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Abstract

Modern software is reaching levels of complexity encountered in biological systems;

sometimes comprising systems of systems each of which may include tens of millions

of lines of code. Model Driven Engineering (MDE) advocates raising the level of

abstraction as an instrument to deal with software complexity. It promotes usage

of software models as primary artifacts in a software development process. Tradi-

tionally, these MDE models are specified by Unified Modeling Language (UML) or

by a modeling language created for a specific domain.

However, in the vast area of software engineering there are other techniques

used to improve quality of software under development. One of such techniques is

refactoring which represents introducing structured changes in software in order to

improve its readability, extensibility, and maintainability, while preserving behavior

of the software. The main application area for refactorings is still programming code,

despite the fact that modeling languages and techniques has significantly gained in

popularity, in recent years.

The main topic of this thesis is making an alliance between the two virtually

orthogonal techniques: software modeling and refactoring. In this thesis we have

investigated how to raise the level of abstraction of programming code refactorings

to the modeling level. This resulted in a catalog of model refactorings each specified

as a model transformation rule. In addition, we have investigated synchronization

problems between different models used to describe one software system, i.e. when

one model is refactored what is the impact on all dependent models and how this

impact can be formalized.

We have concentrated on UML class diagrams as domain of refactorings. As

models dependent on class diagrams, we have selected Object Constraint Language

(OCL) annotations, and object diagrams. This thesis formalizes the most important

refactoring rules for UML class diagrams and classifies them with respect to their

impact on object diagrams and annotated OCL constraints. For refactoring rules
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that have an impact on dependent artifacts we formalize the necessary changes of

these artifacts.

Moreover, in this thesis, we present a simple criterion and a proof technique

for the semantic preservation of refactoring rules that are defined for UML class

and object diagrams, and OCL constraints. In order to be able to prove semantic

preservation, we propose a model transformation approach to specify the semantics

of constraint languages.

Keywords
Model Driven Engineering, UML, Model Transformations, Refactoring, QVT, OCL

Semantics, Semantics Preservation



Résumé

La complexité des logiciels actuels atteint des niveaux comparables à ceux ren-

contrés chez les systèmes vivants. Parfois, des systèmes logiciels peuvent en en-

glober d’autres déjà eux-mêmes composés de dizaines de millions de lignes de code.

L’Ingénierie Dirigée par les Modèles (IDM) pose l’abstraction en instrument de

gestion de cette complexité. Pour ce faire, l’IDM promeut les modèles comme com-

posants principaux d’un processus de développement logiciel. Souvent, ces modèles

sont exprimés soit en utilisant le langage UML (Unified Modeling Language), soit

dans un langage spécifique au domaine concerné.

Cependant, le domaine du génie logiciel est très vaste, et il existe d’autres tech-

niques à même d’améliorer la qualité d’un système logiciel lors de son développement.

Une de ces techniques est le réusinage (ou refactorisation), plus connue sous sa

dénomination anglaise de refactoring. Cette technique permet de restructurer un

code logiciel de manière à le rendre plus lisible, plus souple, ou plus facile à maintenir.

Cependant, malgré le récent succès des langages et techniques de modélisation, la

principale cible d’application du refactoring reste le code programme.

Le sujet principal de cette thèse est d’associer ces deux techniques a priori or-

thogonales que sont la modélisation et le refactoring. Dans cette thèse, nous avons

porté la technique refactoring pour la mettre au service de la modélisation. Comme

résultat, nous proposons ici un catalogue de refactorings de modèle, tous exprimés

par une transformation de modèle. De plus, nous avons pris en compte le problème

de la cohérence entres les différents modèles décrivant un système logiciel. Il est

en effet nécessaire de définir comment un refactoring doit impacter les modèles

dépendants du modèle initialement restructuré.

Nous nous sommes ici concentrés sur le refactoring des diagrammes de classes

du langage UML, dont sont dépendants les modèles de contraintes en OCL (Ob-

ject Constraint Language) et les diagrammes d’objets. Cette thèse formalise des

refactorings parmi les plus importants pour les diagrammes de classes UML, tout
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en les triant suivant leur impact sur les diagrammes d’objets ainsi que les modèles

de contraintes OCL, impact que nous formaliserons également.

En outre, nous présentons ici une technique de preuve, basée sur un critère

simple, pour la préservation sémantique des diagrammes de classes, des diagrammes

d’objets et des contraintes, une fois appliqué un refactoring. Cependant, afin prouver

formellement une préservation sémantique, il est nécessaire d’avoir à disposition

une description formelle de ladite sémantique; nous proposons donc également un

approche de description de la sémantique basée sur les transformations de modèles

que nous appliquons au langage OCL.

Mot Clefs
Ingénierie Dirigée par les Modèles, UML, Transformations de Modèles, Refactorisa-

tion, QVT, Sémantique d’OCL, Préservation de la Sémantique
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Chapter 1
Introduction

Growth of software systems, increasing complexity and diversity of software plat-

forms, and constant changes of the market demands for software, have led to exten-

sive development of methods and techniques that, in a formalized way, deal with

overall increase in software complexity.

One of available approaches for taming development of complex software is Model

Driven Engineering (MDE). The intent is to use models as primary artifacts when

building software systems, and in that way to raise the level of abstraction by

discarding all information that are not relevant for a given viewpoint.

Ideally, all work of system design would be performed on the level of software

models that depict different aspects of some software systems (e.g. structure, be-

havior) and leave dedicated tools to perform generation of executable code.

This type of abstraction, in domain of software engineering, is not a new paradigm.

The similar process was applied when passing to high level programming languages

leaving compilers to generate instructions that are understandable by machines.

Modern software development processes, such as Rational Unified Process (RUP)

[55] and eXtreme Programming (XP)[12], promote the application of refactoring

[42] to support iterative and incremental software development. Refactoring is a

structured technique to improve the quality of software artifacts.

Although, artifacts produced in all phases of the software development life cycle

could become a subject of refactoring, existing techniques and tools mainly target

implementation code.

Current trend is to raise the level of abstraction of refactoring techniques so that

it becomes feasible to apply refactorings on software artifacts that have higher level

of abstraction that programming code.

1
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1.1 Motivation

With the success of the UML, refactoring techniques have found a new domain of

applications. The work presented in this thesis was initiated with the fact that con-

trary to well know catalogs for refactoring of programs, there was no comprehensive

collection of refactorings for artifacts situated on higher level of abstractions, like

UML models. In order to fill this lack, the first step that we performed was investi-

gating application of refactoring rules on UML class diagrams. In addition to class

diagrams refactorings, we have started research on how to propagate refactorings to

dependant artifacts so the overall model remains consistent. An example for this

type of refactoring propagation is automatic update of OCL constraints and UML

object diagrams, once a UML class diagram is refactored.

For representation of refactoring rules, the initial formalism of our choice was

OCL, similarly to [82]. However, we have abandoned this solution because of the

size of the OCL expressions necessary to describe refactoring rules. Not only the

rules were hard to read, but they were hard to maintain as well. In order to be

able to specify our refactoring rules in a concise and a readable manner, we have

changed the used formalism: instead of ”pure” OCL expressions we have described

our refactoring rules using model transformations.

A widely accepted definition of refactoring is given in [42] as ”A change made

to the internal structure of software to make it easier to understand and cheaper

to modify without changing its observable behavior.” A similar definition can be

found in [69]: ”Refactorings do not change the behavior of a program; that is, if the

program is called twice (before and after a refactoring) with the same set of inputs,

the resulting set of output values will be the same.”

When reasoning about refactorings of UML class diagrams annotated with OCL

constraints, this definition of refactorings can’t be applied because the UML/OCL

diagrams represent only the static structure of the system without behavior as spec-

ified using programming languages. In order to still be able to apply the model

refactorings, the refactoring definition has to be altered to cover ”semantic preser-

vation” of refactored models.

The problem with semantic preservation was that the semantic preservation

criterion has not been defined precisely. Our goal was to specify such a criterion

for refactorings of UML class diagrams, UML object diagrams and OCL constraints

in a formal way so that it becomes feasible to check if one refactoring rule actually

preserves semantics or not. In the context of UML and OCL we have defined

semantics preservation as preservation of evaluation of OCL constraints.
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This step in our work has triggered research on semantics of OCL because the

OCL semantics was in the core of our semantics preservation criterion. Existing

OCL semantics descriptions, given with set theory [68, Annex A], or with UML

[68, Chapter 10], were not suitable for application in semantic preservation criterion

for the refactoring rules defined as model transformations, because we wanted to

have description of OCL semantics that is directly executable. In order to specify

semantics of OCL we have used a novel approach of applying model transformation

rules to describe effects of evaluation of OCL expressions.

1.2 Scope

As the title suggests, this work is about ”Model Refactoring using Transformations”.

Hence, it is necessary to narrow the scope of the thesis, which lies somewhere within

the broad area of model transformations.

Model Refactorings In this thesis, the main artifacts that are subject of refac-

torings are UML class and object diagrams, and OCL constraints. The same

methodology applied on these types of UML diagrams could be successfully

applied to any other types of UML diagrams as well.

Model Transformations Model transformation techniques used in this thesis are

seen as means for performing model refactorings and specification of language

semantics. Our intent was neither to define a new model transformation lan-

guage nor to advocate usage of some existing specification. We have chosen

and slightly adapted Query/View/Transformation (QVT) formalism for de-

scribing refactoring and evaluation rules, but there are no obstacles to perform

the same tasks using any other available transformation specifications like, for

example, Fujaba Story Diagrams [39].

Language Semantics One of the contributions of this thesis is the specification of

the semantics of OCL using model transformations. Although, by using this

technique, it would be possible to specify semantics of any other constraint

language, the OCL is chosen in the context of UML/OCL refactorings.

This thesis does not contain the complete semantics of OCL and its standard

library, but covers the most important parts of the language, and provides

a guide on how to specify the complete semantics of OCL. Nevertheless, we

make available the complete OCL semantics as implemented in our RoclET

tool, by means of the tool’s website [88].
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1.3 Thesis Contributions and Outline

1.3.1 Contributions

The goal of this thesis was to study UML/OCL models as subject of model refac-

torings, seen as a special usage for model transformations.

The main contributions of this thesis are the following:

1. Definition, representation, and classification of semantics-preserving refactor-

ing rules for UML class diagrams annotated with OCL constraints, and corre-

sponding object diagrams.

2. Specification of semantics of OCL in a way based on model transformations

that is easy to grasp and to understand.

3. Definition of the criterion for semantics preservation of refactoring rules and

application of that criterion.

1.3.2 Plan

Chapter 2: Key Concepts

This chapter defines some key concepts for this work. Key concepts include

explanations of notations and techniques used in the rest of the thesis.

Chapter 3: Refactoring UML/OCL Diagrams

This chapter contains a catalog of refactoring rules for class diagrams classified

with respect to their impact on annotated OCL constraints. For refactoring

rules that have an impact on OCL constraints, we formalize the necessary

changes in the OCL constraints. In this chapter we argue that the specified

refactoring rules preserve the syntax of models under refactoring. For one of

the specified rules, by using the KeY tool, we formally prove that it is syntax

preserving. Semantics preservation is the topic of Chapter 5.

Chapter 4: Model Transformations for Describing Semantics of OCL

In this chapter we present a metamodel-based approach to define the semantics

of constraints languages. The semantics of a constraint language is, roughly

speaking, given by an evaluation function whose input is both an expression

and a state, in which this expression should be evaluated. Our approach
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uses model transformation rules to specify formally every single step in the

evaluation process.

This chapter also contains a section on tailoring the semantics for OCL towards

the needs of a Domain Specific Language (DSL), i.e. we illustrate on a concrete

example how the problems of defining the semantics of a constraint language

for a given DSL can be overcome.

Chapter 5: Semantics Preservation of Refactoring Rules

In this chapter we give a simple criterion and a proof technique for the seman-

tic preservation of refactoring rules that are defined for UML class diagrams

and OCL constraints. Refactoring rules presented in Chapter 3 are extended

to cover UML object diagrams so it becomes possible to reason about their

semantic preservation. The criterion itself is based on results of evaluation of

OCL constraints on corresponding system snapshots depicted by the object

diagrams.

Chapter 6: Conclusions

In this chapter, we conclude the thesis and summarize the key results. This

chapter also contains a discussion of future research work.

Appendix A: Tool Support

This appendix describes the RoclET tool that implements all concepts inves-

tigated in this thesis: RoclET allows creation of object and class diagrams,

parsing and syntax highlighting of OCL constraints, refactoring of UML/OCL

models, and evaluation of OCL constraints against object diagrams.
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Chapter 2
Key Concepts

2.1 The Unified Modeling Language

The Unified Modeling Language (UML)[19, 75, 43] is a visual language used to

describe and design software systems. It provides a set of notations that can be

used to model different aspects of one software system, like its static structure, or

its behavior.

UML was born as a fusion between different object-oriented modeling techniques

like OMT [74], Booch [18], and OOSE [50], and since its very beginning, it is under

constant evolution that leads to improvements in preciseness and expressiveness.

UML itself is not a single ”monolithic” language but a set of different nota-

tions that are used in different contexts. For example use case diagrams can be

used to capture requirements, state chart and activity diagrams are commonly used

in describing dynamic aspects of software systems, class and object diagrams are

used to model structural relationships between various elements, component and

deployment diagrams are means to describe software architecture, etc.

Advantages of using UML are numerous. As a standardized language it improves

communication between different stakeholders, and provides a mean to document

software intensive systems. By offering a common language it allows tool interop-

eration between different vendors.

The purpose of UML spans from a language used to describe software on different

levels of abstraction, to a language used in tools for software simulation. A common

misapprehension is that UML is a methodology. UML is just a notation used by

some methodologies like RUP [55] or Fondue [79].

In the scope of this thesis two types of UML diagrams (Class Diagrams and

Object Diagrams), and OCL expressions, are of the greatest importance and will be

7
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described in more details, in the following subsections.

2.1.1 Class Diagrams

Class diagrams are the most widely used type of UML diagrams. They can show

types of objects and various relationships between them, and usually are used to

capture the static structure of software. They commonly contain elements like

Classes and Interfaces, and relationships between them like Dependencies, Gener-

alizations, and Associations. For each Class it is possible to show their attributes

and operations. An example of a Class diagram is shown in Fig. 2.1.

WorkLoad

course attendee

**
Course

name:String

Person

name:String
age:Integer

birthday():void

Student

cardNumber:Integer

1

4

3

2

5

Figure 2.1: An example of a Class Diagram

The Fig. 2.1 shows three classes 1 432 5(Course, Student, and Person) together with

attributes
1 432 5and operations

1 432 5they contain. Moreover, the same diagram captures

information about relationships between depicted model elements (An association
1 432 5 between Course and Student, and a generalization

1 432 5between Student and

Person).

2.1.2 Object Diagrams

Object diagrams show class instances depicted as objects 1 432 5having their slots
1 432 5

, and links
1 432 5between objects. Usually they are used to represent one system

snapshot. For the example class diagram from Fig. 2.1, one possible snapshot is

shown in Fig. 2.2.

It is important to stress that there is a conceptual dependency between a class

diagram (as shown in Fig. 2.1) and object diagrams that represent its snapshots

(see Fig. 2.2). This means that any change made on a class diagrams could make

its corresponding object diagrams invalid.
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:Student

name = 'Mark'
age = 22
cardNumber = 87

:Course

name = 'geography'

:Course

name = 'biology' course

course

course

attendee

attendee

attendee

1

2

:Student

name = 'John'
age = 23
cardNumber = 55

3

Figure 2.2: An example of an Object Diagram

2.1.3 Object Constraint Language

Object Constraint Language (OCL) (see [53, 68]) is a formal language used to add

precision to UML models beyond the capabilities of graphical diagrams. In that

case, OCL expressions can be used to specify additional constraints of the UML

model.

Traditionally, these additional constraints are written in natural language what

usually leads to ambiguous and imprecise model specifications. Many formal lan-

guages have been proposed for addressing these problems. The disadvantage of tra-

ditional formal languages in comparison with OCL is that they require strong math-

ematical background from anyone who wants to read or write additional constraints.

This makes them often inapplicable by modelers without such a background. OCL

is filling this gap by being, on one hand a formal language, interpretable by ma-

chines, and on the other hand a user friendly textual language easy to understand

and write.

OCL has two main characteristics:

• OCL is a declarative language. OCL expressions do not have side effects, i.e.

evaluation of OCL expressions can’t alter the state of the corresponding entity.

• OCL is a typed language. Each OCL expression has a type and in order to be

well formed it must conform to the type conformance of the language.

In the context of class diagrams, OCL has two common uses: 1) definition of

invariants on class model, and 2) definition of pre/post-conditions for operations.

For the example Class diagram from Fig. 2.1 imagine that we want to express

that card number of all students must always be a positive number. This constraint

can be easily expressed using the following OCL invariant:

context Student inv :

s e l f . cardNumber>0
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Besides attributes of a class, OCL invariants can constrain possible associations

between classes. For instance, expressing that each Student has taken at most 5

courses can be expressed as:

context Student inv :

s e l f . course−>s i z e ()<6

OCL constraints can be used for specifying pre and post-conditions for opera-

tions.

context Student : b i r thday ( )

pre : s e l f . age>0

post : age=age@pre+1

OCL allows definition of ”helper” variables and operations that can be reused

over multiple OCL expressions. One such helper variable can express that minimal

number of courses is 2 as:

context Student def :

minCourseNum : In t e g e r=2

Helper variables defined this way, can be used in other OCL expressions, like in:

context Student inv :

s e l f . course−>s i z e ()>=minCourseNum

As can be seen from the OCL examples provided in this subsection, all OCL

expressions are highly dependent on the underlying class diagram and that any

change on the class diagram can make annotated OCL expressions syntactically

incorrect.

2.2 Refactorings

Refactorings (see [60] for an overview) represent structured changes introduced in

software artifacts in order to improve its readability, extensibility, and maintain-

ability. The main characteristic of refactorings is that they represent small, atomic

changes used to improve programming code, architecture and design models. Each

refactoring is described by one refactoring rule.

A refactoring rule for implementation code describes usually three main activi-

ties:

1. Identify the parts of the program that should be refactored (code smells).
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2. Improve the quality of the identified part by applying refactoring rules, e.g.

the rule MoveAttribute moves one attribute to another class. As the result of

this activity, code smells such as LargeClass disappear.

3. Change the program at all other locations which depend on parts affected by

the refactoring done in step 2. For example, if at some location in the code the

moved attribute is accessed, this attribute call became syntactically incorrect

in step 2 and must be rewritten.

Examples and catalogs of refactorings can be found for various programming

languages, and notations. Despite the vast application domain of refactoring tech-

niques, one distinguishable property of refactoring is semantic preservation. Refac-

torings, regardless the artifact they are applied on, must preserve semantics of the

artifact.

public class Person {

       private String name;

      public String getName()  
           { return name; }

       public void setName(String arg)  
           { name=arg; }
}

public class Person {

        public String name;

}

Figure 2.3: Java code refactoring example

The refactoring named ”encapsulate field”, applied to Java, changes modifier of

one attribute from ”public” to ”private” and adds two methods for accessing and

modifying the attribute. An example for application of this refactoring is shown in

Fig. 2.3. Part of the refactoring that is not shown in the figure is that all references to

the modified attribute must be updated to refer to the two newly created methods.

After application of this refactoring, the refactored program ”behaves” on the same

way as before refactoring.

The application of refactoring rules, called refactoring steps, is most often pattern-

driven. A design that is an instance of Design Patterns [45] can usually be extended

and maintained much better than a design that is less structured. Pattern-driven

refactoring steps have been thoroughly studied in [51, 62].
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2.3 Metamodeling

In order to be efficiently used, every modeling language must at least have precisely

defined syntax. One way to define syntax of modeling languages is by applying

metamodeling. Metamodeling is well defined technique for specification of modeling

languages (their abstract syntax). It is heavily used in the context of UML, OCL,

and related concepts.

Metamodeling is a technique for describing abstract syntax of modeling lan-

guages by models. This technique is in the core of Meta Object Facility (MOF) [67]

4-layer architecture shown in Fig. 2.4

Object Diagram Running System

Class Diagram Model

UML-MM Metamodel

MOF Meta-metamodel

M0

M1

M2

M3

LA
YE

R

LEVEL ROLEARTIFACT

Object Diagram

Figure 2.4: 4-layer architecture

Each layer from the Fig. 2.4 can be seen as an instance of the first upper layer in

the layer hierarchy, i.e. UML metamodel is instance of MOF, UML class diagram is

instance of UML metamodel, etc. This means that it must conform to the ”rules”

expressed by the model on the higher level.

In Sect. 2.4 we show parts of official UML and OCL metamodels that describe

class diagrams, object diagrams, and OCL expressions.

2.4 Metamodel of UML/OCL

We present now all parts of the official metamodel for UML 1.5 and OCL 2.0 that

are relevant for the transformation rules presented in this thesis.
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2.4.1 Declaration of Metaclasses

Figures 2.5, 2.6, 2.7, and 2.8 show relevant parts of the official metamodel for UML

1.5 (for a complete definition see [64]). The chosen fragment of the UML-part of

the metamodel concentrates on the main concepts of class and object diagrams.

Figures 2.5 and 2.6 define class diagrams. Each Classifier (subclassed by Class)

can contain StructuralFeatures (like Attributes) or BehavioralFeatures (like Opera-

tions). At the same time as being a Namespace, each Classifier is a GeneralizableEle-

ment, meaning that can be connected to other Classifiers by Generalizations.

Each Association can have two or more AssociationEnds, each one connected

with one Classifier.

ModelElement

name : Name

Feature Classifier

StructuralFeature

Attribute

0..*
0..1

+owner

{ordered}
+feature

1 +type

0..*
+typedFeature

NamespaceGeneralizableElement

+namespace0..1

+ownedElement

BehavioralFeature

isQuery : Boolean

Operation

isQuery:Boolean

Package

0..*

Parameter

0..*

0..1

+parameter
{ordered}

+type
1 +typedParameter

0..*

Figure 2.5: UML - Backbone

Figures 2.7 and 2.8 show a ”language” for abstract syntax of UML object dia-

grams.

The OCL-part shown in figures 2.9, 2.10, 2.11, and 2.12 covers abstract syntax

for the most important OCL expressions (a complete definition of OCL 2.0 can be

found in [68]). The gray background is used to denote classes that belong the the

OCL metamodel.
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ModelElement

AssociationEnd

ordering : OrderingKind

Association

Class

1
+association

+participant

12..*

+association

+parent
GeneralizableElementGeneralization

+specialization

+generalization +child
1

1

0..*

0..*

Multiplicity

+multiplicity MultiplicityRange
lower : Integer
upper : Integer

Classifier

+range1
1..*

{ordered}
+connection0..*

+multiplicity

0..1

0..1

Figure 2.6: UML - Relationships

2.4.2 Well-formedness Rules

The metamodel for UML and OCL contains hundreds of well-formedness rules. Our

refactoring rules are designed to preserve only some, but – as we believe – the most

important well-formedness rules of UML/OCL. This decision was a trade-off between

the completeness of our approach and the readability of model transformation rules,

which grow when more well-formedness rules have to be preserved.

Since the UML/OCL refactorings considered in this thesis mainly rename, move,

or add model elements, the well-formedness rule ensuring the uniqueness of used

names in a classifier is easily broken when the refactoring rules do not make any

provision. According to the UML 1.5 metamodel, all attributes, opposite association

ends and other owned elements (e.g. contained classes) of a classifier must have a

unique name. Moreover, these names must also not be used by any of the parent

classifiers. A (slightly simplified) version of the official well-formedness rule looks as

follows:

context C l a s s i f i e r inv UniqueUsedName :

s e l f . allUsedNames()−> f o r A l l (n |
s e l f . allUsedNames()−>count (n)=1)

context C l a s s i f i e r def :

allUsedNames ( ) : Bag ( S t r ing )=
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ModelElement

name : Name

1

AttributeLink

Instance

Attribute

DataValue

+value

0..* 0..* +slot 0..*

1
+attribute

0..*

Object

Stimulus

{ordered}
argument sender receiver10..1

0..*

1

0..*

Classifier
0..*1..*

+classifier

Figure 2.7: UML - Instances

s e l f . a l l P a r e n t s ()−> i n c l u d i n g ( s e l f )

−> i t e r a t e ( c ; acc : Bag ( S t r ing )=Bag {} |
acc−>union ( c . oppos i t eAssoc ia t ionEnds ( ) . name)

−>union ( c . a t t r i b u t e s ( ) . name)

−>union ( c . ownedElement . name ) )

It is convenient to define an additional operation that will capture also the names

already used in the children of a classifier.

context C l a s s i f i e r def :

a l lCon f l i c t ingNames ( ) : Bag ( S t r ing )=

s e l f . allUsedNames()−>union (

s e l f . a l l C h i l d r e n ()−> i n c l u d i n g ( s e l f )

−> i t e r a t e ( c ; acc : Bag ( S t r ing )=Bag {} |
acc−>union ( c . oppos i t eAssoc ia t ionEnds ( ) . name)

−>union ( c . a t t r i b u t e s ( ) . name)

−>union ( c . ownedElement . name ) ) )

Please note that the definition of many additional operations such as

Classifier.allParents():Set(Classifier),

Classifier.allChildren():Set(Classifier),

Classifier.conformsTo(Classifier):Boolean, etc.

is omitted here but can be found in the official definition of the metamodel [64, 68].

A second important well-formedness rule in the metamodel of UML 1.5 is that
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ModelElement

name : Name

Link LinkEnd

Association
AssociationEnd

ordering : OrderingKind

1
2

{ordered}
+connection

0..*

+linkEnd

1

0..*

+associationEnd

0..*

1 +association

+instanceInstance
1

+ownedLink
0..*

0..1

+link

Figure 2.8: UML - Links

Constraint
(from Core)

ModelElement
(from Core)

Expression
(from Data_Types)

OclExpression
Classifier
(from Core)

ExpressionInOcl

0..*
0..*

0..1 +contextualClassifier
+bodyExpression

1
1

+type

+constrainedElement

+constraint

0..1 1
+body

Namespace
(from Core)

Figure 2.9: OCL - Expressions

two operations with the same signature can be owned by any two classifiers (even

if one of the classifiers is a specialization of the other one), but the two operations

cannot be owned by the same classifier.

context C l a s s i f i e r inv UniqueMatchingSignature :

s e l f . ope ra t i on s ()−> f o r A l l ( f , g |
f . matchesSignature ( g ) imp l i e s f=g )

2.5 Model Transformations and QVT

Model transformations are widely recognized as the heart and soul of Model Driven

Architecture [77]. Refactoring rules can be seen as a special form of model trans-
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Attribute

OclExpression

AttributeCallExp

FeatureCallExp

AssociationEndCallExp AssociationEnd

0..1+appliedElement

0..*

1

+referredAttribute
1

0..*

0..1+source

+referredAssociationEnd

OperationCallExp Operation
0..* 1

+referredOperation

+argument
{ordered} 0..*

+parentCall0..1

+referringExp

+referringExp

+referringExp

IfExp

0..1

0..1

1 1 1

+condition

+thenExpression

+elseExpression

0..1

Figure 2.10: OCL - Navigation and If Expressions

OclExpression

MessageExp LetExp

CallOperationAction Operation+operation
+calledOperation

+target

+argument

0..1 0..1

0..1

1

1

0..*

Variable
1

1

0..1

0..1

0..1

0..1

+in

+initExpression

+variable
+initializedElement

Figure 2.11: OCL - Message and Let Expressions

formations for which the source and the target model are expressed using the same

language. In this thesis, we describe refactoring rules in a graphical formalism in-

spired by the QVT [66].

A model transformation is defined as a set of transformation rules. A trans-

formation rule consists of two patterns, LHS (left hand side) and RHS (right hand

side), which are connected with the symbol . Optionally, a rule can have

parameters and a when-clause containing a constraint written in imperative OCL.

The LHS and RHS patterns are denoted by a generalized form of object diagrams.

In addition to the normal object diagrams, free variables can be used in order to

indicate object identifiers and values of attributes. The same variable can occur

both in LHS and RHS and refers for each occurrence – during the application of the
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LoopExp

IteratorExp

Classifier

1

VariableExp

+referredVariable
1

0..*

+type

LiteralExp

0..1

+appliedElement

0..1

+source

0..1

1+body

+loopExp

0..1

1..*

IntegerLiteralExp
integerSymbol:Integer

OclExpression

TupleLiteralExp

TupleLiteralPart

Attribute

+value

0..1

+part

+attribute 0..1

0..1
0..1

0..*

0..1
IterateExp 0..1 0..1 +result

+baseExp

TypeExp

0..1
0..*

0..1
+initExpression

0..1

+referredType

+iterator

+loopBodyOwner

Variable
varName : String

+referringExp

0..1

1

Figure 2.12: OCL - Literal, Loop, Variable, and Type Expressions

rule – to the same value. In order to distinguish between objects/links occurring

in patterns and objects/links occurring in concrete models we will use the terms

pattern objects/links and concrete objects/links, respectively.

A rule is applied on a source model (represented as an instance of the metamodel,

i.e. as a graph) as follows: In the source model, a subgraph that matches with LHS

is searched and rewritten by a new subgraph derived from RHS under the same

matching. If the obtained target model still contains subgraphs matching with

LHS, the rule is applied iteratively as long as it is applicable (possibly infinitely).

A matching is an assignment of all variables occurring in LHS/RHS to concrete

values. When applying a rule, the matching must obey the restrictions imposed

both by LHS pattern, and by the when-clause. This semantics of QVT rules has

the following consequences: if a pattern object appears in the rule’s RHS but not

in its LHS (i.e., in LHS there is no pattern object identified by the same variable)

then – when applying the rule – a corresponding, concrete object is created. If

there is a pattern object in LHS but not in RHS, then the matching object in

the source model is deleted together with all ’dangling links’ (i.e. the links that

were connected to the deleted object). Similarly, a link is created/deleted if the

corresponding pattern link does not appear in both LHS and RHS (pattern links

are identified by their role names and the pattern objects they connect). The value

of an attribute for a concrete object is changed only if the attribute is shown on the

corresponding pattern object in RHS. The attribute’s new value for the concrete

object is obtained by the expression shown as value for the attribute in RHS under

the current matching. Values of attributes that are not mentioned in RHS remain

unchanged.
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The following subsections give a brief introduction to the most important ele-

ments of QVT. We discuss using a very simple example the general structure of

refactoring rules and give some guidelines for achieving syntax preservation.

2.5.1 How to Write Syntax Preserving QVT Rules

The purpose of this subsection is twofold. Firstly, the section should illustrate

on concrete examples the basic concepts of QVT, which already allow to write

quite expressive transformation rules. Secondly, some basic principles of the design

of syntax preserving refactoring rules are explained. These principles have been

frequently applied for the design of the (more complex) rules presented in Sect. 3.2

for the refactoring of UML/OCL models.

Example: Item-View World

In order to explain QVT’s basic concepts, we start with refactoring rules for a tiny

Item-View language, Fig. 2.13 shows its metamodel.

ModelElement

name : String

Item
0..*

owner

1
View

parent
0..*0..*

child

Ownership

Inheritance

view

Figure 2.13: Metamodel for simple Item-View language

There are two non-abstract language concepts Item and View, which both inherit

the metaattribute name from ModelElement. The metaassociation between Item

and View indicates that arbitrarily many views can be attached to one item (which

is called the owner of the view). Furthermore, the self-association on Item indicates

that each item can have an arbitrary number of parent- and child-items. Moreover,

we assume that the parent-child relationship is acyclic. This can be expressed in

OCL by the following invariant:

context Item inv CycleFree :

s e l f . a l l P a r e n t s ()−> exc ludes ( s e l f )
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context Item def :

a l l P a r e n t s ( ) : Set ( Item)=

s e l f . parent−>union ( s e l f . parent . a l l P a r e n t s ()−>asSet ( ) )

Please note that the additional query allParents(), which represents the transi-

tive closure of the parent-relationship, is well-defined despite its recursive definition

(see [6] for a detailed justification).

Two Simple Refactoring Rules

As a first example, the renaming of an item, which has been selected by the user, is

formalized by the QVT rule RenameItem1 as shown in the left part of Fig. 2.14. The

selected item is passed as the first parameter of the rule and the rule’s LHS checks

whether the passed item really exists in the source model (what should, trivially, be

always the case). The pattern RHS is identical to LHS except for attribute name,

whose value is set to newName, the rule’s second parameter.

 RenameItem1(it:Item, newName:String) 

it:Item

name=newName
it:Item

(a) Item selected by user

 RenameItem2(oldName:String, newName:String) 

it:Item

name=newName

it:Item

name=oldName

(b) Item identified by name

Figure 2.14: Two versions of RenameItem refactoring rule

A second version of the Rename-refactoring is formalized by rule RenameItem2

shown in the right part of Fig. 2.14. Here, the item that should be renamed is

determined by a match of its name with the first parameter of the rule (oldName).

Applied on a given source model, this rule would iteratively make the following two

steps as long as possible: (1) search for an item with name oldName in the current

model and (2) rename the found item to newName. Please note that the application

of this rule might not terminate if there is an item with oldName in the source model

and newName is the same as oldName. Also the first rule RenameItem1 suffers from

the same problem. We will see later, how termination problems can be avoided by

adding a when-clause to the QVT rule.

Checking Syntax Preservation of a given Rule

A refactoring rule is called syntax preserving if for every syntactically correct source

model the obtained target model is syntactically correct as well. Syntactically cor-
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rect models are exactly the valid instances of the metamodel, what boils down to the

following three criteria: (1) all model elements are well-typed, (2) all multiplicity

constraints are met, and (3) all well-formedness rules are obeyed. Invalid instances

of the Item-View metamodel would be, for example, an Item object having a value

of type Integer for attribute name (fails to meet criterion (1) due to type declara-

tion of name), a View object that is linked to two Item objects (see criterion (2)

and multiplicity for owner), and an Item object having a self-link for association

Inheritance (see criterion (3) and well-formedness rule CycleFree).

If the syntax preservation of a given refactoring rule should be shown, it has to

be argued for every valid metamodel instance that the refactoring rule is either not

applicable or that the target model is a valid metamodel instance as well. Fortu-

nately, only a single step of the rule application has to be taken into account. By

a simple induction argument, one can lift the syntax preservation property from

a single step to the whole rule application. The argumentation on the syntactical

correctness of each possible target model can be split according to the three validity

criteria given above. A detailed argumentation for the refactoring RenameItem1

can be given as:

Type Declarations: In the RHS of the rule, all pattern objects, their attribute

values and links between them are well-typed according to the metamodel.

Multiplicities: Since neither objects nor links are created/deleted by the rule ap-

plication, all multiplicity constraints are automatically obeyed in the target

model.

Well-formedness Rules: The only well-formedness rule is CycleFree and the only

change on a model that could make it invalid is adding links for the Inheritance

association to the model. Since this does not happen in the Rename-rules, the

invariant CycleFree is preserved.

More generally, the following aspects should to be taken into account:

• The target model is well-typed whenever RHS is well-typed. Note that ill-typed

model elements can only stem from ill-typed pattern elements. The type cor-

rectness of RHS is, however, checked mechanically once the rule is implemented

with a QVT editor such as Together Architect 2006.

• Multiplicity constraints should always be checked carefully whenever the rule

creates or deletes objects/links. Please note that also all multiplicities from

inherited associations have to be obeyed.
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• Arguing about the preservation of well-formedness rules requires the most

effort. In a first step, one has to identify all those well-formedness rules of

the metamodel that might be affected by the refactoring. We have done this

task for all UML/OCL refactorings manually, but, an interesting approach to

automate this filtering has been developed by Cabot [25, 26]. In a second step,

convincing arguments have to be found that the filtered well-formedness rules

are obeyed in all possible target models. We show in Sect. 3.3 on one example,

how such an argumentation can be formalized by using the KeY-system.

Using when-clauses to Ensure Syntax Preservation

The argumentation on the preservation of well-formedness rules is not always as

trivial as the one for RenameItem1. Often, a refactoring rule can (potentially) lead

to a model that does not satisfy many of the metamodel’s well-formedness rules. In

this case, we need a more sophisticated argumentation why the refactoring rule is

nevertheless syntax preserving. To illustrate the problem, we add another invariant

to the Item-View metamodel:

context Item inv UniqueNameInInheritance :

s e l f . a l l P a r e n t s ( ) . name−>exc ludes ( s e l f . name)

Informally speaking, this well-formedness rule requires the name of each Item

object to be different from the name of all its (transitive) parents. Obviously, this

well-formedness rule is not always preserved by RenameItem1 since there is no

provision made to ensure that newName is not already used by any of the parents.

This problem can be fixed by using QVT’s when-clause. A first (not fully successful)

attempt to correct the rule RenameItem1 is shown in Fig. 2.15.

RenameItem1_With_Insufficient_When(it:Item, newName:String)

it:Item

name=newName
it:Item

{when}
it.allParents().name->excludes(newName) 

Figure 2.15: Renaming of selected item – when-clause is not sufficient to preserve
UniqueNameInInheritance

The when-clause adds some new restrictions for the application of the rule. The

rule is only applicable on those subgraphs of the source model that (1) match with

LHS and (2) for which the expression given in the when-clause is evaluated to true.
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Note that identifiers for pattern objects (here it) can be used within the when-

clause. Informally speaking, the rule is now only applicable on such Item objects

whose parents have not already used newName as a name.

Unfortunately, this when-clause does not preserve UniqueNameInInheritance in

all cases. For example, suppose the rule is applied on concrete Item object it1

whose parents have names different from newName. After the rule has been executed

(and it1 has been renamed to newName), the well-formedness rule is indeed valid for

it1. However, it might be the case that the source model contains another object

it2, which is a child of it1 and which has the name newName as well. Then, Unique-

NameInInheritance does not hold anymore in the target model for it2, because it

has now the same name as its parent it1.

In order to prevent such cases, the when-clause has to check not only for the

parent items but also for the child items whether newName is already used as a name.

The following additional operations facilitate to write the necessary when-clause in

a compact way.

context Item def :

a l l C h i l d r e n ( ) : Set ( Item)=

s e l f . ch i ld−>union ( s e l f . c h i l d . a l l C h i l d r e n ()−>asSet ( ) )

context Item def :

a l lCon f l i c t ingNames ( ) : Bag ( S t r ing )=

s e l f . a l l P a r e n t s ( ) . name

−>union ( s e l f . a l l C h i l d r e n ( ) . name)

−>i n c l u d i n g ( s e l f . name)

The corrected version of the RenameItem1 refactoring is shown in Fig. 2.16.

Note that the rule is applicable at most once and, thus, termination of the rule

application is always ensured.

Actually, many refactoring rules for UML/OCL have a very similar when-clause

because the UML metamodel contains quite a few well-formedness rules imposing

unique names for model elements.

2.5.2 Extends-Relationship between QVT Rules

Another important concept of QVT is the extends-relationship between rules. The

need for extensions of QVT rules is motivated by the next well-formedness rule:

context Item inv DerivedViewName :

s e l f . view−>f o r A l l ( v | v . name = ’ viewOf ’ . concat ( s e l f . name ) )
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RenameItem1_With_Sufficient_When(it:Item, newName:String)

it:Item

name=newName
it:Item

{when}
it.allConflictingNames()->excludes(newName) 

Figure 2.16: Renaming of selected item – correct version for UniqueNameInInheri-
tance

Informally speaking, DerivedViewName stipulates that all views attached to the

same item must share the same name, which can be derived from the item’s name.

Again, each of the above given RenameItem-refactorings would fail to preserve

this invariant. Interestingly, there are now at least three possibilities to fix this

problem. One possibility is to disallow renaming of Item objects if they have already

a view attached. This is easily realized by extending the existing when-clause shown

in Fig. 2.16 by and it.view->isEmpty(). A second possibility is to delete all

attached View objects when an Item object is renamed. The third possibility is to

rename all attached View objects accordingly.

UpdateViewNames extends RenameItem1(it:Item, newName:String)

it:Item
it:Item

v:View

name='viewOf_'.concat(newName)

owner

v:View
owner

{when}

not (v.name = 'viewOf_'.concat(newName))

Figure 2.17: Extension of RenameItem1

Figure 2.17 shows the realization of the third possibility in form of an extension

of RenameItem1. The new rule is called UpdateViewNames and is applied in the

following way: Whenever a match for LHS of the extended rule (RenameItem1 ) is

found, all its extensions (here UpdateViewNames) are applied on the current LHS-

match as often as possible. Note that the patterns LHS/RHS from the extension rule

can use elements from the extended rule. For example, the pattern object it:Item in

LHS of RenameItem1 refers for every match in the source model to the same model

element as the pattern object it:Item in LHS of UpdateViewNames. The pattern

object v:View in LHS of UpdateViewNames matches iteratively with any View ob-
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ject that is attached to it. The RHS of UpdateViewNames enforces to rewrite

the name of all these View objects with the value ’viewOf ’.concat(newName).

The when-clause in UpdateViewNames, that prevents rule’s application, ensures the

termination of the rule application.
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Chapter 3
Refactoring UML/OCL Diagrams

This chapter formalizes the most important refactoring rules for class diagrams

and classifies them with respect to their impact on attached OCL constraints. For

refactoring rules that have an impact on OCL constraints, we formalize the necessary

changes of the attached constraints. We finally discuss for our refactoring rules the

problem of syntax preservation and show, by using the KeY-system, how this can

be enforced.

Work presented in this chapter was firstly published on MoDELS 2005 conference

[56], and then an extended version was published in Software and Systems Modeling

(SoSym) journal [58].

3.1 Introduction

Existing techniques for refactoring UML class diagrams neglect artifacts that are

dependent on class diagrams and that become invalid once the corresponding class

diagram is refactored. Examples of such artifacts are OCL constraints and UML

object diagrams. In this chapter we formalize UML class diagrams refactorings and

show how attached OCL constraints have to be altered in order to preserve their

syntax (semantics preservation of OCL constraints and necessary changes of object

diagrams are discussed separately in Chapter 5)

Trivially, it is always necessary to change an OCL constraint if the refactoring of

the underlying class diagram would make this constraint syntactically invalid. We

believe that our rules are syntax preserving, i.e. each rule preserves the syntactical

correctness of the UML/OCL model it is applied on. However, we have formally

proved the syntax preservation property only for the rule ExtractClass (see Sect. 3.3).

UML class diagrams and OCL constraints can be seen as instances of corre-

27
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sponding metamodels. In this chapter we formalize UML/OCL model refactoring

rules by specifying QVT transformations on the UML and OCL metamodels.

The chapter is organized as follows. In Sect. 3.2 we present a catalog of UML/OCL

refactoring rules. In Sect. 3.3 we show on one example how syntax preservation of

refactoring rules can be proven formally. For this task, the KeY-system has been

successfully applied. Section 3.4 contains an overview of related work. Section 3.5

concludes the chapter.

3.2 A Catalog of UML/OCL Refactoring Rules

In this section, we present some of the most important refactoring rules already

provided for Java language in [42], translated to UML 1.5 class diagrams. These

rules handle OCL 2.0 constraints that are attached to the refactored class diagram

(handling UML object diagrams is explained in Chapter 5). In Subsection 3.2.3,

an example for a possible migration from refactoring rules for UML 1.5 to such for

UML 2.0 is given. Note that each refactoring rule is syntax preserving only with

respect to the part of the UML 1.5 metamodel given in the Section 2.4. Some of the

refactoring rules are designed also for the preservation of some further important

well-formedness rules (encoding restrictions for OCL expressions) that are given in

the text at appropriate places.

Our catalog (see Fig. 3.1 for an overview) is inspired by the refactoring rules for

the static structure of Java programs given by Fowler in [42]. We took the freedom

to change some of the rule names introduced by Fowler in order to indicate UML

as their new application domain (e.g., MoveMethod became MoveOperation). In

few cases, not only the name but also the semantics of the rule has changed (e.g.,

PullUpOperation moves in our version only the selected operation whereas in [42]

also relevant fields are moved).

Not all class diagram refactoring rules have an influence on attached OCL con-

straints. Fig. 3.1 classifies the rules according to this criterion. Note that Rename-

refactorings require to change the textual representation of relevant constraints but

not their metamodel-representation.

3.2.1 Rules Without Influence on OCL

RenameClass/Attribute/Operation/AssociationEnd

These rules are very similar to each other and only RenameAttribute (see Fig. 3.2) is

discussed here in detail. The Rename-rules differ mostly in the when-clause, whose
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Table 4.1: Overview of UML/OCL refactoring rules

Refactoring rules Influence on syntactical
correctness of OCL constraints

MM-Representation Textual Notation
RenameClass No Yes
RenameAttribute No Yes
RenameOperation No Yes
RenameAssociationEnd No Yes
PullUpAttribute No No
PullUpOperation No No
PullUpAssociationEnd No No
PushDownAttribute* No No
PushDownOperation* No No
PushDownAssociationEnd* No No
ExtractClass No No
ExtractSuperclass No No

MoveAttribute Yes Yes
MoveOperation Yes Yes
MoveAssociationEnd Yes Yes

* only push down to one subclass is considered in this thesis

Our catalog (see Fig. 4.6 for an overview) is inspired by the refactoring rules for

the static structure of Java programs given by Fowler in [42]. We took the freedom

to change some of the rule names introduced by Fowler in order to indicate UML

as their new application domain (e.g., MoveMethod became MoveOperation). In

few cases, not only the name but also the semantics of the rule has changed (e.g.,

PullUpOperation moves in our version only the selected operation whereas in [42]

also relevant fields are moved).

Not all class diagram refactoring rules have an influence on attached OCL con-

straints. Fig. 4.6 classifies the rules according to this criterion. Note that Rename-

refactorings require to change the textual representation of relevant constraints but

not their metamodel-representation.

4.3.1 Rules Without Influence on OCL

RenameClass/Attribute/Operation/AssociationEnd

These rules are very similar to each other and only RenameAttribute (see Fig. 4.7) is

discussed here in detail. The Rename-rules differ mostly in the when-clause, whose

purpose is to check whether the proposed new name is already in use in the enclosing

Figure 3.1: Overview of UML/OCL refactoring rules

purpose is to check whether the proposed new name is already in use in the enclosing

Namespace of the renamed element.

In rule RenameAttribute (see Fig. 3.2), the parameter a refers to the attribute

whose name should be changed. Since RenameAttribute is designed to work on

class diagrams, we make in LHS the assumption that the owner of a is a Class,

though it could be any Classifier according to the metamodel (similar assumptions

are made also in all other refactoring rules). The first line of the when-clause is

necessary to guarantee termination when applying the rule. The second line ensures

the applicability of the rule only in cases, in which the new name of the attribute is

not already used within the owning class or one of its parents or children.

At a first glance, renaming an attribute requires to change all attached OCL

constraints where the attribute is used. However, these changes are required only

for the textual notation. If the attached OCL constraint is seen as an instance

of the metamodel, then this instance remains the same. Note that the OCL-part

of the metamodel refers to the UML-part. Thus, each renaming made within the

underlying UML class diagram is automatically propagated to all OCL expressions

that use the renamed element.
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RenameAttributeUML(a:Attribute, newName:String)

{when}
oldName <> newName and
c.allConflictingNames()->excludes(newName)

a:Attribute

name=newName

c:Class

c:Class
owner

owner
featurea:Attribute

name=oldName

feature

Figure 3.2: Formalization of RenameAttribute refactoring

ExaSon

ExaFather1 ExaFather2

ExaSon
exaAttr

ExaFather2ExaFather1
exaAttr

OtherSon
exaAttr

OtherSon
exaAttr

Figure 3.3: Example of applying PullUpAttribute

PullUpAttribute/Operation/AssociationEnd

A PullUp-rule never causes a change in the attached OCL constraints. The con-

straints, however, cannot be ignored when applying PullUp-rules (an exception is

the very simple PullUpAttribute rule). Similarly to a Rename-rule, whose applica-

tion can be prevented by a badly chosen value for parameter newName, a PullUp-rule

becomes non-applicable if certain constraints are attached to the current class di-

agram. Again, this application condition is expressed in the when-clause of the

rule.

The rule PullUpAttribute removes one attribute from a class and inserts this

attribute into one of its superclasses; a concrete example is shown in Fig. 3.3.

The LHS of the rule (Fig. 3.4) requires the owning class son of the selected

attribute to be a direct subclass of the destination class father. The when-clause

prevents the applicability of the rule in situations in which another subclass of

father, i.e. a sibling of son or one of its children, already uses the name of the

moved attribute. Note that in such situations the query allConflictingNames()

applied on father would yield a bag that contains the name of the moved attribute

at least twice. The RHS formalizes that the owner of attribute a has changed from

class son to class father (link from a to son is deleted and link to father is created).

The rule PullUpAttribute has no influence on OCL constraints because a refac-
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 PullUpAttributeUML(a:Attribute, father:Class)

g:Generalization

father:Class

a:Attributeson:Class
child

g:Generalization

father:Class

a:Attribute
son:Class

  

parent
specialization

generalization

feature

owner

owner

feature

parent

specialization

generalization
child

father.allConflictingNames()->count(a.name)=1
{when}

Figure 3.4: PullUpAttribute refactoring rule

PullUpOperationUML(o:Operation, father:Class)

g:Generalization

father:Class

son:Class

child

g:Generalization

father:Class

son:Class  

parent
specialization

generalization

feature

owner

owner

feature

parent

specialization

generalization
child

father.getAllOperations()->forAll(op| not(op.matchesSignature(o))) and
o.constraint->forAll(c|
  c.body.oclAsType(ExpressionInOcl).
  bodyExpression.getAllSubexpressions()
  ->select(exp| exp.oclIsKindOf(VariableExp) and 
        exp.oclAsType(VariableExp).referredVariable.varName='self')
  ->forAll(selfExp| selfExp.isPossibleToChangeTypeTo(father)))

o:Operation

o:Operation

{when}

Figure 3.5: PullUpOperation refactoring rule

toring step widens the applicability of the moved attribute. In the OCL constraints

attached to the source model, the moved attribute a can only occur in attribute

call expressions (AttributeCallExp) of form exp.a. Here, the type of expression exp

must conform to son, the owning class of attribute a. After the refactoring, exp.a is

still syntactically correct because the type of exp conforms also to father, the new

owner of attribute a.

The rule PullUpOperation shown in Fig. 3.5 is almost identical to PullUpAt-

tribute except for the when-clause. Since moving an operation can make the well-

formedness rule UniqueMatchingSignature (see Sect. 2.4.2) invalid, it is checked in

the first line of the when-clause that father does not own already an operation

whose signature matches with the one of the moved operation o.

The rest of the when-clause prevents the following situation: By moving oper-
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ation o from son to father, also the predefined variable self, which is used in the

pre-/postconditions attached to o, changes its type from son to father. Conse-

quently, expressions such as self.attSon1, where attSon is an attribute declared in

son, would become syntactically incorrect after the refactoring. The when-clause

checks exactly for the occurrence of these cases. For the sake of a concise de-

scription, the when-clause uses queries such as getAllSubexpressions(), isPossible-

ToChangeTypeTo() which are not defined in the metamodel of UML/OCL but whose

definitions are made available in [88]. getAllSubexpressions() results in a collection

containing all subexpressions of one OCL expression. isPossibleToChangeTypeTo()

checks if a self expression can change its type depending on navigation expressions

whose source is the self expression (like self.attSon).

Fowler has faced in [42] the same problem for the corresponding refactoring rule

PullUpMethod and proposes to pull up in such a situation also all used attributes

from son to father. We do not follow this approach here since Fowler’s solution

could be simulated in our setting by a sequential application of multiple PullUp-

rules.

Besides the self-expressions within the constraints attached to operation o, also

query expressions of form exp.o(...) are affected by the refactoring (however, such

expressions are only possible if o is a query). Note that these expressions cannot

become syntactically incorrect because OCL’s type rules require the type of exp to

conform to the owner of operation o (same argumentation as for PullUpAttribute).

The rule PullUpAssociationEnd shown in Fig. 3.6 checks for the absence of ex-

pressions of form exp.ae.attSon, what corresponds to the check for self -expressions

in PullUpOperation. Also expressions of form exp.aet, where aet refers to the

opposite association end of ae, are affected by the refactoring but their syntacti-

cal correctness is always preserved (same argumentation as for query expressions

exp.o(...) in rule PullUpOperation).

PushDownAttribute/Operation/AssociationEnd

The PushDown-rules2 are in many respects inverse to the PullUp-rules. While

PullUp-rules change the owner of elements from son to father, PushDown-rules

move them from father to son. We have already observed for PullUp-rules that

relevant (i.e. affected) OCL expressions can be divided into two groups (self expres-

sions and exp.element expressions) and that the when-clause had to make provision

1Note that OCL allows in the textual notation to suppress self. Thus, the variable self within
self.feature is sometimes given only implicitly.

2We consider here only rules that push a model element down to exactly one subclass.
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PullUpAssociationEndUML(ae:AssociationEnd, father:Class) 

{when}
father.allConflictingNames()
->count(ae.getOppositeAssociationEnd().name) = 1 and 
AssociationEndCallExp.allInstances()
->forAll(aece| (aece.referredAssociationEnd = ae) implies
      aece.isPossibleToChangeTypeTo(father))

father:Class

g:Generalization

specialization

generalization

child

son:Class ae:AssociationEnd
participant

association

parent father:Class

g:Generalization

specialization

generalization

child

son:Class

ae:AssociationEnd

participant

association

parent

Figure 3.6: PullUpAssociationEnd refactoring rule

only for one group of expressions. As we will see now, PushDown-rules have to make

provision for exactly the opposite group of expressions.

The rule PushDownAttribute moves an attribute from the parent to a selected

subclass (see Fig. 3.7). As described by Fowler in [42] for the corresponding rule

PushDownField, the attribute must be moved to that subclass that covers the ’usage’

of the attribute. The attribute a is used in a class c if at least one of the constraints

attached to the class diagram has a subexpression of form exp.a and exp has a type

conforming to c.

ExaFather
exaAttr

ExaFather

ExaSon1 ExaSon3ExaSon2
exaAttr

ExaSon1 ExaSon3ExaSon2

Figure 3.7: Example of applying PushDownAttribute

The formalization of PushDownAttribute is given in Fig. 3.8. The when-clause

has to check possible name conflicts in user, but – in addition to the check done in

PullUpAttribute – also for occurrences of expressions of form exp.a where the type

of exp conforms to father but not to user. Moreover, the when-clause checks for

non-existence of constraints attached to the attribute a whose contextual classifier

is father.

The when-clause of rule PushDownOperation (see Fig. 3.9) checks for query
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PushDownAttributeUML(a:Attribute, user:Class)

father:Class

specialization
parent

generalization
child

g:Generalization

user:Class

feature

father:Class

specialization

parent

owner

generalization

child

g:Generalization

user:Class

a:Attribute

{when}
user.allConflictingNames()->count(a.name)=1 and
AttributeCallExp.allInstances()
->forAll(ace| ace.referredAttribute = a 
   implies ace.source.type.conformsTo(user)) and
a.constraint.body.oclAsType(ExpressionInOcl)
  .contextualClassifier->select(cc|cc=father)->isEmpty()

a:Attributeowner
feature

Figure 3.8: PushDownAttribute refactoring rule

 PushDownOperationUML(o:Operation, user:Class) 

g:Generalization

father:Class

user:Class
child

g:Generalization

father:Class

user:Class
  

parent
specialization

generalization

feature
owner

owner

featureparent

specialization

generalization
child

user.getAllOperations()->forAll(op| 
        not(op.matchesSignature(o))) and
OperationCallExpression.allInstances()
      ->forAll(oce| (oce.referredOperation = o) 
              implies oce.source.type.conformsTo(user)) and
o.constraint.body.oclAsType(ExpressionInOcl)
     .contextualClassifier->select(cc|cc=father)->isEmpty()

o:Operation

o:Operation

{when}

Figure 3.9: PushDownOperation refactoring rule

expressions with operation o but not for self -expressions (note that rule PullUpOp-

eration checks the opposite).

Rule PushDownAssociationEnd is defined analogously to PushDownOperation

and, thus, omitted here.

ExtractClass/Superclass

The rule ExtractClass (see Fig. 3.10) creates an empty class extracted in the same

namespace nsp as the selected class src and connects both classes with a new

association. The multiplicity of the new association is 1 on both sides. Besides

the class src, also the name for the extracted class and the two role names for the
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 ExtractClassUML(src:Class, newName:String, role1:String, role2:String) 

as:Association

ae1:AssociationEnd

name=role1

ae2:AssociationEnd

name=role2

extracted:Class

name=newName

participant

association

{when}
if (nsp.oclIsKindOf(Classifier)) then 
   nsp.oclAsType(Classifier)
      .allConflictingNames()->excludes(newName)
else
   nsp.ownedElement.name->excludes(newName)
endif and
src.allConflictingNames()->excludes(role1)

namespace

ownedElement

namespace
ownedElement

namespace

ownedElement

ownedElement

participant

association

src:Class

src:Class

association

association

connection

connection

nsp:Namespace

nsp:Namespace
namespace

m1:Multiplicity

m2:Multiplicity

mr1:MultiplicityRange

lower=1
upper=1

mr2:MultiplicityRange

lower=1
upper=1

range

range

multiplicity

multiplicity

Figure 3.10: ExtractClass refactoring rule

newly created association have to be passed as parameters. The new class name

newName must not be already used in the enclosing namespace of src. To express

this formally, the when-clause has to make a case distinction on the actual type of

the enclosing namespace (either Classifier or Package according to our metamodel

shown in Fig. 2.5). While the role name for the association end on src can be chosen

arbitrarily, the other one must not be in the set of conflicting names for src.

The rule ExtractSuperclass (see Fig. 3.11) creates an empty class as well but

inserts the newly created class between the source class and one of its direct parent

classes. Note that ExtractClass/Superclass differ from the corresponding rules given

by Fowler in [42]. Our rules are more atomic since they do not move features from

the source class to the newly created class. In order to move features to the new

class one could apply the refactorings MoveAttribute/AssociationEnd/Operation or

PullUpAttribute/AssociationEnd/Operation.

Applying the rules ExtractClass/Superclass cannot alter the syntactical correct-

ness of attached OCL constraints because both rules merely introduce new model

elements and do not delete or change old ones.
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 ExtractSuperclassUML(son:Class, father:Class, newName:String) 

son:Class

child

generalization
child
generalization

son:Class

g1:Generalization
namespacespecialization

parent

generalization
child

ownedElement

ownedElement

ownedElement

namespace

namespace

{when}

nsp:Namespace

nsp:Namespace
if (nsp.oclIsKindOf(Classifier)) then
  nsp.oclAsType(Classifier)
    .allConflictingNames()->excludes(newName)
else 
   nsp.ownedElement.name->excludes(newName)
endif

namespace
ownedElement

g:Generalization g:Generalization

extracted:Class

name=newName

father:Class father:Class
parent

specialization specialization
parent

Figure 3.11: ExtractSuperclass refactoring rule

3.2.2 Rules With Influence on OCL

MoveAttribute/Operation/AssociationEnd

The application of rule MoveAttribute is usually driven by the wish to make a class

smaller; an example of this refactoring is shown in Fig. 3.12.

ExaInitial
exaAttr

ExaDestination

exaAttr

ExaInitial

ExaDestination1

1

1

1

exaDestination

exaDestination

exaInitial

exaInitial

Figure 3.12: Example of applying MoveAttribute

The selected attribute is moved from a source to a destination class over an asso-

ciation with multiplicity 1 on both ends (cases of moving attribute over associations

with different multiplicities are discussed in Chapter 5). If source and destination

class are connected with more than one such association, it is for the refactoring

of the attached OCL constraints important to know, over which association the at-

tribute was moved. Thus, the second parameter of the rule shown in Fig. 3.13 is an

association end that identifies both the destination class and the used association.

The restriction that attributes can only be moved over an association with multiplic-

ity 1-1 ensures the semantics preservation of the rule (the preservation of semantics
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MoveAttributeUML(a:Attribute, ae2:AssociationEnd)

a:Attribute
feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd
connection

{when}
dest.allConflictingNames()->excludes(a.name) and
ae1.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1)

connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

a:Attribute feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd
connection connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

Figure 3.13: UML part of MoveAttribute rule

will be discussed in Chapter 5). However, the multiplicity restriction is sufficient

but not necessary for semantics preservation of a rule application. The semantics

preservation property is analyzed and proven for some variations of MoveAttribute

refactoring in Chapter 5.

Analogously to the changes of Java code described by Fowler for the correspond-

ing refactoring MoveField, this rule must update attached OCL constraints on all

locations where the moved attribute is used. The necessary change of the OCL

expressions can be seen as a kind of Forward Navigation. For the example from

Fig. 3.12, this would mean that an expression of form exp.exaAttr, where exp has

a type conforming to the source class ExaInitial, is not type correct after the at-

tribute has moved to the destination class. Thus, the term exp.exaAttr should be

rewritten with exp.exaDestination.exaAttr. This refactoring of OCL constraints

is formalized by a second rule (see Fig. 3.14), which extends the first rule. The RHS

inserts between the attribute call expression ace and its source expression oe a new

association end call expression aece that realizes the forward navigation.

The rule MoveOperation is usually applied when some class has too much be-

havior or when classes are collaborating too much.

The formalization of the UML part of MoveOperation is similar to that of

MoveAttribute and shown in Fig. 3.15. As for MoveAttribute, the association con-

necting source and destination class must have on both ends multiplicity 1. The

main difference to MoveAttribute is the when-clause that is tailored to preserve the

well-formedness rule UniqueMatchingSignature (see Sect. 2.4.2).

The changes induced on attached OCL constraints can be described in three
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 MoveAttributeOCL_Forward extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

ace:AttributeCallExp

a:Attribute

referredAttribute

source

appliedProperty

ace:AttributeCallExp

aece:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd

appliedProperty

a:Attribute

referredAttributeappliedProperty
source

oe:OclExpressionoe:OclExpression

Figure 3.14: OCL part of MoveAttribute rule (forward navigation)

 MoveOperationUML(o:Operation, ae2:AssociationEnd) 

feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd
connection

dest:Class

as:Association

ae1:AssociationEnd

connection

o:Operation

ae2:AssociationEnd
ae2:AssociationEnd

{when}
dest.getAllOperations()->forAll(op| 
    not(op.matchesSignature(o)) and
ae1.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1)

connection

association
participant

association
participant

owner
feature

association

participant

owner

participant

association

connection

o:Operation

src:Class

Figure 3.15: UML part of MoveOperation rule
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steps. The last two steps refer to the different handling of query- and self -expressions,

what is fully analogous to what we have already observed in PullUp- and PushDown-

rules.

Change Context: If a constraint is attached to the moved operation (e.g. as pre-

/postcondition) then the context of this constraint has to be changed, for

example from context ExaInitial::exaOp() to

context ExaDestination::exaOp(). Fowler describes in [42] informally this

step as ”Copy the code from the source method to the target”.

The context of a constraint is formalized in the OCL metamodel by the metaas-

sociation from ExpressionInOcl to Classifier with role name contextualClas-

sifier. However, this metaassociation is derived. Consequently, changing the

context of a constraint is subsumed in our setting by changing the owner of

the moved operation, as formalized in Fig. 3.15.

Forward Navigation (Handle Query): In case that the moved operation is a

query, all operation call expressions have to redirect their references to the

moved operation (see Fig. 3.16). This means to substitute all expressions

exp.exaOp() by exp.exaDestination.exaOp(). This step corresponds to ”Turn

the source method into a delegating method” from Fowler’s book.

Backward Navigation: All occurrences of self -expressions in the constraints at-

tached to the moved operations have changed their type from ExaInitial to

ExaDestination. This requires to rewrite the expression self by

self.exaInitial. This navigation is possible due to multiplicity 1 on the end

of class ExaInitial.

What is left to be done is to embed the new expression self.exaInitial at the

same location at which the original expression self was placed. In the refac-

toring rule from Fig. 3.17, this has been formalized by the link between ve and

exp. Note that there is no such metaassociation context-subExpressions in the

official UML/OCL metamodel. The metaassociation has been defined here as

a derived association that subsumes all existing owning-relationships between

OCL expressions, such as appliedProperty-source, parentOperation-arguments,

etc. A similar extension of the OCL 2.0 metamodel has been also proposed

by Correa and Werner in [35].

For the backward navigation step, Fowler says: ”... create or use a reference

from the target class to the source”.
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 MoveOperationOCL_Forward extends MoveOperationUML(o:Operation, ae2:AssociationEnd) 

oce:OperationCallExp

o:Operation

appliedProperty

oce:OperationCallExp

appliedProperty

appliedProperty
source

o:Operation

ae2:AssociationEnd

source
referredOperation

source referredAssociationEnd
oe:OclExpression oe:OclExpression

ae2ce:AssociationEndCallExp
referredOperation

Figure 3.16: OCL part 1 of MoveOperation rule (forward navigation/handle query)

 MoveOperationOCL_Backward extends MoveOperationUML(o:Operation, ae2:AssociationEnd) 

ve:VariableExp

ae1:AssociationEnd

{when}

v:VariableDeclaration

varName='self'

referredVariable

v:VariableDeclaration

varName='self'

referredVariable

referredAssociationEndsource
appliedProperty

o.constraint->collect(c| c.body
     .oclAsType(ExpressionInOcl)
     .bodyExpression)->asSet()
.getAllSubexpressions()->includes(ve)

ve:VariableExp

exp:OclExpression

context

subExpressions

exp:OclExpression
context

subExpressions
topexp:AssociationEndCallExp

Figure 3.17: OCL part 2 of MoveOperation rule (backward navigation)

The rule MoveAssociationEnd is very similar to MoveAttribute for the refactoring

of the UML part; Fig. 3.18 shows an example and Fig. 3.19 the formalization as

QVT rule.

The refactoring of OCL constraints consists of two parts, one for forward and

one for backward navigation. The forward navigation is analogous to MoveAttribute

and rewrites association end call expressions of form exp.roleB by

exp.exaDestination.roleB. Figure 3.20 shows the formalization as QVT rule. Note

that the association end aet, which is determined by the when-clause of the rule,

matches with roleB in the example from Fig. 3.18.

The backward navigation has to address the problem that the type of expression

exp.roleA has changed – depending on the multiplicity and ordering of the associ-

ation end with name roleA –

from ExaInitial, Set(ExaInitial), Sequence(ExaInitial)

to ExaDestination, Set(ExaDestination), Sequence(ExaDestination), respec-

tively.
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ExaDestinationExaInitial

ExaDestination
1

1

1

1

ExaClass

ExaClass

roleB

roleB

roleA

roleA

exaDestination

ExaInitial

exaInitial

exaDestination

exaInitial

Figure 3.18: Example of applying MoveAssociationEnd

The two rules shown in Fig. 3.21 cover the first and the third case correctly. If the

association end with name roleA has multiplicity 0..1 or 1..1, then the expression

exp.roleA is rewritten by exp.roleA.exaInitial. For all other (many-valued) multi-

plicities, the original expression exp.roleA is rewritten by exp.roleA->collect(it|

it.exaInitial). Note that we have chosen it as the name for the iterator vari-

able but any other name could have been taken as well. Our rewriting is, however,

only fully correct if the association end named roleA was ordered and the original

and new expressions have type Sequence(ExaInitial). For unordered association

ends, the expression exp.roleA should3 be rewritten by exp.roleA->collect(it|

it.exaInitial)->asSet() in order to ensure that the original and new expression

have the same type Set(ExaInitial).

Finally, the new expression has to be embedded at the same location as the

original expression what is formalized analogously to rule MoveOperation.

3.2.3 Reformulation of Refactoring Rules for UML 2.0

As already mentioned, the above given catalog of refactoring rules is defined on top

of the metamodel for UML 1.5 and thus not directly applicable for UML 2.0 models.

In this subsection, we discuss how our refactoring rules can be reformulated for UML

2.0. As an example we have chosen one of the most drastic changes in UML 2.0 for

3This exceptional case is not reflected in the rule shown in Fig. 3.21 but has been implemented
in our tool (see [88]).



42 3. REFACTORING UML/OCL DIAGRAMS

 MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd) 

{when}
ae1.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1) and
let aet:AssociationEnd=
     ae.getOppositeAssociationEnd() in
dest.allConflictingNames()->excludes(aet.name)

dest:Class

as:Association

ae1:AssociationEnd
connection

ae2:AssociationEnd
association

connection

association
participantparticipant

src:Class

association association

ae:AssociationEnd

participant

association

dest:Class

as:Association

ae1:AssociationEnd
connection

ae2:AssociationEnd

association

connection

association
participantparticipant

src:Class

association association

ae:AssociationEnd

participant
association

Figure 3.19: UML part of MoveAssociationEnd rule

 MoveAssociationEndOCL_Forward extends MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd) 

source

appliedProperty

ae2ce:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd

appliedProperty

appliedProperty

source

aetce:AssociationEndCallExp aetce:AssociationEndCallExp

oe:OclExpression

oe:OclExpression

aet:AssociationEnd
referredAssociationEnd

aet:AssociationEnd
referredAssociationEnd

aet = ae.getOppositeAssociationEnd()
{when}

Figure 3.20: OCL part 1 of MoveAssociationEnd rule (forward navigation)

class diagrams: the unification of attributes and opposite association ends.

Figure 3.22 shows the relevant part of the UML 2.0 metamodel [65] and the

aligned OCL 2.0 metamodel [68] (AttributeCallExp and AssociationEndCallExp were

unified to PropertyCallExp). An instance of metaclass Property in the UML 2.0

metamodel can represent either an attribute of a class (in this case, it is an owne-

dAttribute of the class), a navigable association end (encoded as an ownedAttribute

of the class at the opposite association end and, furthermore, a memberEnd of its

association), or a non-navigable association end (only a memberEnd of its associa-

tion).
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 MoveAssociationEndOCL_Backward extends MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd) 

 MoveAssociationEndOCL_Backward extends MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd) 

appliedProperty

source

topexp:AssociationEndCallExpaece:AssociationEndCallExp

referredAssociationEnd
ae1:AssociationEnd

aece:AssociationEndCallExp

aec:AssociationEndCallExp

ae1:AssociationEnd

not (ae.multiplicity.isManyValued()) 

ae:AssociationEnd

ae.multiplicity.isManyValued()

dest:Class

topexp:IteratorExp
name='collect'

ve:VariableExp

appliedProperty

source

body

referredAssociationEnd

{when}

{when}

referredAssociationEnd

ae:AssociationEnd
referredAssociationEnd

aece:AssociationEndCallExp

ae:AssociationEnd
referredAssociationEnd

vd:VariableDeclaration
varName='it'

aece:AssociationEndCallExp
source

appliedProperty

referredVariable

iterators

type

ae:AssociationEnd
referredAssociationEnd

exp:OclExpression
context

subExpressions

exp:OclExpression
context

subExpressions

exp:OclExpression
context
subExpressions

exp:OclExpression

context

subExpressions

Figure 3.21: OCL part 2 of MoveAssociationEnd rule (backward navigation)

MoveProperty

The rule MoveProperty is the counterpart of MoveAttribute and MoveAssociatio-

nEnd already specified for UML 1.5. For the sake of brevity, we assume that the

moved property has the multiplicity 0..1 or 1..1. We have already shown in rule

MoveAssociationEnd how a multiplicity greater than 1 can be handled.

The transformation rule formalized in Fig. 3.23 is very similar to the UML

part of MoveAttribute and MoveAssociationEnd shown in Fig. 3.13 and Fig. 3.19,

respectively. MoveProperty moves one property from the source to the destination

class. The when-clause specifies that this rule is applicable only if the name of the
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Classifier

Property

Association

Class

Relationship

class
ownedAttribute

memberEndassociation
0..1

0..1

*

*

MultiplicityElement
lower : Integer
upper : UnlimitedNatural

NamedElement

name : String [0..1]

OclExpression

PropertyCallExp Property

0..1

0..1
0..n

0..1 +source

+referredProperty

TypedElement

+appliedElement

+referringExp

Figure 3.22: Relevant Part of UML2.0 and OCL2.0 for MoveProperty

moved property is not in conflict with the destination class.

In Fig. 3.24 and Fig. 3.25, the necessary forward and backward navigation

changes on the attached OCL constraints are formalized analogously to MoveAsso-

ciationEnd.

3.3 Proving the Preservation of Well-formedness Rules

It is not difficult to argue informally that the version of ExtractClassUML pre-

sented here (Fig. 3.10) preserves the well-formedness rule on the uniqueness of class

names: Whenever ExtractClassUML is applicable, the when-clause ensures that in

the namespace of class src there is no class with name newName. Applying Extract-

ClassUML means to create exactly one new class extracted. Let us assume that

the well-formedness rule is broken for the target model. Since it was satisfied in the

source model and all classes have kept their names, the only possibility is that there

is in the namespace of extracted a second class with the same name as extracted.

This, however, is prevented by the when-clause of ExtractClassUML and by the fact
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MovePropertyUML(p:Property, p2:Property)

dest:Classsrc:Class

as:Association

memberEnd

{when}
dest.allConflictingNames()->excludes(p.name)) and
p1.multiplicity.is(1,1) and
p2.multiplicity.is(1,1) and
not (p.multiplicity.isManyValued())

ownedAttributeownedAttribute

association association

ownedAttribute

class

p2:Propertyp1:Property

p:Property

memberEnd

classclass

dest:Classsrc:Class

as:Association

memberEnd

ownedAttributeownedAttribute

association association

ownedAttribute

class

p2:Propertyp1:Property

memberEnd

classclass

p:Property

Figure 3.23: UML part of MoveProperty rule

 MovePropertyOCL_Forward extends MovePropertyUML(p:Property, p2:Property) 

source

source referredProperty

referredProperty
appliedElement

source
pce:PropertyCallExp

pce:PropertyCallExp

oe:OclExpression

oe:OclExpression

p:Property

p:Property

referredProperty pc:PropertyCallExp

p1:Property

appliedElement

appliedElement referredExp

referredExp

referredExp

Figure 3.24: OCL part 1 of MoveProperty rule (forward navigation)

that src and extracted have the same namespace.

Such an argumentation would probably convince most people but, as any in-

formal argumentation, it is prone to errors since it takes the semantics of the im-

plementation language, here Imperative OCL, only informally into account. The

argumentation would be more reliable if it would base on a formal semantics of

the implementation language and would take literally the implementation of the

transformation into account.

To our knowledge, there is no tool available yet, that is based on the formal

semantics of Imperative OCL (which is a rather recent dialect of OCL). There are,

however, verification tools for other programming languages such as Java, C++,

etc. available, that could be used to verify syntactic preservation of transformation

rules, if these rules would be implemented in Java, C++, etc. instead of Imperative

OCL.
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 MovePropertyOCL_Backward extends MovePropertyUML(p:Property, p2:Property) 

source

source referredProperty

referredProperty
appliedElement

source

pce:PropertyCallExp

oe:OclExpression

oe:OclExpression

pm:Property

referredProperty

pm:Property

appliedElement

appliedElement referredExp

referredExp
referredExp

as:Association

memberEnd

association

association
p:Property memberEnd

as:Association

memberEnd
association

p:Property memberEnd

association

p2:Property

exp:OclExpression

context

subExpressions

exp:OclExpression

context

subExpressions

pce:PropertyCallExp

topexp:PropertyCallExp

Figure 3.25: OCL part 2 of MoveProperty rule (backward navigation)

We show in the rest of the section, how the KeY-system4, a verification system

for Java, could be used to prove syntactic preservation for a Java-implementation

of ExtractClassUML, which looks literally the same as the implementation in Im-

perative OCL discussed in Sect. A.3. Note that this is still not a formal proof

yet for the version of ExtractClassUML implemented in Imperative OCL since the

KeY-system can currently verify only Java implementations. There are, however, no

fundamental obstacles to adapt the KeY-system, so that it can handle in addition

to implementations written in Java also those written in Imperative OCL.

The KeY-system, see [1] for an overview and [13] for a complete introduction,

allows software developers to prove formally that the implementation of a Java

method satisfies a method contract (pre-/postcondition together with invariants

written in OCL). In particular, one can formally show that whenever a method is

invoked in a system state, in which all invariants and the method’s precondition

hold, the execution of the method will terminate in a state, in which the invariants

hold as well (this functionality is available as PreserveInvariant in the KeY menu).

In order to apply the KeY-system to prove the preservation of the well-formedness

rule on unique class names, the metamodel and the effect of applying ExtractClas-

sUML had to be encoded in Java. Fig. 3.26 shows how the relevant part of the

metamodel is encoded; the metaclasses Class, Association, etc. became ordinary

Java classes.

4The KeY-system is published under the GNU Public License (GPL) and can be downloaded
from www.key-project.org. KeY is available both as a stand-alone tool and as a TogetherCC
plugin.



3.3. PROVING THE PRESERVATION OF WELL-FORMEDNESS RULES 47

1 range

0..*

1

ownedElement

namespace

firstAE

1

participant

secondAE

AssociationEndClass

Model

+extractClassUML:void
+main:void

Multiplicity

MultiplicityRange

-lower:int
-upper:int

Namespace

Association

ModelElement

+name:String

Figure 3.26: Simulation of the UML/OCL metamodel by Java classes
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The Java class Model has been added just to serve as a container for the refac-

toring rules. The effect of the rule ExtractClassUML would be implemented in Java

as follows:

/∗∗
∗ @precondi t ions Class . a l l I n s t an c e s−>f o rA l l ( c |
∗ c . namespace=src . namespace imp l i e s c . name<>newName)

∗/
public void e x t r a c t C l a s s ( Class src , S t r ing newName) {

i f ( s r c != nu l l ) {

Class ex t rac t ed=new Class (newName ) ;

ex t rac t ed . namespace=s r c . namespace ;

As soc i a t i on as=new Assoc i a t i on ( ) ;

as . f i r s tAE= new Associat ionEnd ( extracted ,

new M u l t i p l i c i t y (new Mult ip l i c i tyRange ( 1 , 1 ) ) ) ;

as . secondAE=new Associat ionEnd ( src ,

new M u l t i p l i c i t y (new Mult ip l i c i tyRange ( 1 , 1 ) ) ) ;

as . namespace=s r c . namespace ;

}
}

The listing shows the source code as it is managed by TogetherCC. The JavaDoc

comment @preconditions contains the condition on the pre-state in OCL syntax

(comparable with the when-clause). The body of extractClassUML resembles the

implementation of applyRHSUML written in Imperative OCL. The only exception

is that the Java version encodes the additional pre-condition src!=null as an if-

statement. For the version implemented in Imperative OCL, the same condition is

automatically stipulated by the semantics of OCL.

The invariant to be proven is exactly the same as in the real metamodel and

attached in OCL syntax to class Model.

/∗∗
∗ @invar iants Class . a l l I n s t an c e s−>f o rA l l ( c1 , c2 |
∗ c1 . namespace=c2 . namespace and

∗ c1 . name=c2 . name

∗ imp l i e s c1=c2 )

∗/
public class Model { . . . }
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The KeY-system is able to prove fully automatically for the shown implementa-

tion of ExtractClass that the invariant is preserved.

3.4 Related Work

To a certain degree, refactoring rules depend on the language they are applied on.

This explains why there are many catalogs of refactoring rules for different languages.

The most complete and influential catalog was published by Fowler in [42] for the

refactoring of Java code. The refactoring of artifacts that are more abstract than

implementation code is a relatively new research topic that became urgent with the

success of the UML. Some initial catalogs of refactoring rules for UML diagrams and

EMF models are presented in [4, 76, 81, 16, 15]. However, neither these catalogs

nor any of the existing UML refactoring tools [17, 20, 70] support – apart from some

simple Rename-refactorings – the refactoring of attached OCL constraints once the

underlying UML class diagram has changed.

For the refactoring of OCL, we are aware of only one approach. Correa and

Werner present in [35] some refactoring rules for OCL, but these rules focus on the

improvement of poorly structured OCL constraints and take only to a very limited

extent the relationship between OCL constraints and the underlying class diagram

into account.

Our formal description of refactoring rules is done on the level of the metamodel

for UML and OCL. Unlike other approaches that describe refactoring rules formally

[35, 46, 76, 81], we do not use OCL pre-/postconditions for this purpose.

In [27], Cabot and Teniente present an approach for transforming existing OCL

invariants into semantically equivalent alternatives. While we observe transforma-

tions of OCL constraints in the context of UML class diagrams refactorings, the

technique discussed in [27] focus on transforming OCL expressions when no changes

on underlying class diagram occur. When applying the MoveOperation rule, we sim-

ilarly to [27] change the context of all constraints attached to the moved operation.

3.5 Conclusions

The refactorings considered in this chapter realize a special form of model synchro-

nization: a change in a UML class diagram should trigger an automatic update of

attached OCL constraints. A minimal requirement for a refactoring rule is that

a refactoring step does not destroy the syntactic correctness of the manipulated
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UML/OCL model. Ideally, the semantics of the model remains unchanged as well.

In this chapter, five groups of refactoring rules (Rename, PullUp, PushDown,

Extract, Move) are investigated and classified with respect to their influence on

attached OCL constraints. Only Move-refactorings require to update attached OCL

constraints but the applicability of PullUp- and PushDown-refactorings depends on

the absence of certain OCL constraints. The rules targeting attributes are generally

less complex than the rules for operations and association ends.

We have formalized all refactoring rules in form of model transformations that are

based on graph transformations. This formalization allows a precise argumentation

that the refactoring rules preserve the syntax and the semantics of the models they

are applied on. Syntax preservation is formally shown for one example in Sect. 3.3.

Semantics preservation will be discussed in Chapter 5.

The understandability of graphical QVT rules depends, most likely, on the de-

gree of familiarity with the underlying metamodel and on personal preferences. The

experiences we gained when writing up and discussing multiple versions of the refac-

toring rules presented in Sect. 3.2 let us conclude that graph transformation systems

are an excellent choice for the formalization of refactoring rules. The readability of

our rules can, however, be even improved for persons who are only vaguely famil-

iar with the metamodel for UML/OCL. As shown in [10], this can be achieved by

defining a concrete syntax for refactoring rules. This concrete syntax can hide many

internals of the UML/OCL metamodel from the reader, but keeps the expressive

power of ordinary QVT rules.

All rules presented in this chapter have been fully implemented in the tool Ro-

clET (see Appendix A), a versatile tool for the development and analysis of OCL

specifications. RoclET’s refactoring functionality takes from the user the burden

to correct manually all OCL constraints that became syntactically incorrect when

the underlying UML diagram has been refactored. We see this as a necessary pre-

condition to pull up agile techniques, which became quite popular over the recent

years on the implementation level, also to the modeling level.



Chapter 4
Model Transformations for Describing
Semantics of OCL

The Object Constraint Language (OCL) has been for many years formalized both

in its syntax and semantics. While the official definition of OCL’s syntax is al-

ready widely accepted and strictly supported by most OCL tools, there is no such

agreement on OCL’s semantics, yet.

In the previous chapter we have specified refactoring rules using QVT. In order

to prove that the rules are semantics preserving, the first step is to define semantics

of artifacts that are subject of refactoring, in our case, UML/OCL models.

In this chapter, we propose an approach based on metamodeling and model

transformations for formalizing the semantics of OCL. Similarly to OCL’s official

semantics, our semantics formalizes the semantic domain of OCL, i.e. the possible

values to which OCL expressions can evaluate, by a metamodel. Contrary to OCL’s

official semantics, the evaluation of OCL expressions is formalized in our approach by

model transformations written in QVT. Thanks to the chosen format, it was possible

to define a criterion of semantics preservation, and to show that our refactoring rules

satisfy this criterion, in a manner that is easy to understand, and reason about.

Our work on the formalization of OCL’s semantics resulted also in the identi-

fication and better understanding of important semantic concepts, on which OCL

relies. These insights are of great help when OCL has to be tailored as a constraint

language of a given Domain Specific Language (DSL). We show on an example, how

the semantics of OCL has to be redefined in order to become a constraint language

in a database domain.

Work presented in this chapter was firstly published on MoDELS 2006 conference

[57], and an extended version was accepted for publication in Software and Systems

51



52 4. MODEL TRANSFORMATIONS FOR DESCRIBING SEMANTICS OF OCL

Modeling (SoSym) journal [59].

4.1 Introduction

The OCL has proven to be a very versatile constraint language that can be used

for different purposes in different domains, e.g., for restricting metamodel instances

[65], for defining UML profiles [14], for specifying business rules [37], for querying

models [28, 2] or databases [36].

Due to the lack of parsers, OCL was used in its early days often in an informal

and sketchy style, what had serious and negative consequences as Bauerdick et

al. have shown in [11]. Nowadays, a user can choose among many OCL parsers

(e.g. OSLO [87], Eclipse Model Developement Tool (MDT) for OCL [84], Dresden

OCL Toolkit [83], Octopus [86], Use [89], OCLE [85]), which strictly implement the

abstract syntax of OCL defined in the OCL standard [68].

The situation is less satisfactory when it comes to the support of OCL’s semantics

by current OCL tools. While most of the tools now offer some kind of evaluation of

OCL expressions in a given system state, none of the tools is fully compliant with

the semantics defined in the OCL standard. We believe that the lack of semantic

support in OCL tools is due to the lack of a clear and implementation-friendly

specification of OCL’s semantics. Interestingly, the normative semantics of OCL1

given in the language standard [68], Section 10: Semantics Described using UML

is also formalized in form of a metamodel, but, so far, this metamodel seems to be

poorly adopted by tool builders.

In this chapter we present a new approach for formulating a metamodel-based

semantics of OCL. Defining a semantics for OCL basically means (1) to define the

so-called semantic domain, in which OCL expressions are evaluated, and (2) to

specify the evaluation process for OCL expressions in a given context.

The semantic domain for OCL is given by all possible system states. Since a

system state can be visualized by an object diagram, the semantic domain is (almost)

defined by the official UML metamodel for object diagrams. There are two major

problems to be solved when defining the semantic domain based on the definition

of object diagrams. Firstly, UML’s metamodel for object diagrams does not define

the semantics of OCL’s predefined types, such as Integer, Real, String, Set(T), etc.

However, this problem has been already recognized in the OCL standard and an

additional package (named Values) for the OCL metamodel has been proposed. We

1There is also an informative semantics given in Annex A of [68], which is formulated in a
set-theoretical style and goes back to the dissertation of M. Richters [71].
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will, to a great extent, reuse the Values package in our approach. Secondly, the

metamodel for object diagrams implicitly assumes the existence of solely one object

diagram at any moment of time. This becomes a major obstacle as soon as more

than one system state is relevant for the definition of OCL’s semantics (and this is

really the case when defining the semantics of OCL’s post-conditions). We propose

for this problem a solution which is fundamentally different from the one chosen in

the normative semantics and which leads, as we think, to a much simpler metamodel

for the semantic domain of OCL.

The evaluation of OCL expressions is specified in our approach by model trans-

formations, which are in turn described as QVT rules. All QVT rules presented in

this chapter are also available in its textual form. The complete set of rules can be

downloaded, together with all relevant metamodels, from [88].

To summarize, our semantics for OCL has the following characteristics:

• The semantics is directly executable. Contrary to a paper-and-pencil seman-

tics, OCL developers can immediately see by using a tool (e.g. RoclET), how

the semantics applies in a concrete scenario.

To our knowledge, only the semantics of OCL given by Brucker and Wolff

([24, 22]) has the same characteristics and can be executed in the OCL tool

HOL-OCL.

• The semantics is defined on top of the official metamodels for OCL’s abstract

syntax and UML class- and object-diagrams. Consequently, the semantic def-

inition becomes an integral part of the already existing language definitions

for UML and OCL.

However, we had to redefine some of the existing metamodels due to some

obvious inconsistencies, which would have prevented us from completely im-

plementing our approach.

• The target audience for our semantics are developers, who use OCL in practice.

No familiarity with mathematical and logical formalisms is presumed. In order

to understand the semantics, only some knowledge of metamodeling and QVT

is required.

• The semantics is presented in a modular way. This allows to easily define,

starting from our semantics of OCL, the semantics of another constraint lan-

guage, which is tailored to a given DSL. Similarly, one could also create a

new dialect for OCL in the context of UML; for example, one could decide to
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abandon OCL’s concept of being a three-valued logic and to allow only two

Boolean values true and false.

The last point highlights the flexibility of our approach. This flexibility is an

important step forward to the vision originally formulated by the PUML group (see,

e.g., [33]) to treat OCL not just as one monolithic language but rather as a family of

languages, which can be applied in many different domains and can adapt easily to

different requirements from these domains while still sharing a substantial amount

of common semantic concepts, libraries, etc.

The rest of the chapter is organized as follows. In Sect. 4.2, we sketch our

approach and show, by way of illustration, a concrete application scenario for our

semantics. The basic evaluation steps are formalized by QVT rules in Sect. 4.3. Sec-

tion 4.4 proposes a list of semantic concepts and discusses their impact on evaluation

rules. Section 4.5 shows the flexibility of our approach and presents a stepwise adap-

tation of OCL’s semantics, so that the adapted version can be used as a constraint

language for a given DSL. Related work is given in Section 4.6, while Section 4.7

draws conclusions.

4.2 A Metamodel-Based Approach for OCL Evaluation

In this section we briefly review the technique and concepts on which our approach

relies, and illustrate, with a simple example, the evaluation of OCL constraints. We

concentrate on the evaluation of an invariant constraint in a given state. We finally

describe the difficulties arising from the evaluation of pre-/postconditions.

4.2.1 Changes in the OCL Metamodel

In order to realize our approach in a clear and readable way, we had to add a few

metaassociations, -classes, and -attributes to the Values package part of the official

OCL metamodel.

The metaclass OclExpression has a new association to Instance, what represents

the evaluation of the expression in a given object diagram (see Fig. 4.1). Further-

more, the classes StringValue, IntegerValue, etc. have now attributes stringValue,

integerValue, etc. what makes it possible to clearly distinguish a datatype object

from its value.

We revised slightly the concepts of bindings (association between OclExpression

and NameValueBinding) and added to class LoopExp two associations current and

intermediateResult, and one attribute freshBinding (see Fig. 4.2).
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Figure 4.3: Changed metamodel for OCL - State Transitions
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We have created two new metaclasses StateTransition and ObjectMap that are

used in evaluations of pre and post-conditions (see Fig. 4.3). Metaclass ObjectMap

has two metaassociations with metaclass Instance and is used to relate two Instances

in a pre- and a post-state. Metaclass StateTransition has two metaassociations with

Stimulus representing an Operation that corresponds to a given StateTransition or a

sent message. Stimulus itself is used to keep the track about an operation invocation:

receiver and sender of a message, and operation arguments.

4.2.2 Evaluation
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ace:AttributeCallExp
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name='capacity'

oce:OperationCallExp

source

referredAttribute
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capacity: Integer
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Figure 4.4: Example - Class Diagram and snapshot

We motivate our approach to define OCL’s semantics with a small example. In

Fig. 4.4, a simple class diagram and one of its possible snapshots is shown. The

model consists of one class Stock with two attributes: capacity and numOfItems,

both of type Integer, representing the capacity of Stock and the current number of

available items, respectively. The additional constraint attached to the class Stock

requires that the current number of items in a stock must always be smaller than

the capacity. The snapshot shown in the right part of Fig. 4.4 satisfies the attached

invariant because for each instance of Stock (class Stock has only one instance in

the snapshot) the value of numOfItems is less than the value of attribute capacity.

In other words, the body of the constraint attached to the class Stock is evaluated

on object s to true.

In order to show how the evaluation of an OCL constraint is actually performed
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Figure 4.5: Evaluation of OCL expressions seen as an AST: (a) Initial AST (b) Leaf
nodes evaluated (c) Middle nodes evaluated (d) Complete AST evaluated
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on a given snapshot, we present in Fig. 4.5 the simplified state of the Abstract

Syntax Tree as it is manipulated by an OCL evaluator. Step (a)-(b) performs the

evaluation of the leaf nodes. Depending on the results of these evaluations, step (b)-

(c) performs evaluation of nodes at the middle level. Finally, the last step (c)-(d)

performs evaluation of the top-level of the AST. Please note that in this example

we were not concerned about concrete binding of the variable self. The problem of

variable binding is discussed in Sect. 4.2.3.
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Figure 4.6: OCL constraint before evaluation

Figure 4.6 shows the instance of the OCL metamodel representing the invariant

from Fig. 4.4. Here, we stipulate that all expressions have not been evaluated yet

because for each expression the link val to metaclass Instance is missing. Please

note that here we assume that in all expressions, variable self is bound to the

object o. For the sake of readability, this information is omitted in Figures 4.6 and

4.7.

The final state of the metamodel instance, i.e. after the last evaluation step has

been finished, is shown in Fig. 4.7. What has been added compared to the initial

state (Fig. 4.6) is highlighted by thick lines. The evaluation of the top-expression

(OperationCallExp) is a BooleanValue with booleanValue attribute set to true, the

two AttributeCallExpressions are evaluated to two IntegerValues with values 7 and

3, and each VariableExp is evaluated to Object with name s.
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Figure 4.7: OCL constraint after evaluation in a given snapshot

4.2.3 Binding

The evaluation of one OCL expression depends not only on the current system state,

on which the evaluation is performed, but also on the binding of free variables to

current values. The binding of variables (e.g. self variable, let variables, iterator

variables) is realized in the OCL metamodel by the class NameValueBinding, which

maps one free variable name to one value. Every OCL expression can have arbitrarily

many bindings, the only restriction is the uniqueness of variable names within the

set of linked NameValueBinding instances.

The binding of variables is done in a top-down approach. In other words, variable

bindings are passed from an expression to all its sub-expressions. Some expressions

do not only pass the current bindings, but also add/change bindings (like let and

iterate expressions). An example for adding new value-name bindings will be pre-

sented in more details in Sect. 4.3.

Figure 4.8 shows the process of binding passing on a concrete example. In the

upper part, the initial situation is given: The top-expression already has one binding

nvb for variable self. In the lower part of the figure, all subexpressions of the top-

expression are bound to the same NameValueBinding as the top-expression.
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Figure 4.8: Binding passing

4.3 Core Evaluation Rules Formalized as Model Transforma-
tions

The previous section has shown the main idea of our approach: we annotate the

evaluation result of each (sub)expression directly to the corresponding instance of

class OclExpression in the OCL metamodel. What has not been specified yet are

the evaluation steps themselves, for example, that an AttributeCallExp is always

evaluated to the attribute value on that object to which the source expression of

AttributeCallExp evaluates. As shown below, these evaluation steps will be formally

given in form of model transformation rules.

Although the model transformation rules are generally nicely readable and un-

derstandable, their number can become quite high if one wants to accommodate all

peculiarities of OCL (e.g. undefined values, flattening of collections, @pre in post-

conditions, etc.). In order to structure the semantics definition, we will present in

this section the core version of evaluation rules for certain types of expressions and

will explain in the next Section 4.4 how this core rules have to be extended/adapted

in order to reflect all semantic concepts of OCL.

4.3.1 Model Transformation Rules

For the specification of evaluation rules, we use the formalism of model transforma-

tions, more precisely QVT (Query/View/Transformation) rules [66]. This formalism

is already used in Chapter 3 for specifying refactoring rules.

In order to avoid the redundancy of having the same subpatterns in LHS in RHS,
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our evaluation rules contain besides LHS and RHS a third part called Context, that

specifies the structures in the input, which must be available when applying the

rule but which are not changed . The Context part is optional. For the core rules

presented in this section, the Context will encode the assumed structures in the

current state, in which the OCL expression is being evaluated. When it comes to

the evaluation of pre-/postconditions, we will see in the next section that the Context

can also contain even more information. Besides the structures that describe the

system state, Context can also contain an optional part with data values that are

necessary for the evaluation of the rules.

4.3.2 Binding Passing

Before the source expression can be evaluated, the current binding of variables

has to be passed from the parent expression to all its subexpressions. Figure 4.9

shows the transformation rule for OperationCallExp. When applying this rule, the

binding of the parent object oce (represented by a link from oce to the multiobject

nvb in LHS) is passed to subexpressions oe and aoe (links from oe and aoe to

nvb are established in RHS). Multiobject nvb, shown in Fig. 4.9, represents an

object template that matches many objects of type NameValueBinding. Analogous

rules exist for all other kinds of OCL expressions which have subexpressions (e.g. if

expressions, let expressions, etc.). For the (subclasses of) LoopExp, one needs also

additional rules for handling the binding because the subexpressions are evaluated

under a different binding than the parent expression.
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Figure 4.9: Binding of an expression
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4.3.3 A Catalog of Core Rules

In order to define the semantics of OCL, one needs to provide at least one eval-

uation rule for each concrete subclass of OCLExpression metaclass from the OCL

metamodel.

The semantics of a constraint language such as OCL can be split along this

syntactic dimension (in Section 4.4, we will see that it is useful to have also another

dimension for the semantics). However, it is not always appropriate to organize

a catalog of evaluation rules based on the metaclasses from the abstract syntax

metamodel. Sometimes, evaluation rules for different metaclasses are very similar

so that these evaluation rules could be put into the same category (for example,

Navigation Expressions). But there is also the opposite case, where instances of the

same metaclass are evaluated using very different mechanisms, what is a sign for a

wrong granularity of metaclasses in the metamodel (for example, OperationCallExp).

We propose to organize the evaluation rules for OCL, based on Navigation Ex-

pressions, Operation Expressions, Loop Expressions, Variable Expressions, Literal

Expressions, If Expressions, Let-Expressions, State Expressions2, and Tuple Expres-

sions. Moreover, regarding Operation Expressions, it is useful to distinguish expres-

sions that refer (1) to predefined operations from the OCL library, (2) to queries

defined by the user in the underlying class model.

Here, we discuss only the most representative rules. The main goal is to demon-

strate that the evaluation of all kinds of OCL expressions can be formulated using

graph transformations in an intuitive but precise way. The complete catalog of rules,

as implemented in our RoclET tool, can be downloaded from [88].

Navigation Expressions

OCL expressions of this category are, for example, instances of AttributeCallExp

and AssociationEndCallExp. Such expressions are evaluated by ’navigating’ from

the object, to which the source expression is evaluated, to that element in the object

diagram, which is referenced by the attribute or association end.

AttributeCallExp

The semantics of AttributeCallExp is specified by the rule AttributeCallExp-evaluation

given in Fig. 4.10. The evaluation of ace is DataValue d, which is also the value of

2We consider as the semantic domain of our evaluation only object diagrams in which the
objects do not have a reference to an explicit state given in a state diagram. Consequently, State
Expressions are ignored here.
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the attribute a for object o. Note, that we stipulate in the LHS, that oc, the source

expression of ace, has been already evaluated to object o.

Context

AttributeCallExp-evaluation

DataCurrentState

ace:AttributeCallExp

a:Attribute
source referredAttribute

ace:AttributeCallExp

oc:OclExpression a:Attribute
source referredAttribute

d:DataValue

valo:Object
oc:OclExpression

{when}
ace.val->isEmpty()

val

val

o:Object al:AttributeLink d:DataValue

a:Attribute

valueslotinstance attributeLink
attribute

o:Object

Figure 4.10: Attribute Call Expression evaluation

AssociationEndCallExp

Here we discuss two cases of AssociationEndCallExp. The first one is navigation over

an association end with multiplicity equal to 1, and the second one is navigation if

multiplicity is greater that 1 and the association end is unordered.

The semantics of the former case is specified by the rule given in Fig. 4.11. As

can be easily recognized, this rule is very similar to AttributeCallExp.

The latter case shown in Fig. 4.12 specifies that the value of aece is a newly

created object of type SetTypeValue whose elements refer to all objects o2 that can

be reached from object o via a link for ae. Again, object o is the evaluation of source

expression oe. Note that in Fig. 4.12 the newly created objects are marked with grey

color. The rule shown in Fig. 4.12 contains at few locations the multiplicities 1-1 at

the link between two multiobjects, for example at the link between le2 and l. This

is an enrichment of the official QVT semantics on links between two multiobjects.

Standard QVT semantics assumes that a link between two multiobject means that

each object from the first multiobject is linked to every object from the second

multiobject, and vice versa. This semantics is not appropriate for the situation

shown in Fig. 4.12 where each element of multiobject l must be connected only to

one element from multiobject le2, and vice versa. By using 1-1 multiplicities, we

indicate a non-standard semantics of links between two multiobjects.
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Context
CurrentState

AssociationEndCallExp1-1-evaluation

referredAssociationEnd
o1:Object

ae2:AssociationEnd

aec:AssociationEndCallExp

oe:OclExpression

ae2:AssociationEnd

le2:LinkEnd

l:Link

o2:Object

le1:LinkEnd

instance

o1:Object

ae2:AssociationEnd

o1:Object

aec:AssociationEndCallExp

oe:OclExpression

o2:Object

connection

{when}
aec.val->isEmpty()

appliedProperty
source

val

val

appliedProperty
source

val

referredAssociationEnd

connection

associationEnd
linkEnd

instance

Figure 4.11: Association End Call Expression evaluation that results in an object

AssociationEndCallExp-setvalued-evaluation

aece:AssociationEndCallExp

source referredAssociationEnd aece:AssociationEndCallExp

oe:OclExpression
source referredAssociationEnd

o:Object val
o:Object

o2:Objectm:ElementValue
element

val
1 1

{when}

sv:SetTypeValue

aece.val->isEmpty() and ae.isSetValued()

val

val

oe:OclExpression

Context CurrentState

o:Object o2:Object

linkEnd
instance

associationEndl:Link
link

connectionconnection
link

instance

linkEnd1
1

1
1

1
1 ae:AssociationEnd

ordering=unordered

linkEnd

le2:LinkEndle1:LinkEnd

ae:AssociationEnd
ordering=unordered ae:AssociationEnd

ordering=unordered

Figure 4.12: Association End Call Expression evaluation that results in set of objects
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Operation Expressions

Expressions Referring to Predefined Operations

Expressions from this category are instances of the metaclass OperationCallExp

but the called operation is a predefined one, such as +, =. These operations are

declared and informally explained in [68, Chapter 11]. As an example, we explain

in the following the semantics of operation ”=” (equals). We show only two rules

here, one specifies the evaluation of equations between two objects, and the other

the evaluation of equations between two integers.

In Fig. 4.13, the evaluation is shown for the case that both subexpressions oe1,

oe2 are evaluated to two objects o1 and o2, respectively. In this case, the result

of the evaluation is bv, of type BooleanValue, with attribute booleanValue b, which

is true if the evaluations of oe1 and oe2 are the same object, and false otherwise.

Evaluation to undefined is discussed in Sect. 4.4.

EqualExp-Objects-evaluation

bv:BooleanValue

{when}
if o1=o2 then  bv.booleanValue=true else  bv.booleanValue=false endif

oce:OperationCallExp

op:Operation
name= '='

referredOperation

source

val

oe2:OclExpression
argument

oe1:OclExpression

val
o2:Objecto1:Object

oce:OperationCallExp

op:Operation
name= '='

referredOperation

source

val

oe2:OclExpression
argument

oe1:OclExpression

val
o2:Objecto1:Object{when}

oce.val->isEmpty()

val

Context Data

bv:BooleanValue

Figure 4.13: Equal Operation evaluation for objects

If oe1 and oe2 evaluate to IntegerValue, the second QVT rule shown in Fig. 4.14

is applicable and the result of evaluation will be an instance of BooleanValue with

attribute booleanValue set to true if the attribute integerValue of iv1 is equal to

integerValue of i2, and to false otherwise.

Rules shown in Fig.4.13 and Fig. 4.14 can be re-formulated using two rules, each;

one rule that specifies evaluation to true and the other that specifies evaluation to
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Context

EqualExp-Integers-evaluation

val

{when}

oce:OperationCallExp

op:Operation
name= '='

iv1:IntegerValue
integerValue=i1

source

referredOperationval

oe2:OclExpression
argument

iv2:IntegerValue
integerValue=i2

oe1:OclExpression

val

{when}
oce.val->isEmpty()

bv:BooleanValue

if i1=i2 then  bv.booleanValue=true else  bv.booleanValue=false endif

oce:OperationCallExp

op:Operation
name= '='

iv1:IntegerValue
integerValue=i1

source

referredOperationval

oe2:OclExpression
argument

iv2:IntegerValue
integerValue=i2

oe1:OclExpression

val

Data

iv1:IntegerValue iv2:IntegerValue bv:BooleanValue

Figure 4.14: Equal Operation evaluation for integers

false. This way we could avoid usage of if expression in the when clauses of the

rules, but this would lead to bigger evaluation rules, which are harder to understand.

Expressions Referring to a User-defined Query

If a user-defined query is used in an OCL constraint, then the semantics of the used

query must be specified by a body-clause (or def-clause), which is attached to the

query. The query might also have attached a pre-condition, which must evaluate to

true in the current situation. Otherwise, the query-expression is evaluated to unde-

fined. If the pre-condition evaluates to true, then the value of the OperationCallExp

is the same as the evaluation of the body-clause under the current argument binding.

Fig. 4.15 shows evaluation rules for user-defined queries specified with a body-

clause. The first rule creates a set of NameValueBindings for the expressions in

precondition and body. Every NameValueBinding from this set corresponds to ex-

actly one argument of the OperationCallExp opce. The second rule performs evalu-

ation of the query in such a way that, if the precondition does not evaluate to true,

the result of the evaluation will be undefined, otherwise the result is the result of

evaluation of the body. One problem, however, is, that the body-expression might

contain again an OperationCallExp referring to op, i.e. the definition of op is re-

cursive. Recursive query definitions can lead in some cases to infinite loops during

the evaluation. Brucker et al. propose in [23] that recursive query definitions should
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QueryExp-binding

{when}
opce.val->isEmpty() 

oce:OclExpression ocem:OclExpression

val
i:Instance

val

im:Instance

opce:OperationCallExp

op:Operation
isQuery=true

referredOperation

source argument

p:Parameter

parameter

oce:OclExpression ocem:OclExpression

val
i:Instance

val
im:Instance

opce:OperationCallExp

op:Operation
isQuery=true

referredOperation

source argument

p:Parameter

parameter

{when}
nvSet.varName=Set{'self'}->union(op.parameter.name) and 
nvSet->forAll(nv | (nv.varName='self') implies nv.val=i and 
                           (nv.varName<>'self') implies nv.val=
                                           ocem.at(op.parameter->indexOf(op.parameter
                                                  ->any(p | p.name=nv.varName)).val) and
c.stereotype.name='pre' and oceb2.binding->isEmpty()

e2:ExpressionInOcl
body

oceb2:OclExpression

bodyExpression

binding

body

oceb2:OclExpression
bodyExpression

val

opce:OperationCallExp

op:Operation
isQuery=true

referredOperation

e2:ExpressionInOcl

body
oceb2:OclExpression

bodyExpression

im:Instance
val

opce:OperationCallExp

op:Operation
isQuery=true

referredOperation

e2:ExpressionInOcl

body oceb2:OclExpression

bodyExpression

val

im:Instance

val

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression
bodyExpression

constraint

c:Constraint

e:ExpressionInOcl
body oceb1:OclExpression

bodyExpression

constraint

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression

bodyExpression

constraint

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression

bodyExpression

constraint

i:Instance

bm:BooleanValue
val

{when}
if bm.booleanValue<>true then i.oclIsTypeOf(OclVoidValue) else i=im endif and
c.stereotype.name='pre'

bm:BooleanValue
val

nvSet:NameValueBinding

{when}
opce.val->isEmpty() 

QueryExp-evaluation

binding

e2:ExpressionInOcl

1
1

1

1

Figure 4.15: Evaluation of an expression referring to a query
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be checked by the user for unfounded recursions, but this would require substantial

analysis effort.

Expressions for Typecheck and Typecast

To this group belong all OperationCallExps referring to the predefined operation

oclAsType, oclIsTypeOf, and oclIsKindOf. The operation oclAsType makes a cast of

the source expression to the type specified in the argument. If this cast is successful,

the whole expression is evaluated to the same object as the source expression. If

the cast is not successful (i.e., the evaluation of the source expression is an object

whose type does not conform to the type given in the argument), then the whole

expression is evaluated to undefined. Because we treat the evaluation to undefined

in the next Section 4.4 in a general manner, we skip the rule for oclAsType here.

The rules for oclIsTypeOf and oclIsKindOf are very similar; Fig. 4.16 shows the

rule for oclIsKindOf. Please, note that operation conformsTo() is omitted here but

can be found in the official definition of the OCL metamodel [68].

OclIsKindOf-evaluation

val

{when}

oce:OperationCallExp

op:Operation
name= 'oclIsKindOf'

source

referredOperationval

te:TypeExp
argument

oe:OclExpression

referredType

{when}
oce.val->isEmpty()

bv:BooleanValue

if c1.conformsTo(c) then  bv.booleanValue = true else bv.booleanValue = false endif

oce:OperationCallExp

source

referredOperation

te:TypeExp
argument

oe:OclExpression

o:Object c:Class

Context

CurrentState

o:Object c1:Class

Data

op:Operation
name= 'oclIsKindOf'

val

o:Object c:Class

referredType

classifier bv:BooleanValue

Figure 4.16: Evaluation rule for oclIsKindOf

allInstances()-Expressions

The predefined operation allInstances() yields all existing objects of the specified

type and all its subtypes. The rule is shown in Fig. 4.17. Note that the multiobject

os represents, according to the QVT semantics, the maximal set of objects o, for

which the condition given in the when-clause of the Context holds.
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allInstances-evaluation

oce:OperationCallExp

op:Operation
name= 'allInstances'

source

referredOperation
te:TypeExp

referredType

{when}
oce.val->isEmpty()

c:Classifier

Context
CurrentState

{when}
os->forAll(o| o.classifier.conformsTo(c))

oce:OperationCallExp

op:Operation
name= 'allInstances'

source

referredOperation

te:TypeExp

referredType

c:Classifier

os:Object

stv:SetTypeValue

ev:ElementValue

os:Object

1
1

val

element

Figure 4.17: Evaluation rule for allInstances

Loop Expressions

Iterator expressions are those in OCL which have as the main operator one from

select, reject, forAll, iterate, exists, collect, any, one, collectNested, sourtedBy, or

isUnique. Since all these expressions can be expressed by macros based on iterate,

it is sufficient to refer for their semantics just to the semantics of iterate.

In the Fig. 4.18 are shown evaluation rules that describe the semantics of iterate.

The rule Iterate-Initialisation makes a copy of evaluation of the source expres-

sion, and assigns it under the role current to ie. Furthermore, one NameValue-

Binding is created and assigned to the body expression. The name of the NameVal-

ueBinding is the same as the name of result variable, and its value is the same as

the value of the initExpression for the result variable. For some technical reasons,

the attribute freshBinding of ie is set to false.

The rule Iterate-IteratorBinding updates the binding on body expression oe for

the iterator variable v with a new value vp. The element with the same value vp is

chosen from the collection current and is removed afterwards from this collection.

The attribute freshBinding is set to true and the binding for oe has changed.

The rule Iterate-IntermediateEvaluation updates the binding for the variable

with the same name as the result variable of ie based on the new evaluation of oe.

Furthermore, the value of attribute freshBinding is flipped and the evaluation of

body expression oe is removed.
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Iterate-evaluation

Iterate-initialisation

Iterate-iteratorBinding

source

val
oes:OclExpression

element

sourceval
current

Iterate-intermediateEvaluation

ie:IterateExp

freshBinding=true

val

oe:OclExpression
body

oe:OclExpression
body

{when}
s.element->isEmpty() and ie.val->isEmpty()

{when}

s:CollectionTypeValue

element

element
1
1

1 1

1

ec:ElementValue

ec:ElementValue

es:ElementValue

s:CollectionTypeValue

oes:OclExpression

c:CollectionTypeValue

vi:Instance

vc:Instance

vi:Instance

current

c:CollectionTypeValue

result

1

oe:OclExpression

body

current

oe:OclExpression

bodybindingb:NameValueBinding

varName=r

{when}

current

s:CollectionTypeValue

es:ElementValue

s:CollectionTypeValue

iterator

bm=bm1->excluding(nvb|nvb.name=r) and oe.val->isEmpty()

vd:Variable

varName=r

bm:NameValueBindingbm1:NameValueBinding

bindingbinding

ie:IterateExp

freshBinding=false

oe:OclExpression body

oe:OclExpression
body

vp:Instance

ie:IterateExp

freshBinding=false

ie:IterateExp

freshBinding=false

ie:IterateExp

freshBinding=true

ie:IterateExp

ie:IterateExp

val

val

val

valval

s.clone(c) and es.clone (ec) and vc.clone (vi) 

vp:Instance

{when}
oe.val->isEmpty()

inite:OclExpression

vd:Variable

varName=r

res:Variable

varName=r

val
vt:Instance

initExpression

binding

b:NameValueBinding

varName=r

val

ins:Instance ins:Instance

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val

binding
b:NameValueBinding

varName=r

oe:OclExpression
body

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val
ins:Instance

result

res:Variable

varName=r

s:CollectionTypeValue
current

ie:IterateExp

oe:OclExpression
body

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val
ins:Instance

val

result

inite:OclExpression

res:Variable

varName=r val

vt:Instance

initExpression

iterator

element

Figure 4.18: Iterate - evaluation rules
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The final rule Iterate-evaluation covers the case when the collection current of

ie is empty. In this case the value of ie is set to that value which is bound to the

NameValueBinding with the same name as the result variable.

Variable Expressions

Figure 4.19 shows the evaluation rule for VariableExp. When this rule is applied, a

new link is created between VariableExp and the value to which NameValueBinding,

with the same name as VariableDeclaration, is connected.

VariableExp-eval

ve:VariableExp

{when}
ve.val->isEmpty()

vd:Variable
varName=n

i:Instance

nvb:NameValueBinding
varName=n

val

binding

referredVariable

ve:VariableExp

i:Instance

nvb:NameValueBinding
varName=n

val

binding

referredVariable
val vd:Variable

varName=n

Figure 4.19: Variable Expression evaluation

Literal Expressions

In Fig. 4.20, the evaluation of IntegerLiteralExp is shown. By applying this rule,

a new IntegerValue is created whose attribute integerValue has the same value as

the attribute integerSymbol for expression ie. Note, that this type of expressions

does not need variable bindings because their evaluation does not depend on the

evaluation of any variable.

If-Expressions

Figure 4.21 shows the evaluation rule for an if expression. The result of the evalua-

tion depends on the value to which condition expression c is already evaluated. As

it is stated in the when clause of the rule, if the value of the condition is true then

the result of the evaluation will be the value of the thenExpression, otherwise it will

be value of the elseExpression. Please note that in this example we don’t deal with

evaluation to undefined and that this aspect of OCL will be discussed later.
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IntegerLiteralExp-eval

ie:IntegerLiteralExp
integerSymbol=i

ie:IntegerLiteralExp
integerSymbol=i

valiv:IntegerValue
integerValue=i

{when}
ie.val->isEmpty()

Context
Data

iv:IntegerValue
integerValue=i

Figure 4.20: Integer Literal Expression evaluation

ifExp-evaluation

ie:IfExp

condition
c:OclExpression

{when}
ie.val->isEmpty()

thenExpression

i1:Instance

elseExpression
e:OclExpression

i2:Instance

t:OclExpression

bv:BooleanValue
val

val val

ie:IfExp

condition
c:OclExpression

thenExpression

i1:Instance

elseExpression
e:OclExpression

i2:Instance

t:OclExpression

bv:BooleanValue
val

val val

i:Instance
val

{when}
if bv.booleanValue=true then  i=i1 else  i=i2 endif

Context
Data

bv:BooleanValue

Figure 4.21: If Expression evaluation
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Let-Expressions

The evaluation of Let-Expressions is a little bit different from the other rules because

it changes NameValueBinding for its subexpressions (similarly to LoopExpression).

The evaluation rules for LetExp are shown in Fig. 4.22. The first rule performs bind-

ing of the Let-variable to the value to which initExpression evaluates (by creating

a new NameValueBinding instance), and then passes this NameValueBinding to the

in part of the expression. The second part specifies that result of evaluation of an

LetExp will be the same as evaluation of its in expression.

LetExp-binding

LetExp-evaluation

le:LetExp

i2:OclExpression

{when}
le.val->isEmpty()

val
in2:Instance

in
le:LetExp

i2:OclExpression

val

in2:Instance

in

val

le:LetExp

i2:OclExpression

in

vd:VariableDeclaration
varName=v

i1:OclExpression

val
in1:Instance

variable

initializedVariable
initExpression

bm:NameValueBinding

binding

le:LetExp

i2:OclExpression

in

vd:VariableDeclaration
varName=v

i1:OclExpression

val

in1:Instance

variable

initializedVariable
initExpression

b:NameValueBinding
varName=v

binding
bindingval

{when}
bm1=bm->excluding(nvb|nvb.varName=v)

bm1:NameValueBinding

binding

{when}
le.val->isEmpty() and 
i2.binding->isEmpty() and
i2.val->isEmpty()

Figure 4.22: Let Expression: binding and evaluation

Tuple Expressions

In Figure 4.23, the evaluation rule for TupleExp is shown. This rule consists of three

parts. The first part creates a temporary TupleValue object that will become the

result of evaluation once all TupleLiteralParts are traversed. The middle rule shows
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the core semantics of TupleExpression evaluation. This rule will be executed as

many times as there are TupleLiteralParts in the expression. Each time this rule is

triggered, a new AttributeLink is created and attached to the temporary TupleValue.

This newly created AttributeLink will point to one attribute from the tuple type,

and to the value that TupleLiteralPart has. The third rule is used to create the final

value of the TupleExp.

TupleExp-evaluation2

TupleExp-evaluation1

TupleExp-evaluation

tle:TupleLiteralExp

a:Attribute

part

i:OclExpression

val
i1:Instance

value

{when}
tv.slot->collect(attribute)->excludes(a)

tlp:TupleLiteralPart

attribute

tle:TupleLiteralExp

a:Attribute

part

i:OclExpression

val

i1:Instance

value

tlp:TupleLiteralPart

attribute

tv:TupleValue

al:AttributeLink
slot

instance
tv:TupleValue

value

attribute
attributeLink

tle:TupleLiteralExp

{when}
tle.val->isEmpty() and tle.type.typedFeature =
tv.slot.attribute->asSet()

tle:TupleLiteralExp tv:TupleValue

tv:TupleValue
val

tle:TupleLiteralExp

{when}
tle.val->isEmpty() and tle.temp->isEmpty() 

tle:TupleLiteralExp tv:TupleValuetemp

temp

temp temp

Figure 4.23: Tuple Expression evaluation

4.3.4 Syntactic Sugar

Many pre-defined OCL operations are defined as an abbreviation for more complex

terms. For instance, the operation exists can be simulated by the operation iterate.

More precisely, expressions of form

c o l l−>e x i s t s ( x | body ( x ) )

can be rewritten to

c o l l−>i t e r a t e ( x ; acc : Boolean=f a l s e | acc or body ( x ) )
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This rewriting step can also be expressed as a graph transformation rule what would

make the rule for evaluating the pre-defined operation exists superfluous.

Exists-to-Iterate

oe:OclExpression
sourceiterator

aoe:OclExpression

body

it:IteratorExp

name='exists'
appliedElementloopExp

oe:OclExpression

sourceiterator

oc:OperationCallExp
body

ie:IterateExp
appliedElementloopExp

bl:BooleanLiteralExp

booleanSymbol=false

result
baseExp

initExpression
initializedElement

aoe:OclExpressionve:VariableExp
o:Operation

name='or'

referredVariable

referredOperation
source argument

{when}
aoe->usedFreeVarName->excludes(s)

vds:Variable

r:Variable
varName=s

vds:Variable

Figure 4.24: Transforming Exists expression to an iterate expression

Figure 4.24 shows a QVT rule that transforms one exists expression into corre-

sponding IterateExp. RHS of the rule states that a new IterateExp is created, new

VariableDeclaration, new BooleanLiteralExp with booleanSymbol false. The source

of the expression and the iterator remain the same as for the exists operation. The

body expression is modified and after the transformation it represents the disjunc-

tion of the previous body and the newly created variable expression that refers to

the new VariableDeclaration. In the when-clause, we state an additional constraint

that the varName s used in the newly created VariableDeclaration is not yet used

as a name by any of the free variables in the body. Note that this constraint was

not specified for the textual representation of the transformation and that would

mean that body expression does not contain any free variable with the name acc.

4.4 Semantic Concepts in OCL

In the previous section, the most important evaluation rules for each of the possible

kinds of OCL expressions were given. The rules basically describe the necessary

evaluation steps in a given state, but they do not reflect yet the complete seman-

tics of OCL. For example, nothing has been said yet on how an operation contract
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consisting of pre-/postconditions is evaluated, how to handle the @pre construct in

postconditions, under which circumstances an expression is undefined, etc. These

are examples for additional semantic concepts, that are realized in OCL but which

are most likely not realized in every other constraint language. Besides the syntactic

dimension already explained in Sect. 4.3.3 for the categorization of rules, the addi-

tional semantic concepts form a second dimension for the rule categorization. We

have identified the following list of semantic concepts, which must be taken into ac-

count when formulating the final version of evaluation rules (note that in Sect. 4.3.3

only the rudimentary version of evaluation rules has been shown).

• evaluation of operation contracts (pre-/postconditions)

• message sending

• evaluation to undefined (including strict evaluation with respect to undefined,

with some exceptions)

• dynamic binding when invoking a query

• non-deterministic constructs (any(), asSequence())3

In the next subsections, we discuss the semantical concepts that have the most

impact on the evaluation rules from Sect. 4.3.3.

4.4.1 Evaluation of Operation Contracts

The evaluation of an operation contract is defined with respect to a transition be-

tween two states.

StateTransition metaclass from our metamodel (see Fig. 4.3) is used to capture

one transition from a pre- to a post-state. This transition is characteristic of one

concrete operation execution with concrete values passed as operation parameters.

In order to be able to evaluate one pre- or one post-condition we need all information

about the state transition for which we want to perform the evaluation: operation

that caused the transition, values of the operation parameters, pre-state, post-state,

relationships between objects from pre- and post-state.

The evaluation of preconditions can be done analogously to the evaluation of

invariants. The current state the evaluation rules referred to in the Context is in

this case just the pre-state. In addition, the bindings for the operation arguments

3As argued in [8], non-deterministic constructs lead to semantical inconsistencies. They are not
further discussed here.
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have to be extracted from a Stimulus that belongs to the StateTransition for which

we perform the evaluation.

The evaluation of the postcondition is basically done in the post-state. The

keyword result is evaluated according to the binding for the return parameter. The

evaluation of result is fully analogous to the evaluation of variable expressions.

The evaluation of @pre is more complicated. It requires a switch between pre-

and post-state, more precisely, we have to manage the different values for properties

of each object in the pre- and post-state. Even more complicated, it might be the

case that the set of objects itself has changed between pre- and post-state.

In the semantics of OCL described in [68, Annex A], the pre- and post-states are

encoded as a set of functions (each function represents an attribute or a navigable

association end) that work on a constant domain of objects. Furthermore, there is

an extra function that keeps track which of the objects are created in the current

state. This formalization has the advantage that the involved objects do not change

their identity and thus is very easy to understand. Unfortunately, we were not able

to apply this simple model to our semantics due to technical problems caused by

the format of graph transformations. In our semantics, the objects in the pre- and

post-state have different identities, but each object can be connected with one object

from the opposite state via an instance of the ObjectMap metaclass. Please note,

that for one object there can exist many ObjectMaps depending on the number of

StateTransitions one object is involved in. A pair of related objects represents the

same object when we would view a pre-/post-state pair as an evolvement over the

same domain. If an object from the pre-state is not related with any object from

the post-state, it means that this object was deleted during the state transition.

Analogously, objects in the post-state without a counterpart in the pre-state were

created.

Fig. 4.25 shows an example. The pre-state consists of two objects with identifiers

p1, p2 whose type is a class with name Person. The attribute links for the attribute

named age refer to the value dv1 and dv2, which reside in the package Data. In the

post-state, the identifiers for objects and attribute links have completely changed.

But since object p1 and p11 are related by an ObjectMap om1, we know that p11

and p1 represent the same object. Note, however, that the state of this object has

changed since the attribute link for attribute named age doesn’t refer any longer

to the value dv2 but to dv3. Since there are no other ObjectMaps we can conclude

that during the state transition from the pre-state to the post-state, the object p2

was deleted and object p21 was created.

The @pre-Operator can now be realized as an extension to the already existing
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p11:Objectp1:Object

Figure 4.25: Relationship between pre- and poststate

core rules. Note that the official OCL syntax allows to attach @pre on every func-

tor, but @pre is only meaningful when attached to Navigation Expressions or to an

allInstances-expression. The most complicated case is the application to Associa-

tionEndCallExps.

Figure 4.26 shows the extended evaluation rule for AssociationEndCallExp with

an object-valued multiplicity (upper limit is 1). The current OCL metamodel en-

codes @pre expressions as operation call expressions of a predefined operation with

name @pre. The source expression of this operation call expression is exactly that

expression, to which the @pre operator is attached. The rule reads as follows: First,

we wait for the situation in which the source expression of the association end call

expression is evaluated (here, to o1). Note that the Context requires that o1 is

an object from the post-state (what should be always the case). Then, the corre-

sponding object of o1 in the pre-state is searched (o1pre) for which the original

rule for evaluation of the association end call is applied (in the pre-state). The

object representing the result of the association end call (o2pre) is then projected

to the post-state (o2), what is then given back as the result of the evaluation. Note

that we didn’t specify so far the cases, in which o1 does not have a counterpart on

the pre-state (i.e. the source expression oc evaluates to a newly created object) or

that the result of the association end call in the pre-state (o2pre) does not have
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AtPreAssociationEndCallExp-evaluation (st1:StateTransition)

Context

PreState

source

aece:AssociationEndCallExp

oc:OclExpression
source

val
o1:Object

oc:OclExpression

{when}
oce.val->isEmpty() and not (ae.isSetValued())

val

o1:Object

oce:OperationCallExp oce:OperationCallExp

o1pre:Object

op:Operation
name='@pre'

referredOperation

ae:AssociationEnd

referredAssociationEnd

le1:LinkEnd

le2:LinkEnd

l:Link

ae:AssociationEnd

o2pre:Object

o2:Object

val

ae:AssociationEnd

referredAssociationEnd

instance

linkEnd

linkEnd

instance

associationEnd

linkEnd
connection

 link

 link
connection

source source

PostState

o1:Object

o2:Object

Transitions

st1:StateTransition

om2:ObjectMap

om1:ObjectMap

postpre

pre post

map

map

 referredOperation
op:Operation
name='@pre'

aece:AssociationEndCallExp

Figure 4.26: Evaluation of @pre attached to an object-valued association end call
expression
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a counterpart in the post-state (i.e. the object o2pre was deleted during the state

transition). This question is answered in the next subsection. Another remark is

that evaluation of AssociationEndCallExp as specified in Fig. 4.11 is not prevented,

but result of the evaluation is ignored when performing evaluation as specified in

Fig. 4.26.

4.4.2 Message Sending

Similarly to the evaluation of an operation contract, sending of a message is defined

with respect to a transition between two states.

Besides the transitions from pre- to post- states, StateTransition metaclass from

our metamodel (see Fig. 4.3) is used to capture all messages sent during an oper-

ation invocation (described with one pre-/post-condition). All sent messages are

represented using metaclass Stimulus that relates an operation (invoked with the

message), sender of the message, and all the message parameters.

An OCL message sending expression, depicted in its concrete syntax, looks like

dest ˆmsg( a , b)

where msg is an operation related to a Stimulus, and a and b are instances repre-

senting arguments of a Stimulus.

The evaluation of MessageCallExp is performed in relation with one StateTran-

sition as shown in Fig. 4.27.

The result of the evaluation will be true or false depending if specific State-

Transition has a message sent, that has the same sender as the target from the

MessageCallExp, referring the same operation, and having the same arguments as

arguments for the MessageCallExp.

4.4.3 Evaluation to Undefined

The evaluation of OCL expressions to undefined is probably one of the most com-

plicated semantic concepts in OCL and has raised many discussions. The value

undefined has been often mixed in the literature with the null-value (known from

Java). Furthermore, questions like Can an AttributeLink refer to undefined in a

state? Can a Set-expression be evaluated to undefined? Can a Set-value have el-

ements that are undefined? are not fully clarified by the official OCL semantics

(cmp. also [23]).

First of all, we should note that the value undefined was added to the semantic

domain for the sole purpose to indicate exceptional situations during the evaluation.
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MessageExp-evaluation

Context

operation
op:Operation

{when}
me.val->isEmpty()

val
ins:Instance

oe:OclExpression

coa:CallOperationAction
calledOperation

target

Transitions

st1:StateTransition

valto:Object

me:MessageExp

oe:OclExpression

argument

operation
op:Operation

val
ins:Instance

oe:OclExpression

coa:CallOperationAction
calledOperation

target
valto:Object

me:MessageExp

oe:OclExpression

argument

bv:BooleanValue
val

{when}
if st1.message->exists(s|s.operation=op and s.argument=ins and s.source=to) 
then bv.booleanValue=true 
else bv.booleanValue=false

Data

1
1

1

1

bv:BooleanValue

Figure 4.27: Message Expression evaluation

For instance, when an object-valued AssociationEndCallExp tries to navigate over

non-existing links or that a cast of an expression to a subclass fails. Thanks to

the pre-defined operation oclIsUndefined() is it possible to test if an expression is

currently evaluated to undefined ; what – together with the exception from strict

evaluation for and, or, implies, forAll etc – is a powerful tool to write OCL con-

straints reflecting the intended semantics even in the presence of undefined values.

But when is actually an expression evaluated to undefined? Strictly speaking,

we had to add for each core evaluation rule a variant of this rule, that captures all

situations in which undefinedness would occur. Fortunately, we have designed our

evaluation rule in such a way, that this additional rule can be generated. Evaluation

to undefined is always needed in all cases, in which the pattern given in the Context

does not match with the current situation.

Let’s have a look to the rule for @pre on association end call expressions (Fig. 4.26).

If for instance the object o1 (evaluation of the source expression) was newly created

during the state transition so that the pre-post link to an object o1pre is missing,

then the whole @pre-Expression evaluates to undefined. Likewise, if the correspond-

ing object o1pre exists but does not have a link for association end ae. Another

reason could be that the link exists but the referred object o2pre was deleted dur-
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ing the state change. In all these cases, the @pre-Expression should be evaluated

to undefined and these cases have in common that the pattern given in the Context

does not match.

4.4.4 Dynamic Binding

Dynamic (or late) binding is one of the key concepts in object-oriented programming

languages but has been mostly ignored in the OCL literature. Dynamic binding

becomes relevant for the evaluation of user-defined queries. Let’s assume we have

two classes A and B, the class B is a subclass of A and the operation m() is declared

as query with return type Integer in A.

We have the following constraints:

context A : :m( ) : In t e g e r

body : 5

context B : :m( ) : In t e g e r

body : 7

Let a and b be expressions that evaluate to an A and a B object, respectively.

The result of the evaluation of a.m() is clearly 5. The evaluation of b.m() depends

on whether or not OCL supports dynamic binding.

The core rule for query evaluation shown in Fig. 4.15 does not realize dynamic

binding so far because it doesn’t take into account potential inheritance hierarchy

in the model. Result of the second rule shown in the figure is value of any body

expression (oceb2) regardless its context.

For the situation when different bodies can be attached to the same operation

(as in our example with classes A and B) we have to define a strategy for choosing

the right body. The most suitable strategy would be to search the inheritance tree

and take the body expression defined for the classifier that is the least parent of the

source classifier (in the case of b.m() that would be the second body constraint 7).

In order to transform the static-binding evaluation rules for queries shown in

Fig. 4.15 to a dynamic-binding rule, we had to alter the when-clauses in the LHS of

the second rule with the following constraint:

i f bm. booleanValue<>t rue then i . oc l IsTypeOf ( OclVoidValue )

else i=op . getRightBody ( opce . source . va l . oclAsType ( Object )

. c l a s s i f i e r −>any ( t rue ) )

endif and

c . s t e r eo type . name=’ pre ’
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The getRightBody query (when multiple inheritance is not allowed) is defined as:

context Operation def : getRightBody ( c l : C l a s s i f i e r ) : In s tance

=

i f s e l f . body . oclAsType ( Express ionInOcl ) . c o n t e x t u a l C l a s s i f i e r

−>e x i s t s ( c l ) then

op . body−>s e l e c t (b | b . oclAsType ( Express ionInOcl )

. c o n t e x t u a l C l a s s i f i e r−>i n c l u d e s ( c l ) )

−>any ( t rue ) . bodyExpression . va l

else i f c l . ge tDi rec tParent ()−>notEmpty ( ) then

s e l f . getRightBody ( c l . ge tDi rec tParent ()−>any ( t rue ) )

else getOclVoidValue ( )

endif

endif

4.5 Tailoring OCL for DSLs

This section contains an example how our approach for defining the semantics of

OCL can be applied for the definition of an OCL-based constraint language that is

tailored to a domain specific language (DSL).

As a running example we will use a simple Relational Database Language for

which we will define an extension of OCL. Two tables Person and Dog (see Fig. 4.28)

will be used as an example, for which we develop domain-specific constraints. Each

table has one primary key (personID for the Person table and dogID for the Dog

table). In addition, column ownerID of table Dog has a foreign key relationship with

the personID column of the Person table.

 
 
 
 
 
 Dog 

dogID 
(PK) 

breed ownerID 
(FK for personID) 

1 Doberman 1 
2 Bulldog 1 
3 Poodle 2 

Person 
personID 

(PK) 
name age 

1 John 23 
2 Mark 17 
3 Steve 45 

Figure 4.28: An example of relational database

A simple metamodel for relational databases is shown in Fig. 4.29. This language

is sufficient to specify the database from Fig. 4.28. Please note that, for the sake of

simplicity, we have avoided to introduce database-specific types, but reuse already

existing UML/MOF primitive types as types for table columns.
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Instance

Row

Cell

PrimitiveValue

isEqualTo(PrimitiveValue):Boolean

Table

DatabaseClassifier

DataTypeForeignKeyPrimaryKey

DBConstraint

name:String

Column
name:String

ModelElement
name:String

1 1

1
1

1

1

11
1

1

0..1
0..*

0..*

0..*
0..*

0..* 0..*

0..*

0..*
+foreignKey

+refColumn

+type

+value

1

+table
+table

+column +cell

+row

+row

+constraintDB

+column

+constraintDB +column

+table

+database+database
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Figure 4.29: Relational database metamodel

When tailoring OCL as a constraint/query language for a domain specific lan-

guage, it is necessary to introduce additional concepts to OCL in order to capture

domain specific constructs. In our example, two constructs require an extension of

the OCL metamodel: 1) navigation to a column 2) navigation to a column con-

strained with a foreign key. The first navigation is applied on a Row and has to

return the value of the Column for this Row and the second one has to return a

Row of the Table to which the ForeignKey refers.

An example for these two new navigation expressions is the following:

Dog . a l l I n s t a n c e s ()−> s e l e c t (d | d . breed=’Doberman ’ )

−>f o r A l l (dd | dd<=>ownerID . age >18)

This example expression uses three specificities of our relational database DSL:

Ordinary navigation to columns breed and age, foreign key navigation to column

ownerID (foreign key navigation is marked with <=> in order to make it distin-

guishable from ordinary column navigation), and a call of allInstances() on a table.

Another way of expressing the same could be by using only ordinary column

navigation and allInstances(), but this version is slightly longer:

Dog . a l l I n s t a n c e s ()−> s e l e c t (d | d . breed=’Doberman ’ )

−>f o r A l l (dd | Person . a l l I n s t a n c e s ( )
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−>any (p | p . personID=dd . ownerID ) . age >18)

In order to incorporate ordinary and foreign key column navigation into the

constraint language, the metamodel for OCL has to be altered. Figure 4.30 shows

the part of the Domain Specific Query language that is different from the standard

OCL.

OclExpression

ColumnCallExp

0..1+appliedElement

0..*
1+referredColumn

1

0..*

0..1 +source

+referredColumn

0..* Operation1
+referredOperation

+arguments
{ordered} 0..*

+parentOperation
0..1

Column

ForeignKeyCallExp

OperationCallExp

CallExp

Figure 4.30: DSL navigation expressions

Fig. 4.31 shows the definition of the semantics of column call expressions in form

of an evaluation rule. The result of evaluation of such an expression would be value

of the Cell that belongs to the Row that is the source of the expression, and that is

referred by the chosen Column.

The semantics of ForeignKeyCallExp is shown in Fig. 4.32. This rule specifies

that the value of the ForeignKeyCallExp will be a Row r2 for which its primary

key column has a Cell with the same value as the Cell of the source Row r for the

foreign key column.

A mandatory construct that is needed when specifying the semantics of domain

specific query languages and that cannot be reused from standard OCL is the op-

eration call expression for the predefined operation allInstances(). This construct

operates on model elements that do not exist in UML/MOF and therefore has to

be explicitly defined as in Fig. 4.33.

Another way of defining the semantics of OCL expressions on the instance level

is by moving (transforming) an OCL expression to an equivalent expression that
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Context

ColumnCallExp-evaluation

CurrentState Data

cce:ColumnCallExp

c:Column
source referredColumn

cce:ColumnCallExp

oc:OclExpression c:Column
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r:Row val
r:Row
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Figure 4.31: Semantics of column navigation specified with QVT
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ForeignKeyCallExp-evaluation
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oc:OclExpression c:Column
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Figure 4.32: Semantics of foreign key navigation specified with QVT
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allInstancesDB-evaluation

Context
CurrentState

oce:OperationCallExp

source

referredOperation

te:TypeExp

referredType

{when}
oce.val->isEmpty()

t:Table

oce:OperationCallExp

source

referredOperation

te:TypeExp

referredType
t:Table

rs:Row

stv:SetTypeValue

ev:ElementValue

rs:Row

1
1

val

element

t:Table
 table

row 

val
op:Operation

name= 'allInstances'

op:Operation
name= 'allInstances'

Figure 4.33: Semantics of allInstances Operation Call Expression for relational
database

queries the corresponding metamodel. As an example, consider the following Colum-

nCallExpression specified using our concrete syntax:

exp . age

Please note that the source expression exp can be any expression of type Ta-

ble. This short expression in the DSL-specific version of OCL can be emulated by

the following expression, which exploits the metalevel. However, this expression is

clearly much more complicated.

Column . a l l I n s t a n c e s ()−> s e l e c t ( c o l | c o l . name=’ age ’ and

c o l . t a b l e=exp . t a b l e ) . c e l l

−>s e l e c t ( cc | cc . row=exp )

−>any ( t rue )

4.6 Related Work

The work described in this chapter combines techniques and results from different

fields in computer science: logics, precise modeling with UML/OCL, model trans-

formation, modeling language design. For this reason, we separated related work

into three categories.
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4.6.1 Approaches to Define the Semantics of OCL

There are numerous papers and some dissertations that propose a formal semantics

for complete OCL or for a fragment of it, e.g., [72, 73, 71, 29, 33, 41, 48, 7, 30]

and, recently, [22]. Many other papers have identified inconsistencies in the official

OCL semantics and contributed in this form to a better understanding of OCL’s

concepts, e.g., [34, 40, 8, 3, 23].

In the subsections 4.6.1 and 4.6.1 we compare the technique, which we have been

used for the semantics definition, with that of other approaches. We restrict our-

selves to a comparison with the two semantics given in the OCL language standard.

Official OCL Semantics: Informative

Annex A of [68] presents a set-theoretical semantics for OCL, which goes back of

the dissertation of Mark Richters [71]. This semantics has been marked in the OCL

standard as informative.

The semantic domain of OCL is formalized by the notion of system state (a

triple consisting of the set of objects, the set of attribute values for the objects, and

the set association links connecting objects) and the interpretation of basic types.

The notion of system state is defined on top of the notion of object model. What

was formalized by Richters as system state is known in UML terminology as object

diagram, an object model corresponds to a class diagram.

In our approach, the class and object diagrams are directly formalized by their

metamodels and the interpretation of basic types is covered by the package Values of

the OCL metamodel. All three metamodels, on which our approach relies, are part

of the official language definition for UML/OCL. However, there is one important

difference to Richters semantics: In Richter’s approach, one object can be in multiple

states, whereas in our approach, states are represented by object diagrams which can

never contain objects with the same identity. We solved this problem by introducing

ObjectMap objects (cmp. Sect. 4.2.1) whenever two different states are involved

in the evaluation of OCL constraints (e.g., post-conditions). Note that a set of

ObjectMap objects referring to a pre-state and a post-state can also encode the

information which of the objects were created/deleted during the transition from

pre- to post-state. In Richter’s approach, the lifetime of an object is encoded by the

function σCLASS.

The evaluation of OCL expressions is formalized in Richter’s semantics by an

interpretation function I, which is defined separately for each type of OCL expres-

sion. The definitions for I are based on the above mentioned ingredients of the
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semantics object model, system state, interpretation of basic types. In our approach,

the interpretation function I is implicitly given by QVT rules, which are based on

the metamodels for class diagrams, object diagrams, and on the Values package.

One of the most interesting details when comparing the formalization of expres-

sion evaluation is the handling of pre-defined functions. Following Richter, pre-

defined functions like =, union, concat, etc., are interpreted by their mathematical

counterparts, e.g. I(=t)(v1, v2) = true if v1 = v2 and v1 6= ⊥ and v2 6= ⊥. Oth-

erwise stated, the semantics of some operations of the object language (OCL) is

reduced to the semantics of some operations of the meta language (mathematics).

The same holds in our case, the semantics of operation ’=’ of the object language

(OCL) is reduced to the semantics of the operation ’=’ in the metalanguage (QVT)

(see Sect.4.3.3).

In both cases, it has to be assumed that the semantics of the metalanguage has

been already defined externally (cmp. also [47]). In case of Richter’s semantics,

one could refer to textbooks introducing mathematics. In case of our semantics, we

can refer to the implementation of QVT engines, which actually map QVT rules to

statements in a programming language, e.g. Java.

Official OCL Semantics: Normative

The semantics described in [68], Sect. 10 Semantics Described Using UML is called

normative OCL semantics and shares the same main goal as our approach: to

have a semantics description of OCL, which is seamlessly integrated into the other

artifacts (metamodels) of OCL’s language definition. However, there are important

differences.

The normative semantics defines a package Values to encode pre-defined data

types and system states. We tried to align our approach as much as possible with

this Values package (e.g. NameValueBinding), but some details differ. Most no-

table, as already mentioned in the comparison with Richters’ semantics, our states

never contain identical objects. The normative OCL semantics insists on keeping

object identities across states, but this yields to a quite complicated encoding of at-

tribute value and links, which have to be kept separated from objects (see metaclass

LocalSnapshot). Moreover, the normative semantics encodes exactly one system

trace (metaassociation pred--succ on LocalSnapshot), while in our approach state

transitions are modeled explicitly by a new metaclass StateTransition.

The evaluation of OCL expressions is formalized in the normative semantics by

so-called evaluation classes. For each metaclass from the metamodel of OCL’s ab-
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stract syntax, there is exactly one corresponding evaluation class, e.g.

AttributeCallExpEval. Evaluation classes are complemented by a number of in-

variants, whose purpose is to specify the evaluation process. In many cases, the

invariants can be mapped to exactly one QVT rule in our approach. For exam-

ple, there is for each evaluation class one invariant specifying the propagation of the

current binding of variables (called Environment in the normative semantics) to sub-

expressions, what corresponds to our variable binding propagation rules described

in Sect. 4.2.3.

The normative semantics has been also the starting point for a semantics for-

malization given by Chiarad́ıa and Pons in [31]. They alter the OCL semantics’

metamodel by introducing visitor pattern in order to reduce the duplication of infor-

mation in AbstractSyntax and Evaluations packages of OCL metamodel. Contrary

to our approach, they use UML sequence diagrams to express the semantics of OCL

expressions.

4.6.2 Approaches to Define Language Semantics by Model Transforma-
tions

The application of model transformations (or, more general, graph transformations)

for the purpose of defining language semantics is not a new idea. However, we

are only aware of one paper, which applies this technique for the definition of the

semantics of OCL. Bottoni et al. propose in [21] a graphical notation of OCL con-

straints and, on top of this notation, some simplification rules for OCL constraints.

These simplification rules specify implicitly the evaluation process of OCL expres-

sions. However, the semantics of OCL is not developed as systematically as in our

approach, only the simplification rules for select are shown. Since [21] was published

at a time when OCL did not have an official metamodel, the simplification rules had

to be based on another language definition of OCL.

For behaviorial languages, Engels et al. define in [38] a dynamic semantics in

form of graph transformation rules, which are similar to our QVT rules. As an

example, the semantics of UML statechart diagrams is presented.

In [90] Varró points out the abstraction gap between the ”graphical” world of

UML and mathematical models used to describe dynamic semantics. In order to

fill this gap he uses graph transformation systems to describe visual operational

semantics. Application of the approach is demonstrated by specifying semantics of

UML statecharts.

Stärk et al. define in [80] a formal operational semantics for Java by rules of an
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Abstract State Machine (ASM). The semantic domain of Java programs is fixed by

defining the static structure of an appropriate ASM. The ASM encodes furthermore

the Abstract Syntax Tree (AST) of Java programs. As shown by our motivating

example in Sect. 4.2, there are no principal differences between an AST and an

instance of the metamodel. Also, ASM and QVT rules are based on the same

mechanisms (pattern matching and rewriting).

4.6.3 Other Related Work

An interesting classification of OCL language concepts was developed by Chiorean

et al. in [32]. In this paper, OCL language constructs are classified according to their

usage in different domains, such as Transformations, Assertions, and Commands.

In our approach, we have concentrated on what is called core OCL in [32], but it

would be definitely worthwhile to investigate the other domains as well.

Kolovos et al. define in [54] a navigation language for relational databases that

is similar to our language defined in Sect. 4.5. They use the metalanguage EOL

(which is based on OCL) to define the result of evaluation of new expressions like

column navigation.

4.7 Conclusions

We have developed a metamodel-based, graphical definition of the semantics of OCL.

Our semantics consists of a metamodel of the semantic domain (we have slightly

adapted the existing metamodels from UML1.x), and a set of transformation rules

written in an extension of QVT that specify formally the evaluation of an OCL

constraint in a snapshot. To read our semantics, one does not need advanced skills

in mathematics or even knowledge in formal logic; it is sufficient to have a basic

understanding of metamodeling and QVT. The most important advantage, however,

is the flexibility our approach offers to easily create an OCL dialect. Since the

evaluation rules can directly be executed by any QVT compliant tool, it is now very

easy to provide tool support for the new dialect of OCL.

In the Chapter 3 we have formalized a catalog of refactoring rules using the QVT

formalism. Each of the rules is syntax preserving because after any application refac-

tored model remains syntactically well-formed. This, so called, syntax preservation

is just one of the properties of refactoring rules. Another property of refactoring

rules is so called semantics preservation. We call a rule semantics preserving if in

any given snapshot the evaluation of the original OCL constraint and the refactored
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OCL constraint yields to the same result (in fact, this view is a simplified one since

the snapshots are sometimes refactored as well). To argue on semantical correctness

of refactoring rules, it has been very handy to have the OCL semantics specified

in the same formalism as refactoring rules, in QVT. In the next chapter we define

formal criterion for semantics preservation and, by using OCL semantics specified

in this chapter, show that our refactoring rules specified in Chapter 3 are semantics

preserving.
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Chapter 5
Semantics Preservation of Refactoring
Rules

In this chapter, we present a simple criterion and a proof technique for the semantic

preservation of refactoring rules that are defined for UML class and object diagrams,

and OCL constraints. Our approach is based on a novel formalization of the OCL

semantics in form of graph transformation rules, given in the Chapter 4.

The content of this chapter was partially published in Perspectives of Systems

Informatics, 6th International Andrei Ershov Memorial Conference, PSI 2006 [9].

5.1 Introduction

There are two important criteria for the correctness of refactoring rules. Firstly, a

rule should be syntactic preserving, i.e., whenever the rule is applicable on a source

model then the target model obtained by the application of the rule is syntactically

correct, i.e., the target model is an instance of the UML/OCL metamodel and obeys

all of the metamodel’s multiplicity constraints and well-formedness rules. Secondly,

a rule should be semantic preserving, i.e., the semantics of source and target model

should coincide. The proof of both syntactic and semantic preservation can be

challenging (see [60]). This chapter concentrates on proving semantic preservation,

while the syntactic preservation was discussed in Chapter 3.

A proof for semantic preservation must rely on a formal semantics of source

and target models and a criterion for their semantic equivalence. For UML/OCL

models, a formal semantics based on set theory is given in [68, Annex A] but this

semantics is clumsy when arguing on the semantic preservation of a graphically

defined refactoring rule. For this reason, we have proposed in Chapter 4 a novel

93
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formalization of OCL’s semantics in form of graph transformation rules. In this

chapter, we give a simple criterion for the semantic equivalence of two UML/OCL

models and show how this criterion is met by the refactoring rules specified in

Chapter 3.

The rest of the chapter is structured as follows. Section 5.2 defines a criterion for

semantic preservation. Section 5.3 extends refactoring rule MoveAttribute (specified

in Chapter 3) to support refactoring of UML object diagrams. The section closes

with two, more complicated versions of MoveAttribute whose formalization requires

the usage of semantic preconditions. Section 5.4 contains proofs of semantic preser-

vation for refactoring rules presented in Chapter 3. Moreover, this section specifies

necessary extensions of refactoring rules from Chapter 3 to cover UML object dia-

grams. Section 5.5 contains related work. Section 5.6 concludes the chapter.

5.2 A Correctness Criterion for Semantic Preservation

Semantic preservation, intuitively, means that source and target model express ’the

same’. Established criterion for the refactoring of implementation code, where ’the

same’ usually means that the observable behavior of original and refactored program

coincide, cannot be used for UML/OCL models, simply because the UML class and

object diagrams, together with OCL constraints, model the static structure of the

system.

We propose to call a UML/OCL refactoring rule semantic preserving if the

conformance relationship between the refactored UML/OCL model and its instan-

tiations is preserved. An instantiation can be represented as an object diagram

whose objects, links and attribute slots obey all type declarations made in the class

diagram part of the UML/OCL model. An object diagram conforms to a UM-

L/OCL model if all OCL invariants evaluate to true and all multiplicity constraints

for associations of the class diagram are satisfied. A first – yet coarse and not fully

correct (see below) – characterization of conformance preservation is that whenever

an object diagram does/does not conform to the source model, it also does/does

not conform to the target model.

This criterion, however, is still too coarse since it ignores the structural changes

of instances of source and target model, e.g., applying MoveAttribute changes the

owning class of the moved attribute (see Fig. 5.1(b) for illustration). In order to solve

this problem, one has to bridge these structural differences of the model instances.

Taking the structural differences between instances of source and target model

into account, the semantic preservation can now be formulated as:
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Semantic Preservation of UML/OCL Refactorings Let cdo be a class dia-

gram, constro be any of the constraints attached to it, odo be any instantiation of

cdo, and cdr, constrr, odr be the refactored versions of cdo, constro, odo, respectively.

The refactoring is called semantic preserving if and only if

eval(constro, odo) = eval(constrr, odr)

holds, where eval(constr, od) denotes the evaluation of the OCL constraint constr

in the object diagram od.

5.3 Formalization of Semantic Preserving Refactoring Rules

Research on refactoring has focused so far on implementation code but, as it is

shown in Chapter 3, many refactoring rules for (object-oriented) implementation

languages can be adapted to UML class diagrams and OCL constraints.

Figure 5.1(a) shows the application of the refactoring rule MoveAttribute on a

concrete UML/OCL model. The attribute producer is moved over an association

with multiplicity 1 on both ends (called 1–1 association in the remainder of the

chapter) from class Product to ProductDescription. The attached OCL constraint

has to be changed as well since the referred attribute producer is not owned any

longer by class Product.

context Product inv:
   self.pd.producer='Comp'

Product
id : Integer
price : Real
producer : String

Product
id : Integer
price : Real

ProductDescription
info : String

pd
11

ProductDescription
info: String
producer : String

pd
11

context Product inv:
   self.producer='Comp'

(a) Refactoring of UML/OCL model

p1 : Product

pd1 : ProductDescription
producer = 'Comp'

pd

p1 : Product
producer = 'Comp'

pd1 : ProductDescription

pd

(b) Refactoring of object
diagram

Figure 5.1: Application of MoveAttribute on an example

Refactoring of UML class diagrams and propagation of the refactoring to its

OCL constraints (as shown in Fig. 5.1(a)) could potentially make corresponding

UML object diagrams invalid. A solution for this problem is the propagation of

UML class diagram refactorings to all corresponding object diagrams that represent
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possible instantiations. On Fig. 5.1(b) is shown the necessary change of UML object

diagram, once the corresponding UML class diagram is refactored. If producer is

moved from class Product to ProductDescription, then all AttributeLinks and

their values that correspond to producer have to be moved from instances of class

Product to corresponding instances of class ProductDescription.

5.3.1 Formalization of the simple form of MoveAttribute

In Chapter 3, we have already formalized a number of frequently used refactor-

ing rules for UML class diagrams and analyzed their influence on OCL constraints

attached to the refactored class diagram. One of the formalized rules is MoveAt-

tribute. This refactoring is split into two graph transformation rules, where the

second one (see Fig. 3.14), which describes changes on OCL, extends the first rule,

which formalizes the changes on the UML class diagram (see Fig. 3.13).

 MoveAttributeObj extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink

dv:DataValue

slot

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifier

associationEnd

associationEnd classifier

linkEnd
connection

instance

a:Attribute

al:AttributeLink

dv:DataValue

slot

attribute

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifierassociationEnd

associationEnd classifier

connection

instance

value
valueattribute

instance

connection

linkEnd

instance
linkEnd

connection

linkEnd

Figure 5.2: Influence of MoveAttribute on object diagrams

As an addition to the transformation rules for UML class diagram and attached

OCL constraints, Fig. 5.2 shows transformation rule that specifies refactoring part

for UML object diagrams. This rule is an extension of the class diagram refactoring

part and specifies that when an attribute is moved from a source to a destination

class, all attribute links that correspond to the moved attribute change their owner

from source object to the destination one. The source and destination objects

represent instance of the source and destination class, respectively.
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5.3.2 Formalization of general forms of MoveAttribute

The formalization of MoveAttribute covers so far a rather simple case: The at-

tribute a is moved from the source to the destination class and in all attached OCL

constraints, the attribute call expressions of form oe.a are rewritten to oe.ae2.a.

Semantic preservation of the rule is rather intuitive because for each object srcO

of source class src there exists a unique, corresponding object destO of destina-

tion class dest and the slot al for attribute a on srcO is moved to destO (see rule

MoveAttributeObj in Fig. 5.2). Before we present in Subsection 5.4.1 a technique

to prove semantic preservation, we want to formalize now some versions of rule

MoveAttribute for other cases than moving over an 1–1 association. As we will see

shortly, the semantic preservation of the more general forms of MoveAttribute can

only be ensured if the conditions for applying the rule (formalized by the when-

clause) also refer to object diagrams. Please note that refactoring rules as specified

in Chapter 3 do not take into account any possible instantiation of refactored class

diagrams.

We discuss in the remainder of this subsection the case that the association keeps

multiplicity 1 at the end of the destination class but has an arbitrary multiplicity

at the opposite end of the source class, and the opposite case with multiplicity 1

at the source end and arbitrary multiplicity at the destination end. The last case,

arbitrary multiplicity at both ends, is not discussed here explicitly since this case is

covered by combining the mechanisms used in the two other cases.

Multiplicities *–1

context Product inv:
   self.pd.producer='Comp'

Product
id : Integer
price : Real
producer : String

Product
id : Integer
price : Real

ProductDescription
info : String

pd
1*

ProductDescription
info: String
producer : String

pd
*

context Product inv:
   self.producer='Comp'
   

1

(a) Refactoring of UML/OCL model

pd1 : ProductDescription
producer = 'Comp'

p1 : Product
producer = 'Comp'

pd1 : ProductDescription
pd

p1 : Product

pd

p2 : Product
producer = 'Comp'

pd

p2 : Product

pd

(b) Refactoring of object diagram

Figure 5.3: Example refactoring if connecting association has multiplicities *–1

The UML and OCL part of the refactoring rule are basically the same as for
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moving the attribute over an 1–1 association. The only change is a new semantic

precondition in order to ensure semantic preservation: All source objects (i.e., ob-

jects of the source class), which are connected to the same destination object (in

Fig. 5.3, the source objects p1, p2 are connected to the same object pd1), must

share the same value for the moved attribute. For this reason, the when-clause of

the UML part has changed compared to the previous version shown in Fig. 3.13 to

the version shown in Fig. 5.4.

MoveAttributeUML(a:Attribute, ae2:AssociationEnd)

a:Attribute
feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd
connection

{when}

connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

a:Attribute feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd
connection connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

  
   

dest.allConflictingNames()->excludes(a.name) and
ae2.multiplicity.is(1,1) and 
dest.instance->forAll(do|do.linkEnd
 ->select(le|le.associationEnd=ae2)
  ->collect(ae|ae.oppositeLinkEnd.instance)
   ->forAll(so1,so2|a.attributeLink
    ->forAll(al1,al2|al1.instance=so1 and
                             al2.instance=so2
                      implies al1.value=al2.value)))

Figure 5.4: The new version of MoveAttribute refactoring rule for UML class dia-
grams

This semantic precondition seems, at a first glance, to be put at a wrong place.

Isn’t a refactoring of UML/OCL models by definition a refactoring of the static

structure of a system and done when developing the system? And at that time,

are system states, i.e. the instantiations of the class diagram, not unavailable? Yes,

this is a common scenario in which all refactoring rules, whose when-clause refers to

object diagrams, are not applicable due to semantical problems a refactoring step

might cause. But there are also other scenarios, e.g. where a class diagram describes

a database schema and an OCL constraint can be seen as a selection criterion for

database entries. Here, it would be possible to check whether the content of the

database satisfies all semantic preconditions when applying the refactoring. If the

refactoring rule is semantic preserving, one can deduce that a refactored database

entry satisfies a refactored selection criterion if and only if the original selection

criterion is satisfied by the original database entry.
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 MoveAttributeObjManyOneMoveSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink

dv:DataValue

slot

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifierassociationEnd

associationEnd classifier

linkEnd
connection

instance

a:Attribute

al:AttributeLink

dv:DataValue

slot

attribute

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifierassociationEnd

associationEnd classifier

connection

instance

valuevalueattribute

instance

connection

linkEnd

instance
linkEnd

connection

linkEnd

{when}
destO.slot.attribute->excludes(a)

Figure 5.5: Object diagram part 1 of refactoring rule if association has multiplicities
*–1

 MoveAttributeObjManyOneDeleteSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLinkslot

src:Class

srcO:Object

classifier attribute

srcO.linkEnd->select(le| le.associationEnd=ae1)
.link.connection.instance.slot
->select(s|s.attribute=a)->notEmply()

a:Attributesrc:Class

srcO:Object

classifier

{when}

Figure 5.6: Object diagram part 2 of refactoring rule if association has multiplicities
*–1

The object diagram part of the refactoring reflects the fact that slots cannot be

moved any longer naively, because the destination object would get in that case as

many slots as it has links to source objects (but only one slot is allowed). The first

two rules shown in Fig. 5.5 and Fig. 5.6 formalize that only one slot is moved to the

destination object and all remaining slots at the linked source objects are deleted.

The last rule shown in Fig. 5.7 covers the case when a destination object is not

linked to any source object. In this case, a slot for the moved attribute is created

at the destination object and initialized with an arbitrary value (dv) of appropriate

type.

Multiplicities 1–*

Compared with moving attribute over an 1–1 association, the refactoring has changed

in the OCL part and in the object diagram part; the UML part has remained the
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 MoveAttributeObjManyOneCreateSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attributedest:Class

destO:Object
classifier

a:Attribute

al2:AttributeLink
slot

attribute

dest:Class

destO:Object

classifier

{when}
destO.slot.attribute->excludes(a) and
destO.linkEnd.associationEnd->excludes(ae2)

dv:DataValue
value

{when}
dv.classifer.conformsTo(a.type)

Figure 5.7: Object diagram part 3 of refactoring rule if association has multiplicities
*–1

context Product inv:
   self.pd->collect(x | 
     x.producer)->any(true)
    ='Comp'

Product
id : Integer
price : Real
producer : String

Product
id : Integer
price : Real

ProductDescription
info : String

pd
*1

ProductDescription
info: String
producer : String

pd
1

context Product inv:
   self.producer='Comp'
   

*

(a) Refactoring of UML/OCL model

p : Product

pd

pd1 : ProductDescription
producer = 'Comp'

pd

pd2 : ProductDescription
producer = 'Comp'

p : Product
producer = 'Comp'

pd

pd1 : ProductDescription
pd

pd2 : ProductDescription

(b) Refactoring of object dia-
gram

Figure 5.8: Example refactoring if connecting association has multiplicities 1–*

same (except of a slight extension of the when-clause). In object diagrams, the slot

for the moved attribute at each source object is copied to all the associated destina-

tion objects (see Fig. 5.8). Semantic preservation of the rule can only be ensured if

for each source object at least one destination object exists, with which the source

object is linked (otherwise, the information on the attribute value for the source

object would be lost). Thus, the when-clause of the UML part has been rewritten

as shown in Fig. 5.9.

The object diagram part of the refactoring rule is changed as shown by the two

rules. The first rule shown in Fig. 5.10 copies the slot al for attribute a from the

source object srcO to each of the linked destination objects destO. After this has

been done, the second rule shown in Fig. 5.11 ensures deletion of slot al at the source

object srcO. Note that this rule is essentially the same as the rule for deletion of

slots in the previous subsection.

The third rule in Fig. 5.12 shows the OCL part of the refactoring rule. If the
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MoveAttributeUML(a:Attribute, ae2:AssociationEnd)

a:Attribute
feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd
connection

{when}
dest.allConflictingNames()->excludes(a.name) and
ae1.multiplicity.is(1,1) and 
src.instance->forAll(so|so.linkEnd
  ->select(le|le.associationEnd=ae1)->notEmpty())

connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

a:Attribute feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd
connection connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

Figure 5.9: MoveAttribute refactoring rule for UML class diagrams when multiplic-
ities are 1-*

upper limit of the multiplicity at the destination class is greater than 1, the rewriting

of oe.a to oe.ae2.a, as it was done in the previous versions of MoveAttributeOCL,

would cause a type error since the type of subterm oe.ae2 would be a collection type.

However, since oe.ae2 is part of the attribute call expression oe.ae2.a, an object type

would be expected.

In order to resolve this problem, the expression oe.ae2 is wrapped by a collect()-

expression, which is, in turn, wrapped by an any()-expression. Please note that,

despite of the non-deterministic nature of any() in general, the rewritten OCL

term oe.ae2−>collect(x|x.a)−>any() is always evaluated deterministically, because

the subexpression oe.ae2−>collect(x|x.a) always evaluates in the refactored object

diagram to a singleton set.

5.4 Proving Semantics Preservation of Refactoring Rules

5.4.1 MoveAttribute is Semantic Preserving

For a proof of the semantic preservation of a UML/OCL refactoring rule it is nec-

essary to have a formal definition on how OCL constraints are evaluated. The

evaluation function eval is defined with mathematical rigor in the OCL language

specification [68]. The mathematical definition is, however, clumsy to apply in our

scenario since it does not match the graph-based definitions we used so far for the

formalization of our refactoring rules.
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as:Association
associationassociation

as:Association

 MoveAttributeObjOneManyCopySlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink

dv:DataValue

slot

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object

classifierassociationEnd

associationEnd classifier

linkEnd
connection

instance
al2:AttributeLink

dv:DataValue

slot

attribute

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifierassociationEnd

associationEnd classifier

connection

instance

value
value attribute

instance

connection

linkEnd

instance
linkEnd

connection

linkEnd

{when}
destO.slot.attribute->excludes(a)

 MoveAttributeObjOneManyDeleteSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink
slot

src:Class

srcO:Object

classifier attribute

a:Attribute

al:AttributeLink
slot

attribute

{when}
srcO.linkEnd->select(le| le.associationEnd=ae1)
.link.connection.instance
->forAll(do| do.slot->select(s|s.attribute=a)->notEmply())

a:Attributesrc:Class

srcO:Object

classifier

 MoveAttributeOCLOneMany extends  MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

aece:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd
appliedProperty

source

oe:OclExpression

le:BooleanLiteralExp
booleanSymbol=true

ie2:IteratorExp

name = 'any'

body
ace:AttributeCallExp

a:Attribute
referredAttribute

source

appliedProperty

oe:OclExpression

ace:AttributeCallExp

a:Attribute
referredAttribute

ve:VariableExp

ie1:IteratorExp

name = 'collect'

vd:VariableDeclaration

body

appliedProperty
source

source

referredVariable

when
al2.isShallowCopyOf(al)

value

Figure 5.10: Object diagram part 1 of refactoring rule if connecting association has
multiplicities 1–*

as:Association
associationassociation

as:Association

 MoveAttributeObjOneManyCopySlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink

dv:DataValue

slot

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object

classifierassociationEnd

associationEnd classifier

linkEnd
connection

instance
al2:AttributeLink

dv:DataValue

slot

attribute

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifierassociationEnd

associationEnd classifier

connection

instance

value
value attribute

instance

connection

linkEnd

instance
linkEnd

connection

linkEnd

{when}
destO.slot.attribute->excludes(a)

 MoveAttributeObjOneManyDeleteSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink
slot

src:Class

srcO:Object

classifier attribute

a:Attribute

al:AttributeLink
slot

attribute

{when}
srcO.linkEnd->select(le| le.associationEnd=ae1)
.link.connection.instance
->forAll(do| do.slot->select(s|s.attribute=a)->notEmply())

a:Attributesrc:Class

srcO:Object

classifier

 MoveAttributeOCLOneMany extends  MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

aece:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd
appliedProperty

source

oe:OclExpression

le:BooleanLiteralExp
booleanSymbol=true

ie2:IteratorExp

name = 'any'

body
ace:AttributeCallExp

a:Attribute
referredAttribute

source

appliedProperty

oe:OclExpression

ace:AttributeCallExp

a:Attribute
referredAttribute

ve:VariableExp

ie1:IteratorExp

name = 'collect'

vd:VariableDeclaration

body

appliedProperty
source

source

referredVariable

when
al2.isShallowCopyOf(al)

value

Figure 5.11: Object diagram part 2 of refactoring rule if connecting association has
multiplicities 1–*

For this reason, in Chapter 4 we have proposed an alternative formalization of

eval in form of graph transformation rules.

Based on this formalization we can state the following theorem:

Theorem 5.4.1 (Semantic Preservation of MoveAttribute) Let cdo, constro,

odo be a concrete class diagram, a concrete OCL invariant, and a concrete object dia-

gram, respectively, and cdr, constrr, odr their version after the refactoring of moving

attribute a from class src to dest has been applied. Then,

eval(constro, odo) = eval(constrr, odr)

Proof : By construction, constro and constrr differ only at places where constro

contains an expression form oe.a. The refactored constraint constrr has at the same

place the expression oe.ae2.a. By structural induction, we show that these both
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as:Association
associationassociation

as:Association

 MoveAttributeObjOneManyCopySlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 
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 MoveAttributeObjOneManyDeleteSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink
slot

src:Class

srcO:Object

classifier attribute

a:Attribute

al:AttributeLink
slot

attribute

{when}
srcO.linkEnd->select(le| le.associationEnd=ae1)
.link.connection.instance
->forAll(do| do.slot->select(s|s.attribute=a)->notEmply())

a:Attributesrc:Class

srcO:Object

classifier

 MoveAttributeOCLOneMany extends  MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

aece:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd
appliedProperty

source

oe:OclExpression

le:BooleanLiteralExp
booleanSymbol=true

ie2:IteratorExp

name = 'any'
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ace:AttributeCallExp
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referredAttribute

source

appliedProperty
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ace:AttributeCallExp
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ie1:IteratorExp
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al2.isShallowCopyOf(al)
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Figure 5.12: OCL part of refactoring rule if connecting association has multiplicities
1–*

expressions are evaluated to the same value. By induction hypothesis, we can assume

that oe is evaluated for both expressions to the same value srcO. In object diagram

odo, object srcO must have an attribute link for a, whose value is represented by dv.

According to EvalAttributeCallExp (see Fig. 4.10), oe.a is evaluated in odo to dv.

Furthermore, in both odo and odr the object srcO is linked to an object destO of

class dest. According to EvalAssociationEndCallExp (see Fig. 4.11), the expression

oe.ae2 is evaluated to destO in odr. Furthermore, we know by construction of odr

that destO has an attribute slot for a with value dv. Hence, oe.ae2.a is evaluated

to dv.

5.4.2 MoveAssociationEnd is Semantic Preserving

In order to be able to reason about semantics preservation of MoveAssociationEnd

we must extend the rule specified in Chapter 3 so that it includes refactoring of

object diagrams. The extension is shown in the Fig. 5.13. Note that this extension

covers only the case when an association end is moved over an 1-1 association. The

cases when association end is moved over association with different multiplicities

than 1-1 are analogous to the MoveAttribute rule and will be omitted here.

The upper part of Fig. 5.13 extends the refactoring rule for UML class diagrams

(shown in Fig. 3.19) and specifies that whenever an associationEnd is moved from a

source to a destination class, every corresponding linkEnd is moved from an object

that instantiate the source class to an object that instantiates the destination class.

The lower part of Fig. 5.13 does not have a counterpart in MoveAttribute refac-

toring rule. It specifies that if the owner of the link, whose linkEnd is moved, is an
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object of the source class then the new owner of the link becomes an object of the

destination class.

MoveAssociationEndObj extends MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd)

instance

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

le2:LinkEnd
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associationEnd classifier
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le1:LinkEnd

l:Link

src:Class

srcO:Object
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linkEnd
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Figure 5.13: Influence of MoveAssociationEnd on object diagrams

The proof that MoveAssociationEnd refactoring is semantic preserving is almost

identical to the proof for the MoveAttribute and will be omitted here.

5.4.3 Semantic Preservation of the PushDown Rules

In Chapter 3, when performing PushDown refactoring rules, it was only checked

if attached OCL expressions have expressions that conform to the superclass from

which we want to push an element down in the hierarchy. The rules themselves

didn’t have any impact on OCL attachments. When taking into account possible

object diagrams, the same reasoning can be applied. The refactoring will not be

executed if any of the object diagrams contains an instance of the superclass referring
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to the element that is to be pushed down.

When taking object diagrams into account, the refactoring rule shown in Fig. 3.7

has to be rewritten as shown in Fig. 5.14. Note that the difference between the

previous version of the rule and this one is marked using bold face.

PushDownAttributeUML(a:Attribute, user:Class)

father:Class

specialization
parent

generalization
child

g:Generalization

user:Class

feature

father:Class

specialization

parent

owner

generalization

child

g:Generalization

user:Class

a:Attribute

{when}
user.allConflictingNames()->count(a.name)=1 and
AttributeCallExp.allInstances()
->forAll(ace| ace.referredAttribute = a 
        implies ace.source.type.conformsTo(user)) and
father.instance.slot->select(s|s.attribute=a)->isEmpty()

a:Attributeowner
feature

Figure 5.14: Modified version of PushDownAttribute refactoring rule

As long as the refactoring rule, when the application condition is satisfied, does

not influence neither OCL constraints, nor object diagrams we can conclude that

the rule is semantic preserving because whenever constro = constrr and odo = odr

hold, also eval(constro, odo) = eval(constrr, odr) holds.

5.4.4 Semantic Preservation of the Rename Rules

Renaming any of the elements from UML class diagram influences the textual nota-

tion of all OCL expressions that access that element as well as the object diagram

concrete syntax representation. However, instances of OCL part and object diagram

part of the metamodel are not altered. Therefore there are no refactoring rules for

OCL and object diagrams.

The refactoring rule RenameAttribute shown in Fig. 3.2 renames an attribute

a that can be accessed by AttributeCallExp expressions and is related to slots of

objects. The evaluation rule EvalAttributeCallExp shown in Fig. 4.10 is influenced

with this refactoring because the upper and the lower part of the evaluation rule refer

to the attribute a whose name is changed. Regardless of this change, in Fig. 4.10 we

can see that the result of the evaluation, DataValue d is not influenced by the change,

and that evaluation of AttributeCallExp remains the same, i.e. eval(constro, odo) =

eval(constrr, odr).



106 5. SEMANTICS PRESERVATION OF REFACTORING RULES

Similar reasoning can be applied in case of other types of Rename refactoring,

RenameAssociationEnd, RenameClass, and RenameOperation.

5.4.5 Semantic Preservation of the Extract Rules

ExtractClass and ExtractSuperclass rules just introduce a new class to the model,

without any interference with already existing ones like existing OCL expressions

or object diagrams, as assured with condition clauses in Fig. 3.10 and Fig. 3.11.

Therefore all OCL annotations and all object diagrams remain the same before and

after refactorings.

This drives us to conclusion that eval(constro, odo) = eval(constrr, odr) because

constro = constrr and odo = odr.

5.4.6 Semantic Preservation of the PullUp Rules

As it is shown in chapter 3, PullUp refactoring rules don’t influence attached OCL

constraints but only widen the application of the attribute/associationEnd that is

moved to the superclass.

When a PullUp refactoring is performed the full descriptor of objects (see Section

2.5.4.4 of [64]), that are instances of the source class, remain the same. In other

words there is no influence on object diagrams.

From this we can conclude that, similarly to Extract rules, eval(constro, odo) =

eval(constrr, odr) because constro = constrr and odo = odr.

5.5 Related Work

In his seminal work [69], Opdyke gives a catalog of refactoring rules for C++ pro-

grams. Opdyke defines semantic preservation (also called behavioral preservation

when refactoring rules are tailored for implementation code) as ”...if the program is

called twice (before and after a refactoring) with the same set of inputs, the resulting

set of output values will be the same”. In practice, it turned out that this simple

criterion is hard to prove. Thus, more fine grained criteria such as access preserva-

tion, update preservation, and call preservation emerged (a good overview is given

by Mens et al. in [61]).

Unfortunately, the criteria for semantic preservation of refactoring rules for im-

plementation code are not applicable for UML/OCL refactoring rules because the

’domain of refactorings’ is different. When refactoring implementation code, one is
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interested to keep the (observable) behavior of the program implemented by this

code (cmp. Opdyke above). When refactoring UML class diagrams, Opdyke’s cri-

terion is not applicable. What should be kept unchanged are the possibilities to

instantiate the class diagram, so here ’structural preservation’ is more important.

The basic idea of our approach goes back on works on equivalent data structure

representations by Hoare, e.g. [49].

In [91], Wachsmuth presents an approach for automatic metamodel evolution

and gives two model preservation criteria. The first criterion, so called semantics-

preservation is based on relations between two metamodels, source and destination

one. The second criterion, instance-preservation, is used when reasoning about

possible relations between two models whose corresponding metamodels are non-

transformed, and transformed one. Similarly to our approach, this work distin-

guishes two levels of transformations: 1) model transformations (so called metamodel

adaptations), and 2) instance transformations (so called model co-adaptations) that

are dependent on the first level. Contrary to our work, their preservation criteria

are applied on not only refactoring transformations but on arbitrary model element

constructions and destructions as well.

Contrary to some authors, we allow object diagrams also to be transformed

when applying a refactoring rule. We believe that our definition of semantic cor-

rectness gives more freedom in performing refactorings and allows a wider spectrum

of refactoring rules to be applied on a UML class diagram.

5.6 Conclusions

While the Model Driven Architecture (MDA) initiative of the OMG ([63]) has trig-

gered recently much research on model transformations, there is still a lack of proof

techniques for proving the semantic preservation of transformation rules. In the

MDA context, this question has been neglected also because many modeling lan-

guages do not have an accessible formal semantics yet what seems to make it impos-

sible to define criterion for semantic preservation. However, as our example shows,

the semantic preservation of rules can also be proven if the semantics of source/tar-

get models is given only partially. In case of MoveAttribute it is enough to agree on

the semantics of attribute call and association end call expressions.

In this chapter, we defined and motivated a criterion for the semantic preserva-

tion of UML/OCL refactoring rules. Our criterion requires to extend a refactoring

rule by a mapping between the semantic domains (states) of source and target model.

We argue that our refactoring rules specified in Chapter 3 preserve the semantics
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according to our criterion. Our proofs refer to the three graphical definitions of

the refactoring rule (class diagram, OCL, object diagram) and to a novel, graphical

formalization of the relevant parts of OCL’s semantics specified in Chapter 4.



Chapter 6
Conclusions

This chapter provides concluding remarks. It also indicates some of directions in

which research on model refactoring, and model synchronization could be pursued.

6.1 Summary

The central element of this thesis was refactoring of UML/OCL models. In Chap-

ter 3 we have presented a catalog of refactoring rules for UML class diagrams an-

notated with OCL constraints. We have specified all refactoring rules using a QVT

inspired formalism, in a clear and readable manner. For each refactoring rule that

can be applied on UML class diagrams we have investigated and formalized any po-

tential impact on attached OCL constraints. For every UML refactoring rule that

has impact on OCL constraints we have specified, using the same notation, how the

constraint has to be altered in order to preserve its syntax. For one refactoring rule

we have shown how syntax preservation can be proven. This was achieved using the

KeY tool.

Refactorings are just one subset of possible model transformations applicable

in the case of UML/OCL diagrams. With QVT transformation rules it is possible

to specify any other structural change like arbitrary element creation or deletion,

though it wouldn’t be possible to prove semantics preservation property for arbitrary

model transformation rules.

Semantics issues are discussed in Chapter 4. In this chapter we have specified

the semantics of OCL using the same formalization as for defining refactoring rules.

We have defined the semantics of OCL as a set of evaluation rules given in the form

of QVT transformations. The usage of QVT rules led not only to OCL semantics

that is easy to read and understand, but also to a formalization of the semantics that

109
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is directly executable by model transformation engines. Moreover, in this chapter

we have identified and classified OCL expressions into two groups: 1) Core OCL

expressions, and 2) Advanced semantic concepts. On the example of relational

database we have shown how OCL can be tailored to support various DSL’s and

how it is possible to specify semantics of these OCL variations.

In order to prove that our refactoring rules are semantics preserving, in Chap-

ter 5 we have defined a simple criterion for semantics preservation. Our criterion is

based on results of evaluation of OCL expressions, and thanks to semantics defined

in Chapter 4, it was easily applicable to refactoring rules specified in Chapter 3.

Although some authors advocate that it is hard and time-consuming task to prove

semantics preservation of model refactorings [52], in the case of UML/OCL models

we have successfully applied our criterion and proved that our refactoring rules are

semantics preserving.

The work presented in this thesis is implemented in our RoclET tool. The tool

is built as an Eclipse plug-in and consists of a GUI that supports creating UML class

and object diagrams, an OCL parser and pretty-printer, and model transformation

rules that perform the manipulation of created models. UML models created in

the tool can be easily refactored by applying rules presented in Chapter 3 while all

OCL constraints are updated accordingly. The tool implements the evaluation rules

shown in Chapter 4 which allows us to easily check semantic preservation property

of the refactoring rules.

6.2 Future Work

Although the work presented in this thesis concentrates mostly on refactoring UML

class diagrams and propagating necessary changes to object diagrams and OCL con-

straints, it would be possible to apply the same technique to different UML models.

One example would be the refactoring of UML class diagrams and automatic update

of corresponding sequence, collaboration, or any other type of UML diagrams.

Another research area would be the application of QVT transformation rules for

synchronizing different software artifacts including various models and programming

code. In this thesis we were mostly concentrated on unidirectional change propaga-

tion, but the same technique is applicable to model synchronization problems and

round-trip engineering [78].

Another branch of future activities would be the description of the semantics

of programming languages with graphical QVT rules. The ultimate goal would

be to demonstrate that also the description of the semantics of a programming
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language can be given in an easily understandable, intuitive format. This might

finally contribute to a new style of language definitions where the semantics of the

language can be formally defined as easy and straightforwardly as it is today already

the case with the syntax of languages.



112 6. CONCLUSIONS



Appendix A
Tool Support

In this chapter, we describe the architecture and the functionality of our own OCL

tool called RoclET. Besides standard features of OCL tools such as editing of

class and object diagrams and parsing of OCL assertions (invariants, pre-/post-

conditions), our tool supports also the evaluation of OCL constraints in a given

system snapshot (object diagram), and the refactoring of UML/OCL models. Ro-

clET is deployed in form of an Eclipse plugin.

A.1 Introduction

The Unified Modeling Language (UML) is today the most popular object-oriented

modeling language for software systems. UML is in the first place a graphical nota-

tion what makes software models easily accessible by humans. UML diagrams can

give a good overview on the modeled software system, but there is a lack of expres-

sive power once the details of the software system have to be captured as well. A

prevailing practice to resolve this problem is to add comments to UML diagrams and

to clarify the intended meaning using natural language. Such informal comments,

however, do not alter the formal meaning of the model and are ignored by tools

when processing the model, e.g. in order to generate code. Another disadvantage

is, that reading informal comments can become easily a hard and also ambiguous

task once the comments are a little bit more complex.

The Object Constraint Language (OCL), see [68] for both an introduction and

the language specification, is a textual language with formal syntax and semantics.

OCL constraints capture a wide range of details that software developers wish to

express in precise software models. The main application scenario are UML class

diagrams. Here, OCL constraints can express conditions that should be obeyed
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in each system state (invariants) and contracts for system operations (pre-/post-

conditions).

Most of the current OCL tools - USE [89], Octopus [86], Dresden OCL Toolkit

[83] and OCLE [85] being the most influential ones - were developed in academia.

Whereas almost each tool offers, besides parsing facilities for OCL, a functionality

to generate implementation stubs out of UML/OCL models, relatively little effort

has been made so far to analyze the OCL constraints themselves, to provide func-

tionalities for automatic constraint simplification, for refactoring, for analyzing of

which impact a (small) change in a snapshot on the validity of a given OCL invariant

has. RoclET aims at providing facilities for a painless authoring, processing and

analysis of OCL constraints. The main functionalities of RoclET are:

• Parsing and type analysis

• Refactoring of UML class diagrams including necessary changes on attached

OCL constraints (see Chapter 3)

• Evaluation in a given object diagram (applying the technique described in

Chapter 4)

A.2 Architecture of ROCLET

We have chosen a 3-layer architecture for RoclET (comp. Fig.A.1): presentation

layer, application layer and data layer.

The presentation layer consists of editors and views for user interaction. Due to

a lack of high quality diagram editors we have decided to implement our own editors

for class and object diagrams whereas the editor for OCL constraints is (currently)

based on the work of [84].

The presentation layer has direct access to the data layer where the edited UM-

L/OCL model is stored in a repository as a formal instance of the UML/OCL

metamodel.

RoclET’s functionalities are implemented in the application layer, mainly in

form of transformation rules written in QVT. These transformations work on the

repository and usually alter it directly.
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Presentation Layer

Application Layer

Data Layer

OCL Editor Class Diagram Editor Object Diagram Editor

QVT Engine

Repository

Rendering Parsing

Invocation Feedback

Write

Read

Figure A.1: RoclET Architecture

A.3 Implementation of Refactoring Rules in QVT

We implemented all rules of our refactoring catalog using the QVT implementation

of Together Architect 2006 for Eclipse [20]. Our rule implementation is based on

the metamodel for UML 1.5 class diagrams and OCL 2.0 as shown in Sect. 2.4. The

implementation of the rules, together with the used metamodel can be downloaded

from [88].

A.3.1 Overview

Together Architect 2006 for Eclipse implements a large body of the QVT standard1.

The implemented version of the transformation rules looks at the first glance quite

different from what was specified in graphical form in Sect. 3.2. There are obvious

changes on the notational level – Together Architect 2006 supports so far only the

textual notation of QVT – but, in general, we made the experience that implement-

ing the refactoring rules in Together Architect 2006 for Eclipse is a straightforward

and – thanks to Together’s matured editor and debugger for OCL – also a painless

task.

Before we describe in more details the transition from a refactoring rule given in

graphical notation to an implementation in textual QVT, let us recall the steps to

follow when applying a rule on a concrete source model. These steps are

1A list of missing features not implemented yet is shipped with Together.
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1. Find a substructure in the source model that matches with the LHS of the

transformation rule. If no LHS-matching substructure exists, the application

of the transformation rule terminates.

2. Rewrite the identified substructure with the RHS under the same matching.

3. Continue with step 1 where the source model is now the model obtained by

the last rewriting step (step 2).

Note that, theoretically, it could be the case that the rewriting step 2 adds a new

LHS-matching substructure that has not been present in the original source model.

For the refactoring rules we specified in this thesis, however, this case does not

occur. Please note that each refactoring rule is invoked separately by the user. This

is an important difference to other rewrite systems where a model is transformed

by a concurrent application of multiple transformation rules.

The major obstacle to implement our graphical rules directly in textual QVT is

the lack of a pattern-matching mechanism in textual QVT, which would allow to

find all substructures of a source model that match with LHS (step 1). The basic

entity in QVT to describe a transformation is a mapping that works on a certain

domain. A mapping can call sub-mappings or queries; the latter are implemented

by a sequence of OCL expressions. Mappings are written in a dialect of OCL, called

Imperative OCL. This dialect is no longer side-effect free and adds to standard

OCL two facilities, assignment (:=) and object creation (object ... ), for the

manipulation of data structures.

The main application scenario for QVT is the description of transformations

in which source and target model are instances of different metamodels. When

working in this mode, the QVT mapping traverses the source model, normally by

calling sub-mappings, and creates successively the target model. In our refactoring

scenario, however, we have the special case that the metamodels for source and

target model coincide. Moreover, the source and target model themselves coincide

except at some locations where substructures have been refactored. QVT supports

this special scenario by inout-variables which represent both the source and the

target of a mapping. Within the mapping, it is only possible to change those parts

of the data structure to which the inout-variables refer. All other, untouched, parts

of the data structure will then be copied automatically from the source to the target

model.

The general approach to implement our refactoring rules is as follows. A mapping

implements a traversal through the source model in order to find all substructures
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Figure A.2: Application of refactoring rule on a concrete UML/OCL model

that match with LHS. Fortunately, due to the simple structure of used LHS patterns,

this task is easily programmed manually and does not require to apply sophisticated

search algorithms. Then, for each matching substructure, a sub-mapping is invoked

that realizes the rewriting step accordingly to RHS.

Figure A.3 shows the application of a QVT transformation on a concrete UM-

L/OCL source model in our tool RoclET2, into which the implementation of refac-

toring rules has been integrated.

A.3.2 Entry-Point Mapping

A model transformation is implemented in QVT usually by a set of (sub)mappings,

but there is one top-level mapping that represents the whole transformation. In the

QVT jargon, this top-level mapping is called entry-point mapping. One important

restriction is that the entry-point mapping can have only one parameter, represent-

ing the model-element on which the transformation is applied. In our case, the

chosen parameter is always the root element of the source model.

2RoclET is available from www.roclet.org
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The fact that the entry-point mapping has just one parameter does not cor-

respond to our graphical refactoring rules. The parameters in our graphical rules

encode decisions taken by the user, e.g. for rule MoveAttribute the decisions, which

attribute should be moved over which association end. If the entry-point mapping

has only one parameter, the user decisions can obviously not be passed as argu-

ments. A solution for this problem is to simulate the needed parameters by query

calls. The entry-point mapping for rule ExtractClass looks as follows:

transformation e x t r a c t C l a s s ;

−− import o f p r i v a t e QVT l i b r a r y

import u t i l s ;

−− d e c l a r a t i on o f metamodel f o r source / t a r g e t model

metamodel ’ r o c l e t ’ ;

mapping main ( in model : r o c l e t : : Model ) : r o c l e t : : Model {
in i t {
−− s imu la t i on o f parameter pas s ing

var s r c := getSrc ( model ) ;

var newName := getNewName ( ) ;

var r o l e 1 := getRole1 ( ) ;

var r o l e 2 := getRole2 ( ) ;

−− c a l l o f sub−mapping wi th a l l r e qu i r ed parameters

var d := e x t r a c t C l a s s ( model , s rc , newName , ro l e1 , r o l e 2 ) ;

result :=model ;

}
}

A.3.3 Finding the matches for LHS

The first step that has to be realized by the implementation of a refactoring rule

is finding the substructure of the source model that matches with the LHS of the

rule. Since the class src is passed as an argument of the refactoring rule, finding an

LHS-match boils down to simply check the when-clause.

query e x t r a c t C l a s s ( inout root : r o c l e t : : Package ,

in s r c : r o c l e t : : Class ,
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in newName : Str ing ,

in r o l e 1 : Str ing ,

in r o l e 2 : S t r ing ) : OclVoid{
i f findUMLMatch ( src , newName , r o l e 1 )

then applyRHSUML( s r c . namespace , src , newName , ro l e1 , r o l e 2 )

else t rue

endif ;

undef ined

}

query findUMLMatch ( in s r c : r o c l e t : : Class ,

in newName : Str ing ,

in r o l e 1 : S t r ing ) : Boolean{
i f ( whentest1 ( s r c . namespace , newName) and whentest2 ( src , r o l e 1 ) )

then t rue

else f a l s e

endif

}

query whentest1 ( in nsp : core : : Namespace ,

in newName : S t r ing ) : Boolean{
i f ( nsp . oc l I sKindOf ( r o c l e t : : C l a s s i f i e r ) )

then nsp . oclAsType ( r o c l e t : : C l a s s i f i e r )

. a l lCon f l i c t ingNames ()−> exc ludes (newName)

else nsp . ownedElement . name−>exc ludes (newName)

endif

}
query whentest2 ( in s r c : r o c l e t : : Class ,

in r o l e 1 : S t r ing ) : Boolean{
s r c . a l lCon f l i c t ingNames ()−> exc ludes ( r o l e 1 )

}

A.3.4 Applying RHS

Once a matching substructure is identified, this substructure is passed to applyRHSUML,

which implements a rewriting of the substructure according to the RHS of the trans-

formation rule. The rewrite step uses extensively the new facilities integrated into

Imperative OCL in order to manipulate data structures.
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mapping applyRHSUML( inout nsp : r o c l e t : : Namespace ,

in s r c : r o c l e t : : Class ,

in newName : Str ing ,

in r o l e 1 : Str ing ,

in r o l e 2 : S t r ing ) : r o c l e t : : C lass {
in i t {

var ex t rac t ed := object r o c l e t : : C lass {
name := newName

} ;

nsp . ownedElement += ext rac t ed ;

var as : r o c l e t : : As soc i a t i on := object r o c l e t : : As soc i a t i on {
namespace :=nsp

} ;

var ae1 : r o c l e t : : Associat ionEnd :=

object r o c l e t : : Associat ionEnd {
a s s o c i a t i o n := as ;

name := r o l e 1 ;

p a r t i c i p a n t := ext rac t ed ;

m u l t i p l i c i t y :=

object r o c l e t : : M u l t i p l i c i t y {
range += object r o c l e t : : Mul t ip l i c i tyRange {

lower := 1 ;

upper := 1}}
} ;

var ae2 : r o c l e t : : Associat ionEnd :=

object r o c l e t : : Associat ionEnd {
a s s o c i a t i o n := as ;

name := r o l e 2 ;

p a r t i c i p a n t := s r c ;

m u l t i p l i c i t y :=

object r o c l e t : : M u l t i p l i c i t y {
range += object r o c l e t : : Mul t ip l i c i tyRange {

lower := 1 ;

upper := 1}}
} ;

result := undef ined ;

}
}
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The most important difference to normal OCL is the usage of keyword object

in order to express the creation of an object. The first statement, for example,

expresses that the local variable extracted is assigned to a newly created object of

type Class whose attribute name has the same value as parameter newName.

A.4 Implementation of Evaluation Rules in QVT

All evaluation rules presented in Chapter 4 are implemented in RoclET. The im-

plementation was straightforward just like in the case of refactoring rules.

A.4.1 Overview

Unlike implementation of refactoring rules described in Sect. A.3 which are made in a

”single” traversal of UML/OCL model, the implementation algorithm for evaluation

rules works in two passes.

The first pass performs binding of free variables to all OCL expressions (and

subexpressions) and is a necessary precondition for performing evaluation of the

expressions.

The second pass executes the evaluation rules as specified in Chapter 4.

Both of these passes will be explained in more details in following subsections.

Figure A.3 shows an application of evaluation as implemented in our tool Ro-

clET [88].

A.4.2 Invocation

All OCL constraints attached to a UML class diagram are specified in the context

of a specific Classifier from the diagram. Therefore, when performing evaluation of

OCL constraints, two parameters have to be provided: 1) Constraint that is to be

evaluated; 2) Object for which we perform the evaluation, and that is an instance

of the contextual Classifier for the given constraint.

As the first step when performing evaluation of OCL expressions, the object

passed as a parameter is bound to self variable, i.e. a new binding is made. The

second step is performing free variables binding (starting from the ”top” expression,

i.e. the body expression of the constraint passed as a parameter), and then, as

the third step, actual evaluation rules are invoked (again starting from the ”top”

expression).

mapping Evaluate (
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Figure A.3: Application of evaluation of a concrete UML/OCL model

inout expInOcl : r o c l e t : : Express ionInOcl ,

in obj : r o c l e t : : Object ) : r o c l e t : : Object{
in i t {

var empty : OrderedSet ( r o c l e t : : NameValueBinding ):= OrderedSet {} ;

var dummy:=empty−>append (

object r o c l e t : : NameValueBinding{varName:= ’ s e l f ’ ;

namespace := expInOcl . bodyExpression . type . namespace ;

va l := obj ;})−>asOrderedSet ( ) ;

var d1:=BindOCLExpression ( expInOcl . bodyExpression , dummy) ;

var d2:=EvaluateOCLExpression ( expInOcl . bodyExpression ) ;

result := undef ined ;

}
}
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A.4.3 Variable Bindings

Binding of variables to an expression depends on the type of that expression (i.e.

AttributeCallExp, IfExp, LoopExp...). Therefore, we need a ”switch” statement that

will invoke appropriate binding depending on the expression type.

mapping BindOCLExpression (

inout oc lexp : r o c l e t : : OclExpression ,

in nvb : OrderedSet ( r o c l e t : : NameValueBinding ) )

: r o c l e t : : OperationCallExp{
in i t {
var dummy1 :OclAny:=

i f oc lexp . oc l I sKindOf ( r o c l e t : : I n t ege rL i t e r a lExp )

then BindIntegerL i te ra lExp (

oc lexp . oclAsType ( r o c l e t : : I n t ege rL i t e r a lExp ) , nvb )

else i f oc lexp . oc l I sKindOf ( r o c l e t : : IfExp )

then BindIfExp (

oc lexp . oclAsType ( r o c l e t : : IfExp ) , nvb )

else i f oc lexp . oc l I sKindOf ( r o c l e t : : Attr ibuteCal lExp )

then BindAttributeCal lExp (

oc lexp . oclAsType ( r o c l e t : : Attr ibuteCal lExp ) , nvb )

. . .

}

All bindings to an expression are performed in two steps: 1) Adding bindings

passed as a parameter to the expression’s collection of bindings; 2) Passing expres-

sion’s bindings (potentially altered) to the expression’s subexpressions (if any).

mapping BindIntegerL i te ra lExp (

inout oc lexp : r o c l e t : : In tege rL i t e ra lExp ,

in nvb : OrderedSet ( r o c l e t : : NameValueBinding ) )

: r o c l e t : : I n t ege rL i t e r a lExp {
in i t {

oc lexp . b inding :=nvb ;

result := oc lexp ;}
}

mapping BindIfExp (

inout oc lexp : r o c l e t : : IfExp ,

in nvb : OrderedSet ( r o c l e t : : NameValueBinding ) )
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: r o c l e t : : IfExp{
in i t {
oc lexp . b inding :=nvb ;

var d:=BindOCLExpression ( oc lexp . cond i t ion , oc l exp . b inding ) ;

var d2:=BindOCLExpression ( oc lexp . thenExpress ion , oc l exp . b inding ) ;

var d3:=BindOCLExpression ( oc lexp . e l s eExpre s s i on , oc l exp . b inding ) ;

result := oc lexp ;}
}

mapping BindAttributeCal lExp (

inout oc lexp : r o c l e t : : Attr ibuteCal lExp ,

in nvb : OrderedSet ( r o c l e t : : NameValueBinding ) )

: r o c l e t : : Attr ibuteCal lExp {
in i t {

oc lexp . b inding :=nvb ;

var d:=BindOCLExpression ( oc lexp . source , oc l exp . b inding ) ;

result := oc lexp ;}
}

A.4.4 Evaluations

Like variable binding, evaluation of each OCL expression depends on the expression’s

type. Similarly to the case of variable bindings, a ”switch” statement is needed, to

invoke corresponding evaluation rules.

mapping EvaluateOCLExpression (

inout oc lexp : r o c l e t : : OclExpression )

: r o c l e t : : OperationCallExp{
in i t {
var dummy1 :OclAny:=

i f oc lexp . oc l I sKindOf ( r o c l e t : : I n t ege rL i t e r a lExp )

then Eva luate Intege rL i t e ra lExp (

oc lexp . oclAsType ( r o c l e t : : I n t ege rL i t e r a lExp ) )

else i f oc lexp . oc l I sKindOf ( r o c l e t : : IfExp )

then EvaluateI fExp (

oc lexp . oclAsType ( r o c l e t : : IfExp ) )

else i f oc lexp . oc l I sKindOf ( r o c l e t : : Attr ibuteCal lExp )

then EvaluateAttr ibuteCal lExp (

oc lexp . oclAsType ( r o c l e t : : Attr ibuteCal lExp ) )
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. . .

}

Each of the rules first evaluates subexpressions of the expression passed as a

parameter, and then performs evaluation of the expression itself.

mapping Eva luate Intege rL i t e ra lExp (

inout oc lexp : r o c l e t : : I n t ege rL i t e r a lExp )

: r o c l e t : : I n t ege rL i t e r a lExp {
in i t {

oc lexp . va l := object r o c l e t : : IntegerValue {
namespace := oc lexp . type . namespace

in tege rVa lue := oc lexp . integerSymbol ) ;

result := oc lexp ;}
}

mapping EvaluateI fExp ( inout oc lexp : r o c l e t : : IfExp ) : r o c l e t : : IfExp{
in i t {
var d1:=EvaluateOCLExpression ( oc lexp . cond i t i on ) ;

var d2:= i f ( oc l exp . cond i t i on . va l

. oclAsType ( r o c l e t : : BooleanValue ) . booleanValue=true )

then EvaluateOCLExpression ( oc lexp . thenExpress ion )

else EvaluateOCLExpression ( oc lexp . e l s e E x p r e s s i o n )

endif ;

oc l exp . va l := i f ( oc l exp . cond i t i on . va l

. oclAsType ( r o c l e t : : BooleanValue ) . booleanValue=true )

then oc lexp . thenExpress ion . va l

else oc lexp . e l s e E x p r e s s i o n . va l

endif ;

result := oc lexp ;}
}

mapping EvaluateAttr ibuteCal lExp (

inout ace : r o c l e t : : Attr ibuteCal lExp ) : r o c l e t : : Attr ibuteCal lExp {

in i t {
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var d1:= EvaluateOCLExpression ( ace . source ) ;

ace . va l := i f ace . source . va l

. oc l IsTypeOf ( r o c l e t : : OclVoidValue ) then

object r o c l e t : : OclVoidValue{
namespace := ace . type . namespace ;}

else

ace . r e f e r r e d A t t r i b u t e . a t t r i bu t eL ink

−>s e l e c t ( a | a . i n s t ance=ace . source . va l )

−>any ( t rue ) . va lue

endif ;

result := ace ; }
}

A.5 Conclusions

The encoding of the graphical refactoring rules as given in Sect. 3.2 into textual

QVT is straightforward. We have used for all refactoring rules the same structure

as for rule ExtractClassUML. The main difference between graphical and imple-

mented version is that the search for an LHS-match had to be realized by a concrete

algorithm. This algorithm, however, is trivial for refactoring rules because the el-

ements from the source model that are affected by the refactoring rule are always

passed as parameters. This trait of refactoring rules minimizes the effort to search

for the right location in the source model that matches with the LHS of the rule.

Encoding the RHS in textual QVT is straightforward as well; one has just to

change the relevant properties of the elements identified by RHS. Please note that

the implementation of RHS has only an influence on the current location and does

not change anything else in the rest of the model.

All the evaluation rules were implemented on the similar manner like the refac-

toring rules. The only difference is that contrary to refactoring rules for which the

LHS match is searched depending on the passed parameters, for the evaluation rules

the complete OCL model is traversed starting from the top expression to the subex-

pressions. Along the traversal path all evaluation rules are accordingly applied.

All refactoring and evaluation rules presented in this thesis are implemented in

QVT textual syntax using Together Architect 2006. There would be no obstacle to

use any other tool for model transformations, like Fujaba [44] or ATL [5] to produce

the same results.
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A unique feature of our tool is its adaptability to specific needs a user might

have. Since OCL is basically a very versatile language and applicable in many

different domains, there are frequent requests for domain-specific changes of OCL’s

semantics. It is relatively easy for the user to adapt RoclET to a new OCL dialect

(assuming that a parser for the new OCL dialect exists). The only thing to be done

is to modify some of the QVT rules that implement RoclET’s functionalities. In

order to do this, however, the user must have installed Together Architect for Eclipse

[20], which implements the QVT engine on which RoclET is based.
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[30] Maŕıa Victoria Cengarle and Alexander Knapp. OCL 1.4/5 vs. 2.0 expressions

formal semantics and expressiveness. Software and Systems Modeling, 3(1):9–

30, 2004.

[31] Juan Mart́ın Chiarad́ıa and Claudia Pons. Improving the OCL semantics def-

inition by applying dynamic meta modeling and design patterns. In Birgith

Demuth, Dan Chiorean, Martin Gogolla, and Jos Warmer, editors, OCL for

(Meta-)Models in Multiple Application Domains, pages 229–239, Dresden, 2006.

University Dresden. Available as Technical Report, University Dresden, num-

ber TUD-FI06-04-Sept. 2006.

[32] Dan Chiorean, Maria Bortes, and Dyan Corutiu. Proposals for a widespread

use of OCL. In Thomas Baar, editor, Tool Support for OCL and Related For-

malisms - Needs and Trends, MoDELS’05 Conference Workshop, Montego Bay,

Jamaica, October 4, 2005, Proceedings, Technical Report LGL-REPORT-2005-

001, pages 68–82. EPFL, 2005.

[33] Tony Clark, Andy Evans, and Stuart Kent. Engineering modelling languages: A

precise meta-modelling approach. In Ralf-Detlef Kutsche and Herbert Weber,

editors, Fundamental Approaches to Software Engineering. 5th International

Conference, FASE 2002 Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 2002,

Proceedings, volume 2306 of Lecture Notes in Computer Science, pages 159–173.

Springer, 2002.

[34] Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer,

and Alan Cameron Wills. The amsterdam manifesto on OCL. In Tony Clark

and Jos Warmer, editors, Object Modeling with the OCL: The Rationale behind

the Object Constraint Language, pages 115–149. Springer, 2002.
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[59] Slavǐsa Marković and Thomas Baar. Semantics of OCL specified with QVT.

Software and Systems Modeling, 2008. (Accepted for publication).
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[6] Thomas Baar, and Slavǐsa Marković, ”A graphical approach to prove the se-

mantic preservation of UML/OCL refactoring rules”. In Irina Virbitskaite

and Andrei Voronkov, editors, Perspectives of Systems Informatics, 6th Inter-

national Andrei Ershov Memorial Conference, PSI 2006, Novosibirsk, Russia,

June 27-30, 2006. Revised Papers, volume 4378 of Lecture Notes in Computer

Science, pages 70-83. Springer, 2007.

[7] Cédric Jeanneret, Leander Eyer, Slavǐsa Marković, and Thomas Baar, ”Ro-
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