(v) = d/n+(1−d)∗
∑

u with (u,v)∈E

PR(u)/outdeg(u).

Solving this system of linear equations is equivalent
to determining the Eigenvector of a suitably chosen
matrix. However, in practice, the PageRank values are
not computed exactly, but instead the system of linear
equation is solved iteratively using roughly a hundred
iterations.

The value d/n which is added to PageRank value of
every vertex in each iteration is called the reset value.
One idea for a variant of PageRank is to not give the
same reset values to all pages. For example, one can
give all pages on a certain topic a high reset value, and
set all remaining pages a reset value of 0. This would
result in a “topic-flavored” PageRank value. Pushing
this idea even further a “personalized PageRank” can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be computed if the reset value of all pages describing
best a user’s interest are given a positive reset value,
and the reset value of all other pages was set to zero.
How to achieve this efficiently has been a popular area
of research, see e.g. [13]. See the excellent survey by
Berkhin [3] for further details, variants, and related
work in the area of hyperlink analysis.

3 Finding Near-Duplicate Web Pages

Duplicate and near-duplicate web pages are creating
large problems for web search engines: They increase
the space needed to store the index, either slow down
or increase the cost of serving results, and annoy the
users. Thus, algorithms for detecting these pages are
needed.

A naive solution is to compare all pairs to doc-
uments, but this is prohibitively expensive for large
datasets. Manber [14] and Heintze [10] were the first
to propose algorithms for detecting near-duplicate doc-
uments with a reduced number of comparisons. Both
algorithms work on sequences of adjacent characters.
Brin et al. [1] started to use word sequences to de-
tect copyright violations. Shivakumar and Garcia-
Molina [16],[17] continued this work and focused on scal-
ing it up to multi-gigabyte databases [18].

Later Broder et al. [4],[5] and Charikar [6] devel-
oped approaches based on solid theoretical foundations.
Broder reduced the near-duplicate problem to a set in-
tersection problem. Charikar used random projections
to reduce the near-duplicate problem to the problem of
determining the overlap in two high-dimensional vec-
tors. Both Broder’s and Charikar’s algorithms were ei-
ther developed at or used by popular search engines
and are considered the state-of-the-art in finding near-
duplicate web pages. We call them Alg. B and Alg. C
and describe them next.

Both algorithms assume that each web page is con-
verted into a sequence of tokens, each token representing
a word in the page. For each page they generate a bit
string, called sketch from the token sequence and use it
to determine the near-duplicates for the page.

Let n be the length of the token sequence of a page.
For Alg. B every subsequence of k tokens is fingerprinted
using 64-bit Rabin fingerprints [15], resulting in a se-
quence of n − k + 1 fingerprints, called shingles. Let
S(d) be the set of shingles of page d. Alg. B makes the
assumption that the percentage of unique shingles on

which the two pages d and d′ agree, i.e. |S(d)∩S(d′)|
|S(d)∪S(d′)| , is a

good measure for the similarity of d and d′. To approxi-
mate this percentage every shingle is fingerprinted with
m different fingerprinting functions fi for 1 ≤ i ≤ m
that are the same for all pages. This leads to n − k + 1

values for each fi. For each i the smallest of these val-
ues is called the i-th minvalue and is stored at the page.
Thus, Alg. B creates an m-dimensional vector of minval-
ues. Note that multiple occurrences of the same shingle
will have the same effect on the minvalues as a single
occurrence. Broder showed that the expected percent-
age of entries in the minvalues vector that two pages
d and d′ agree on is equal to the percentage of unique
shingles on which d and d′ agree. Thus, to estimate
the similarity of two pages it suffices to determine the
percentage of agreeing entries in the minvalues vectors.
To save space and speed up the similarity computation
the m-dimensional vector of minvalues is reduced to a
m′-dimensional vector of supershingles by fingerprinting
non-overlapping sequences of minvalues: Let m be di-
visible by m′ and let l = m/m′. The concatenation of
minvalue j ∗ l, . . . , (j + 1) ∗ l − 1 for 0 ≤ j < m′ is fin-
gerprinted with yet another fingerprinting function and
is called supershingle. This creates a supershingle vec-
tor. The number of identical entries in the supershingle
vectors of two pages is their B-similarity. Two pages
are near-duplicates of Alg. B or B-similar iff their B-
similarity is at least 2. In order to test this property
efficiently megashingles are introduced. Each megash-
ingle is the fingerprint of a pair of supershingles. Thus,
two pages are B-similar iff they agree in at least one
megashingles. To determine all B-similar pairs in a set
of pages, for each page all megashingles are created,
the megashingles of all pages are sorted, and all pairs
of pages with the same megashingle are output. The
sketch of a document consists thus of a concatenation
of all the megashingles. When applying the algorithm
to a large set of web pages usually m = 84, m′ = 6, and
k = 10 [8].

Alg. C is based on random projections. Its intuition
is as follows: Consider a high-dimensional space where
every possible token gives rise to a dimension. The
token vector of a page is a vector in this space where
the entry for each token is the frequency of the token
in the document. This creates a mapping from pages
to points in this space. The probability that the points
representing two pages lie on the same side of a random
hyperplane through the origin is proportional to the
angle between the two points [9], which is equal to
the cosine-similarity of the two pages. Thus, picking
b random hyperplanes and determining the percentage
of times where the points lie on different sides gives an
unbiased estimator for the cosine similarity.

Alg. C can be implemented as follows. Each
token is projected into b-dimensional space by randomly
choosing b entries from the range [−1, 1]. This creates
a token vector. Note that the i-th entry in all the
token vectors represents the i-th random hyperplane.

The token vector is fixed for the token throughout the
algorithm, i.e., it is the same for all pages. For each page
a b-dimensional page vector is created by adding the
token vectors of all the tokens in the token sequence of
the page such that the projection of a token that appears
j times in the sequence is added j times. The sketch
for the page is created by setting every positive entry
in the page vector to 1 and every non-positive entry
to 0, resulting in a random projection for each page.
The sketch has the property that the cosine similarity
of two pages is proportional to the number of bits in
which the two corresponding projections agree. Thus,
the C-similarity of two pages is the number of bits their
sketches agree on. Two pages are near-duplicates of
Alg. C or C-similar iff the number of agreeing bits in
their sketches lies above a fixed threshold t. Note that
this is equivalent to saying that the sketches disagree
in at most b − t bits. To compute all C-similar pairs
efficiently the sketch of every page is split into b− t + 1
disjoint pieces of equal length. The piece augmented
with its number in the split is called a subsketch. Note
that if two pages are C-similar, i.e., they disagree in at
most b − t bits then they must agree in at least one of
the b − t + 1 subsketches. Thus, to determine all C-
similar pairs the subsketches of all the documents are
generated, sorted by subsketch, and the sketch overlap
is computed for every pair with the same subsketch.
This guarantees that all pairs which agree in at least t
are found.

We briefly compare the two algorithms. Both
algorithms assign the same sketch to pages with the
same token sequence. Alg. C ignores the order of the
tokens, i.e., two pages with the same set of tokens
have the same bit string. Alg. B takes the order into
account as the shingles are based on the order of the
tokens. Alg. B ignores the frequency of shingles, while
Alg. C takes the frequency of tokens into account. For
both algorithms there can be false positives (non near-
duplicate pairs returned as near-duplicates) as well as
false negatives (near-duplicate pairs not returned as
near-duplicates.)

A recent evaluation on 1.6B web pages [11] showed
that the percentage of correct near-duplicates returned
out of all returned near-duplicates, i.e., the precision,
is about 0.5 for Alg C and 0.38 for Alg. B. To allow
for a “fair” comparison both algorithms were given the
same amount of space per page, the parameters of Alg.
B were chosen as given in the literature (and stated
above), and the threshold t in Alg. B was chosen
so that both algorithms returned roughly the same
number of correct answers, i.e., at the same recall level.
Specifically, b = 384 and t = 372.

Both algorithms performed about the same for pairs

on the same site (low precision) and for pairs on different
sites (high precision.) However, 92% of the near-
duplicate pairs found by Alg. B belonged to the same
site, but only 74% of Alg. C. Thus, Alg. C found more
of the pairs for which precision is high and hence had
an overall higher precision.

The comparison study also determined the number
of near-duplicates N(u) of each page u. The plot of the
distribution of N(u) in log-log scale showed that N(u)
follows for both algorithms a power-law distribution
with almost the same slope. However, Alg. B has a
much “wider spread” around the power law curve than
Alg. C. This might be due to the fact that Alg. B
computes the sketch of a page based on a random subset
of the shingles of the page. Thus, “unlucky” choices of
this random subset might lead to a large number of
near-duplicates being returned for a page. The sketch
computed by Alg. C is based on all token occurrences
on a page and thus it does not exhibit this problem.

4 Index Server Loadbalancing

Web search engines build a data structure, called in-
verted index, to answer user queries. This data struc-
ture stores a record for every word in every web page
that the web search engine “has indexed”, i.e., that it
can return as search result. When indexing billions or
tens of billions of web pages the inverted index has to be
distributed over many machines, i.e. index servers, in
a way that (1) reduces the number of machines needed,
and (2) maximizes the number of user queries that can
be answered. For serving user requests efficiently it
is best to distribute the inverted index by partition-
ing the set of documents into subsets and by building
a complete inverted index for each subset. The latter
is called a subindex. The challenge is to partition the
documents in such a way that (a) each subindex fits on
a machine, and (b) the time to serve requests is bal-
anced over all involved machines. Note that each user
request has to be sent to every subindex. However, the
time to serve a request on a subindex depends on how
often the query terms appear in the documents of the
subindex. Thus, if, for example, a Chinese query is sent
to a subindex that contains only English documents, it
will be served very quickly, while it might take a long
time on a subindex consisting mostly of Chinese doc-
uments. Search engines usually do a pretty good job
splitting the documents into subsets such that the ratio
of the total time spent serving requests for two differ-
ent subindices is within a factor of 1 + α of each other,
where α is less than 1. However, making α arbitrarily
close to 0 is hard.

Index servers are usually CPU limited while they
have more than enough memory. To improve load-

balancing one can thus place a subindex on multiple
machines and then share the requests for the subindex
between these machines, sending each request just to
one copy of the subindex. Since individual requests
take only a short amount of time, usually below a sec-
ond, this allows for a very fine-grain load-balancing be-
tween machines. However, the open questions are which
subindices to duplicate, how to assign subindices to in-
dex servers, and how to assign request to index servers
when there are multiple choices.

This problem can be modeled as follows. We
are given m machines m1, . . . ,mm and n subindices
f1, . . . , fn. Each machine mi can store si subindices
such that

∑
i si = n + n′ with integer n′ > 0. This

implies that up to n′ subindices can be stored on
multiple machines. We are given a sequence of request
for subindices. There is a central scheduler which sends
requests to machines. A request for subindex fj must
be sent to a machine that stores fj to be executed on
this machine. When machine mi executes request t and
request t was for subindex fj , then load l(t, j, i) is put on
machine mi. Note that the load depends on the request
as well as on the subindex and on the machine. The
dependence on t implies that different requests can put
different loads on the machines, even though they are
accessing the same subindex. The dependence on the
machine implies that the machines can have different
speeds.

The total machine load MLi on machine mi is
the sum of all the loads put on mi. The problem
is to assign subindices to machines and to design a
scheduling algorithm such that the maximum machine
load maxiMLi is minimized. Of course, one can also
study optimizing other measures.

Let FLj =
∑

j l(t, j) be the index load of fj . In the
web search engine setting two assumptions can be used:

(1) Balanced request assumption: The subindices
are usually generated so that for a long enough sequence
of requests, the index loads are roughly balanced, i.e.,
we assume that there is a number L such that L ≤
FLj ≤ (1+α)L for all subindices fj , where α is a small,
positive constant. However, neither L nor α are known
to the algorithm.

(2) Small request assumption: Each individual load
l(t, j, i) is tiny in comparison to FLj . Let β =
maxt,j,il(t, j, i). We assume that β << FLj for all j.

Assume that for every machine mi, si ≥ (n div m)+
2. This implies that n′ ≥ 2m. Assume further that the
load l(t, j, i) is independent of i, i.e., l(t, j, i) = l(t, j).
This implies that all machines have the same speed.
We describe next an algorithm that assigns subindices
to machines, called the layout algorithm with imaginary
index loads. The algorithm assumes that every subindex

has an imaginary index load of 1 and assigns the
imaginary index load of every subindex, either whole
or in part, to a machine. A subindex is assigned to
a machine if at least part of its imaginary index load
was assigned to the machine. Thus, if the imaginary
index load of a subindex is placed on multiple machines,
then the subindex is placed on multiple machines. If
its imaginary index load was placed completely on
one machine, the subindex is placed only on that
machine. The algorithm assigns imaginary index loads
to machines so that the total imaginary index load
placed on the machines are completely balanced, i.e.,
each machine receives n/m total imaginary index load.
When the total imaginary index load placed on a
machine is n/m, the machine is called full.

In the first step the algorithm places the complete
imaginary index load of (n div m) arbitrary subindices
on each machine. These subindices will only be stored
on one machine. If m divides n, all machines are full
and the algorithms terminates. Otherwise, no machine
is full and the algorithm makes an arbitrary machine
the current machine. In the second step the algorithm
takes an unassigned subindex and puts as much of
its imaginary index load on the current machine as
possible, i.e., until the current machine is full or all
the imaginary index load of the subindex has been
assigned. In the former case an arbitrary non-full
machine becomes the current machine, in the later case
the second step is repeated if there are still unassigned
subindices.

Let ML∗ be the maximum machine load achieved
for the layout algorithm with imaginary index loads
together with a greedy scheduling algorithm and let Opt
be the maximum machine load achieved by the optimum
algorithm for any layout of subindices. Then,

ML∗ ≤ 2(1 + α)Opt + 2β

[7], i.e., the greedy scheduling algorithm with the layout
algorithm with imaginary index loads are within a factor
2(1 + α) of optimal.

On real-life search engine data the greedy scheduler
with the layout algorithm with imaginary index loads
achieved a noticeable improvement over a greedy sched-
uler that used a layout algorithm that duplicated hand
chosen subindices.

5 Conclusions

We presented three successful applications of combina-
torial techniques to problems arising in web search en-
gines. Other areas in combinatorial algorithms that are
of interest to web search engines are algorithms for pro-
cessing data streams, lock-free data structures, and ex-
ternal memory algorithms.

References

[1] S. Brin, J. Davis, and H. Garcia-Molina, Copy De-

tection mechanisms for digital documents, Proc. 1995
ACM SIGMOD International Conference on Manage-
ment of Data, (1995), pp. 398–409.

[2] S. Brin and L. Page, The anatomy of a large-scale

hypertextual Web search engine, Proc. 7th Int. World
Wide Web Conference, 1998, pp. 107–117.

[3] P. Berkhin, A survey on PageRank computing, Internet
Mathematics, 2(1) (2005), pp. 73–120.

[4] A. Broder. On the resemblance and containment of

documents, Proc. Compression and Complexity of Se-
quences ’97, 1997.

[5] A. Broder, S. Glassman, M. Manasse, and G. Zweig,
Syntactic clustering of the web, Proc. 6th International
World Wide Web Conference (1997), pp. 393–404.

[6] M. S. Charikar, Similarity Estimation Techniques from

Rounding Algorithms, Proc. 34th Annual ACM Sym-
posium on Theory of Computing, (2002), pp. 380–388.

[7] P. Duetting, M. Henzinger. Notes.
[8] D. Fetterly, M. Manasse, and M. Najork, On the

Evolution of Clusters of Near-Duplicate Web Pages,

Proc. 1st Latin American Web Congress, 2003, pp. 37–
45.

[9] M. X. Goemans and D. P. Williamson. Improved ap-

proximation algorithms for maximum cut and satisfia-

bility problems using semidefinite programming. JACM
42 (1995), pp. 1115–1145.

[10] N. Heintze, Scalable Document Fingerprinting,

Proc. 2nd USENIX Workshop on Electronic Com-
merce, (1996).

[11] M. Henzinger, Finding Near-Duplicate Web Pages: A

Large-Scale Evaluation of Algorithms, Proc. 29th An-
nual International Conference on Research and Devel-
opment in Information Retrieval, 2006, pp. 284–291.

[12] J. Kleinberg, Authoritative sources in a hyperlinked

environment, JACM, 46 (1999), pp. 604–632.
[13] G. Jeh and J. Widom, Scaling personalized web search,

Proc. of 12th Int. World Wide Web Conference (2003),
pp. 271–279.

[14] U. Manber, Finding similar files in a large file system.
Proc. of the USENIX Winter 1994 Technical Confer-
ence (1994), pp. 1–10.

[15] M. Rabin. Fingerprinting by random polynomials. Re-
port TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[16] N. Shivakumar and H. Garcia-Molina, SCAM: a copy

detection mechanism for digital documents, Proc. Inter-
national Conference on Theory and Practice of Digital
Libraries (1995).

[17] N. Shivakumar and H. Garcia-Molina, Building a scal-

able and accurate copy detection mechanism, Proc.
ACM Conference on Digital Libraries (1996), pp. 160–
168.

[18] N. Shivakumar and H. Garcia-Molina, Finding near-

replicas of documents on the web, Proc. Workshop on
Web Databases (1998), pp. 204–212.

