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Abstract— The increasing complexity of signal processing al-
gorithms has lead to the need of developing the algorithms
specifications using generic software implementations that be-
come in practice the reference implementation. This fact can
be particularly observed in the field of video and multimedia
processing where reference software is the main normative
reference. Adapting the algorithms specified by such software
models into architectures composed by processors and dedicated
HW elements becomes a very resource consuming task for the
complexity of the models and for the large choice of possible
partitioning options. This paper describes a new platform aiming
at supporting the adaptation of algorithms specified by generic
non optimized software specifications into mixed SW and HW
implementations. The platform is supported by profiling capa-
bilities specifically developed to study data transfers between
the SW and the HW modules. Such profiling and optimization
capabilities can be used to achieve different objectives in the
algorithm architecture adaptation process such as optimization of
memory architectures or low power designs by the minimization
of data transfers.

I. INTRODUCTION

Algorithm-Architecture Adaptation is a very difficult task
when dealing with very complex signal processing algorithms
such as the one faced today in many application fields. It
consists in finding the best architecture match for an algorithm
that is usually written using a sequential program such as C or
C++. The architecture can be composed of HW componets as
well as other heterogeneous components such as DSP, proces-
sors and FPGAs. Mapping large software specifications onto
a heterogeneous hardware platform is a complex and difficult
process that cannot be achieved in one single shot. Usually
the program is partitioned into smaller components in order
to master the hardware design by dealing with components
of manageable size. The problem arises when the hardware
blocks need to be validated as single elements or when they
are put together. The interfaces are sometime critical to be
designed and appropriate test vectors need to be generated
for conformance and performance testing. Furthermore, in the
process of transforming the reference software into a real
implementation (i.e. adapting the algorithm to architectures)
the possibility of exploring different architectural solutions for
specific modules and study the resulting data exchanges be-
tween components for defining optimal memory architectures
is a very attractive approach.

The paper presents a platform that supports the profiling

and testing of hardware modules as direct ”plug-ins” of the
original reference software algorithm. The paper presents also
the features of the profiling tool which enable the designer
to measure the data transfers needed for the interface of
the hardware component so that the designer can investigate
different memory architectures optimizing data exchanges and
the bandwidth between the different hardware modules.

The paper is organized as follows: section 2 presents a
brief state of the art on integrated HW/SW platforms. Section
3 provides a general view of the platform introducing the
innovative elements. Section 4 describes the details of the
platform that enables HW/SW support. Section 5 presents the
capabilities of the profiling tool and explain how it can be
used to study and optimize data transfers satisfying different
criteria. Section 6 proposes an example of integration of the
Motion Estimation module of MPEG-4 part 2.

II. STATE OF THE ART

Testing the implementation in HW of sections of a reference
software is not a trivial task. It requires a platform which en-
ables the designer to seameless ”call” the hardware component
directly from the (reference) software. This is possible only if
the hardware component is closely linked to the (reference)
software environment. Some HW/SW co-design platforms
can be used to support the algorithm-architecture adaptation
methodology, but all of them suffer from the fact that there
exist no simple procedure capable to seamlessly plug hardware
modules described in HDL to a pure software algorithm. Either
the memory management is a burdensome task or the call of
the hardware module is done by an embedded processor on
the platform.

Environments which support both hardware and software
implementations are generally based on a platform containing
an embedded processor and some dedicated hardware logic
like FPGA as described in the work of Andreas Koch [2]. The
control program lies in the embedded processor. However, data
on the host are available easily thanks to virtual serial ports.
But the plugging of hardware modules inside the reference
software running on the host remains the most difficult task.

The work of Martyn Edwards and Benjamin Fozard [3]
is interesting in the way a FPGA-based algorithm can be
activated from the host processor. This platform is based on
the Celoxica RC1000-PP board and communicates with the
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host by using the PCI bus. The control program is on the host
processor, sends control information to the FPGA and transfers
data in small shared memory which is part of the hardware
platform. In this case, the designer must explicitly specify
the data transfer between the host and the local memory.
Many other works about coprocessors have been reported in
literature. Some examples are given in [4] [5]. However, the
problem of seamless plug-in of HDL modules is still existing,
the specification of the data transfers that remains in charge of
the designer might be a very burdensome task when dealing
with complex data-dominated video or multimedia algorithms.

In some works on coprocessors, data transfers can be
generated automatically by the host like for instance is found
in [6]. However, data are copied in the local memory at a pre-
defined location. Thus, the HDL module must be aware of the
physical addresses of the data in the local memory. Again the
management of the addresses can be a non-trivial and resource
consuming task when dealing with complex algorithms.

The Virtual Socket concept implemented in a support
platform has been presented in [10] [9] [7] and has been
developed to support the mixed specification of MPEG-4 Part2
and Part 10 (AVC/H.264) specifications in terms of reference
SW including the plug-in of HDL modules. The platform is
constituted by a standard PC where the SW is executed and
by a PCMCIA card that contains a FPGA and a local memory.
Also for this platform the data transfers between the host
memory and the local memory on the FPGA must be explicitly
specified by the designer/programmer.

Specifying explicitly the data transfers would not constitute
a serious burden when dealing with simple deterministic
algorithms for which the data required by the HDL module
are known exactly. Unfortunately for very complex design
cases, where design trade-offs are much more convenient, and
often are the only viable solutions, than worst case designs,
data transfers cannot be explicitly specified in advance by the
designer.

The work described in this paper is based on the Virtual
Socket platform extended by adding the virtual memory capa-
bility to allow automatic data transfers from the host, running
the SW part, to the local HW memory. The goal of such
platform implementation is to provide a ”direct map” of any
SW portion to a corresponding HDL specification without
the need of specifying any data transfer explicitly. In other
words, to extend the concept of Virtual Socket for plugging
HDL modules to SW partition with the concept of virtual
memory. HDL modules and software algorithm share a unified
virtual memory space. Having a shared memory - enforced
by a cache-coherence protocol - between the CPU running
the SW sections and the platform supporting HW avoids the
need of specifying explicitly all the data transfers. The clear
advantage of such solution is that the data transfer needed to
feed the HDL module can be directly profiled so as to explore
different memory architecture solutions. Another advantage of
such direct map is that conformance with the original SW
specification is guaranteed at any stage and the generation of
test vectors is naturally provided by the way the HDL module

is plugged to the SW section.

III. DESCRIPTION OF THE VIRTUAL SOCKET PLATFORM

The Virtual Socket platform is composed of a PC and a
PCMCIA card that includes a FPGA and a local memory. The
Virtual Socket handles the communications between the host
(the PC environment) and the HDL modules (in the FPGA
inside the PCMCIA).

Fig. 1. The Virtual Socket platform overview

Given that the HDL modules are implemented on the FPGA,
they have only a physical access to the local memory (see
figure 1). This was the case of the first implementation of
the Virtual Socket platform, with the consequence that all
the data transfers from the host to the local memory had to
be specifically specified in advance by the designer himself.
Such operation beside being error prone or be implemented
transferring more data than necessary it is not straightforward
and may become difficult to be handled when the volume
of data is comparable with the size of the (small) local
memory. Therefore, an extension has been conceived and
implemented so as to handle these data transfers automatically.
The Virtual Memory Extension (VME) is implemented by
two components: the hardware extension to the Virtual Socket
platform (Window Manager Unit) and a Virtual Manager
Window (VMW) library on the host PC. The cache-coherence
protocol is implemented in the Window Manager unit (WMU)
using a TLB (Translation Lookaside Buffer) and is handled by
the software support (VMW). The HDL module is designed
simply generating virtual addresses relative to the user virtual
memory space (on the host) to request data and execute the
processing tasks.

The processing of the data on the platform using the virtual
memory feature proceed as follows. The algorithm starts
the execution on the PC and associated host memory. The
Virtual Socket environment allows the HDL module to have
a seamless direct access to the host memory thanks to the
Virtual Memory Extension and allows the HDL module to be
started easily from the software algorithm thanks to the VMW
Library. Figure 2 shows what are the interactions between the



unified virtual memory, the reference software algorithm, and
the HDL module.

Given a reference software composed of several functions
A, B, C, D and E. In order to test the HDL modules separately,
the designer needs to execute some parts of the reference
algorithm using the host processor and to test the hardware
module. The Virtual Socket platform is the support for the
hardware module for testing. To deal with mixed HW/SW
algorithms, it is very convenient if the HDL and C functions
have access to the same user memory space, named unified
virtual memory on figure 2. This memory is part of the host
hardware and contains the data to process. This host memory
space is trivially available by the processor which executes the
reference software, but it is much less evident for the Virtual
Socket platform which is on the FPGA and is the support for
the HDL modules.

For instance the designer wants to run function C on the
reference software and functions D and E together using one
HDL module which merges the two functions. The section of
the reference code the designer intends to execute in hardware
is replaced by the following piece of code which is called the
HDL module calling procedure:

int main(int argc,char *argv[]) {

/* [. . .] Reference Software Algorithm stops here */

/* Beginning of the HDL module calling procedure */

/******* OPEN / CONFIGURING THE PLATFORM *******/
Platform_Init(); // Virtual Socket
VMW_Init() ; // Virtual Memory Extension

/******* PARAMETERS SETTINGS *******/
Module_Param.nb_param = 4 ; // number of parameters
Module_Param.Param[0] = A ; // parameter 1
Module_Param.Param[1] = B ; // parameter 2
Module_Param.Param[2] = C ; // parameter 3
Module_Param.Param[3] = D ; // parameter 4

/******* HDL MODULE START *******/
Start_module(1, &Module_Param) ;

/******* CLOSING THE PLATFORM *******/
VMW_Stop(); // Virtual Memory Extension
Platform_Stop(); // Virtual Socket

/* End of the HDL module calling procedure */

/* [. . .] the Reference Software Algorithm continues*/

}

The HDL module calling procedure is composed of the
following steps:

1) the designer must configure the platform by using the
”Platform Init( )” and ”VMW Init( )” functions from the
Virtual Socket API and VMW API

2) The designer must set a given number of parameters
needed for the configuration of the HDL module. This
can be done thanks to the data structure ”Module-
Param”. Sixteen parameters are available for each HDL

module.
3) the HDL call function is started. This function writes

the parameters in the register memory of the Virtual
Socket platform (see figure 1). ”Start module()” drives

the Virtual Socket platform and the VME to activate the
HDL module. The function ”Start module( )” is from
the VMW API

4) when the entire job is finished, the platform is closed.

The VMW library manages all the data transfers between
the main memory (unified virtual memory) and the local
memory of the platform because as the HDL module is in
a FPGA, it has access only this local memory. Thanks to the
VME, the HDL module has access to the host memory without
intervention of the designer. Data are sent to the HDL module
and results are updated in the main memory automatically
thanks to the software library support. When the HDL module
finishes its work, the hardware call function is terminated by
closing the platform and the reference software algorithm can
be continued on the host PC.

Fig. 2. interactions between the C function, the HDL module and the shared
memory space

IV. DETAILS ON HW IMPLEMENTATION AND SW SUPPORT

The following section describes in more details how the
Virtual Socket platform supporting the Virtual Memory Ex-
tension is implemented. The first part explains how virtual
memory accesses are possible from the HDL modules. Then,
the Virtual Memory Window library, i.e. the software support
is described in details to show how virtual memory accesses
are handled. The final part explains how HDL modules can be
integrated in the platform using a well-defined protocol.



A. HDL modules virtual memory accesses

The HDL modules are implemented on the FPGA, so that
they have access only to the local memory of the Virtual
Socket platform. With the implementation of the Virtual Mem-
ory Extension, the HDL modules have a direct access to the
software virtual memory space located on the host PC.

The left part of figure 1 shows how the connections between
a HDL module, the Virtual Socket platform and the Virtual
Memory Extension are implemented. The virtual addresses
generated by the HDL modules are handled by the Virtual
Memory Controller (VMC) and the Window Memory Unit
(WMU). The WMU is a component from the work of Vuletić
and al. [8]. The WMU translates virtual addresses into physical
addresses. The VMC is in charge of intercepting precise sig-
nals at right time from the interface between the HDL module
and the platform in order to send information to the WMU
which executes the translation. Among the signals intercepted
by the VMC, can be mentioned the address signal, the count
signal (number of data requested by the HDL module) and the
strobe signal. The virtual addresses refer to the unified virtual
memory space and the physical addresses refer to the local
memory on the card. A physical address is composed of an
offset and a page number. The local memory (on the current
PCMCIA card platform) is composed of 32 pages of 2 kB.
The offset corresponds to the location of the data in the page.
The software support library (on the host PC) fills the pages
of the local memory with the requested data coming from the
virtual memory. When the WMU receives an unknown virtual
address, it raises an interrupt through the interrupt controller
of the card. The interrupt is taken in charge by the software
support (on the host PC) and the requested data are written
from the host memory to the local memory.

From the designer point of view using the Virtual Memory
Extension, the whole process of data transfers is completely
transparent. The only issue the designer has to care of is to
generate the virtual addresses accordingly to the data contained
in the host memory space. The whole task of transferring data
to local memory is done by the platform and its software
support.

B. The software support: the Virtual Memory Window
library

The Virtual Memory Window (VMW) library is built on
the FPGA card driver (Wildcard II API), the Virtual Socket
API developed by Yifeng Qiu and Wael Badawy bases on the
works [9] [10] and the WIN32 API.

The Virtual Socket platform can be used with or without
the Virtual Memory Extension. The designer is free to choose
if the data transfers between the main memory on the host and
the local memory on the card are done automatically (virtual
mode) or manually (explicit mode).

C. The integration of the HDL modules in the platform

The HDL module is linked to the Virtual Socket platform
thanks to a well-defined interface and a precise communication
protocol.

Fig. 3. the communication protocol between a HDL module and the Virtual
Socket Platform

Figure 3 illustrates the protocol used by the HDL modules
to communicate with the Virtual Socket platform. A HDL
module can issue two types of requests: read or write data
(in main or local memory, it depends on the operating mode:
virtual or explicit). There is a great similarity between the
read and write protocols. Figure 3 is an illustration of the
communication protocol. The following section describes the
steps of the read protocol. The write protocol works exactly
with the same steps.

1) The HDL module asks to read data, it issues a read
request for reading the memory.

2) The platform accepts the read request and in the case
the data are available in the local memory, the platform
generates an acknowledgement signal to the user HDL
module. In the other case, the Virtual Memory Extension
copies the requested data of the host memory into the
local memory and then generates the acknowledgement.

3) Once the user HDL module receives the acknowledge-
ment signal, it asks for reading some data directly



from the memory space. This request is performed by
asserting a strobe signal together with setting up some
other parameters signals (identification number of the
HDL module used, the virtual address and how much
data must be read).

4) The platform accepts those signals and reads data from
the memory space. When the platform finishes each
reading, it asserts a strobe signal and the data are ready
to input of the user HDL module.

5) The user HDL module receives the data from the inter-
face.

6) The user HDL module asserts a request to ask for
releasing the reading operations when finished.

7) The platform generates an acknowledgement signal to
release the reading operations.

In the Virtual mode, the read and write addresses contain
the addresses of the data in the unified virtual memory space.
It was like the HDL modules see the host memory.

V. PROFILING TOOLS: TESTING AND OPTIMIZING DATA
TRANSFERS

State of the art signal processing algorithms are essentially
data dominated systems and the data flow between the modules
must be carefully optimized so that to reach low power design,
necessary for any embedded systems implementation. Data
transfers provide a relevant contribution to the overall power
dissipations and need to be optimized to achieve low power
designs. The profiling tools supported by the platform allow
the designer to receive feedback information on the data
exchanges with the HDL module.

Figure 4 shows the methodology to develop an optimized
hardware function (HDL module) versus its data exchanges.
The first step is constituted by the validation of the design.
Using the Virtual Memory Extension, the equivalency of the
C and HDL functions are verified. Virtual memory feature
allows the designer to focus only on the HDL module con-
formance checking. The designer can forget everything about
the memory management during this phase. The second phase
consists in understanding and having a global overview of the
data transfers exchanged between the platform and the HDL
module. The way the data are accessed, the re-organization
of data can be the object of accurate optimization. When the
data exchanged by the HDL module are profiled, the designer
enters the last phase in which data transfers are optimized
between HDL module and cache memory.

VI. EXAMPLE OF SW-HW MODULE INTEGRATION:
MPEG-4 MOTION ESTIMATION

A. Description of the HW module

The HW module performs the macroblock based motion
estimation stage required by a frame based MPEG encoder
[11]. A motion vector is obtained by selecting the best match
between the reference macro-block and any position within a
specified search window. The motion estimation algorithm is
based on a reduced search strategy that reduces of up to two
orders of magnitude the number of possible matchings within

the search window, but requires flexibility in term of access
latency to any position in the search window. In standard
full-search implementations, an exhaustive search procedure is
implemented calculating the matching function for all search
window position. The approach is resource consuming, but the
data access is perfectly regular. In a reduced search strategy
configuration [11], [12], the block matching is only processed
for a non-deterministic sub-set of block positions in the search
window, therefore the access of any area in a search window
is necessary. The set of positions is determined during runtime
in function of the intermediate results and is calculated by a
software processor (implemented by a MicroBlaze embedded
in the FPGA in this example). On the next generation of
Virtual Socket platforms based on a Wildcard IV board,
the MicroBlaze could be replaced by a hardwired processor
(PowerPC) embedded in the Virtex IV FPGA. In this example
of module implementation, the search window width can be
set up to 256 pixels, and the window height is fixed to 40
pixels. An external memory enables to store the full search
window and the reference block. The internal memory permits
to reduce the number of accesses to the external memory and
any block in the internal memory can be accessible without
any additional latency time. Any matching can be performed in
less than 180 ns (with an overall clock frequency at 100 MHz)
when accessing data in the internal memory. For instance, for
a full-search configuration, the designed architecture processes
at 14 frames per second at CIF video resolution format (i.e.
352x288 pixels frame size) with 41x25 pixels search range. As
in other classical designs, the matching metric is based on the
Mean Absolute Difference (MAD) evaluation. So as to obtain
higher performances, the number of components that performs
the MAD processing has been multiplied by a factor of 4 and a
specific optimization of the data transfer architecture is needed
to provide the required input-data bandwidth. The problem of
optimizing such architecture consist on the complexity of the
possible operating mode defined during runtime and on the
requested module flexibility versus the variable image size and
search window size.

Fig. 5. an architecture of the MPEG Motion Estimation IP block

B. HW module design and integration with the reference SW

The interfacing of the HW motion estimation module results
very simple thanks to the Virtual Memory feature and to the
wrapper module (User IP Block). The designer just needs to
specify the following parameters: two pointers respectively
on the beginning of the two consecutive images, the image
size (height and width), the search window and the block



Fig. 4. the optimization methodology

sizes (height and width). All of the parameters are stored
into the IP Param array. The address generation is implicitly
calculated inside of the wrapper with the different parameters.
The motion estimation process is executed for each reference
block and the associated search window. The first step is the
validation of the module functionality. For this phase, one
input memory has been implemented 5. The conformance tests
with the reference SW have permitted the validation of the
motion estimation process.

The second step is the optimization of the memory archi-
tecture. The goal is to reduce as much as possible the size
of the internal memory without affecting the performance of
the module. The different levels of cache memory have indeed
an important influence on the system’s performances and theyr
behavious is not easily predictable for algorithms that changes
during runtime. The profiling information extracted during the
execution of the motion estimation process can be extremely
useful to improve the architecture performance, cost and power
dissipated by reducing the number of accesses to an external
memory and by minimizing the internal memory size. Another
possible optimization is the suppression of the latency between
the two MAD evaluations. To obtain optimized matching task
in parallel with a data-transfer task, the input-data memory can
be split into two memory banks. A portion of the search win-
dow and the associated block can be stored in each memory
bank. The processing runs on one bank while input data can
be transferred simultaneously into the other one. The virtual

memory extension provides the data transfer information that
can be used for this optimization task.

VII. CONCLUSION

This paper describes the implementation of a platform
capable of supporting the designer in the different steps aiming
at achieving the algorithm-architecture adaptation of a process-
ing system described by a reference software. The platform
provides a seamless environment for testing hardware modules
which have been transformed from the reference software into
HDL hardware modules. On one side conformance of the HDL
modules with the reference SW is guaranteed at any stage of
the design, on the other side the designer can focus on different
aspects of the design. First design efforts can be focused on the
module functionality without worrying about data transfers,
then using the profiled data transfer on design of appropriate
memory architectures or any other design optimization that
matches the specific criteria of the design.
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