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Abstract—This paper addresses the problem of the transmission of
scalable video streams to a set of heterogeneous clients through a common
bottleneck channel. The packet scheduling policy is typically crucial in
such systems that target smooth media playback at all the receivers.
In particular, the playback delays and the transmission strategy for the
packets of the different layers have to be chosen carefully.When the same
video is sent simultaneously to multiple clients that subscribe to different
parts of the stream, the playback delay cannot be jointly minimized for
all the clients. We therefore propose delay optimization strategies along
with low complexity solutions for a fair distribution of the delay penalty
among the different receivers. Once the delays are selected, we show
that there exists a unique scheduling solution that minimizes the buffer
occupancy at all the receivers. We derive an algorithm for computing
the optimal sending trace, and we show that optimal scheduling has to
respect the order of the packets in each media layer. Interestingly enough,
solving both delay and buffer optimization problems sequentially leads to
a jointly optimal solution when the channel is known. We finally propose
a simple rate adaptation mechanism that copes with unexpected channel
bandwidth variations by controlling the sending rate and dropping layers
when the bandwidth becomes insufficient. Experimental results shows
that it permits to reach close to optimal performances even if the channel
knowledge is reduced. Rate adaptation provides an interesting alternative
to conservative scheduling strategies, providing minor and controllable
quality variations, but with a higher resulting average quality.

I. I NTRODUCTION

Due to the rapid evolutions in consumer electronics, the possibility
to adapt to client preferences or to customize services becomes
predominant in multimedia applications. We consider in this paper the
problem of the simultaneous delivery of a scalable media stream to
heterogeneous clients that present different computing capabilities,
different access bandwidths, or different user requirements. Each
one of these clients selects to receive an appropriate subset of
scalability layers, such that the received stream is decodable by the
client and satisfies its scalability needs. A typical example of such
a system is given in Figure 1, where a streaming server connects
to heterogeneous clients directly or through a streaming proxy and
broadcasts a stored scalable media stream. Scalable video streaming
systems have generally to respect a bottleneck channel bandwidth,
which prevents the immediate delivery of the media data to all
the clients. This limitation may be imposed by channel or disk
bandwidth constraints, admission control or pre-determined traffic
specifications (e.g., TSPEC in the 802.1e wireless standard). Client
buffering capabilities may help to smooth the discrepancies between
the video source rate and the available bandwidth with a sustained
quality, at the price however of an increased playback delayat
the client. It becomes therefore important to derive efficient packet
scheduling strategies such that smooth playback can be ensured at
each client and that the overall quality of service is maximized.

This work has been partly supported by the Swiss National Science
Foundation.
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Fig. 1. Example of a scalable video streaming system.

Several works have studied the problem of efficient packet schedul-
ing in different streaming scenarios. The problem of minimizing
the playback delay and buffering needs for a single receiverand
non-scalable streams under guaranteed rate constraints has been
previously addressed in [1]–[3]. The problem has been nicely for-
malized in more general terms in [4] and [5]. In [6] the authors
discuss optimal streaming of layered video under random bandwidth
models, when the buffer is not constrained at the decoder. The error
concealment at the decoder is further considered in [7] where the
scheduling decisions are based on a Markov Decision Processto
cope with unpredictable bandwidth variations. The authorsof [8]
address a similar scenario, where the number of layers that are
transmitted are computed from local decisions based on expected
run-time estimation. None of the above work however considers the
problem of multiple clients that participate together to the streaming
session.

A scheduling algorithm that minimizes the buffer occupancyof a
single client that receives a single stream has been proposed in [9].
Our work extends this algorithm to provide jointly minimal buffer
occupancy at heterogeneous clients that decode different subsets
of the same layered stream. Optimal multiplexing for continuous
media streaming is discussed in [10]. However the authors focus
on bandwidth efficiency and do not discuss the delay nor the buffer
occupancy experienced by a client. Layered video streaminghas been
studied in relation with multicast delivery schemes in [11], [12],
without addressing the specific problem of heterogeneous receivers
with delay and buffer constraints. None of the cited papers addresses
the problem of multiplexing a layered video stream onto a broadcast
channel by targeting on one hand a set of minimal playback delays
for heterogeneous clients, and at the other hand the minimumbuffer
occupancy at each one of these clients.

In this paper, we propose to optimize the selection of the playback
delays for the different clients in order to have a fair distribution of the
delay penalty induced by the broadcast-like media transmission. We
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show that the minimal playback delays cannot be jointly achieved
for all the clients, and we derive low cost optimization algorithms
for computing playback delay sets under different client prioritization
policies. Once the playback delays are given, we prove that minimum
buffer occupancy can be simultaneously attained for all theclients.
There is moreover a unique sending trace that attains the optimal
solution in this case, and we propose an algorithm that implements
the optimal transmission of the packets from the different layers.
When both optimization problems are solved sequentially, the system
can design a mechanism that jointly optimizes delays and buffers.
To the best of our knowledge, this work is a first effort to address
the playback delay optimization problem, together with thebuffer
minimization problem for broadcast to heterogeneous clients. Finally,
we show how the optimal scheduling solution can be modified with a
simple adaptive rate control algorithm when the knowledge about the
channel bandwidth is limited. This solution provides an interesting
alternative to conservative scheduling schemes in some practical
scenarios with unpredictable bandwidth, while it offers animproved
average quality but minor and controllable quality variations.

The paper is organized as follows: we provide an overview of the
system under consideration and discuss media scheduling properties
in Section II. We present the delay optimization solutions in Section
III, and we analyze the buffer minimization problem in Section IV.
Section V introduces an adaptive rate control algorithm to cope with
unexpected bandwidth variations and discusses its performance in
practical scenarios.

II. SCALABLE V IDEO BROADCAST

A. System Overview
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Fig. 2. Formal view of the system.

We present an overview of the system under consideration in this
paper. A formal representation of the system is given in Figure 2.
A streaming server sends a scalable media stream to a population of
receivers through a bottleneck channel. This bottleneck represents
for example a shared channel or network segment with limited
bandwidth, or the disk bandwidth limitations in a video-on-demand
server. The bottleneck channel is given by its bitratec(t), which
indicates how many bits the channel is able to transmit at anytime
t, and possibly by a maximum network latency∆.

Generally, the server’s knowledge about the channel availability
is extracted from client or network feedback. In this paper we will
assume perfect channel knowledge at the server, which leadsto an
upper bound on achievable performance for any predictive scheme,
where the server estimates the available channel. In particular, this
assumption is verified for constant bit rate channels or whenthe
bandwidth is controlled by deterministic guarantees (e.g., TSPEC in
the recent 802.11e wireless protocol). In the rest of this paper, the

channel ratec(t) is the rate available for the broadcast application,
and we do not limit the study to any particular congestion control or
rate allocation strategy.

The scalable video stream is built on several hierarchical layers.
Each of theL layers is completely determined by its source or playout
traceλl(t), 1 ≤ l ≤ L, which indicates the size of the layerl at time
t. When a hierarchy exists between video layers, the decodingof
layer l is made contingent on the correct decoding of all inferior
layers, from1 up to l − 1. Batches of clients simultaneously access
the same video sequence, possibly with different scalability levels.
The receivers are grouped together intoL sets, based on the number
of video layers or the resolution that they have requested. We denote
asRl, (1 ≤ l ≤ L) the set of clients that receive all layers up to the
lth layer.

After the first bit is sent by the server, each receiver inRl buffers
the video data for aplayback delayDl. The video bits are stored in
the receiving buffer, whose content at any time is further denoted as
Bl(t). After the initial playback delay, the receiver decodes andplays
continuously a video whose resolution corresponds to the series of
additive layers it has requested. The playback delay can be different
for each group of receiversRl. However, the set of playback delays
D = {Dl}L

l=1 should be chosen such that non-disruptive playback
of the sequence can be achieved for any set of receiversRl, i.e.,
such that no buffer underflow occurs at any receiver1. At the same
time, the choice of the playback delay impacts the quality-of-service
perceived by the end-user. It therefore requires an efficient packet
scheduling strategy in order to reach a proper trade-off between user
experience and resilience to underflows and bandwidth limitations.
Before addressing the problems of playback delay selection, we
describe below the problem of packet scheduling in media streaming
applications that generally impose strict timing constraints.

B. Media Scheduling Formalism

We now describe in more details the packet scheduling characteris-
tics in media streaming applications. When the channel is constrained,
the streaming server has generally to implement effective scheduling
algorithms, in order to ensure timely delivery of media packets and to
avoid buffer underflow at receivers. The packet transmission strategy
is chosen in order to meet criteria such as desired distortion or
delay [13], [14], or maximum utilization of the available channel
bitrate. The packet scheduler outputs a stream with asending rate
x(t) ≤ c(t),∀t that indicates the number of bits fed into the channel
at any time instantt.

We denote the cumulative source, sending and channel rate func-
tions with capital letters(S, X, C), where a cumulative rate function
is defined as the total number of bits that have been counted since
time t = 0. For example,C(t) =

R t

0
c(u)du is the number of bits

the channel can transmit up to timet. Note that the cumulative rate
functions are all wide-sense increasing int. We further definesD(t)
as the number of bits consumed by the decoder that starts playing
video after a playback delayD. It is written as:

sD(t) =



0 , 0 ≤ t < D
s(t − D) , t ≥ D

SD(t) = S(t − D) is the corresponding cumulative function.
The scheduler has to ensure that the client does not experience any

buffer starvation, when the video decoding starts after a playback de-
lay that has been selected a priori. Figure 3 illustrates theimportance
of the playback delay for smooth video decoding in a scenariowith

1In the remaining of the paper, we useRl to design a set of receivers
that subscribe to the resolution levell or one of the receivers in this set,
interchangeably.
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Fig. 3. Left: Playback delay and buffer underflow prevention.Right:
Schedulable play-out trace and a corresponding sending rate trace.

a single client. If the client starts playback at the reception of the
first bit, a buffer underflow occurs at timetc. Starting playback at
the client afterD time units makes sure that the buffer underflow
does not occur. We say that a source traces(t) is schedulableover
a channel with available bandwidthc(t), with a playback delayD,
if the following schedulability conditionholds for all t:

SD(t) ≤ C(t − ∆) (1)

If the condition (1) is met, this implies that the server can find a
scheduling solution or equivalently a sending tracex(t) such that
each of the following necessary conditions are satisfied forall t:

SD(t) ≤ X(t − ∆) (2)

x(t) ≤ c(t). (3)

The first inequality makes sure that the server transmits a number
of bits that is sufficient for decoding the video stream at alltime
instantst, with a playback delayD and a maximum network latency
∆. As a constant value of∆ implies a simple time shift in each
of the above inequalities, we will consider that∆ = 0 for the sake
of clarity and without loss of generality in the remainder ofthis
paper. The second condition simply imposes that the number of bits
transmitted by the server at any time instant is not larger than the
channel rate. Note that the latter condition impliesX(t) ≤ C(t),∀t,
but that the reverse is not true. If the playback delayD is chosen
such that the above conditions hold, a scheduling solution can be
found. Each valid scheduling strategy generates a sending ratex(t)
that satisfies Eqs. (2) and (3) for allt. Finally, the buffer occupancy of
a media client that receives a data rateX(t) and plays out a sending
traceSD(t) is given by:

B(t) = X(t) − SD(t),∀t. (4)

The above equation shows that the buffer occupancy is dependent
on the choice of the playback delay, so that the joint minimization
of both components becomes non-trivial. We first present a method
to optimize the choice of the playback delays in scalable streaming
systems. Then we show how to define a scheduling strategy that
minimizes also the buffer occupancy.

III. PLAYBACK DELAY OPTIMIZATION

A. Preliminaries

In this section, we discuss the choice of the playback delaysfor the
different sets of clientsRl that simultaneously receive the scalable
stream. Small playback delays usually lead to a better quality of
service, and we will present algorithms for optimizing the choice of
playback delays, under different metrics. We first give a preliminary
analysis of the playback delay, and define the minimal playback delay
for a clientRl that decodesl layers of the scalable video stream.

We introduce here some general results inspired from [15]. Sup-
pose that we have two increasing non-zero functionsF (t) andG(t)

such thatlimt→∞ F (t) ≥ limt→∞ G(t). We define the (maximum)
horizontal distance betweenF (t) andG(t) as follows:

h(G, F ) = sup
t

`

F−1 (G(t)) − t
´

, (5)

whereF−1(t) = min {t : F (t) ≥ x} is a pseudo-inverse ofF (t).
The following relations hold:

h(G, F ) = 0 ⇔ F (t) ≥ G(t),∀t and (6)

∃τ s.t. F (τ ) = G(τ ) (7)

h(G, F ) < 0 ⇔ F (t) > G(t),∀t (8)

h(G, F ) > 0 ⇔ ∃τ s.t. F (τ ) < G(τ ). (9)

WhenF (t) andG(t) respectively represent the cumulative channel
and source traces, the horizontal distance betweenF andG represents
the minimal playback delay that is necessary for a smooth decoding
of the source stream. In other words, it represents the minimal shift
that as to be applied onG, such that the schedulability condition is
verified. Formally, we have the following property.

Property 1: If h(G, F ) > 0 and G′(t) = G(t − h(G, F )), then
h(G′, F ) = 0. In other words,h(G, F ) is the minimum shift we
need to apply onG(t), so thatF (t) ≥ G′(t), ∀t.

With multiple traces, we have also:
Property 2: Let F (t), G(t) and G′(t) be non-decreasing func-

tions such thatG′(t) > G(t), ∀t. Then: h(G′, F ) > h(G, F ).
Indeed by the definition ofh(·) and F−1(·), and becauseF (t) is
non-decreasing, the result follows immediately, asF−1 (G′(t)) >
F−1 (G(t)), ∀t. Similarly, if G′(t) < G(t), ∀t then h(G′, F ) <
h(G, F ).

We can therefore define the minimal playback delayDl
min for

smooth playback at the receiverRl. It is given by

Dl
min = h

“

Sl(t), C(t)
”

, (10)

where Sl(t) =
Pl

k=1 Λk(t) is the cumulative rate of the stream
at resolutionl. From Property 2, we know thatDl

min ≤ Dl+1
min,

∀1 ≤ l ≤ L − 1, since the rate traces are positive valued
functions, andSl+1(t) ≥ Sl(t),∀t. If the layer l is decoded after
a minimal playback delayDl

min, the only valid scheduling solutions
are strategies where the playback delay for layersk < l is not any
larger thanDl

min. It is actually not possible to reduce the minimal
playback delay for the clientRl, even by changing the scheduling of
the lower layer streams.

Let us define~δ = [δ1, .., δl], with δ1 ≥ δ2 ≥ . . . ≥ δl ≥ 0. We
have the following Lemma, which shows that the minimal playback
delay required for a smooth decoding of the resolution levell cannot
be smaller thanDl

min, even if the lower layers are decoded with a
smaller delay.

Lemma 1:Consider a set of L non-decreasing functions
{H l(t)}L

l=1 and a non-decreasing functionF (t), defined∀t. We have,
∀l, 1 ≥ l ≥ L:

h
“

Gl, F
”

≤ h
“

Gl
~δ
, F

”

,

whereGl(t) =
Pl

k=1 Hk(t) andGl
~δ
(t) =

Pl

k=1 Hk(t + δk).
Proof: As the functions{Gl(t)}L

l=1 are non-decreasing, we have,
∀l, 1 ≥ l ≥ L and∀δl ≥ 0: H l(t) ≤ H l (t + δl). Thus,∀l, 1 ≥ l ≥
L,

Gl(t) ≤ Gl
~δ
(t) ,∀t.

From Property 2, it follows thath
`

Gl, F
´

≤ h
`

Gl
~δ
, F

´

.
From the above results we conclude that any playback delay

smaller thanDl
min results in a buffer underflow at the receiver

Rl, while any larger playback delay allows for decoding without
experiencing a buffer underflow. This permits to derive a simple
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bisection search algorithm for computing the minimal delayDl
min,

similar to Algorithm 1.

Algorithm 1 Dmin = getDmin (C(t), S(t))

1: Dlow ⇐ 0
2: Dhigh ⇐some large value
3: while (Dhigh − Dlow) > 1 do
4: Dtest ⇐

j

Dlow+Dhigh

2

k

5: if S (t − Dtest) ≤ C(t), ∀t then
6: Dhigh ⇐ Dtest

7: else
8: Dlow ⇐ Dtest

9: end if
10: end while
11: Dmin = Dtest

It is important to note here that achieving the minimum playback
delay for a given layerl does not necessarily guarantee that a
minimum playback delay is also achieved for any other layer.In
general, if the transmission strategy is chosen in order to minimize
the delay at layerl, without considering any other layerk, with k < l,
the clients that only subscribe to the lower layers are penalized by a
playback delay that might be larger than necessary. If, in the contrary,
the scheduler decides to minimize the playback delay for layer k, it
generally increases the playback delay any other layerl, with l > k.
The choice of playback delay therefore results from a typical trade-
off between the delays imposed to the different layers, since the
delays cannot be minimized simultaneously for all the layers. When
the playback penalty is increased for the lower layers, it typically
saves channel bits that can be used for decreasing the playback
delay penalty for higher layers. In the next section, we formulate
an optimization problem for the choice of the playback delays for
different policies.

B. Problem Formulation

Consider a channel given by its cumulative rate traceC(t), and a
set ofL hierarchically coded layers given by their cumulative source
rate traces{Sl}L

l=1. The channel connects a streaming server toL
sets of receivers{Rl}L

l=1, that simultaneously subscribe to layers up
to l. LetD = {Dl}L

l=1, with D1 ≤ D2 ≤ . . . ≤ DL ≤ Dmax denote
the set of playback delays imposed to the different sets of clients.
The joint minimization of the playback delays for all heterogeneous
receivers is generally not achievable in broadcast-like scenarios, as
discussed above. We therefore formulate the following optimization
problem, which targets a fair selection of the playback delays. Let
Dl

min represents the minimal playback delay that can be offered to
the clientRl, when other clients are not considered. A fair distribution
of the playback delay among the different clients can be achieved by
controlling the penalties∆ = [∆1, ..∆L], with ∆l = Dl − Dl

min,
1 ≤ l ≤ L, in addition to minimizing the playback delays. The
playback delays can therefore by chosen as

Dopt = arg min
D

ϕ
“

{Dl}, {∆l}
”

(11)

under the condition thatSl
D(t) ≤ C(t) ∀l, 1 ≤ l ≤ L, where

Sl
D(t) =

Pl

i=1 Λi
Di(t), i.e., all the traces are schedulable from Eq.

(1). The functionϕ is a generic cost function that combines the
average playback delay and the delay penalty imposed to eachlayer
due to the broadcast-like distribution. Finding the best set of playback
delaysDopt is actually a combinatorial optimization problem, and its
solution generally implies a full search algorithm. We showin the
next sections how the search space can be reduced for solvingthe

generic optimization problem of Eq. (11). We also present efficient
solutions to the problems of fair or weighted distribution of the delay
penalty∆l between the different layers.

C. Reduced search space

In order to solve the joint delay optimization problem, we propose
to limit the search space of possible delay values. We know already
from the above discussion that the minimal playback delay for clients
that decode the stream up to layerl, is Dl

min. It corresponds to
the lowest achievable delay, when clientsRk with k 6= l are not
considered in the delay computation. Generally, the playback delay
for layer l is larger thanDl

min when the scheduler also tries to reduce
the delay for the lower layers1 ≤ k ≤ l. In order to reduce the
search space, we are looking for a reasonable upper-limit onthe
search interval. From Lemma 1, the worse case policy for clients
Rl consists in minimizing iteratively the delays for all the clients
Rk with 1 ≤ k ≤ l. We describe below the greedy delay allocation
policy, and we denote the resulting delayDl

greedy .
The greedy delay allocation first minimizes the playback delay of

the first layer, which is thus decoded afterD1
greedy = D1

min. It then
iteratively allocates the smallest possible delay to the different layers,
given the greedy delay allocation for the lower layers. Formally, we
denote the available channel bandwidth for transmitting the layer l
asCl(t) = C(t) −

Pl−1
k=1 Λk(t − Dk

greedy). Therefore, the minimal
playback delay for layerl becomesh(Cl, Λl) under the greedy
allocation policy. This scenario results in an upper boundDL

greedy

on the playback delay for the highest layerL, when all playback
delays are chosen in a greedy manner. In particular, delays that are
larger thanDL

greedy also provide valid scheduling solutions. However,
increasing the playback delayDL does not reduce the playback delay
of the lower layers, and rather contribute to increasing thestandard
deviation of the penalties given in Eq. (11). The delays obtained by
the greedy allocation can therefore be safely considered asthe upper-
limits of the search intervals. The greedy layered scheduling strategy
is shown in Algorithm 2.

Algorithm 2
`˘

Dl
greedy

¯´

= GreedyD
`

C(t), {Λl(t)}
´

1: C1(t) ⇐ C(t)
2: for l = 1 to L do
3: Dl

greedy ⇐ getDmin
`

Cl(t),Λl(t)
´

4: Cl+1(t) ⇐ Cl(t) − Λl(t − Dl
greedy)

5: end for

As the greedy delay allocation provides the worst case solution for
minimizing the delay for all the receivers, we can limit the search
domain for computing the best set of playback delays to the interval
[Dl

min, Dl
greedy ], ∀l. In addition, due to the hierarchical nature of

the scalable video stream, we know the delay can only take non-
decreasing values when the number of layers increases (i.e., Dk ≤ Dl

when k ≤ l). We can therefore limit the number of potential
solutions that need to be tested for optimality by the searchalgorithm,
by setting the condition thatDL ∈ [DL

min, DL
greedy ]. Then, for

each possible value ofDL, we constrain the search algorithm to
test values ofDL−1 such thatDL−1 ∈ [DL−1

min , DL]. The search
proceeds iteratively and only test values of delayDl, such that
Dl ∈ [Dl

min, Dl+1], for l = L..1. Using this simple method, the
set of playback delays that minimizes Eq. (11) can be identified with
high probability for most cost functionsϕ that tends to minimize
the average playback delay. The search space of feasible solutions is
however drastically reduced compared to a full search algorithm.
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D. Fair penalty distribution

In order to have a fair policy among the different clientsRl, we
can distribute the playback delays such that the standard deviation of
the penalties∆ = [∆1, . . . , ∆L] is minimized. If the average penalty
is given byµ = E[∆l], the playback delays can thus be chosen such
that

Dopt = arg min
D

E
ˆ

(∆ − µ)2
˜

(12)

under the condition thatSl
D(t) ≤ C(t) ∀l, 1 ≤ l ≤ L, i.e., all the

traces are schedulable from Eq. (1).
We propose a low complexity algorithm for computing the optimal

playback delay setDopt in the sense of Eq. (12). We can observe
that the minimal value of the cost function is reached when all the
penalties are equivalent, i.e.,∆k = ∆l, ∀k, l. Any set of delays
D =

˘

Dl|Dl = Dl
min + ∆l

¯L

l=1
, where∆l = K, ∀l minimizes the

cost of Eq. (11). In other words the source traces of all layers need to
be delayed byK units relative to their respective minimal playback
delay Dl

min. Given the set of minimum playback delaysDmin, we
can construct an aggregate source rate traceSL

Dmin
(t), defined as:

SL
Dmin

(t) =

L
X

l=1

Λl
“

t − Dl
min

”

. (13)

If the traceSL
Dmin

(t) is schedulable, it represents an ideal solution
where all layers can be decoded jointly with minimal delay. If it is
not the case, the playback delay can be increased in the same manner
for all layers, such the trace becomes schedulable. It corresponds to
shifting the aggregate source trace by the smallest delayK, such that
SL
Dmin

(t − K) ≤ C(t),∀t. In other words, we can computeK as

K = h
“

SL
Dmin

, C
”

, (14)

and that can be achieved by running the Algorithm 1. Hence the
complexity involved in finding the solution is that of the bisection
search algorithm used in Algorithm 1, i.e.,O(log(trace length)).
The solution is obviously equivalent to the optimal solution of the
algorithm in the previous section, when it lies in the reduced search
space.
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Fig. 4. The channel can support 3 layers of the encoded stream. The dashed
curve shows the aggregate playout curve of the 3 layers with fair values of
the playback delaysDf . The aggregate playout curve of the 3 layers using
playback delayD3

min is shown for reference (dotted line).

We illustrate the solution with fair distribution of the delay penal-
ties in Figure 4. We have encoded a composite video sequencesin

QCIF format at 30 frame per second, using the MoMuSys MPEG-4
FGS [16] reference codec. The channel is a piecewise CBR channel
that provides a mean rate of 128kbps at the beginning, then improves
to 256kbps and finally to 384kbps. Using the fair playback delay
distribution proposed above, the playout can begin after a playback
delay equivalent to 137 frames at receivers of setR1. The playback
delays for layer 2 and 3 are of 199 and 730 frames respectively.
The relative playback delay penalty per client set, compared to
their respectiveDl

min value, is equivalent to 135 frames for all
clients. Note that the gain in delay for clients in setsR1 and R2

is enormous when compared to a strategy that would have the same
delayD3

min = 595 frames for all clients (dotted line).

E. Unequal delay penalties

Some applications may necessitate to devise a scheduling strategy
with unequal delay penalties, where some clients are considered as
prioritized compared to others. This can be achieved by minimizing
a weighted standard deviation of the delay penalties. In this case,
the delay distribution has to be chosen according to the following
optimization problem:

Dopt = arg min
D

E
h

(wT (∆ − µ)2
i

(15)

under the condition thatSl
D(t) ≤ C(t) ∀l, 1 ≤ l ≤ L, i.e., all the

traces are schedulable from Eq. (1). The weightsw = [w1, . . . , wL]
represent positive weights that permit to control the distribution of the
penalties among theL layers. A relatively high value of the weight
wl typically constrains the delayDl to be close to the minimal delay
Dl

min.
Depending on the weight distribution, it might be difficult to

find the optimal solution to the problem of Eq. (15) without using
an exhaustive search over the (reduced) space of possible delay
values. We however propose a low complexity algorithm that finds
the optimal playback delay setDopt. It is based on the a priori
information about the structure of the optimal solution that sets the
cost function in Eq. (15) to 0. It can be reached only when

∆l =
wk

wl
∆k, (16)

∀k, l, 1 ≤ k ≤ L, 1 ≤ l ≤ L. This imposes that the delay
penalty takes the form∆l = K/wl,∀l, where K is a constant.
Therefore, solving the optimization problem of Eq. (15) is equivalent
to find to smallest value ofK such that the aggregate traceSL

D(t)
is schedulable. In other words, one has to find the smallestK such
that verifies

L
X

l=1

Λl

„

t − Dl
min −

K

wl

«

≤ C(t),∀t. (17)

The search algorithm, given in Algorithm 3, simply increases K
gradually, until the aggregate trace is schedulable. At each iteration,
it updates the playback delays, constructs the aggregate source trace,
and checks the schedulability condition. If the resulting trace is
schedulable, the algorithm stops. Otherwise, the value ofK is
augmented byδ, and the process is repeated until the resulting trace
is schedulable.

Note that the algorithm may find a sub-optimal solution to the
problem of Eq. (15) due to granularity of the delay increments.
However, the complexity is drastically reduced compared toa full
search algorithm. If all the weights are equal, we obviouslyget back
to the thefair model of the previous section. However, we have seen
that in the fair case we only need to testO(log(trace length))
possibilities, where each test can be performed in polynomial time.
Algorithm 3 always performsO(trace length) such tests.
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Algorithm 3 Dh =
`

C(t), {Λl(t)}, w, δ
´

1: Dl
h ⇐ Dl

min, 1 ≤ l ≤ L.
2: Construct the trace using delaysDl

min:

3: SL
Dh

(t) ⇐
L

P

l=1

Λl
`

t − Dl
min

´

4: while SL
Dh

(t) � C(t), ∀t do
5: increase the delays according to the assigned weights:
6: for l = 1 to L do
7: Dl

h ⇐ Dl
h + δ

wl

8: end for
9: bound delays such that there are non-decreasing:

10: for l = L − 1 downto1 do
11: Dl

h ⇐
`

min(Dl
h, Dl+1

h

´

12: end for
13: construct new trace:

14: SL
Dh

(t) ⇐
L

P

l=1

Λl
`

t − Dl
h

´

15: end while
16: for l = 1 to L do
17: Playback delays are integers (in frame units)
18: Dl

h ⇐ ⌈Dl
h⌉

19: end for

We validate the proposed algorithm on a composite sequence,
encoded using the MoMuSys MPEG-4 FGS reference codec [17].
We run 100 tests where the channel is a piecewise CBR channel
with rates chosen randomly in{128kbps, 256kbps, 384kbps}, and
random lengths for each constant rate segment. We set the weights
to w = {1, 100, 1}, which means that the playback delay for layer 2
in the optimal playback delay set should be kept as close as possible
to its minimum playback delay. In our results, the optimal playback
delay for layer 2 is indeed always within at most 2 frames ofD2

min,
thus validating our weighted metric function, as expressedin Eq.
(15). In all the cases, the cost function is minimal. Note that this
might not be always the case for the algorithm with reduced search
space proposed in Section III-C, since the bounds of the delay interval
might not allow to find the optimal solution in the sense of Eq.(15)
that does not include an explicit minimization of the average playback
delay. Finally, the average number of potential solutions tested by the
proposed algorithm was1.59·103 for the aforementioned experiment,
compared to1.82·107 for the generic full search algorithm in Section
III-C. The considerations on the structure of the optimal solution
space thus permits a dramatic reduction of the computation time.

IV. M INIMUM RECEIVER BUFFER

A. β-optimal sending rate

Once playback delays are given, the server still has the flexibility
to choose the packet scheduling policy under the constraints given
by the channel. The packet scheduling policy typically influences
the dynamic behavior of the receiver buffer. In particular,we are
interested in defining the sending rate at the server, which minimizes
the buffer occupancy at all timest at the receiver in a given streaming
scenario represented by(C(t), S(t), D). At the same time, the
sending rate shall ensure that the receiver buffer does not experience
any starvation in order to guarantee a smooth video playback. This
sending rate is calledβ-optimal and we denote it asXβ(t).

If condition of Eq. (1) is verified, there exists a family of sending
ratesX such that eachX(t) ∈ X satisfies both Eqs. (2) and (3).
In these cases, the video can be played back at the receiver after
D time units without experiencing any buffer underflow. Theβ-
optimal sending rate is the scheduling solution that minimizes the

bits C(t)=X (t)

SD(t)

D T+D

C(T+D) = S(T+D)

bits C(t)

SD(t)

D T+D

C(T+D) > S(T+D)

X (t) = ?

Fig. 5. Left: Limiting case with Xβ(t) = C(t). Right: The set of
sending tracesX(t) that verifies Eqs. (2) and (3) generally contains multiple
candidates.

buffer occupancy at the receiver. It can be written as:

Xβ(t) = arg min
X(t)∈X

(B(t) = X(t) − SD(t)) ,∀t, (18)

which means that, for any sending rateX(t) ∈ X \Xβ(t), we have:

Xβ(t) ≤ X(t),∀t (19)

Using the formalism from [4],Xβ(t) is the smallest sending rate
that satisfies the following conditions:

• X(t) is a causal flow, i.e.,X(t) = 0 for t ≤ 0.
• the flowX(t) is constrained by an arrival curveσ(·) that reflects

the channel availability constraints. This means that for all t ≥ 0
and for all s ∈ [0, t], X(t) − X(s) ≤ σ(t − s). There is no
further constraint imposed by the network.

When the server can prefetch data from any future frame at anytime,
and when the playback delay is chosen such that there is no buffer
underflow at the receiver, there exists a minimal solution tothe above
set of constraints. It is given by:

Xβ(t) = (S ⊘ σ)(t − D) (20)

Here ⊘ denotes theMin-Plus deconvolutionof two wide-sense
increasing functionsf andg, defined as:

(f ⊘ g)(t) = sup
u:u≥0

{f(t + u) − g(u)} (21)

The interested reader is referred to [5] for more details on the
network calculus formalism that is used for proving the existence of
the minimal sending trace.

In the rest of this section, we propose an algorithm that offers an
intuitive and tractable solution for computing theβ-optimal sending
rate for non-scalable streams. This algorithm is a generalization of
the algorithm presented in [1]. We then show that ajointly β-optimal
sending trace exists also in the case of scalable streams, and we
propose a method to compute the sending rate that minimizes the
buffer occupancy for a set of heterogeneous receivers.

B. Single layer streams

We provide an intuitive algorithm for computing theβ-optimal
sending rate for single layer streams. Let us consider first alimiting
case where the channel has to be fully used to transmit the complete
bitstream, i.e.,C(D + T ) = SD(D + T ). In this case illustrated in
Figure 5 (left), the set of schedulable sending traces only contains
one solution. Any sending rate for which there exists somet where
X(t) < C(t) implies thatX(D + T ) < SD(D + T ), whereT is
the duration of the video sequence. This violates the condition of Eq.
(2). Hence the only valid sending rate function is also the solution
that minimizes the buffer occupancy for all timest. It is given by
Xβ(t) = C(t).
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Algorithm 4 Xβ = V RS (C(t), SD(t)))

Require: SD(t) ≤ C(t),∀t
1: Xβ(t) ⇐ C(t), for all t. The sending trace is computed as a

reduced channel trace.
2: t ⇐ 0
3: while t ≤ T + D do
4: if ∄t′ ≥ t s.t. Xβ(t′) = SD(t′) then
5: Reduce the channel down byXβ(t) − SD(t)) bits.
6: for all τ in [t, T + D] do
7: Xβ(τ ) ⇐ Xβ(τ ) − Xβ(t) + SD(t)
8: end for
9: t ⇐ t + 1

10: else
11: The curves touch, no reduction at this step.
12: tnew ⇐ supτ>t {τ |Xβ(τ ) = SD(τ )}
13: t ⇐ tnew

14: end if
15: end while

In the general case whereC(T+D) > SD(T+D), several sending
traces represent valid scheduling solutions that satisfy the condition
of Eq. (1), as illustrated in Figure 5 (right). In order to compute the
β-optimal sending rate, we make the following observations.First,
Xβ(t) obviously shall fulfill the conditions of Eqs (2) and (3) that
define the schedulable solutions. In order to minimize the buffer
occupancyB(t), ∀t, Xβ(t) also needs to followSD(t) as closely
as possible. This is equivalent to keeping the sending rate as small
as possible, but still to send enough data to avoid buffer starvation
under the constraints imposed by the channel bandwidth. Finally, we
know from the limiting case presented above that, whenever there
exists a timeτ such thatSD(τ ) = C(τ ), theβ-optimal sending rate
needs to be equal toC(t) up to τ . Therefore, it becomes clear that
B(t) can be minimized for all timest if and only if data is sent at
the latest possible instant in time such that all data still arrive on time
for decoding. We can thus eliminate the early sending opportunities
offered by the transmission channel, andreducethe channel to the
sending opportunities that arenecessaryto transmit all the data before
their decoding timestamps.

Theβ-optimal sending rate can now be computed by theVariable
Rate Smoothing(VRS) algorithm given in Algorithm 4. The algo-
rithm operates in the cumulative domain, starting at timet = 0. It
first sets the sending trace to be equal to the channel traceC(t),
∀t. Then, it iteratively checks fort = 0 . . . T + D whether there is
equality at any future time instantt′ between the sending trace and
the delayed source traceSD(t). In this case, the situation is similar
to the limiting case presented above, and the sending rate has to be
equivalent to the channel rate up to the time instantt′ = t. However,
if the sending trace is strictly larger than the delayed source trace
for all time instantst′ > t, the sending trace at all time instants
t′ > t is reduced by the difference between the sending trace and the
delayed source trace at timet. This operation basically consists in
eliminating the early transmission opportunities, which would results
in wasting buffer resources. It is equivalent to translating the sending
trace curve down byXβ(t) − SD(t) for all t′ > t. Note that the
complexity of Algorithm 4 isO(T + D), where the worst case is
achieved ifs(t − D) < c(t), ∀t.

An illustration of the VRS algorithm is presented in Figure 6,
where the channel traceC(t) is linear and the delayed source trace
SD(t) is piecewise linear. At timet = 0, Xβ(t) and SD(t) do
not touch. This will remain the same up tot1. This means that up
to t1, the derivative ofSD(t) is certainly never larger than that of

Xβ , or equivalently that the instantaneous sending rate is notsmaller
than the delayed source rate. The algorithm sets the sendingtrace
to SD(t) up to timet1. The sending trace computed at timet = t1

touches the source curve at timet2new. This means that, in the interval
[t1, t2new], the derivative ofSD(t) is at times larger than the derivative
of the sending trace ofXβ(t). In other words we have reduced the
situation in this interval to the limiting case and we have touse all
the channel bits in order to transmit the needed data. The algorithm
does not reduce the sending trace fort in [t1, t2new]. After t = t2new,
the sending trace can again be reduced to the delayed source trace.
Using the time-inversion technique outlined in [5], it can finally be
checked that the resulting sending rate in this example is the same
as the one resulting from Eq. (20) where the arrival curve is set to
σ(t) = dC(t)

dt
· t.

Once the optimal sending trace has been computed, the buffer
optimal scheduling strategy simply consists in sending data in the
increasing order of their decoding deadline while respecting the
constraints given by the sending trace. If one does not respect this
order, some packets are sent in advance, which can only contribute to
increase the buffer occupancy. Equivalently, the optimal scheduling
of the packets can also be achieved by scheduling packets as late as
possible [9], without pre-computing the buffer optimal sending trace.
This last opportunity scheduling policy basically consists in reversing
time, starting fromt = T+D to t = 0. Then it schedules at each time
instantt as many of the packets with the largest decoding deadlines in
sD(t) as the channelc(t) permits it. This solution jointly computes
the buffer optimal scheduling, and the optimal sending trace. It is
however based on reversing the time axis aftert = T + D, which
might present limitations in some practical systems.

Finally, Figure 7 illustrates theβ-optimal sending rate: the used
video trace is formed of 2 GOPs of the MPEG-4 encoded Foreman
sequence. The channel is a constant bit rate (CBR) channel. The
left column depicts the source rates(t), channel ratec(t) and
the illustrated sending rate. The middle column shows the same
traces in the cumulative domain, and the right column shows the
buffer occupancy as a function of time:B(t) = X(t) − SD(t).
The top row shows one valid but sub-optimal sending trace. Note
that supt (X(t) − SD(t)) = 21264 > 11468 bits (seetop-right).
The bottom row shows theβ-optimal scheduling policy, where the
sending rate follows the source rate whenever possible. Whenever
sD(t) > c(t), data is sent at the latest possible opportunity, thus
minimizing the buffer occupancy for allt. The maximum amount of
buffering needed is 11468 bits (seebottom-right).

C. Scalable streams

In this section, we consider the case of scalable streams andwe
show that there exists a scheduling strategy that jointly minimizes
the buffer occupancyBl(t) for each each receiver groupRl and
at all timest. Then we propose a scheduling algorithm that offers
a practical solution to build the sending traceXβ(t) that is jointly
β-optimal for multiple receivers.

We consider that a set of source tracesS =
˘

Λl(t)
¯L

l=1
, represent-

ing L additive hierarchically encoded layers are sent simultaneously
to multiple receiversRl, 1 ≤ l ≤ L through a joint bottleneck
channel given by the cumulative rateC(t). We further consider a set
of non-decreasing playback delaysD =

˘

Dl
¯L

l=1
that are used by

the different receiver groups. Each receiver in the groupRl starts
consuming the media layers 1 tol of the hierarchically encoded
stream after an initial playback delayDl. Theaggregate source trace
that has to be sent over the channel in order to ensure a smooth
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Fig. 6. Illustration of the VRS Algorithm. In order to minimize the buffer occupancy, the sending trace is reduced to the delayed source trace when the
channel rate is superior to the source rate.
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Fig. 7. β-optimal scheduling outperforms any generic scheduling algorithm with respect to receiver buffer occupancy.

playback by all decoders is constructed as:

Sl
D(t) =

l
X

i=1

Λi
Di(t), (22)

whereΛi
Di(t) is the cumulative function ofλi

Di(t), the source trace
of layer i, delayed byDi. We assume here thatD is chosen such
that the full stream is schedulable, i.e. thatSl

D(t) ≤ C(t), ∀t, ∀l. It
is important to note here that the cumulative rate given by Eq. (22)
is in fact larger than the rate used by the decoder. When a receiver
in Rl starts playing the stream at timeDl, all the source traces up
to l are drained simultaneously from the receiver buffer. Thus the
playout traceat a receiver inRl, which represents the number of
bits consumed up to timet, is given as:

Sl
Dl(t) =

l
X

i=1

Λi
Dl(t). (23)

These different traces are illustrated in Figure 8. Note that we have:

Xl(t) ≥ Sl
D(t) ≥ Sl

Dl(t),∀t, (24)

where the first inequality is due to the schedulability condition, and
the second inequality results from the construction of the playout
trace, withDi ≤ Di+1. There are in general several valid sending
tracesXl(t) for scheduling the layers 1 tol under a given set of
delay and source trace constraints. We denote this set of valid traces
as X l = {Xl(t)}. We are interested in finding the traceXl

β(t) ∈

X l that minimizes the buffer occupancy all the receiversRl for all
times t. It corresponds to the sending trace that minimizesBl(t) =
Xl(t)−Sl

D(t), ∀t. The cumulative sending trace is built onl additive
layers, and we denote the sending trace of layerl as Y l(t), with
Pl

k=1 Y k(t) = Xl(t). Similarly, we denote theβ-optimal sending
trace of layerl asY l

β(t).

bit

D1
T+DlT+D1

Dl

Fig. 8. Illustration of the aggregate source traceSl
D

(t) and the play-out
trace at receiverRl, Sl

D(t), along with one of the possible sending traces
Xl(t) .

From the previous section, we know that if we only consider one
resolution levell, Xl

β(t) exists. It can be computed by Algorithm
4 for every resolution levell. In a scenario where clients might
subscribe only to a subpart of this aggregated stream for a resolution
level k < l, such a scheduling would however be suboptimal in terms
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of buffer occupancy for the low resolution clients. In otherwords, if
the sending rate is generated from the stream at resolutionl without
explicitly considering the lower layers, we can a priori notprovide
any guarantee on the buffer occupancy at receiversRk, k < l that
consume only the lower layers. We are rather interested in finding the
sending trace that minimizes the buffer occupancy at all timest for all
receivers simultaneously, if such a solution exists. We prove below an
important proposition that says that a jointβ-optimal scheduling for
multiple receivers actually exists, and that the solutionXl

β(t) ∈ X l

can actually be constructed on theβ-optimal traces for layersk < l.
Proposition 1: If SL

D(t) ≤ C(t), ∀t, then there exists a scheduling
policy that is jointlyβ-optimal for all receiversRl, 1 ≤ l ≤ L that
respectively consume the layers1 to l after an initial playback delay
Dl.

Proof:
GivenC(t) andSl

D(t), we know thatXl
β(t) exists, for anyl taken

individually. We want to show that there exists a valid sending trace
Y l

β(t) for scheduling layerl, when streams at resolutionl and l − 1
both minimize the buffer occupancy for the respective client sets.
Such a trace can be written as:

Y l
β(t) = Xl

β(t) − Xl−1
β (t). (25)

It is a valid sending trace for layerl iff

Λl
Dl(t) ≤ Y l

β(t) ≤ C(t) − Xl−1
β (t),∀t. (26)

In other words, the sending trace for layerl has to be large enough
to ensure a smooth playback after a delayDl. At the same time,
it has to be small enough to respect the channel constraints,once
the sending traceXl−1

β (t) has been allocated already. AsXl
β(t) is

schedulable by hypothesis, we haveXl
β(t) ≤ C(t). We can therefore

write Xl
β(t) − Xl−1

β (t) ≤ C(t) − Xl−1
β (t) Combined with Eq. (25

), it leads to proving the second part of Eq. (26).
The schedulability ofXl

β(t) also induces that the data of layerl
are present on time at the decoder. In other words, there exists a set
of sending tracesXl−1(t) for the data of layers1 to l − 1 such that

Λl
Dl(t) ≤ Xl

β(t) − Xl−1(t),∀t.

In particular, since by definitionXl−1
β (t) ≤ Xl−1(t), we have

Λl
Dl(t) ≤ Xl

β(t) − Xl−1
β (t),∀t,

or equivalently
Λl

Dl(t) ≤ Y l
β(t),

which proves the first part of Eq. (26).
Therefore, there exists a valid sending trace that minimizes jointly

the buffer occupancy for receivers setsRl−1 and Rl. By recursion,
we can construct theβ-optimal solutions asXl

β(t) =
Pl

k=1 Y k
β (t).

Moreover, we have the following corollary.
Corollary 1: The optimal sending traceY l

β(t) is the minimal valid
sending trace for layerl on a channel of bandwidthC(t)−Xl−1

β (t),
when the playback delay is set toDl.

Proof: We prove the corollary by contradiction. Assume that
there exists a traceYl(t) such thatYl(t) < Y l

β(t) as some timet.
In this case, we haveXl(t) = Xl−1

β (t) + Y l(t) ≤ Xl
β(t), which

contradicts the assumption on the optimality ofXl
β(t). Y l

β(t) is
therefore the minimal sending trace for layerl.

Based on Proposition 1 and Corollary 1, we can build an iterative
algorithm to build the jointβ-optimal sending rate for any layerl
by greedily building theβ-optimal sending rate one layer at a time,
starting at the lowest one. In particular, we have

Xl
β(t) =

l
X

i=1

Y i
β(t), l > 1 (27)

andY 1
β (t) = X1

β(t). The sending rate can be computed for each layer
iteratively starting from layer1 by the VRS algorithm. It computes
the sending trace that corresponds toΛl

Dl , the bits of layerl that
are decoded after a playback delayDl. The bandwidth constraints
are updated iteratively, as the bandwidth used by the lower layers is
removed from the channel capacity. Therefore, we have

Cl(t) = Cl−1(t) − Y l−1
β (t),∀1 < l ≤ L, (28)

whereCl(t) corresponds to the part of the channel that is available
to schedule bits from layerl, and C1 = C(t). Once the optimal
sending tracesY i

β(t) have been computed for each layerl, the
packet scheduler proceeds by sending the data of each layer in
the increasing order of the decoding deadlines, while respecting
the different sending traces. For each layer, the schedulerproceeds
similarly to the scheduler for single layer streams.

Note that another strategy could be proposed to reach the buffer
optimal sending traces. It consists in reverting the time axis, starting
from t = T +Dl to t = 0. Then the packets of each layer are sent at
the latest moment for correct decoding, while respecting the channel
bandwidthc(t). As the layer1 is decoded with the smallest playback
delay, it is scheduled first. Other layers are scheduled iteratively
under the constraints given by the remaining channel bandwidth cl(t).
Similarly to the case of single layer streams, this solutionguarantees
the lowest buffer occupancy at the decoder, without the explicit
computation of the optimal sending traces. From Proposition 1, it
also leads to the jointly optimal policy for all the resolution levels,
or all the clientsRl.

We illustrate the resulting performance of this iterative algorithm in
Figure 9: it shows a constant bitrate channel and the playoutrates of 2
GOPs of the MPEG-4 FGS encoded Formeman sequence, at receiver
R1 (layer 1 only) andR2 (layers 1 and 2), seeleft. Playout begins at
all the receivers afterD=20 frames. The same scenario is shown in
the cumulative domain (seemiddle). Only the aggregate playout trace
at R2 (i.e. Λ1(t−D)+Λ2(t−D)) is shown in blue. The green curve
shows theβ-optimal sending rate for the aggregate playout curve and
the considered channel, as given by the VRS Algorithm. It is thus the
β-optimal sending rate for receivers in the setR2. Figure 9-right: on
the one hand, the solid and dashed blue curves show the sending rates
for layer 1 data and layer 2 data respectively, in the case where the
β-optimal sending trace is computed from the aggregate playout trace
at R2. On the other hand, the dashed red curve shows theβ-optimal
sending rate forR1, X1

β(t), obtained from aβ-optimal scheduling
of layer 1 over the channelC(t). It can be noticed that data for
layer 1 is only transmitted shortly before the playout deadline, thus
reducing the buffer occupancy atR1. In this scenario, the solid red
curve shows the sending rate of layer 2 over the remaining bitrate
C(t)−X1

β(t). Note that in both cases, all data that is sent meets their
deadline, and in both cases, the two respective sending rates add up
to Xβ(t) (green curve), which is theβ-optimal sending rate forR2.

In the same scenario, Figure 10 finally shows the evolution of
the buffer occupancy at receiversR1 (left) and R2 (right) if joint
β-optimal scheduling is used (top) and ifβ-optimal scheduling is
computed only on the 2 layers stream (bottom). The minimum buffer
occupancy atR2 is achieved in both cases, however the minimum
buffer occupancy atR1 is only achieved in the first case (top-left).
The jointβ-optimality is achieved through the fact that receivers that
subscribe to higher layers buffer less data from lower layers in the
first case, and more data from higher layers. However, the buffer
contains the same total amount of data in both scheduling choices.

Finally, it is important to note that joint playback delay and buffer
optimization can be achieved with the algorithms proposed in the Sec-
tions III and IV. The delay optimization does not put assumptions on
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Fig. 9. Validation of theβ-optimal scheduling scheduling algorithm.Left: the traces of two layers and a CBR channel in the temporal domain, playout starts
after 20 frames.Middle: The channel trace and the aggregate playout trace for both layers in the cumulative domain. The green curve shows the sending trace
the minimizes the buffer occupancy atR2, as given by the VRS algorithm.Right: We achieve theβ-optimal sending trace for layer 1, without sacrificing the
β-optimality of the aggregate sending trace for both layers 1and 2.
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Fig. 10. Buffer evolution inβ-optimal scheduling scenarios.

the actual sending traces,it only considers schedulability conditions.
Similarly, when playback delays are selected, the buffer optimization
simply consists in finding the smallest sending trace among the set
of valid traces. Both problems can be solved sequentially, and the
resulting solution jointly optimizes the playback delay, and the buffer
occupancy.

V. CHANNEL -ADAPTIVE STREAMING

A. Source rate adaptation

In the previous sections, we have provided an analysis of the
playback delay and buffer occupancy, as well as joint optimization
strategies. These solutions rely on the assumption of perfect knowl-
edge about the bottleneck channel bandwidth. They provide upper-
bounds on the performance of common practical systems, where the
complete channel trace is usually not known at the server. When
the actual channel bandwidth does not exactly correspond tothe
trace that is used for packet scheduling, the server may not be
able to send all packets according to their computed schedules. It
has therefore to take actions such as reduction in the sourcerate,
to adapt to temporary bandwidth reduction. Rate adaptationcan be
performed efficiently on scalable streams by dropping packets from
the higher layers. If such mechanisms are used carefully, the quality
of service is not significantly affected. Another solution is to devise

       Known for slot k:

 - AVG_RATE c

 - rate = estimated channel rate in slot k-1

 - feedback = new rate observation c

 - scheduling look_ahead

~

L

Fig. 11. Rate adaptation algorithm

a conservative scheduling approach that considers lower-bounds on
the channel bandwidth. The authors in [18] for example compute
the playback delay for a single stream over astochasticchannel by
deriving a channel trace that lower bounds all possible realizations
of the channel. Rate adaptation generally reaches a higher average
quality than conservative scheduling methods, at the priceof possibly
higher quality variations for the clients that subscribe tothe highest
resolution streams.

We assume that the server knows some channel statistics suchas
the average bottleneck bandwidth̄c. The playback delays and the
sending traces are initially computed based on a constant bit rate
channel of ratēc. This results in a complete schedule that determines
which packet (and which layer) has to be sent at each time instant
t, in an ideal scenario. During the broadcasting session, theserver
monitors the state of the channel, and the sending rate can beadapted
in case the available bandwidth becomes insufficient to be able to
respect the original packet schedule.

We propose below a sample system based on a simple rate
adaptation algorithm, and we show that rate adaptation still permits
to keep the buffer occupation close to minimum, and that playback
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delays close to the ideal values can be achieved, at the priceof only
minor and controlled PSNR degradations.

B. System description

We have tested the rate adaptation scheme on a sample system.
The scalable video stream is segmented such that data from different
frames and different video layers are fed into different RTPpackets.
The video stream is sent simultaneously to 3 clientsR1, R2 and
R3 that decode layers up to 1, 2 and 3 respectively. The average
channel rate has been set to 32 kbytes/sec, and we use a NISTNet
[19] network emulator to limit the bandwidth on the server-client
broadcast link according to a given random bandwidth trace,which
is unknown at the server.

The server sends the stored layered stream according to the
scheduling strategy computed with a CBR channel ofc̄ = 32 kBps
and a given set of target playback delaysD. At each discrete time
t the server transmits RTP packets according to the ideal scheduling
plan, when it is possible. At the same time, the server updates the
channel rate estimate as well as the scheduling look-ahead after each
second. The approximate channel rate is computed from the round-
trip time estimated that are sent in the client RTCP receiverreports,
as c̃ = packet length∗2

RTT
, where packet_length is the average

length of packets that have been sent during the previous slot. The
scheduling look-ahead represents the difference between the actual
scheduling, and the scheduling that has been pre-computed with
an ideal channel. In other words, it measures the advance that the
scheduler has taken compared to the pre-computed schedule.

Based on these parameters, the rate adaptation algorithm presented
in Figure 11 adapts the sending rate according to a AIMD (additive
increase multiplicative decrease) policy. The additive step size is
dependent on whether the current rate is above or below the targeted
average rate, and we have chosen the following factors:

• a1 = c̄
framerate

, if c̃ > c̄

• a2 = 2 · c̄
framerate

, if c̃ ≤ c̄ .

The choice of having a lower increment if the estimated rate is above
average, leads the server to taking advantage carefully of the available
rate, while trying to avoid over-estimation. The order of packets is
maintained even if the rate has to be adapted. The sending rate is
thus augmented by advancing faster on the pre-defined schedule, and
resulting in a positive scheduling look-ahead value.

When the sending rate has to be reduced, we use a multiplicative
decrease policy with a factorm = 0.96. However, if a decrease
occurs when the rate is above the average rate, the rate is immediately
clipped to the average rate. The choice of these parameters is based
on empirical data and depends on the channel statistics. If the
transmission is ahead of schedule, the look-ahead is used toabsorb
the temporary rate decay and the sending rate is simply reduced, while
the order of the packets is maintained. If however, the transmission
is running behind the original schedule, packets of the highest layer
are not transmitted and simply dropped.

C. Experimental results

The performance of the above sample system are now analyzed
through experiments. We have used the same composite video se-
quence as proposed before, that has been encoded in QCIF at 30
frame per second with the MPEG-4 FGS encoder. The set of target
delays was set toD = {D1 = D2 = 98, D3 = 381}.

Figure 12 shows the number of layers that are transmitted by the
rate-adaptive server, as well as the evolution of the scheduling look-
ahead as compared to the pre-computed schedule. We see that at time
instant t = 23 sec, the channel estimate is low and the scheduling
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rate adaptation algorithm.
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look-ahead is not sufficient to continue sending all layers.So the
server stops transmitting layer 3 in order to avoid further congestion
until both the channel rate and the scheduling look-ahead increase
again. Finally Figure 13 shows the decodable received source trace at
client R3 that subscribes to the complete stream, and starts decoding
after a playback delayD3, equivalent to 381 frames. It can be seen
that approximately 3 seconds worth of layer 3 data are missing.
This correspond to the the amount of layer 3 data that was not
transmitted due to the server’s rate adaptation. Dropping the highest
layer temporarily from the broadcast leads to a decrease of less than
0.5dB in average PSNR compared to the complete reception of layer
3. However, if a conservative scheduling approach is chosenin such
a scenario, the layer 3 is not transmitted at all. The averagequality
is therefore higher with the rate adaptation solution, at the price of
quality variations.

We analyze in Figure 14 the influence of the rate adaptation on
the playback delays that are necessary to ensure smooth decoding at
the receivers. The target playback delays that are pre-computed in
an ideal streaming scenario areD = {D1 = D2 = 98, D3 = 381}.
These delays are obviously conservative, since they can be achieved
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only when the channel rate exactly correspond to the previsions. In
order to illustrate the influence of the rate adaptation, we represent the
number of packets that arrive on time, as a function of an additional
delay K used for decoding the streams (i.e., the actual playback
delays areD+K). The solid and dashed lines respectively represent
the behavior of the rate adaptive scheme, and of an algorithmthat
does not try to adapt to the actual bandwidth and simply transmits
packets according to the pre-computed schedule. It can be seen
that the rate adaptive server clearly achieves better performances by
keeping the necessary playback delays close to the targetedones. If
an additional delay of only 10 frames is used at the decoder, all layers
can be decoded without buffer underflow. Rate adaptation therefore
permits to efficiently control the quality of the transmission and to
respect the timing constraints of the streaming application. A small
conservative margin on the playback delays is sufficient to guarantee
a smooth playback.

Finally, we analyze the buffer occupancy at the three receivers.
Figure 15 illustrates the buffer fullness for playback delays of D and
D+10. In the second case, which ensures a smooth playback delay,
we have computed the maximum difference between the actual buffer
occupation and the optimal buffer occupation in the ideal scenario
with a CBR channel rate of 32kbps. We can see that the difference
with the ideal scenario is always lower than 10kbytes, whichis a
negligible penalty.

D. Discussion

The experimental results show that even a simple rate adaption
algorithm based on partial channel knowledge can yield results that
are close to optimal in terms of both targeted playback delays and
buffer occupancy, at the expense of some minor and controllable
PSNR degradations. It is worth to be noted that our experimental
setup behaves like an overlynicenetwork, as any injection of data at
a higher rate than the actual channel rate results in a pure delay at the
receiver. There are no losses due to buffer overflows (congestions) in
the network. If such losses happen, we expect that the rate adaptive
system is less affected than the non-adaptive server, sinceit makes
effort to avoid congestions by changing the sending rate according
to the available bandwidth.

Finally, the additional playback delay that is needed to compensate
the discrepancies between estimated rate and actual channel rate can

be negotiated between the server and the clients at the beginning of
the streaming session. They represent a trade-off between resiliency
to channel variations and the waiting time before decoding that is
usually kept minimal.

VI. CONCLUSIONS

This paper has described the problem of scalable media scheduling
in broadcast scenarios. In particular, we have shown the playback
delay can generally not be jointly minimized for all the receivers. It
typically represents the price to pay for applications where different
users simultaneously subscribe to different quality levels of the same
stream. We have presented a reduced complexity solution foroptimiz-
ing the delay in a set of receivers. When the optimal strategyconsists
in minimizing the variance of the delay penalties, we have proposed
low complexity algorithms that compute the optimal delay set. When
delays are fixed, we have shown that there is a unique scheduling
solution that minimizes the buffer occupancy at all the receivers
simultaneously. If both problems are solved sequentially,one can
achieve jointly an optimal delay selection and a minimal buffer
occupancy. Finally, we have proposed a rate adaptation algorithm,
which deals with unpredictable channel bandwidth variations. This
simple scheme permits to achieve close to optimal results, even when
the knowledge about the channel status is limited. It provides a viable
alternative to conservative packet scheduling in practical streaming
scenarios.
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