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LIOUVILLE TYPE THEOREMS FOR MAPPINGS

WITH BOUNDED (CO)-DISTORTION

by M. TROYANOV & S. VODOP’YANOV *

1. Introduction.

A mapping f : M → N between oriented n-dimensional Riemannian
manifolds is said to have bounded s-distortion (or s-dilatation) (1 6 s <∞)
if f ∈W 1,1

loc (M,N) and

(1) |dfx|s 6 KJf (x)

a.e. x ∈M .

The Sobolev class of mappings W 1,1
loc (M,N) is defined in Section 3

below; these mappings have a formal differential dfx : TxM → Tf(x)N

almost everywhere; in the above inequality, |dfx| denotes its operator norm
and Jf (x) = det dfx its Jacobian.

Mappings with bounded s-distortion are generalizations of quasi-
regular mappings; they have been studied (under various names and
viewpoints) since about 30 years, see [6], [8], [24], [25], [28], [30], [41], [44]
among other works. In the special case of homeomorphisms with bounded
s-distortion with s > n− 1, a metric characterization has been given in [8].

These mappings originated as suitable class of mappings in the
change-of-variable formula for functions in the Sobolev spaces L1,s (see
Section 4). As it turns out, this class of mappings feels quite well the
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1754 M. TROYANOV & S. VODOP’YANOV

asymptotic geometry of Riemannian manifolds. In [6], J. Ferrand was able
to prove that a Riemannian manifold is characterized up to bilipschitz
equivalence by its Royden algebra; the proof heavily uses the theory of
mappings with bounded s-distortion. In [28], P. Pansu gave conditions
on the geometry of manifolds implying that mappings with bounded s-
distortion are quasi-isometries. The work of Ferrand and Pansu has been
extended to the case of metric measure spaces in the recent thesis of
K. Gafäıti.

Mapping with bounded s-distortion are a subclass of the so-called
mappings with finite distortion which are defined by the condition that
Jf ∈ L1

loc and |dfx|n 6 Φ(x)Jf (x) where Φ(x) is finite a.e. (see the argument
in the proof of Corollary 7.1). Mappings with finite distortion play an
important role in non-linear elasticity (see e.g. [27]) and they are now being
intensively studied. See e.g. the papers [16], [18], [41] and the rich references
therein.

Another important generalization of mappings with bounded s-
distortion is given by the class of mappings such that |Λkfx|q 6 KJf (x)
where Λkf is the k-th. exterior power of df , i.e. the effect of dfx at the
level of k-forms. These mappings appear in Lp cohomology; see e.g. the
recent paper [29] of P. Pansu, where flows of such mappings are used in the
computation of Lp-cohomology of manifolds with negative curvature and
solvable Lie groups.

In the present paper, we will consider the case k = n − 1; let us
thus define a mappings with bounded q-codistortion (1 < q < ∞) to be a
mapping f ∈W 1,1

loc (M,N) for which there exists a constant K ′ such that

(2) |Λn−1fx|q 6 K ′Jf (x) a.e.

We now state a number of questions, concerning mappings with
bounded s-distortion, we are interested in

1) What are the obstructions to the existence of a non constant
mapping with bounded s-distortion f : M → N?

2) Describe the set of all s > 1 for which there exists a homeomor-
phism (or a diffeomorphism) f : M → N with bounded s-distortion.

3) Suppose that f : M → N is a non constant mapping with bounded
s-distortion: How big may the omitted set N \ f(M) be? (In particular,
when can it be said that f is onto?)

4) Assuming that f : M → N is a continuous mapping with bounded
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s-distortion. What can be said about the topological and or the geometrical
properties of f?

Similar questions may be raised about mappings with bounded q-
codistortion.

We will give some answers to all of these questions. The main
techniques we use are based on potential theory: Recall that a condenser

in M is a pair (D,A) where A ⊂M is a connected open subset and D ⊂ A

is compact. The p-capacity of the condenser (D,A) is defined as

Capp(D,A) = inf
{∫

A

|∇u|p : u ∈ C0
0 (A) ∩W 1,p(A) and u > 1 on D

}
.

Definition. — The manifold M is p-parabolic if Capp(D,M) = 0
for all compact subsets D ⊂M and p-hyperbolic otherwise.

We have included in Section 7.2 below a brief discussion of this notion.

An answer to the first question above is the following Liouville type
theorem:

Theorem. — Let M and N be oriented n-dimensional Riemannian

manifolds and let f ∈W 1,n
loc (M,N) be a mapping with bounded s-distortion

with s > (n− 1). Assume that M is p-parabolic, where 1
p + n−1

s = 1. Then

either f is constant a.e. or N is also p-parabolic.

This result is a consequence of Theorem A and Corollary 7.1 in the
present paper; it is in fact proved for a wider class than W 1,n

loc (M,N).

In the special case of quasi-regular mappings (i.e. s = p = n), this
result has been obtained around 1968 by Y. Reshetnyak and, independently,
by O. Martio, S. Rickman and J. Väisälä (see [32] and [22]). At the end of
the paper we shortly recall the original argument of Reshetnyack.

Some answers to the other questions mentioned above are given in
Sections 2, 4 and 7.

The paper is organized as follow: In Section 2, we give some additional
definitions, state the main results of the paper and give some corollaries. In
Section 3 we recall some basic facts about Sobolev mappings, in Section 4
we discuss homeomorphisms with bounded s-distortion and in Section 5 we
prove a capacity inequality. After these preparations, we prove the main
theorems in Section 6. Finally, in Section 7, we give some complementary
information on mappings with bounded s-distortion.
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2. Definitions and statement of the results.

Throughout the paper M and N are oriented, connected n-dimensio-
nal Riemannian manifolds. We denote by dµ and dν the volume elements
of M and N respectively.

In order to state our results, we need some additional definitions:

Definitions. — (1) The map f has essentially finite multiplicity if

Nf (M) <∞, where

Nf (A) := ess supy Card(f−1(y) ∩A)

for any measurable subset A ⊂M .

(2) A continuous map is open and discrete if the image of any open

set U ⊂ M is an open set f(U) ⊂ N and the inverse image f−1(y) of any

point y ∈ N is a discrete subset of M . The branch set of such a mapping is

the set Bf ⊂M of points x ∈M such that f is not a local homeomorphism

in a neighborhood of x.

The next two definitions are regularity assumptions. They are always
satisfied if one assumes e.g. that f is locally Lipschitz, or that f ∈
W 1,s

loc (M,N) for s > n, or that f is locally quasi-regular.

(3) A measurable map f : M → N satisfies Lusin’s property if the

image of any set E ⊂ M of measure zero is a set f(E) ⊂ N of measure

zero.

An important and well-known result (see Proposition 3.2) states that
for any map f : M → N belonging to W 1,1

loc (M,N) there exists a sequence
of compact sets Ai ⊂M such that the restriction of f to each Ai is Lipschitz
and the complementary set Ef := M \ ∪iAi has measure zero. We call Ef

the exceptional set of f .

(4) The map f ∈ W 1,1
loc (M,N) is almost absolutely continuous if it

is continuous and for any bounded domain Ω b M the following property

holds: for any ε > 0 we can find δ = δ(Ω, ε) > 0 such that for any finite or

infinite sequence of pairwise disjoint balls {B(xi, ri)} contained in Ω with

center xi ∈ Ef , we have∑
vol(Bi) 6 δ =⇒

∑
diam(fBi)n < ε.

Remark. — The notion of almost absolute continuity appeared in
[41], [42]; it is a generalization of absolute continuity in the sense of Malý
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as defined in [19]. In particular any mapping in W 1,p
loc (M,N) with p > n

and any continuous mapping in W 1,n
loc (Rn,Rn) with monotone coordinate

functions is an example of almost absolutely continuous mapping, see [19].

In dimension 2, a mapping has bounded s-distortion if and only if
it has bounded s-codistortion. In higher dimension, we have the following
relation between distortion and codistortion:

Lemma 2.1. — Let f : M → N be a mapping with bounded s-

distortion for some s > n − 1, then f has bounded q-codistortion for

q = s/(n− 1).

Conversely, if f : M → N is a mapping with bounded q-codistortion

for some q < n−1
n−2 such that Jf > 0 a.e., then f has bounded s-distortion

for s = q
(n−1)−q(n−2) .

The exponents in this lemma are sharp.

Proof. — It is a trivial consequence of the inequalities

|Λn−1fx| 6 |dfx|n−1 and |dfx| Jf (x)n−2 6 |Λn−1fx|n−1.

tu

We now state the main results of the present paper:

Theorem A. — Let f ∈ W 1,s
loc (M,N) be a continuous open and

discrete mapping with bounded s-distortion, where s > (n− 1), satisfying

Lusin’s property. If M is p-parabolic with p = s
s−(n−1) , then N is also

p-parabolic.

Recall that a map f ∈ W 1,s
loc always satisfies Lusin’s property if

s > n. In Section 3 below we give other sufficient conditions. In Section
7.1 below, we will also give sufficient conditions for a continuous mapping
with bounded s-distortion to be discrete and open.

The next result is an analog of Theorem A. It holds without any
topological restrictions but assumes that f has finite essential multiplicity:

Theorem B. — Let f ∈ W 1,s
loc (M,N) be a mapping of essentially

finite multiplicity with bounded s-distortion where s > (n − 1). Assume

either

1) |Λn−1f | ∈ Ln/(n−1)
loc (M), or

2) f is almost absolutely continuous and Jf ∈ L1
loc(M).
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If M is p-parabolic with p = s
s−(n−1) , then either f is constant a.e.

or N is also p-parabolic.

In Theorem B (under assumption 2) no continuity is assumed. The
proofs of theorems A and B are based on quite different approaches; it
would be interesting to have a unified method proving both results.

Remark 1. — These results are sharp. They say for instance that
there is no mapping of finite essential multiplicity with bounded s-distortion
from the Euclidean space to the hyperbolic space for s > (n − 1). This is
optimal since the Riemannian exponential exp : Tx0Hn → Hn (where Hn is
the hyperbolic space) is a diffeomorphism with bounded (n−1)-distortion.
Other comments on the optimality of these results are given in [7].

Theorem B will be obtained as a consequence of the following result
on mappings with bounded codistortion:

Theorem C. — Let f : M → N be a mapping of essentially finite

multiplicity with bounded q-codistortion where q > 1. Suppose that Jf > 0
on some set of positive volume. Assume furthermore either

1) f ∈W 1,n−1
loc (M,N) and |Λn−1f | ∈ Ln/(n−1)

loc (M), or

2) f is almost absolutely continuous, f ∈ W 1,s
loc (M,N) for some

s > (n− 1) and Jf ∈ L1
loc(M).

If M is p-parabolic with p = q/(q − 1), then N is also p-parabolic.

Remark 2. — The condition that Jf > 0 on some set of positive
volume cannot be replaced by the weaker condition that f is not constant
a.e. For instance, look at the hyperbolic three-space in the upper-half
space model H3 = {(x, y, z) ∈ R3

∣∣ z > 0} (with metric tensor ds2 =
(dx2 + dy2 + dz2)/z2)). Then the mapping f : R3 → H3 given by
f(x, y, z) = (x, 0, 1) is of finite essential multiplicity and has bounded q-
codistortion for all q > 1. Yet H3 is p-hyperbolic for all p and R3 is
p-parabolic for all p > 3.

The next result goes in the other direction:

Theorem D. — Let f ∈W 1,1
loc (M,N) be a continuous non constant

proper mapping with bounded s-distortion of finite essential multiplicity.

If M is s-hyperbolic, then so is N .

Remark 3. — The hypothesis that f is proper is necessary. For
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instance if N is a compact manifold and M ⊂ N is an open domain whose
complement N \M has non empty interior, then N is s-parabolic for all s
and M is s-hyperbolic for all s ∈ [1,∞]. Yet the inclusion f : M ↪→ N has
bounded s-distortion for all s.

We now give some applications of our results. We begin by a Picard
type theorem for mappings with bounded s-distortion.

Corollary 2.1. — Let f : M → N be a continuous mapping with

bounded s-distortion, s > (n− 1) satisfying the hypothesis of Theorem A.

Assume that the manifold M is p-parabolic where p := s
s−(n−1) . Then f is

surjective if p > n, and the omitted set N \ f(M) has Hausdorff dimension

6 (n− p) if p 6 n.

Proof. — Observe that f actually maps M onto N ′ = f(M) (which
is an open subset of N). By Theorem A, the manifold N ′ is thus p-parabolic
and therefore the Hausdorff dimension of N \N ′ is 6 n− p. tu

For a quasiregular mapping on Euclidean space f : Rn → Rn, a
stronger result is due to S. Rickman. He proved that f omits at most
finitely many points (see theorem 2.1 in [34], chapter IV]).

Corollary 2.2. — Let f : M → N be an injective C1 mapping

with bounded q-codistortion. Assume that q < n
n−1 and that M is p-

parabolic with p = q
q−1 . Then f is a diffeomorphism.

For the proof of this corollary, will need a lemma. Recall that the
principal dilatation coefficients (or singular values) at x ∈M of a mapping
f ∈W 1,1

loc (M,N) are the square roots λ1 6 λ2 6 . . . 6 λn of the eigenvalues
of dfxdf

t
x; they are defined almost everywhere. Observe the following useful

inequalities:

|dfx| = λn, |Jf (x)| = λ1 · λ2 · · ·λn, |Λn−1fx| = λ2 · λ3 · · ·λn.

Lemma 2.2. — Let f : M → N be a mapping with bounded

q-codistortion. If q < n
n−1 then either Jf = 0 a.e. or there exists a

constant δ > 0 such that all the principal dilatation coefficients are almost

everywhere > δ.

Proof. — Let λ1 6 λ2 6 . . . 6 λn be the dilatation coefficients of f
at x. We have by hypothesis |Λn−1fx|q 6 K Jf (x) a.e., i.e. (λ2 ·λ3 · · ·λn)q 6
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K (λ1 ·λ2 · · ·λn). This implies λ(n−1)(q−1)
1 6 (λ2 ·λ3 · · ·λn)q−1 6 K λ1, from

which one obtains λ1 > K1/(n+q−nq), provided q < n
n−1 . tu

Proof of Corollary 2.2. — By the previous lemma, all principal di-
latation coefficients are bounded below, in particular f is a local diffeo-
morphism. Assume now that f is not surjective. Then there exists a point
y0 ∈ N \ f(M). Let N ′ := N \ {y0}, this is a p-hyperbolic manifold (since
p > n). By Theorem C, the manifold M must therefore be p-hyperbolic;
but this contradicts the hypothesis and we thus conclude that f is surjec-
tive. tu

If M = N = Rn, we don’t need to assume global injectivity in the
previous corollary.

Corollary 2.3. — Let f : Rn → Rn be a C1 mapping with

bounded q-codistortion where q < n
n−1 and such that Jf 6≡ 0. Then f

is a global diffeomorphism.

Proof. — By Lemma 2.2 all the eigenvalues of df t
xdft are uniformly

bounded below. We thus conclude from a recent theorem of M. Chamber-
land and G. Meister that f is injective (see [1], th. 1.1).

Now set p := q
q−1 , then p > n and hence Rn is p-parabolic. We

conclude the proof from the previous corollary. tu

We also have similar results for mappings with bounded s-distortion.

Corollary 2.4. — Let f : M → N be an injective C1 mapping

with bounded s-distortion.

Assume that (n − 1) < s < n and that M is p-parabolic with

p = s
s−(n−1) . Then f is a diffeomorphism.

The proof is similar to that of Corollary 2.2. tu

Corollary 2.5. — Let f : Rn → Rn be a non constant C1

mapping with bounded s-distortion where (n − 1) < s < n. Then f is

a global diffeomorphism.

Proof. — This is clear from Lemma 2.1 and the previous corolla-
ries. tu

This last result also holds for s = n > 3. Indeed, V.A. Zorich has
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proved that a quasi-regular mapping f : Rn → Rn, which is a local
homeomorphism is in fact a global homeomorphism provided n > 3, see
[46].

3. Calculus of Sobolev mappings.

Since a mapping f : M → Rm is given by its components which are
n functions: f = (f1, f2, . . . , fm), it is natural to say that f belongs to the
Sobolev space W 1,s

loc (M,Rm) if each component fi ∈W 1,s
loc (M,R).

In the case of a continuous mapping f : M → N between Riemannian
manifolds, we may define the condition f ∈W 1,s

loc (M,N) by the use of local
coordinates charts; however, such a procedure is in general not possible for
a discontinuous map and we have to proceed differently to define the class
of Sobolev mappings between Riemannian manifolds.

We follow the approach of [33], [42].

Definitions. — 1) The mapping f :M → N belongs to Ls
loc(M,N),

1 6 s 6 ∞, if and only if the function [f ]y : M → R, defined by

[f ]y(x) = d(f(x), y), is in Ls
loc(M,R) for all point y ∈ N .

2) The map f belongs to W 1,s
loc (M,N) if and only if [f ]y ∈W 1,s

loc (M,R)
and there exists a function g ∈ Ls

loc(M,R) such that |∇[f ]y|(x) 6 g(x) a.e.

in M for any point y ∈ N .

3) The map f belongs to ACLs
loc(M,N) if it satisfies the following

three conditions:

i) the function M 3 x → [f ]z(x) = d(f(x), z) belongs to Ls
loc(M) for

every point z ∈ N ;

ii) the mapping f : M → N is absolutely continuous on lines in the

following sense: for any coordinate chart ϕ : U → Rn on M , the

function

(x, τ) → gi(x, τ) := length (f ◦ ϕ−1([x, x+ τei]))

is absolutely continuous in the parameter τ for all i and almost all

x ∈ e⊥i .

iii) the derivative ∂igi : x→ lim
τ→+0

gi(x,τ)
τ , which exists almost everywhere

in U , belongs to Ls
loc(U) for all i.
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Proposition 3.1. — The following assertions are equivalent:

1) f ∈W 1,s
loc (M,N);

2) f ∈ ACLs
loc(M,N);

3) f ∈ Ls
loc(M,N) and there exists a function g ∈ Ls

loc(M,R)such

that for any Lipschitz function ψ : N → R, the function ϕ := ψ◦f : M → R
belongs to W 1,s

loc (M,R) and |∇ϕ(x)| 6 Lip (ψ) g(x) a.e. in M.

4) for any isometric embedding i : N → Rk all coordinate functions

of the composition i ◦ f belong to W 1,s
loc (M,R).

Proof. — The proof follows the order (1) ⇒(2)⇒(3)⇒(4)⇒(2). Ob-
serve that (3)⇒(1) is trivial since distance functions are 1-Lipschitz.

Then (1) ⇒(2) and (2)⇒(3) are proven in [42, Proposition 3] (notice
that (1)⇒(3) is also proven in [33, Theorem 5.1] by other arguments).

The proof of (4)⇒(2) is given in [34, Proposition 1.2] for the special
case N = Rn. Its extension to the case of a submanifold N ⊂ Rk is based
on the formula

gi(x, τ) =

τ∫
0

∣∣∣ d
dt

(f ◦ ϕ−1([x, x+ tei]))
∣∣∣ dt

which holds for all absolutely continuous curves in the Rk. The general
case now follows from the fact that any Riemannian manifold admits an
isometric embedding in some Euclidean space.

(3) ⇒(4). We consider an isometric embedding i : N → Rk and some
coordinate function zj in Rk. The restriction zj |N is a Lipschitz function
on N , thus the composition zj ◦ f belongs to W 1,s

loc (M,R). tu

The next proposition says that a Sobolev mapping is Lipschitz on a
big set.

Proposition 3.2. — Let f ∈ W 1,1
loc (M,N). Then there exists a

measurable decomposition M = Ef ∪ ∪∞i=1Ai such that µ(Ef ) = 0, Ai

is compact for all i and f |Ai
is Lipschitz.

Proof. — Using the previous proposition (assertion 4) we can reduce
the proof to the well-known Whitney’s approximation theorem for Sobolev
function (see e.g. [4, p. 254]). tu
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As a consequence of this proposition, we have the following version
of the change of variables formula for integrals (also known as the area

formula), recall that χA denotes the characteristic function of a set A ⊂M .

Proposition 3.3. — Let f ∈ W 1,1
loc (M,N) be a Sobolev mapping

between Riemannian manifolds of the same dimension. Then there exists

a subset Ef ⊂ M of measure zero such that for all measurable function

ψ : M → R+ we have∫
M

ψ(x) |Jf (x)| dµ(x) =
∫

N

 ∑
f(x)=y

ψ(x)χM\Ef
(x)

 dν(y).

If f satisfies Lusin’s property, then one may take E = ∅.

See e.g. [11] for a proof. tu

For the area formula to be useful, we need to work with mappings
having a locally integrable Jacobian. Observe in particular that if f ∈
W 1,1

loc (M,N) has bounded s-distortion and Jf ∈ L1
loc(M), then we have in

fact f ∈W 1,s
loc (M,N).

The next two lemmas give us sufficient conditions for the local
integrability of the Jacobian.

Lemma 3.1. — Let f : M → N be a mapping such that f ∈
W 1,1

loc (M,N) and |Λn−1f | ∈ Ln/(n−1)
loc (M). Then Jf ∈ L1

loc(M).

Proof. — This is a trivial consequence of the inequality Jf 6

|Λn−1f |n/(n−1). tu

Lemma 3.2. — If f ∈W 1,1
loc (M,N) is continuous and has essentially

finite multiplicity or is open and discrete, then Jf ∈ L1
loc(M).

Proof. — This follows directly from the area formula. tu

We now give sufficient conditions for Lusin’s property:

Lemma 3.3. — Let f : M → N be a mapping satisfying one of the

following conditions:

1) f ∈ W 1,s
loc (M,N) with s > (n − 1), Jf > 0 a.e. and |Λn−1f | ∈

L
n/(n−1)
loc (M);

2) f ∈W 1,1
loc (M,N) is almost absolutely continuous;

TOME 52 (2002), FASCICULE 6



1764 M. TROYANOV & S. VODOP’YANOV

3) f ∈W 1,n
loc (M,N) is continuous open and discrete.

Then it also satisfies Lusin’s property.

Under hypothesis (1) this is Theorem 5.3 in [26]; see also [43] for the
case s = n. In case (2), this is Theorem 8 from [41]. In case (3), this is a
result from [20]; see also [40] for a short proof. tu

We refer to [23] and [19] for further results on Lusin’s condition.

Proposition 3.4. — If the map f is continuous, open and discrete

and has bounded s-distortion for s > (n−1), then it is differentiable almost

everywhere.

See Lemma 4.4 in chapter VI of Rickman’s book [34] or Proposition
1 in [41] for a more general result. tu

Finally we will also need the following result about the exterior
differential of the pull-back of a (n− 1)-form:

Lemma 3.4. — Let f : M → N be a mapping satisfying one of the

following conditions:

1) f ∈W 1,n−1
loc (M,N) and |Λn−1f | ∈ Ln/(n−1)

loc (M);

2) f is almost absolutely continuous, f ∈ W 1,s
loc (M,N) for some

s > (n− 1) and Jf ∈ L1
loc(M).

Let β be a smooth (n−1)-form. Then α := f∗β ∈ L1
loc(M,Λn−1) and

dα = f∗(dβ).

This result is proved in [26, Th. 3.2] under the first hypothesis and in
[41, Th. 8] in the case of the second hypothesis tu

4. On homeomorphisms with bounded s-distortion.

In this section, we discuss the special case of homeomorphisms with
bounded s-distortion.

Definition. — The s-Dirichlet space of a Riemannian manifold M

is the space L1,s(M) of functions u ∈W 1,s
loc (M,R) such that

∫
M
|∇u|s dµ <

∞. This space is equipped with the semi-norm

‖u‖L1,s(M) = ‖∇u‖Ls(M) .
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If f : M → N is a homeomorphism and v : N → R is any function,
we denote by f∗v = v ◦ f its pull back on M . If u : M → R, we denote by
f]u = u ◦ f−1 : N → R its pushforward.

S. Vodop’yanov has proved the following result [38], [39] (see its
generalized version in [44, Theorems 1 and 9]):

Theorem 4.1. — Let f : M → N be a homeomorphism between

n-dimensional Riemannian manifolds. Fix s ∈ [1,∞), then the following

assertions are equivalent:

1) f∗ : L1,s(N) → L1,s(M) is a bounded operator;

2) f ∈ W 1,s
loc (M,N) and f has bounded s-distortion: |df(x)|s 6

KJf (x) a.e. x ∈M .

Moreover, if s ∈ (1,∞), then condition (1) or (2) are equivalent to

3) f−1 decreases the s-capacities of condensers up to a constant:

Caps(C,A) 6 const.Caps(f(C), f(A))

for any condensers (C,A) in M .

Finally, if s > (n− 1) and Lusin’s property holds, then any condition

(1)–(3) is equivalent to

4) f] : L1,p(M) → L1,p(N) is a bounded operator where p = s
s−(n−1) ,

and |df−1(y)|p 6 Kp−1Jf−1(y) a.e. y ∈ N , consequently f−1 has bounded

p-distortion.

Proof. — We only give a short proof of the second part of assertion
(4). By Proposition 3.4, the map f is differentiable a.e. and by [44, Theorem
9], we know that g := f−1 : N → M is ACL (see also Lemma 5.6 below).
Thus we have dgf(x) ◦ dfx = Id a.e. in M . Notice also that Jg(y) 6= 0
a.e. in N since f has Lusin’s property by hypothesis, we thus have almost
everywhere

|dgf(x)| 6
|dfx|n−1

Jf (x)
,

and therefore

|dgf(x)|p 6
(|dfx|s)

p(n−1)
s

Jp
f (x)

=
(
|dfx|s

Jf (x)

)p−1

J−1
f (x) 6 Kp−1Jg(f(x)).

tu

A useful consequence of this theorem is the following
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Corollary 4.1. — If f : M → N and g : N → W are homeomor-

phisms with bounded s-distortion, then g ◦ f : M → W also has bounded

s-distortion.

Special cases of the previous result where also obtained in [9.2 and
12.3], [24], [25, Section 6.4.3] and [30].

Definition. — The Royden algebra ofM is the subspaceRs(M) ⊂
L1,s(M) of bounded continuous functions; it is a Banach algebra with norm

‖u‖Rs = ‖u‖L∞ + ‖∇u‖Ls .

We denote by KR the norm of the operator f∗ : Rs(N) → Rs(M)
and by KL the norm of the operator f∗ : L1,s(N) → L1,s(M).

Proposition 4.1. — Suppose 1 < s <∞, then for any homeomor-

phism f : M → N we have KR = max{1,KL}.

We will need the following

Lemma 4.1. — Let v ∈ Rs(N) be a non constant function, and

fix ε > 0. If 1 < s < ∞, then for any t ∈ (α, β), where α := inf v and

β := sup v, there exists r = r(t, ε) > 0 such that r < min{t− α, β − t} and

(3) ε−1(t′′ − t′) 6 ‖max(min(v, t′′), t′)− t′‖L1,s(N)

for all t′, t′′ ∈ (α, β) such that t− r < t′ 6 t 6 t′′ < t+ r.

Proof. — Suppose the lemma false, then the function

vt′,t′′ :=
max(min(v, t′′), t′)− t′

t′′ − t′

satisfies ‖vt′,t′′‖L1,s(N) 6 1
ε for some ε > 0 and all t′, t′′ ∈ (α, β) such that

t − r < t′ 6 t 6 t′′ < t + r. Consider a bounded domain A ⊂ N such that
A0 := {x ∈ A : v(x) < t} and A1 := {x ∈ A : v(x) > t} are non empty
open subsets.

The family {vt′,t′′} is bounded in W 1,s(A) and hence weakly compact.
It follows that there is a sequence vn := vt′n,t′′n such that t′n 6 t 6 t′′n and
(t′′n − t′n) → 0, which converges weakly to some function w ∈ W 1,s(A).
We can furthermore assume that the sequence λn := t−t′n

t′′n−t′n
∈ [0, 1]

converges to some number λ. Using Mazur’s Lemma, we can produce convex
combinations of the vn converging strongly to w. Hence w = 0 a.e. on A0,
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w = 1 a.e. on A1 and w = λ a.e. on the level set At := {x ∈ A : v(x) = t}.
But then∇w = 0 a.e. in A, hence w is constant a.e. in A which is impossible
since A0 and A1 have positive measure. tu

Proof of Proposition 4.1. — Observe that KR > 1 since constant
functions belong to the Royden algebras. So we only need to prove the
inequalities KL 6 KR 6 max{1,KL}. Since f is a homeomorphism, f∗

defines an isometry f∗ : L∞(N) → L∞(M) and the inequality KR 6

max{1,KL} follows immediately.

To prove the inequality KL 6 KR it suffices, by density of Rs(N) in
L1,s(N), to show that

(4) ‖f∗v‖L1,s(M) 6 (1 + ε)KR ‖v‖L1,s(N)

for any ε > 0 and any function v ∈ Rs(N).

Set α := inf v and β := sup v. By compactness of the interval [α, β],
we can find a subdivision τ = {α = t0 < t1 < . . . < tl < tl+1 = β}, such
that (ti+1 − ti) < ri for i = 1, . . . , l − 1, where ri = r(t, ε) satisfies the
property of the previous lemma for some t ∈ (ti, ti+1).

Set vτ := α+
∑l−1

i=1 vi, where vi := max(min(v, ti+1), ti)− ti. By the
lemma we have ‖vi‖L∞ 6 ε ‖vi‖L1,s(N) for i = 1, . . . , l − 1, hence

‖f∗vτ‖s
L1,s(M) 6 ‖f∗vτ‖s

Rs(M) 6

l−1∑
i=0

‖f∗vi‖s
Rs(M)

6

l−1∑
i=0

Ks
R

(
‖vi‖L∞(N) + ‖vi‖L1,s(N)

)s

6 Ks
R(1 + ε)s

l−1∑
i=1

‖vi‖s
L1,s(N)

6 Ks
R(1 + ε)s ‖vτ‖s

L1,s(N)

because ‖vτ‖s
L1,s(N) =

∑l−1
i=1 ‖vi‖s

L1,s(N). The inequality (4) now follows
since ‖v − vτ‖L1,s(N) → 0 and ‖f∗v − f∗vτ‖L1,s(N) → 0 as max{t1 −
t0, tl+1 − tl} → 0. tu

Remark. — Pierre Pansu has defined in [28, p. 475] the notion of
homeomorphism of bounded s-dilatation as homeomorphism such that
KR 6 ∞. It follows from the results of this section that the definition
of homeomorphism of bounded s-dilatation used by Pansu, coincides with
our notion of homeomorphism with bounded s-distortion if 1 < s < ∞.
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It also follows from Theorem 4.1 that if f is a homeomorphism satisfying
Lusin’s property with bounded s-dilatation in Pansu’s sense, then f−1 is a
homeomorphism with bounded p-dilatation where 1/s+(n−1)/p = 1. This
gives a positive answer to question 10.3 in [28] in the case where Lusin’s
property holds.

5. Pushing functions forward.

The proof of Theorem A is based on a capacity estimate for the
pushforward operator (Corollary 5.1) which is important in itself. It is
the goal of this section to prove this capacity estimate.

Let f : M → N be a continuous mapping and u : M → R a
bounded function. We define the pushforward of u to be the function
v = f]u : N → R given by

v(y) :=
{

sup{u(x) : f(x) = y} if y ∈ f(M),
0 otherwise.

Lemma 5.1. — If f is continuous discrete and open, and u : M → R
is continuous with compact support, then the function v = f]u : N → R is

also continuous and supp v ⊂ f(suppu).

This is Lemma 7.6 in [22]. tu

If the mapping f has bounded s-distortion and u ∈ C1
0 (M,R) then

v = f]u belongs to W 1,p
loc (N,R) where p = s

s−(n−1) provided s > (n − 1).
More precisely:

Theorem 5.1. — Let f ∈ W 1,1
loc (M,N) be a continuous open and

discrete mapping with bounded s-distortion, (n−1) < s <∞. Assume also

that f satisfies Lusin’s property if n − 1 < s < n. Then the operator f#
possesses the following properties:

1) f] : C1
0 (M) →W 1,p(N) ∩ C0

0 (N),

2)
∫

N
|df](u)|p dν 6 Kp−1

∫
M
|du|p dµ, for any u ∈ C1

0 (M). where

p = s
s−n+1 and K is the constant in (1).

Remarks. — 1) If f is a continuous open mapping and f ∈
W 1,n

loc (M,N), then it always satisfies Lusin’s property [20] (see also [40]
for a short proof).
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2) This theorem is known for s = n (see [22]). It is also known for
general values of s when f is a homeomorphism [44]. Our proof will be
based on techniques borrowed from these two papers.

If f is continuous and open, then the image (f(C), f(A)) of a
condenser (C,A) in M is again a condenser in N .

Corollary 5.1. — For any condenser (C,A) in M we have

Capp(f(C), f(A))) 6 Kp−1 Capp(C,A).

tu

Proof. — Choose a non negative function u ∈ C1
0 (M) such that

u = 1 on C, supp(u) ⊂ A and
∫

A
|du|p 6 Capp(C,A) + ε where ε > 0

is arbitrary.

Let us set v = f]u : N → R. Then, by Theorem 5.1 we have
v ∈W 1,p(A) ∩ C0

0 (A). Since v > 1 on C, we have

Capp(fC, fA) 6

∫
fA

|dv|p 6 Kp−1

∫
A

|du|p 6 Kp−1(Capp(C,A) + ε).

tu

We begin the proof of Theorem 5.1 by some lemmas on capacities of
condensers:

Lemma 5.2. — The inequality

Caps(C,A) 6
|A|

dist(C, ∂A)s

holds for the capacity of any bounded condenser (C,A) ⊂ Rn.

Proof. — Take u(x) := min
{

dist(∂A,x)
dist(∂A,C) , 1

}
as a test function. tu

Lemma 5.3. — Let (C,A) ⊂ Rn be a condenser such that C is

connected. If (n− 1) < s <∞, then

Capn−1
s (C,A) > b(n, s) (diamC)s |A|(n−1−s)

where the constant b(n, s) depends on n and s only.

Proof. — See Lemma 5 of [44]. tu
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Recall that a domain Ω ⊂M is said to be a normal domain for f if Ω
is compact and ∂(f(Ω)) = f(∂Ω). For any normal domain Ω ⊂M we have
Nf (Ω) < ∞. A condenser (C,A) is a normal condenser if A is a normal
domain of f .

Lemma 5.4. — If Ω ⊂ M is a normal domain then Caps(C,A) 6

KNf (Ω) Caps f(C,A) for any condenser (C,A) in Ω.

This is a direct consequence of Lemma 6.2 below. See also [44,
Th. 4]. tu

The next lemma sums up the basic topological properties of a discrete
and open mapping f : M → N . If x ∈ M and r > 0, then we denote by
U(x, f, r) the connected component of f−1(B(f(x), r)) containing x.

Lemma 5.5. — Let f : M → N be a continuous discrete and open

mapping. Then limr→0 diamU(x, f, r) = 0 for every x ∈M . If U(x, f, r) is

compact then U(x, f, r) is a normal domain and f(U(x, f, r)) = B(f(x), r).
Furthermore, for every point x ∈ N there is a positive number σx such that

the following conditions are satisfied for 0 < r 6 σx:

i) U(x, f, r) is a normal neighborhood of x,

ii) U(x, f, r) = U(x, f, σx) ∩ f−1(B(f(x), r)),

iii) ∂U(x, f, r) = U(x, f, σx) ∩ f−1(S(f(x), r)) if r < σx,

iv) M \ U(x, f, r) is connected if M is connected,

v) M \ U(x, f, r) is connected if M is connected,

vi) if 0 < r < s 6 σx, then U(x, f, r) ⊂ U(x, f, s), and U(x, f, s) \
U(x, f, r) is a ring.

See [22], [34] or [12] for a proof. tu

Lemma 5.6. — Let f : M → N be as in Theorem 5.1 and

u ∈ C1
0 (M). Then the function v = f]u is ACL.

Recall that a function v : N → R is absolutely continuous on lines

(ACL) if for any local parametrization ϕ : Q → N (where Q = {y ∈ Rn :
ai 6 yi 6 bi} ⊂ Rn is some n-interval) and for almost all z ∈ Pk(Q) (=
the projection of Q on the hyperplane yk = 0), the one-variable function
t→ v(ϕ(z + tek)) is absolutely continuous.
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Proof. — Let us fix some notations. Fix a local parametrization
ϕ : Q → N (where Q = {t ∈ Rn : ai 6 ti 6 bi} ⊂ Rn is some closed
n-interval). Choose Q small enough so that for any ball B(y, r) ⊂ ϕ(Q)
the domains Ui := U(xi, f, r) are disjoint normal neighborhoods of xi for
1 6 i 6 q where {x1, . . . , xq} = f−1(y) ∩ suppu.

The function v ◦ ϕ−1 will be simply denoted by v : Q→ R. We need
to show that for any l = 1, . . . , n and for almost all z ∈ Pl(Q), the function
v is absolutely continuous on the line segment βz : [al, bl] → Q defined by
βz(t) = z + tel.

To this aim, we define a set function ϕ on Pl(Q) by

Φ(A) :=
∣∣U ∩ f−1 (ϕ(A× [al, bl]))

∣∣
where U = ∪q

i=1Ui and A ⊂ Pl(Q) is any Borel set. Then Φ is a completely
additive set function in Pl(Q) and from Lebesgue’s differentiation theorem,
we know that Φ′(z) <∞ for almost all z ∈ Pl(Q).

It is known (see [22, Lemma 2.7]) that for every point x0 ∈ U ∩
f−1(z + alel) there exists a path α : [al, bl] → U such that α(al) = x0 and
f ◦α = ϕ ◦ βz. We call such a path a lift of βz(t) = z+ tel with base point
x0; clearly the number of lifts does not exceed Nf (U).

Claim. — Let α : [al, bl] → U be any lift of βz. If Φ′(z) <∞, then

α is absolutely continuous.

Since the ACL-property is local it suffices to show that α is ACL in
a neighborhood of every point. We may thus restrict our considerations to
the case of mappings f : U → Q where U is a bounded domain in Rn.

To prove the claim, we fix some arbitrary pairwise disjoint closed
segments ∆1, . . . ,∆k ⊂ (al, bl) of lengths b1, . . . , bk. Choose r > 0 small
enough so that the sets

Ri := {y ∈ Rn|dist(y,∆i) < r}
are pairwise disjoint. Let Ti :=

⋃
z∈∆i

U(α(z), f, r), then (α(∆i), Ti) and
(∆i, Ri) are condensers and (∆i, Ri) = (f(α(∆i)), f(Ti)); indeed, we have
f(α(∆i)) = ∆i and

f(Ti) = f
( ⋃

z∈∆i

U(α(z), f, r)
)

=
⋃

z∈∆i

B(z, f, r) = Ri.

From Lemmas 5.2 and 5.3, we have

Caps(∆i, Ri) 6
|Ri|
rs

6 c1bir
n−1−s
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and

Caps(α(∆i), Ti) > c2
(diamα(∆i))s/(n−1)

|Ti|(1−n+s)/(n−1)
.

These inequalities, together with Lemma 5.4, imply

diamα(∆i) 6 c3 b
n−1

s
i

(
|U ∩ Ti|
rn−1

) 1−n+s
s

where the constant c3 depends on previous constants, K and Nf (suppu).

Set E(z, r) = {y ∈ Q : dist(y, βz([ai, bi])) < r}, then
⋃k

i=1 Ti ⊂
f−1(E(z, r)). Summing the previous inequality over i = 1, . . . , k and
applying Hölder’s inequality we obtain

k∑
i=1

diamα(∆i) 6 c4

(
|U ∩ f−1(E(z, r))|

rn−1

) 1−n+s
s

(
k∑

i=1

bi

)n−1
s

.

Letting r → 0, we find that

k∑
i=1

diamα(∆i) 6 c5 ϕ
′(z)

(
k∑

i=1

bi

)n−1
s

,

hence α is absolutely continuous if ϕ′(z) <∞.

We now conclude the proof of the lemma as follows: Let α1, α2, ...αd

be all the lifts of the segment βz. If Φ′(z) < ∞, then u ◦ αi is absolutely
continuous since u is C1 and αi is absolutely continuous. We conclude that
v ◦ βz is absolutely continuous since

v ◦ βz = max
i
u ◦ αi.

tu

Lemma 5.7. — Let f : M → N be as in Theorem 5.1, then Jf = 0
almost everywhere on the branch set and the image of the branch set has

measure zero.

Proof. — Because f has bounded s-distortion and s > (n − 1),
f ∈W 1,s

loc , it then follows from 3.4 that f is differentiable almost everywhere.

Suppose that f is differentiable at x and Jf (x) > 0, then the index
j(x, f) = 1 (because the map is continuous open and discrete and the
topological degree is stable under homotopy, see e.g. pp. 15-21 in [34]).

If j(x, f) = 1, then x /∈ Bf (see [34, Proposition 4.10]); it follows that
Jf = 0 a.e. on Bf .
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Because f is assumed to satisfy Lusin’s property, we can use the area
formula (Proposition 3.3) to conclude that f(Bf ) has measure zero:

ν(f(Bf )) 6

∫
N

 ∑
f(x)=y

χBf (x)

 dν(y) =
∫

M

χBf (x)Jf (x)dµ(x) = 0.

tu

Proof of Theorem 5.1. — To conclude the proof of the theorem it
only remains to check the integrability of dv. To do this we first observe
that Vitali’s covering Theorem implies

supp v \ f(Bf ∩ suppu) ⊂
∞⋃

i=1

B(yi, ri) ∪A,

where Bf is the branch set of f , A ⊂ N is a set with ν(A) = 0 and B(yi, ri),
i ∈ N, are mutually disjoint balls small enough so that the components of
f−1(B(yi, ri)) which meet the support of u form a finite disjoint collection
Di1 , Di2 , . . . , Dik

of open subsets of M such the restrictions of f define
homeomorphisms fj : Dij

→ B(yi, ri), j = 1, . . . k.

By Theorem 4.1, the inverse of fi, i.e. the map gj := f−1
j : B(yi, ri) →

Dij
is ACL, furthermore, we have |dgj |p 6 Kp−1Jgj

a.e. Hence we obtain

|dv(z)|p 6 max
16j6k

|du(gj(z))|p|dgj(z)|p 6 Kp−1
k∑

j=1

|du(gj(z))|pJgi
(z)

for almost every z ∈ B(yi, ri). This implies

∫
B(yi,ri)

|dv(z)|p dν 6 Kp−1
k∑

j=1

∫
B(yi,ri)

|du(gj(z))|pJ(z, gj) dν 6 Kp−1·∫
f−1(B(yi,ri))

|du|p dµ.

From Lemma 5.7, we know that ν(f(Bf )) = 0 and Jf = 0 a.e. on Bf ; we
thus have from the area formula∫

N

|dv(z)|p dν =
∞∑

i=1

∫
B(yi,ri)

|dv(z)|p dν 6 Kp−1
∞∑

i=1

∫
f−1(B(yi,ri))

|du|p dµ

6 Kp−1

∫
M

|du|p dµ.

tu

TOME 52 (2002), FASCICULE 6



1774 M. TROYANOV & S. VODOP’YANOV

6. Proofs of the main theorems.

6.1. Proof of Theorem A.

Let us recall the statement :

Theorem A. — Let f ∈ W 1,1
loc (M,N) be a continuous open and

discrete mapping with bounded s-distortion where s > (n − 1). Assume

also that f satisfies Lusin’s property. If M is p-parabolic with p = s
s−(n−1) ,

then N is also p-parabolic.

Proof. — Let D ⊂M be a compact subset with non empty interior.
Because f is a continuous and open map, f(D) ⊂ N is also a compact set
with non empty interior. By Corollary 5.1 we have

Capp(f(D), N) 6 Capp(f(D), fM) 6 Kp−1 Capp(D,M),

hence if M is p-parabolic then so is N . tu

6.2. Proofs of Theorems C and B.

The proofs will use the following criterion for hyperbolicity which is
due to V. Gol’dshtein and M. Troyanov (see [9]).

Theorem 6.1. — Let M be an oriented connected Riemannian

manifold M. Then the following are equivalent
(

1
p + 1

q = 1
)
:

1) M is p-hyperbolic;

2) there exists a smooth form α ∈ Lq(M,Λn−1) such that dα > 0
and

∫
M
dα 6= 0;

3) there exists a form α ∈ Lq(M,Λn−1) such that dα > 0 and∫
M
dα 6= 0;

4) Hn
comp,q(M) = 0.

tu

The cohomology space Hn
comp,q(M) is the space of all closed differ-

ential forms of degree n with compact support modulo the differential of
(n− 1)-forms in Lq.
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We will also need the following lemma :

Lemma 6.1. — Let f : M → N be a mapping of class W 1,1
loc with

essentially finite multiplicity and bounded q-codistortion: |Λn−1f |q 6 K Jf .

Then

Λn−1f : Lq(N,Λn−1) → Lq(M,Λn−1)

is a bounded operator with norm 6 (K ·Nf (M))1/q
.

(Recall that Nf (A) = ess supy Card(A∩ f−1(y)) for any set A ⊂M .)

Proof. — Let β ∈ Lq(N,Λn−1), then∫
M

|Λn−1f(β)|qdµ 6 K

∫
M

|βf(x)|qJf (x) dµ

= K

∫
N

 ∑
f(x)=y

|βf(x)|q χM\Ef
(x)

 dν

6 (K ·Nf (M))
∫

N

|β|qdν.

tu

We now prove Theorem C; we restate it in the following form:

Theorem C. — Let f : M → N be a mapping of essentially finite

multiplicity with bounded q-codistortion where q > 1 and such that Jf > 0
on some set of positive measure. Assume furthermore either

1) f ∈W 1,n−1
loc (M,N) and |Λn−1f | ∈ Ln/(n−1)

loc (M), or

2) f is almost absolutely continuous, f ∈ W 1,s
loc (M,N) for some

s > (n− 1) and Jf ∈ L1
loc(M).

If N is p-hyperbolic with p = q
q−1 , then M is also p-hyperbolic

Proof. — Let us choose a bounded Borel set U ⊂ M such that U
has positive measure, f(U) is bounded and Jf > 0 on U . Observe that, by
the area formula, ν(f(U)) > 0.

Choose a non negative smooth function h : N → R with compact
support and such that h > 0 in a neighborhood of f(U). Since N is
p-hyperbolic, Hn

comp,q(N) = 0, hence there exists an (n − 1)-form β ∈
Lq(N,Λn−1) such that dβ = h · ωN (ωM and ωN are the volume forms of
M and N respectively).
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By Lemma 6.1, we have α := f∗β ∈ Lq(M,Λn−1). We then have from
Lemma 3.4

dα = f∗(dβ) = (h ◦ f) · f∗ωN = (h ◦ f) · Jf ωM .

Thus dα > 0 and
∫

M
dα >

∫
U

(h◦f)·Jf dµ > 0 and we conclude by Theorem
6.1 that M is p -hyperbolic. tu

Finally, we deduce Theorem B from Theorem C.

Theorem B. — Let f ∈ W 1,s
loc (M,N) be a mapping of essentially

finite multiplicity with bounded s-distortion where s > (n − 1). Assume

either

1) |Λn−1f | ∈ Ln/(n−1)
loc (M), or

2) f is almost absolutely continuous and Jf ∈ L1
loc(M).

If M is p-parabolic and N is p-hyperbolic with p = s/(s − (n − 1)),
then f is constant a.e.

Proof. — Let q = p/(p − 1). Then s = q(n − 1) and from Lemma
2.1 we know that if f has bounded s-distortion, then it has bounded q-
codistortion. Hence by Theorem C, we have Jf = 0 a.e. and thus |df | = 0
a.e. since |df |s 6 KJf . As f is a Sobolev mapping, we conclude that f is
constant a.e. tu

6.3. Proof of Theorem D.

Lemma 6.2. — Let f ∈ W 1,1
loc (M,N) be a mapping with bounded

s-distortion and essential finite multiplicity. Then f∗ : L1,s(N) → L1,s(M)
is a bounded operator with operator norm at most (KNf (M))1/s

.

Proof. — Let us first consider a function v ∈ C1(N) ∩ L1,s(M).
Then u := f∗v ∈ W 1,1

loc (M) and dux = df t
x(dvf(x)). Hence we have almost

everywhere |du|s 6 |dv|s|df |s 6 K|dv|s Jf . From the area formula we thus
obtain ∫

M

|dux|s dµ(x) 6 K

∫
M

|dvf(x)|sJf (x) dµ(x)

= K

∫
N

 ∑
f(x)=y

|dvf(x)|s χM\Ef
(x)

 dν(y)

6 KNf (M)
∫

N

|dv|s dν(y).
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Thus u ∈ L1,s(M) and ‖u‖L1,s(M) 6 (KNf (M))1/p ‖v‖L1,s(N).

Using the argument on page 673 of [44], we can extend this estimate
from functions v ∈ C1(N) ∩ L1,s(M) to all functions v ∈ L1,s(N). This
proves that the norm of the operator f∗ : L1,s(N) → L1,s(M) is bounded
by (KNf (M))1/s. tu

Recall the statement of Theorem D:

Theorem D. — Let f ∈W 1,1
loc (M,N) be a continuous non constant

proper mapping with bounded s-distortion of finite essential multiplicity.

If N is s-parabolic then so is M .

Proof. — Let D b M be a compact set; then D′ = f(D) ⊂ N is also
compact and, by hypothesis, it has zero p-capacity. For each ε > 0, one
can thus find a continuous function v ∈ L1,s(N) with compact support and
such that v ≡ 1 on D′ and

∫
N
|dv|s 6 ε.

Since f is a proper map, the function u := f∗(v) also has compact
support and, clearly, u ≡ 1 on D. Let A be the norm of the operator
f∗ : L1,s(N) → L1,s(M); we know by Lemma 6.2 that A is finite. We then
have

∫
M
|du|s 6 As

∫
N
|dv|s 6 Asε. Hence D has zero p-capacity and we

conclude that M is p-parabolic. tu

7. Complements.

7.1. A topological result.

A famous theorem of Yu. Reshetnyak states that a non constant quasi-
regular mapping is open and discrete. We formulate below a generalization
of this theorem established recently by S. Vodop’yanov’s in [41], which
provides topological properties for mappings with integrable distortion.

Theorem 7.1. — Let f ∈ W 1,1
loc (M,N) be a continuous non con-

stant mapping with nonnegative Jacobian Jf (x) > 0 and K(x) = |dfx|n
Jf (x) ∈

Lp
loc(M) for some n− 1 < p 6 ∞. Assume either

1) |Λn−1f | ∈ Ln/(n−1)
loc (M), or

2) f is almost absolutely continuous and Jf ∈ L1
loc(M).

Then f is discrete and open.
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Remarks. — 1) If the manifolds are two-dimensional, then the con-
dition n− 1 < p 6 n, can be relaxed to 1 6 p 6 2.

(2) This result was also proven in [13] and [21] under the assumption
f ∈ W 1,n

loc (M,N). It has been also recently proved in [18] under different
analytical assumptions.

As a consequence of Theorem 7.1 we obtain topological properties for
mappings with bounded s-distortion. The next assertion gives a positive
answer to the question 10.8 of [28].

Corollary 7.1. — Let f ∈ W 1,1
loc (M,N) be a continuous non

constant mapping with bounded s-distortion where n− 1 < s 6 n. Assume

either

1) |Λn−1f | ∈ Ln/(n−1)
loc (M), or

2) f is almost absolutely continuous and Jf ∈ L1
loc(M).

Then f is discrete and open.

Remark. — This result does not hold if s > n. Consider for instance
the map f : Rn → Rn given by

f(x) =


0 if |x| 6 1,

‖x| − 1|α x
|x| if 1 6 |x| 6 2,

||x| − 1| x
|x| if |x| > 2,

for some α > 1. Then f is Lipschitz and has bounded s-distortion for
s = nα−1

α−1 > n. Clearly f is neither open nor discrete; however f has finite
essential multiplicity.

Proof. — We suppose that |df |s 6 CJf a.e. for some n− 1 < s < n.

Let us define the function

Kf (x) =
{
|dfx|n
Jf (x) if Jf (x) 6= 0,
1 else.

Set p = s
n−s , we have at almost all points where Jf (x) 6= 0,

|Kf |p =
|df|np

Jp
f

6 Cnp/s
J

np/s
f

Jp
f

= Cnp/sJ
p(n/s−1)
f 6 Cnp/sJf .

Thus Kf ∈ Lp
loc. Since n − s < 1, we have p > s > n − 1 and we can

conclude the proof from Theorem 7.1. tu
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Corollary 7.2. — Let f ∈ W 1,1
loc (M,N) be a mapping with

bounded q-codistortion where

(5)
(n− 1)2

1 + (n− 1)(n− 2)
< q 6

n(n− 1)
1 + n(n− 2)

.

Assume that Jf > 0 a.e. and either

1) |Λn−1f | ∈ Ln/(n−1)
loc (M), or

2) f is almost absolutely continuous and Jf ∈ L1
loc(M).

Then f is discrete and open.

Proof. — By Lemma 2.1, f has bounded s-distortion for s =
q

(n−1)−q(n−2) ; observe that the inequalities (5) are equivalent to n − 1 <

s 6 n. Thus the corollary follows from Corollary 7.1. tu

7.2. On p-parabolic manifolds.

A connected oriented Riemannian n-manifold M is called p-parabolic,
1 6 p < ∞, if Capp(C,M) = 0 for all compact subsets C b M and
p-hyperbolic otherwise. In this section, we list some facts concerning p-
parabolicity. We refer to [37], [10], and [45] for further information on this
notion.

a) If M contains one compact subset with nonempty interior having zero
p-capacity then M is p-parabolic.

b) The Euclidean space Rn is p-hyperbolic for p < n and p-parabolic for
any p > n.

c) If M is p-hyperbolic, then any domain Ω ⊂M is also p-hyperbolic.

d) If a closed subset S ⊂ M with Hausdorff dimension > (n − p) is
removed from any manifold M and if M \S is connected, then M \S
is p-hyperbolic.

e) In particular, if one removes a point x0, then M \{x0} is p-hyperbolic
for all p > n and if one removes a non separating closed subset with
nonempty interior D ⊂M, then M \D is p-hyperbolic for all p > 1.

f) If the manifold is complete and Vol(B(x0, r)) 6 const. rd then M is
p-parabolic for any p > d (finer estimates relating the volume growth
to parabolicity are in fact available).
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g) If the isoperimetric inequality

Area(∂Ω)d/(d−1) > const.Vol(Ω)

holds for any big smooth domain Ω ⊂M , then M is p-hyperbolic for
p < d.

h) Suppose that a Sobolev inequality

‖u‖Lq 6 const. ‖∇u‖Lp

holds for some 1 6 q 6 ∞ and all functions u ∈ C1
0 (M). Then M is

p-hyperbolic.

Recall that the p-Laplacian is the operator ∆pu := div(|∇u|p−2∇u).
A function is called p-superharmonic if ∆pu 6 0.

i) M is p-parabolic if and only if every positive p-superharmonic func-
tion on M is constant.

j) M is p-hyperbolic if and only if there exists a positive Green function
for the p-Laplacian.

k) M is 2-hyperbolic if and only if the Brownian motion is transient.

l) If M has finite volume, then there exists a number d ∈ [1,∞] such
that M is p-parabolic for 1 6 p < d and p-hyperbolic for p > d.

m) For a non compact manifold with bounded geometry, we have the
opposite behaviour: there exists a index d , called the parabolic

dimension of M , such that M is p-hyperbolic for 1 6 p < d and
p-parabolic for p > d.

n) The parabolic dimension is a quasi-isometric invariant of manifolds
with bounded geometry.

o) n-parabolicity is a quasi-conformal invariant for any manifolds.

Proof. — The proofs of (a)-(h) and (l)-(n) can be found in [37]. The
proofs of (i) and (j) are in [14] (see also [17]). We refer to [10] for (k) and
[45] for (o).

7.3. An improvement of a result by Pierre Pansu.

The following result gives an improvement of our Theorem B for
Sobolev homeomorphisms with Lusin’s property between manifolds with
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bounded geometry. It was proved by P. Pansu for diffeomorphisms, see [28,
corollaire 2.1].

Theorem. — Let M and N be Riemannian manifolds with boun-

ded geometry, and assume that N satisfies an isoperimetric inequality of

order d > n:

Area(∂Ω)d/(d−1) > const.Vol(Ω)

for all smooth compact domain Ω ⊂ N of volume > 1 (in particular N is

n-hyperbolic).

If dn−1
d−1 < s < n, then every homeomorphism f ∈ W 1,1

loc (M,N) with

bounded s-distortion satisfying Lusin’s property is a rough quasi-isometry.

Proof. — We know that if f has bounded s-distortion, s > (n − 1)
and satisfies Lusin’s property, then f−1 has bounded p-distortion where
p = s

s−(n−1) (see Theorem 4.1 and the Remark at the end of Section 4).
The above theorem thus follows from [28, Théorème 1].

7.4. On Reshetnyak’s proof
for the case of quasi-regular mappings.

In order to illustrate the alternative approach based on methods of
non-linear potential theory, we give a short proof of Liouville’s theorem for
quasi-regular mappings along Reshetnyak’s ideas.

Theorem. — Let f : M → N be a non constant quasi-regular

mapping between oriented n-dimensional Riemannian manifolds. Assume

that M is n-parabolic, then so is N .

Proof. — Assume that f : M → N is a non constant quasi-regular
mapping, then it is known (see [31, Th. 6.4, chap. II]) that f is an open map;
in particular N ′ := f(M) ⊂ N is open. If N is n-hyperbolic, then so is N ′

and, by [14, Th. 5.2], we know that there exists a non constant positive n-
superharmonic function v : N ′ → R. The function u = f∗v = v◦f : M → R
is then A-superharmonic where A is the pull back to M of the operator
TN ′ → TN ′ given by η → |η|n−2η (see [31, Th. 11.2, chap. II] or [12, Th.
14.42]). By [14, Th. 5.2] again, one concludes that M is also n-hyperbolic,
contradicting the hypothesis. tu
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Final remarks. — 1) The argument of Martio, Väisälä and Rickman
are based on capacity estimates in the spirit of our proof of Theorem A
(see [22]).

2) Another proof can be found in [3]. This paper gives other obstruc-
tions to the existence of quasi-regular mappings.
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