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Abstract We consider the Stokes problem in an axisymmetric three-dimensional
domain with data which are axisymmetric and have angular component equal
to zero. We observe that the solution is also axisymmetric and the velocity has
also zero angular component, hence the solution satisfies a system of equa-
tions in the meridian domain. The weak three-dimensional problem reduces
to a two-dimensional one with weighted integrals. The latter is discretized by
Taylor–Hood type finite elements. A weighted Clément operator is defined
and approximation results are proved. This operator is then used to derive the
discrete inf–sup condition and optimal a priori error estimates.

Mathematics Subject Classification 35N30 · 35Q30 · 46E35 · 6N10 · 76D07

1 Introduction

Numerical simulation of three-dimensional flows with finite elements may fea-
ture a very high computational complexity. Reducing the dimension of the
problem is sometimes of paramount interest. A simple approach consists of
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using Stokes equations in two dimensions and solve them with finite elements.
This majorly reduces the size of the problem, but several three-dimensional
features are not present in the model. If the problem is set in a domain which
is symmetric by rotation around an axis, it is proved in [4] that, when using a
Fourier expansion with respect to the angular variable, the three-dimensional
problem is equivalent to a system of two-dimensional problems on the meridian
domain, each problem being satisfied by a Fourier coefficient of the solution.
So it is possible to reduce its size without losing three-dimensional features.

Here we are going to present an axisymmetric model which supposes data
with angular component equal to zero. The advantage is that its discretization
results in a linear system of the same size as a two-dimensional one. In this case,
all the Fourier coefficients of the solution but the one of order zero vanish. So
the number of unknowns in its discretization is the same as in the Cartesian two-
dimensional one. The only further difficulty is that the variational formulation
requires weighted Sobolev spaces.

For the discretization of the Stokes problem we have chosen to work with
Taylor–Hood finite elements, also called P1isoP2/P1 elements: The approxima-
tion of the pressure makes use of continuous piecewise affine functions and
the approximation of the velocity relies also on continuous piecewise affine
functions but on a finer mesh. We refer to [14,16] for the numerical analysis of
the discretization by other types of finite elements in a similar framework.

As usual, the numerical analysis of the discrete problem relies on an inf–sup
condition of Babuška [1] and Brezzi [6] type. For the analogous discretization
of the two-dimensional Stokes problem in the Cartesian case, Bercovier and
Pironneau in [2] prove an inf–sup condition and Verfürth in [15] refines the anal-
ysis of these elements. Our aim is to extend these results to the axisymmetric
case.

The proof of the inf–sup condition in [15] needs a very accurate approx-
imation property of the discrete spaces, involving both the usual Lagrange
interpolation operator and the Clément projection operator (see [8]). One of
the main parts of this paper is devoted to the extension of the properties of
these operators to the weighted Sobolev spaces. A first work in this subject
is due to Mercier and Raugel (see [13]). However the results therein are not
sufficient for our needs.

Once these results are established we prove an optimal inf–sup condition
between discrete spaces and optimal a priori error estimates.

An extension of these results to Navier–Stokes equations may be found in [9]
and an other extension to the case of non-axisymmetric solutions issued from
non-axisymmetric data is under consideration.

The outline of the paper is as follows:

– In Sect. 2 we introduce the basic assumptions and the Stokes problem in
the axisymmetric framework. Then we recall the definition of the weighted
Sobolev spaces and some of their properties. This allows to write the vari-
ational formulation of the Stokes problem in the meridian domain. At the
end of the section, the finite element formulation is presented.
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– In Sect. 3 we prove weighted inverse inequalities for the finite element
functions.

– Sect. 4 is devoted to the definition of weighted Clément operators and the
proof of some of their fundamental properties.

– In Sect. 5 we prove the discrete inf–sup condition related to the Taylor–Hood
elements and a priori error estimates.

2 Axisymmetric Stokes equations

In this section we introduce the model, the notation and we recall some results
from [4].

2.1 Model description

We are interested in modeling a flow through a domain �̆ symmetric with
respect to the z axis (see Fig. 1). We use cylindrical coordinates (r, θ , z) and we
note � the half section (r, 0, z). On the boundary �̆ of the physical domain �̆

we impose a Dirichlet boundary condition. � notes the half section of �̆ and �0
the intersection of �̆ with the axis, such that ∂� is the union of � and �0. All
vector fields on �̆ are expressed in cylindrical coordinates.

The fluid is modeled by Stokes equations in the domain �̆ and we suppose
that the boundary condition and the external forces are axisymmetric and that
their angular component is zero.

Scalar functions p̆ or vector fields ŭ on �̆ are axisymmetric (with respect to
the z-axis) if for any rotation Rη around the z-axis and arbitrary angle η in
[−π , π), it holds

Fig. 1 The axisymmetric domain �̆ and its half section �
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p̆ ◦ Rη = p̆,

R−η

(
ŭ ◦ Rη

) = ŭ.

In particular each cylindrical component of ŭ is also axisymmetric.
An axisymmetric function p̆ on �̆ depends only on the radial and axial

coordinates, therefore we associate a function p on � such that p(r, z) =
p̆(r, 0, z). An axisymmetric vector field ŭ depends on (r, z). For any vector field
ŭ, we denote by ŭr, ŭθ , ŭz its radial, angular and axial components. If it has zero
angular component (ŭθ = 0), we associate a vector field u = (ur, uz) on � such
that ur = ŭr and uz = ŭz.

2.2 The Stokes problem and its weak form

Suppose that the axisymmetric domain �̆ is bounded, has a Lipschitz–
continuous boundary, that �0 is a finite union of segments of positive length
and that the data are axisymmetric with zero angular component.

The stationary homogeneous three-dimensional Stokes problem reads

⎧
⎪⎨

⎪⎩

−ν	ŭ + ∇p̆ = f̆ in �̆,
div ŭ = 0 in �̆,
ŭ = 0 on ∂�̆,

(1)

where f̆ is in H−1(�̆)3. For simplicity we have chosen to work with zero bound-
ary data, however the further analysis extends without difficulty to axisymmet-
ric boundary data ğ with zero angular component and zero flux through ∂�̆.
Differential equation (1) writes in weak form as:

Find (ŭ, p̆) in H1
0(�̆)3 × L2

0(�̆) such that for all (v̆, q̆) in H1
0(�̆)3 × L2

0(�̆)

⎧
⎨

⎩

ă(ŭ, v̆) + b̆(v̆, p̆) = ∫

�̆

f̆ · v̆ dx̆,

b̆(ŭ, q̆) = 0,
(2)

where the bilinear forms ă and b̆ are defined as

ă(ŭ, v̆) = ν
∫

�̆

(∇ŭ : ∇v̆
)

dx̆,

b̆(ŭ, q̆) = − ∫
�̆

(div ŭ) q̆ dx̆,

H1
0(�̆) stands for the space of functions in H1(�̆) with zero trace and L2

0(�̆) for
the space of functions in L2(�̆) with integral equal to zero.

Bernardi et al. have shown in [4, Sect. IX.1] that this problem has a unique
axisymmetric solution and that it can be split in two separate problems on �,
one for the angular component ŭθ and the other for (ŭr, ŭz, p). If the data have
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no rotation as supposed, i.e., the angular component f̆θ is equal to zero, then ŭθ

is also zero.

2.3 Weighted Sobolev spaces

In this section we introduce some weighted Sobolev spaces (see [12] and
[4, Sect. II.1]) that we use in the weak formulation of the problem.

For any real number α and 1 � p < ∞, the space Lp
α(�) is defined as the set

of measurable functions w such that

‖w‖Lp
α(�) =

⎛

⎝
∫

�

|w|prαdx

⎞

⎠

1
p

< ∞,

where r = r(x) is the radial coordinate of x, i.e., the distance of a point x in �

from the symmetry axis and dx = drdz. For p = ∞, L∞
α (�) is simply equal to

L∞(�). The subspace L2
1,0(�) of L2

1(�) denotes the functions q with weighted
integral equal to zero:

∫

�

q r dx = 0.

Let � be a positive integer. We define the weighted Sobolev space W�,p
1 (�) as

the space of functions in Lp
1(�) such that their partial derivatives of order less

or equal to � belong to Lp
1(�). The space W�,p

1 (�) is a Banach space endowed
with the following semi-norm | · |

W�,p
1 (�)

and norm ‖ · ‖
W�,p

1 (�)
:

|w|
W�,p

1 (�)
=
(

�∑

k=0
‖∂k

r ∂�−k
z w‖p

Lp
1(�)

) 1
p

,

‖w‖
W�,p

1 (�)
=

(
�∑

k=0
|w|p

Wk,p
1 (�)

) 1
p

.

For any positive real number s, Ws,p
1 (�) is defined as the interpolation space of

index [s] + 1 − s between the spaces W[s]+1,p
1 (�) and W[s],p

1 (�), where [s] is the
integral part of s.

When p = 2, we note as in the standard case W�,2
1 (�) by H�

1(�). We also
need another weighted space V1

1(�) defined as

V1
1(�) =

{
w ∈ H1

1(�); w ∈ L2
−1(�)

}

and endowed with the norm



222 Z. Belhachmi et al.

‖w‖V1
1 (�)

=
(

|w|2
H1

1(�)
+ ‖w‖2

L2
−1(�)

) 1
2

.

It can be proved that all functions in V1
1(�) have a null trace on �0 (see [13]).

The traces on � are defined in a nearly standard way, see [3, Sect. I, Theorem
a.5]. Let Hs

1(�), s � 0, be the scale of Sobolev spaces built from

L2
1(�) =

⎧
⎨

⎩
g : � → R measurable ;

∫

�

g2 r(t) dt < ∞
⎫
⎬

⎭
,

where r(t) is the value of the radial coordinate at the point with tangential coor-

dinate t. The trace operator v �→ v|� is continuous from H1
1(�) onto H

1
2
1 (�) and

also from V1
1(�) into the same space.

2.4 Dimension reduction

In this section we are going to underline the correspondence of the stan-
dard three-dimensional and weighted two-dimensional Sobolev spaces. See [4,
Sect. II.4] for the proofs of the following statements.

The subspace of axisymmetric functions in H1(�̆) is isomorphic to H1
1(�). In

the original three-dimensional problem, to take into account the boundary con-
dition, the subspace H1

0(�̆) of zero trace functions is introduced. As explained
in [4, Sect. II.4], the counterpart for the axial component of the velocity is the
weighted subspace

H1
1�(�) =

{
w ∈ H1

1(�); w = 0 on �
}

,

and the one for the radial component is

V1
1�(�) =

{
w ∈ V1

1(�); w = 0 on �
}

.

We describe the axisymmetric domain �̆ with cylindrical coordinates (r, θ , z).
It is possible to define two isomorphisms, which maps axisymmetric functions
and vector-fields on �̆ to functions and vector-fields on �. These isomorphisms
are called reduction operators and are defined in the scalar case as

{
w̆ ∈ H1

0(�̆) axisymmetric
}

−→ H1
1�(�),

w̆ �−→ w : w(r, z) = w̆(r, θ , z)
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and in the vector case as
{
w̆ ∈ H1

0(�̆)3 axisym. and w̆θ = 0
}

−→ V1
1�(�) × H1

1�(�),

w̆ �−→ w : wr = w̆r, wz = w̆z.

Proposition 1 The space of axisymmetric vector fields in H1(�̆)3 with zero
angular component is isomorphic to V1

1(�) × H1
1(�). The space of axisym-

metric vector fields in H1
0(�̆)3 with zero angular component is isomorphic to

V1
1�(�) × H1

1�(�).

We refer to [4, Sect. II.4] and to [9] for its proof.

2.5 The weak axisymmetric form

The Stokes problem (2) on � for (ŭr, ŭz, p) is equivalent to the following weak
formulation of the Stokes axisymmetric problem.

Find (u, p) in V1
1�(�) × H1

1�(�) × L2
1,0(�) such that, for all (v, q) in V1

1�(�) ×
H1

1�(�) × L2
1,0(�),

⎧
⎨

⎩

a(u, v) + b(v, p) = ∫

�

f · v r dx,

b(u, q) = 0,
(3)

where the forms a and b are defined by

a(u, v) = ν

∫

�

(∇au : ∇av) r dx + ν

∫

�

urvr
1
r

dx, (4)

b(u, q) = −
∫

�

(divau) q r dx −
∫

�

urq dx,

where ∇au is equal to
(

∂rur ∂ruz
∂zur ∂zuz

)
and divau = ∂rur + ∂zuz (the index a in

this notation means “axisymmetric”). Indeed it can be checked that a(u, v) =
1

2π
ă(ŭ, v̆) and b(u, q) = 1

2π
b̆(ŭ, q̆).

In [4, Sect. IX.1] it is proved that this problem has a unique solution. In
particular it is easily derived from its analogue on �̆ by using the reduction
operator that the following inf–sup condition holds: There exists a constant β

such that for all q in L2
1,0(�),

sup
v∈V1

1�(�)×H1
1�(�)

b(v, q)

‖v‖V1
1 (�)×H1

1(�)

� β‖q‖L2
1(�). (5)
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Fig. 2 The mesh on the half
section � and its axisymmetric
representation in �̆

2.6 Finite element formulation

In this section we introduce the finite element that we employ to numerically
solve the Stokes problem.

The half section � represents the computational domain (see Fig. 2). From
now on we suppose that the domain � is polygonal and we introduce a regular
family of triangulations (Th)h of � with the following properties:

(i) The domain �̄ is the union of the elements of Th.
(ii) Tk ∩ Tj is a side, a node or empty for all triangles Tk, Tj, k 
= j, in Th.

(iii) There exists a constant σ independent of h, such that for all T in Th, its
diameter hT is smaller than h and T contains a circle of radius σhT .

We also suppose that each triangle T in Th has at least one vertex inside � (not
on �∪�0). In all that follows, c, c′, . . ., denote generic constants that may depend
on σ and vary from one line to the next one but are always independent of h.

Each triangulation Th is used for P1 elements for the pressure. Moreover
Th/2 denotes the triangulation obtained from Th by dividing each triangle into
four equal triangles by joining the midpoints of the edges. Indeed Th/2 is used
for P1 elements for the velocity.

Let Pk(T) denote the set of restrictions to T of polynomials of degree less
than or equal to k; then the finite element spaces for the velocity and the
pressure are

Vh/2 =
{
vh ∈ C0(�̄)2 : vh|� = 0, vh,r|�0 = 0; ∀T ∈ Th/2 vh|T ∈ P1(T)2

}
,

Qh =
⎧
⎨

⎩
qh ∈ C0(�̄) :

∫

�

qhr dx = 0 ; ∀T ∈ Th qh|T ∈ P1(T)

⎫
⎬

⎭
.

It is easily checked that Vh/2 ⊂ V1
1�(�) × H1

1�(�) and Qh ⊂ L2
1,0(�). Then the

discrete problem associated with formulation (3) reads:
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Find (uh, ph) in Vh/2 × Qh such that for all (vh, qh) in Vh/2 × Qh

⎧
⎨

⎩

a(uh, vh) + b(vh, ph) = ∫

�

f · vh r dx,

b(uh, q) = 0.
(6)

3 Weighted inverse inequalities

3.1 Preliminary results

In this section we are going to prove the inverse inequality for vector fields in
Vh/2. We need the following classification of the triangles. For any T in Th, let FT

denote an affine mapping from a reference triangle T̂ onto T. Then the vertices
of T̂, âi, i = 1, 2, 3, are mapped by FT onto the vertices of T, ai, i = 1, 2, 3.
Let λ̂i be the barycentric coordinate associated with âi. We also define a scalar
number rT which is the minimum of the radial coordinate of the vertices of T
not belonging to the axis.

Lemma 1 For any triangle T of Th, there exists a constant c, such that chT � rT.

Proof Since the family of triangulations is regular, the distance of a vertex (r, z)

to the opposite side of T is larger or equal to 2σhT . Since rT is the distance of
a vertex from the axis and no triangle crosses the axis, rT � 2σhT . The only
exception is when the vertex is on a triangle which crosses the axis and has a
side on �. In this case rT � ChT , where C depends on the angles between �

and �0. Since there is a finite number of intersections between � and �0, the
constant C is bounded from below by a positive constant. ��

From now on and for brevity, we say that two nonnegative functions f1 and
f2 on a domain T are equivalent if there exist two constants c and c′, called
equivalence constants, such that the inequalities c f1(x) ≤ f2(x) ≤ c′ f1(x) hold
for almost every x in T. It can be noted that, on all triangles T of Th, the con-
stant functions maxx∈T r(x) and rT are equivalent. For more precise results, we
observe that the triangles T of Th/2 can be parted into three types:

– Type 1. If T ∩�0 is empty, the ratio maxx∈T r(x)
minx∈T r(x)

is smaller than a constant only
depending on the regularity parameter σ of the family of triangulations.
Then r is equivalent to rT .

– Type 2. If T ∩ �0 is an edge, for instance with endpoints a2 and a3, the
function r is equal to αT

1 λ1, with the constant αT
1 equal to rT , so that the

ratio αT
1 /hT is bounded from above and from below by positive constants

only depending on σ .
– Type 3. If T ∩ �0 is a vertex, for instance a1, the function r is equal to

αT
2 λ2 + αT

3 λ3, with the constants αT
i equal to r(ai), so that the ratio αT

i /hT
is bounded from above and from below by positive constants only depend-
ing on σ . So, the function r is equivalent to hT(λ2 + λ3), with equivalence
constants only depending on σ .
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Here we introduce some technical lemmas which will be used to establish
the approximation properties of the Lagrange interpolation operator and the
Clément operator.

We fix an integer k � 1 and, with each T in Th, we associate its lattice of
order k. Let �h = {ai, 1 � i � Nh} be the union of these lattices on all T in Th.

Lemma 2 Let ϕi denote the Lagrange function in Pk(T) associated to the node
ai = (ri, zi) of �h. Then there exists a constant c independent of hT, such that for
all T in Th containing ai the following inequalities hold

||ϕi||Lp
1(T) � c

(
max

T
r

1
p

)
h

2
p
T , ||ϕi||W1,p

1 (T)
� c

(
max

T
r

1
p

)
h

2
p −1
T . (7)

Proof Since the proof is similar for both inequalities we only give it for the first
one. Indeed, it is readily checked by going to the reference element that

||ϕi||Lp
1(T) �

(
max

T
r

1
p

)
h

2
p
T‖ϕ̂i‖Lp(T̂)

.

��
Note that if T intersect �0 then rT and maxx∈T r are of the same order as hT .

3.2 Inverse inequalities

Firstly inequalities are proved for the norm of Lp
−1(T), then the semi-norm of

W�,p
1 (T) and finally the proof is carried out in the norms of V1

1(�) × H1
1(�).

For a triangle T in Th, note its area by |T|. Let f be a polynomial defined
in T, then f̂ stands for f ◦ FT . In particular ρT = r ◦ FT is the affine function
representing the radial coordinate.

Lemma 3 Let 1 � p < ∞ and k be an integer. There exists a constant c, such
that for every triangle T in Th and any polynomial f in Pk(T), vanishing on the
axis if T is of type 2 or 3,

‖f‖Lp
−1(T) � c r−2/p

T ‖f‖Lp
1(T). (8)

Proof If T is of type 1, then for any point in T, rT � r and

∫

T

|f |p 1
r

dx � 1

r2
T

∫

T

|f |pr dx.

Let T be of type 2. On the reference triangle, the following weighted norms on
the polynomials f̂ of degree k are equivalent, in particular

||f̂ λ̂−1/p
1 ||Lp(T̂)

� c||f̂ λ̂1/p
1 ||Lp(T̂)

. (9)
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Hence inequality (8) is proved by

||f ||p
Lp

−1(T)
= |T|

2
||f̂ (λ̂1rT)−1/p||p

Lp(T̂)

� c
|T|
2

1

r2
T

||f̂ (λ̂1rT)1/p||p
Lp(T̂)

= c
1

r2
T

||f ||p
Lp

1(T)
.

If T is of type 3, from Eq. (9) with λ̂1 replaced by λ̂2 + λ̂3,

||f ||p
Lp

−1(T)
� c

|T|
2

||f̂ ((λ̂2 + λ̂3)rT)−1/p||p
Lp(T̂)

� c′ |T|
2

1

r2
T

||f̂ ((λ̂2 + λ̂3)rT)1/p||p
Lp(T̂)

� c′ 1

r2
T

||f ||p
Lp

1(T)
.

��
Lemma 4 There exists a constant c, such that for every triangle T in Th and any
polynomial f in Pk(T),

‖∇af‖Lp
1(T) � c h−1

T ‖f‖Lp
1(T). (10)

Proof If T is of type 1, the standard inverse inequality gives

‖∇af‖Lp
1(T) � max

x∈T
r(x)

1
p ‖∇af‖Lp(T) � c

(
max
x∈T

r(x)
) 1

p
h−1

T ‖f‖Lp(T)

� c
(

maxx∈T r(x)

minx∈T r(x)

) 1
p

h−1
T ‖f‖Lp

1(T),

and the boundedness of the quantity maxx∈T r(x)/ minx∈T r(x) leads to the
desired inequality. If T is of type 2, we have by using the transformation FT

‖∇af‖Lp
1(T) ≤ c h

2
p −1
T r

1
p
T ‖(∇ f̂ )λ̂

1
p
1 ‖Lp(T̂)

,

and, by using the equivalence of norms on a finite-dimensional space, we obtain

‖∇af‖Lp
1(T) ≤ c h

2
p −1
T r

1
p
T ‖f̂ λ̂

1
p
1 ‖Lp(T̂)

.

Thus going back to T yields

‖∇af‖Lp
1(T) ≤ c h−1

T ‖f‖Lp
1(T),

which is the desired result. When T is of type 3, the inequality follows from the
same argument as previously, with λ̂1 replaced by λ̂2 + λ̂3. ��



228 Z. Belhachmi et al.

Now we are ready to prove a weighted inverse inequality:

Proposition 2 There exists a constant c such that for all vh in Vh/2,

‖vh‖2
V1

1 (�)×H1
1(�)

� c
∑

T∈Th/2

h−2
T ‖vh‖2

L2
1(T)2 . (11)

Proof Let vh = (vr, vz) be in Vh/2. From Lemmas 1 and 3, for any T in Th/2,

‖vr‖L2
−1(T) � ch−1

T ‖vr‖L2
1(T)

and from Lemma 4

‖∇avr‖L2
1(T) � ch−1

T ‖vr‖L2
1(T),

and this last inequality holds also for vz. ��

4 Weighted approximation properties

We now prove some properties of the Lagrange interpolation operator and also
of some Clément type operators. There are several possible constructions of
the Clément operator, we follow here the approach presented in [5, Sect. IX.3]
in the Cartesian case. We begin by some technical lemmas which are useful in
what follows.

4.1 Preliminary results

The next lemma states a polynomial approximation property which is a weighted
extension of a result due to [10] in a more general but unweighted case.

For ai in �h, 	̃i denotes the union of two triangles containing ai and sharing
a common edge, and hi stands for its diameter.

Lemma 5 For all p, 1 � p � +∞, there exists a constant c, independent of hi,
such that for all function in W1,p

1 (	̃i),

inf
q∈P0(	̃i)

(
‖v − q‖Lp

1(	̃i)
+ hi|v − q|

W1,p
1 (	̃i)

)
� c hi|v|

W1,p
1 (	̃i)

. (12)

Proof Let T and T ′ denote the two triangles which define 	̃i, and e their com-
mon edge. Let he denote the diameter of e and me its midpoint. There exists
a constant λ depending only on the regularity parameter σ , such that 	̃i is
star shaped with respect to the ball B centered on me and with radius λhe

2 . The
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function : x �→ x̂ = 2 x−me
λhe

, from 	̃i into a region 	̂ maps the ball B into the unit

ball B̂. Let ϕ̂ be in D(B̂), with
∫

B̂ ϕ̂ dx̂ = 1, then the function ϕ defined by

ϕ(x) =
(

λhe

2

)−2

ϕ̂

(
2

x − me

λhe

)
,

belongs to D(B) and

∫

B

ϕ dx = 1.

Define q as

q =
∫

B

ϕ(y) v(y) dy.

To evaluate the norm of v − q in Lp
1(	̃i), we start with the following Taylor

formula: for each x ∈ 	̃i, and y ∈ B,

v(x) = v(y) +
1∫

0

(x − y) · ∇av(x + s(y − x)) ds.

Multiplying by ϕ(y) and integrating over B, we obtain

v(x) − q =
∫

B

1∫

0

ϕ(y)(x − y) · ∇av(x + s(y − x)) ds dy.

Setting z = x + s(y − x) yields

|v(x) − q| �
∫

	̃i

∣∣∣

1∫

0

ϕ
(
x + s−1(z − x)

)
s−1(x − z) · ∇av(z)s−2 ds

∣∣∣ dz, (13)

whence, for any x in 	̃i,

|v(x) − q| �
∫

	̃i

|k(x, z)(x − z) · (∇av)(z)| dz, (14)
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where

k(x, z) =
1∫

0

ϕ
(
x + s−1(z − x)

)
s−3ds.

Since ϕ(x+s−1(z−x)) vanishes when |x+s−1(z−x)−me| � λhe
2 , and particularly

for s � (μhe)
−1|z − x|, for a constant μ depending only on σ ,

|k(x, z)| � ‖ϕ‖L∞(B)

1∫

(μhe)−1|z−x|
s−3 ds

� c ‖ϕ‖L∞(B)(μhe)
2
∣∣∣|x − z|−2 − (μhe)

−2
∣∣∣ .

Using ‖ϕ‖L∞(B) = ( λhe
2 )−2‖ϕ̂‖L∞(B̂)

, we deduce

|k(x, z)| � c
(
|x − z|−2 + (μhe)

−2
)

. (15)

Let k̃ be the function

k̃(z) = (|z − me|−2 + (μhe)
−2)|z − me|

and deduce from (14) and (15)

|(v − q)(x)| � c(k̃ ∗ |∇av|)(x).

We now check that, for a constant c only depending on the regularity
parameter σ ,

r(z) � c r(x). (16)

Indeed,

– either the intersection of 	̃i with �0 is empty. Then, we have

r(z) �
mint∈	̃i

r(t)

maxt∈	̃i
r(t)

r(x),

and the ratio mint∈	̃i
r(t)/ maxt∈	̃i

r(t) is bounded from below by a constant
only depending on σ ,

– or it is not empty. We note that

r(z) = (1 − s)r(x) + sr(y) � min{r(x), r(y)}.
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Since r(y) � μhe, either r(x) � μhe, so that r(z) � r(x), or r(x) > μhe, so
that r(z) � μhe and, since r(x) � che for a constant c only depending on σ ,
r(z) � μ

c r(x).

Thus

|(v − q)(x)| r(x)
1
p � c

∫

	̃i

k̃(x − z) |∇av(z)| r(z)
1
p dz.

Applying Young’s inequality yields

‖v − q‖Lp
1(	̃i)

� ‖k̃‖L1(	̃i)
‖∇av‖Lp

1(	̃i)2 .

Noting that

‖k̃‖L1(	̃i)
=
∫

	̃i

(|z − me|−1 + |z − me|(μhe)
−2) dz

� c

c′he∫

0

(�−1 + (μhe)
−2�)�d� = c′′he,

we derive the first part of the inequality (12).
The second part of (12), i.e., the inequality with the second term in the

left-hand side, is obvious. ��
The next lemma is an extension of the previous one and the proof is identical

to the unweighted case, see [5, Sect. IX, Lemma 3.4].
Let 	i denote the union of all elements T in Th containing ai.

Lemma 6 For all p, 1 � p � +∞, there exists a constant c, independent of hi,
such that, for all functions v in W1,p

1 (	i),

inf
q∈P0(	i)

(
‖v − q‖Lp

1(	i)
+ hi|v − q|

W1,p
1 (	i)

)
� c hi ‖v‖

W1,p
1 (	i)

. (17)

The following lemma is obtained by the same construction as Lemmas 5
and 6. Since the proof is rather long and technical, we only state the result. We
refer to [10] for the analogue in the unweighted case.

Lemma 7 For all p, 1 � p � +∞, there exists a constant c, independent of hi,
such that, for all functions v ∈ W�+1,p

1 (	i), the following inequality holds:

inf
q∈P�(	i)

(
‖v − q‖Lp

1(	i)
+ hi|v − q|

W1,p
1 (	i)

)
� c h�+1

i ‖v‖
W�+1,p

1 (	i)
. (18)
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Obviously the results of Lemma 5 to Lemma 7 still hold when replacing 	i by
an element T of Th. If we denote by 	T the union of all elements of Th sharing
at least a common vertex with T then these results still hold also.

4.2 Lagrange interpolation operator

We define the Lagrange interpolation operator Ih : C0(�̄) → Xh, where Xh
denotes the space of Lagrange finite elements of order k: Ihϕ coincides with ϕ

on all nodes of �h. For any T in Th, we introduce a local interpolation operator
iT : C0(T) → Pk(T), such that for all aj in �h ∩ T,

(iTϕ)(aj) = ϕ(aj).

So, it holds

Ihϕ|T = iTϕ.

Moreover this operator maps the functions that vanish on � onto Xh ∩ H1
1�(�).

The approximation properties of the Lagrange interpolation operator in the
framework of weighted Sobolev spaces are proved in [13] (Lemmas 6.1 and
6.2) in the case p = 2 (with some restrictions). However, this is not sufficient
for our purpose, and we need the more general results stated in the following
proposition.

Proposition 3 For all �, 1 � � � k + 1, and for all p, 1 � p � +∞, such that

� >
3
p

or p = 1, � = 3, (19)

there exists a constant C, independent of h, such that, for all element T in Th, the
following inequalities hold for all functions v ∈ W�,p

1 (�):

‖v − Ihv‖Lp
1(T) � C h�

T |v|
W�,p

1 (T)
, (20)

|v − Ihv|
W1,p

1 (T)
� C h�−1

T |v|
W�,p

1 (T)
. (21)

Proof For any T ∈ Th and for any polynomial p of degree � − 1,

‖u − Ihu‖Lp
1(T) � ‖u − p‖Lp

1(T) + ‖Ih(u − p)‖Lp
1(T).

We consider the second term of this inequality. By going to the reference ele-
ment, we have

‖Ih(u − p)‖Lp
1(T) � cδh2/p

T ‖Î(û − p̂)χ
1
p ‖Lp(T̂)

,
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with δ and χ defined by the type of the triangle T as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ = (maxx∈T r)
1
p , and χ = 1 if T is of type 1,

δ = h
1
p
T , and χ = λ̂1 if T is of type 2,

δ = h
1
p
T , and χ = λ̂2 + λ̂3 if T is of type 3.

Let W�,p
χ (T̂) be the weighted Sobolev space with weight χ (similarly as for

W�,p
1 (T)). The continuous embedding of W�,p

χ (T̂) into C0(T̂), which in the first
case, derives from the standard Sobolev embedding and in the other two cases
from the three-dimensional one, yields

δ‖Î(û − p̂)‖Lp
χ (T̂)

� δ‖û − p̂‖
W�,p

χ (T̂)
,

whence

‖u − Ihu‖Lp
1(T) � cδh2/p

T ‖û − p̂‖
W�,p

χ (T̂)
.

An extension of the Bramble–Hilbert lemma to the weighted case can be estab-
lished by combining the compactness of the embedding W�,p

χ (T̂) ⊂ Lp
χ (T̂) with

the Peetre-Tartar lemma (see [11, Chapt. I, Lemma 2.1]). Using this extension,
we obtain

‖u − Ihu‖Lp
1(T) � cδh2/p

T |û − p̂|
W�,p

χ (T̂)
.

Returning back to T leads to (20). Inequality (21) is obtained similarly. ��

4.3 The basic Clément operator

In this section we define a regularization operator �h which maps L2
1(�) into

Xh (the space of Lagrange finite elements of order k), and we establish its
approximation properties. With each ai in �h, we associate an arbitrary triangle
Ti of Th which contains ai. Note that Ti is to be chosen among a finite number
of elements (bounded independently of the discretization parameter). Define
πi as the L2

1(Ti) orthogonal projection operator onto Pk(Ti): For all v in L1
1(Ti),

πiv is in Pk(Ti) and satisfies

∀q ∈ Pk(Ti),
∫

Ti

(v − πiv)(x) q(x) r dx = 0. (22)
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We define �h as

�hv =
Nh∑

i=1

(πiv)(ai)ϕi(x), (23)

where ϕi is the Lagrange function associated with ai, 1 � i � Nh.
The following lemma states the stability of πi.

Lemma 8 For all p, 1 � p � +∞, there exists a constant c such that, for 1 � i �
Nh and for all functions v ∈ Lp

1(Ti),

‖πiv‖Lp
1(Ti)

� c‖v‖Lp
1 (Ti)

. (24)

Proof On the reference element T̂, we define the projection operator π̂ such
that π̂ v̂ = π̂iv, namely π̂ satisfies (22) with Ti replaced by T̂ and the measure
r dx replaced by ρTi(ζ , η) dζdη with ρTi equal to r ◦ FTi .

With the notation introduced in the proof of Proposition 3, the function ρTi

is equivalent to δpχ . So we derive from Hölder’s inequality that, for p′ such that
1
p + 1

p′ = 1,

‖π̂ v̂‖2
L2

χ (T̂)
� c ‖v̂‖Lp

χ (T̂)
‖π̂ v̂‖

Lp′
χ (T̂)

.

Next, we obtain from the equivalence of weighted norms on Pk(T̂) for the three
weights corresponding to the different values of χ that

‖π̂ v̂‖Lp
χ (T̂)

≤ c ‖π̂ v̂‖L2
χ (T̂)

, ‖π̂ v̂‖
Lp′

χ (T̂)
≤ c′ ‖π̂ v̂‖L2

χ (T̂)
.

Combining all this gives

‖π̂ v̂‖Lp
χ (T̂)

≤ c ‖v̂‖Lp
χ (T̂)

.

Combining the previous line with the use of the transformation FTi leads to

‖πiv‖Lp
1(Ti)

≤ c δ ‖π̂ v̂‖Lp
χ (T̂)

≤ c′ δ ‖v̂‖Lp
χ (T̂)

≤ c′′ ‖πiv‖Lp
1(Ti)

,

which is the desired result. ��
The following theorem states the first approximation properties of �h.

Theorem 1 For all integers �, 0 � � � k + 1, and for all p, 1 � p � +∞, there
exists a constant C, independent of hT, such that, for all T ∈ Th and all functions
v ∈ W�,p

1 (	T), the following inequalities hold:

‖v − �hv‖Lp
1(T) � C h�

T |v|
W�,p

1 (	T )
(25)
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and, when � � 1,

|v − �hv|
W1,p

1 (T)
� C h�−1

T |v|
W�,p

1 (	T )
. (26)

Proof The proof of (25) is divided into three cases: � = 0, 0 < � � 3
p and � > 3

p
(or � = 3, p = 1).

Case � = 0. It holds

‖�hv‖Lp
1(T) �

Nh∑

i=1

αi‖πiv(ai) ϕi‖Lp
1(T), (27)

where αi is equal to 1 if the intersection of the support of ϕi with T is not empty,
and zero otherwise.

Let us fix i, then we can write

‖πiv(ai)ϕi‖Lp
1(T) � ‖πiv‖L∞(Ti)‖ϕi‖Lp

1(T).

If Ti is of type 1, then we obtain from Lemma 2 and a standard inverse inequality

‖πiv(ai)ϕi‖Lp
1(T) � ĉ

(
maxx∈T r
minx∈Ti r

) 1
p

h
− 2

p
Ti

h
2
p
T‖πiv‖Lp

1(Ti)
. (28)

If Ti is of type 2, it follows from Lemma 2 and the fact that maxx∈T r(x) � c hT
that

‖ϕi‖Lp
1(T) � c h

3
p
T . (29)

On the other hand, we have

‖πiv‖L∞(Ti) = ‖π̂iv‖L∞(T̂)
� c ‖π̂iv(λ̂1)

1
p ‖Lp(T̂)

,

whence

‖πiv‖L∞(Ti) � c h
− 3

p
Ti

‖πiv‖Lp
1(Ti)

.

Combining this with (29) gives

‖(πiv)(ai)ϕi‖Lp
1(T) � c ‖πiv‖Lp

1(Ti)
. (30)

If Ti is of type 3, the same arguments apply and this estimate still holds.
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Inserting (28), respectively (30), into (27), we obtain

‖�hv‖Lp
1(T) � ĉ

Nh∑

i=1

αi ‖πiv‖Lp
1(Ti)

.

Noting that the number of non zero αi is bounded only as a function of k, we
deduce from Lemma 8 the inequality

‖�hv‖Lp
1(T) � c‖v‖Lp

1(	T ). (31)

Combining this with a triangle inequality yields (25) when � = 0.
Case � � 3

p . We note that for any polynomial q ∈ Pk(	T), and for all nodes
ai in T, πiq is equal to q, therefore the restriction of �hq to T is also equal to q.
Hence

‖v − �hv‖Lp
1(T) = ‖v − q + �h(v − q)‖Lp

1(T)

� ‖v − q‖Lp
1(T) + ‖�h(v − q)‖Lp

1(T).

Using (31), we obtain

‖v − �hv‖Lp
1(T) � c‖v − q‖Lp

1(	T ). (32)

Combining with the result of Lemma 6, respectively Lemma 7 yields (25) when
� � 3

p .

Case � > 3
p (or � = 3, p = 1). The functions of W�,p

1 (	T) are continuous,
therefore we can use the Lagrange interpolation operator Ih. Noting that for all
ai, πi(Ihv) is equal to (Ihv)|Ti , we have �h(Ihv) which is equal to Ihv. Whence

‖v − �hv‖Lp
1(T) � ‖v − Ihv‖Lp

1(T) + ‖�h(v − Ihv)‖Lp
1(T).

Using once again (31) leads to

‖v − �hv‖Lp
1(T) � c‖v − Ihv‖Lp

1(	T ).

The result follows from Proposition 3.
The proof of (26) is the same as the previous one with obvious modifications

(see Lemma 2). ��
Following the same lines we deduce the next statement.

Corollary 1 For all �, 1 � � � k + 1, and for all p, 1 � p � +∞, there exists
a constant c, independent of h, such that, for all elements T in Th, and all edges
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e of T which are not contained in �0, and for all functions v ∈ W�,p
1 (	T), the

following inequality holds:

‖v − �hv‖Lp
1(e) � ch

�− 1
p

T |v|
W�,p

1 (	T )
. (33)

Taking the power p of inequality (25) and summing it over all elements T,
we obtain the global result

Corollary 2 For all �, 1 � � � k + 1, and for all p, 1 � p � +∞, there exists a
constant c, independent of h, such that, for any function v ∈ W�,p

1 (�),

‖v − �hv‖Lp
1(�) � ch�|v|

W�,p
1 (�)

. (34)

4.4 Other Clément operators

To take into account boundary conditions, we introduce now a modified oper-
ator �0

h which preserves the nullity conditions on the boundary �:

�0
hv =

Nh∑

i=1, ai 
∈�

(πiv)(ai)ϕi. (35)

The operator �h has the same approximation properties given in Theorem 1
and the proof is similar to the unweighted case, see [5, Theorem 3.11].

Corollary 3 Estimates (25), (26) and (33) still holds with �h replaced by �0
h, for

all functions v in W�,p
1 (	T) vanishing on � ∩ 	T.

We need also to introduce two other operators �̃h, which maps V1
1(�) into

Xh ∩ V1
1(�) (the space of Lagrange finite elements of order k vanishing at �0),

and �̃0
h, which maps V1

1�(�) into Xh ∩ V1
1�(�) (the space of Lagrange finite

elements of order k vanishing at �0 ∪ �), defined as follows:

�̃hv =
Nh∑

i=1, ai 
∈�0

(πiv)(ai)ϕi, (36)

�̃0
hv =

Nh∑

i=1, ai 
∈(�0∪�)

(πiv)(ai)ϕi. (37)

Since we do not have any application for the approximation properties of these
operators for all the spaces W�,p

1 (�), we restrict ourselves to the case p = 2. We
state the main result in the following theorem.
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Theorem 2 For all �, 1 � � � k + 1, there exists a constant c, independent of h,
such that, for all elements T in Th, and for all functions v ∈ H�

1(	T) ∩ V1
1(	T),

the following inequality holds:

(
h−1

T ‖v − �̃hv‖L2
1(T) + ‖v − �̃hv‖V1

1 (T)

)
� Ch�−1

T ‖v‖H�
1(	T )∩V1

1 (	T )
. (38)

The same estimate holds with �̃h replaced by �̃0
h and for all v in H�

1(	T) ∩
V1

1�(	T).

Proof We consider two cases.
Case � = 1. We can write

‖�̃hv‖V1
1 (T)

�
Nh∑

i=1, ai /∈�0

‖πiv‖L∞(Ti)‖ϕi‖V1
1 (T)

.

Using (7) and (8) for evaluating ‖ϕi‖V1
1 (T)

and the same arguments as previously
for bounding ‖πiv‖L∞(Ti) according to Ti being of type 1, 2 or 3, we derive

‖�̃hv‖V1
1 (T)

� c ‖v‖V1
1 (T)

,

which yields one part of (38). On the other hand, we have

‖v − �̃hv‖L2
1(T) � ‖v − �hv‖L2

1(T) + ‖�hv − �̃hv‖L2
1(T),

and the first term in the right-hand side satisfies the desired estimate, see (25).
We also note that the second term vanishes on triangles T of type 1. If T is of
type 2 or 3, we derive from (7) that

‖�hv − �̃hv‖L2
1(T) =

∑

ai∈�0∩T

h
3
2
T ‖πiv‖L∞(Ti),

where Ti is also of type 2 or 3. If Ti is of type 2 for instance, we derive by the
same arguments as in the proof of Lemma 8

‖πiv‖L∞(Ti) = ‖π̂iv‖L∞(T̂)
� c ‖π̂iv(λ̂1)

1
2 ‖L∞(T̂)

� c ‖π̂iv(λ̂1)
1
2 ‖L2(T̂)

� c ‖v̂(λ̂1)
1
2 ‖L2(T̂)

.

By applying the Poincaré–Friedrichs inequality to the function π̂iv(λ̂1)
1
2 which

vanishes on one edge of T̂, we obtain

‖πiv‖L∞(Ti) � c
(‖∇v̂(λ̂1)

1
2 ‖L2(T̂)2 + ‖v̂(λ̂1)

− 1
2 ‖L2(T̂)

)
.
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Going back to Ti thus gives

‖πiv‖L∞(Ti) � c h
1− 3

2
Ti

‖v‖V1
1 (Ti)

.

The same estimate holds when Ti is of type 3, by using similar arguments and
applying the Poincaré–Friedrichs inequality to functions in the space

Ŵ =
{

ŵ(λ̂2 + λ̂3)
1
2 ; ŵ ∈ H1(T̂)

}
,

see [11, Chap. I, Theorem 2.1]. This concludes the proof of (38).
Case � � 2. Since H�

1(T) ⊂ C0(T̄) and �̃h(Ihv) is equal to Ihv for all functions
v in H�

1(	T) ∩ V1
1(	T), we derive from inequality (38) for � = 1

h−1
T ‖v − �̃hv‖L2

1(T) + ‖v − �̃hv‖V1
1 (T)

� c ‖v − Ihv‖V1
1 (	T )

.

Estimate (38) follows by combining Proposition 3 with a further result proved
in [13, Lemma 6.1]. ��

To end this section, we give a useful stability property, that we state in the
following theorem.

Theorem 3 There exists a constant c, independent of h, such that, for all elements
T in Th, and for all functions v ∈ L2

−1(T), the following inequality holds:

‖�̃hv‖L2
−1(T) � c‖v‖L2

−1(	T ). (39)

Proof We have

‖�̃hv‖L2
−1(T) �

Nh∑

i=1, ai 
∈�0

‖πiv‖L∞(Ti) ‖ϕi‖L2
−1(T).

Combining inequalities (7), (8) and, when Ti is of type 2 or 3 for instance,

‖πiv‖L∞(Ti) � h
− 1

2
T ‖v‖L2

−1(Ti)

yields (39). ��
As a consequence of the previous results, there exist positive constants c and

c′ and an operator Rh : V1
1�(�) × H1

1�(�) → Vh/2 such that for all triangles T
in Th and all functions v in V1

1�(�) × H1
1�(�)

‖v − Rhv‖L2
1(T)2 � c hT ‖v‖V1

1 (	T )×H1
1(	T )

, (40)

‖v − Rhv‖V1
1 (T)×H1

1 (T)
� c′‖v‖V1

1 (	T )×H1
1(	T )

. (41)
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5 Inf–Sup condition for the Stokes problem and a priori error estimates

5.1 Axisymmetric inf–sup condition in (V1
1(�) × H1

1(�)) × H1
1(�)

The following proposition is the weighted version of the theorem presented
in [2] about the Cartesian inf–sup condition for P1isoP2/P1 elements. We also
adapt it to a regular (but not necessarily uniformly regular) family of triangu-
lations (we refer to [7, Sect. VI.6] for the idea of this extension).

Proposition 4 There exists a positive constant c independent of h such that

∀qh ∈ Qh, sup
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1(�)

� c

⎛

⎝
∑

T∈Th

h2
T |qh|2

H1
1(T)

⎞

⎠

1/2

. (42)

Proof Let qh in Qh be fixed. Let Tk and Tj be two triangles of Th with a
common side, two common vertices denoted by xk and xj and let xkj be their
midpoint 1

2 (xk + xj) (see Fig. 3). Each element Tk of Th being divided into
four sub-triangles by joining the midpoints of its edges, let Dk be the union of
the three sub-triangles of Tk with one vertex being xkj. Note dk the weighted
measure of Dk:

dk =
∫

Dk

r dx.

Define Dj in the same way. To simplify the notation we neglect dx in the integrals.
We define an element vh of Vh/2, being equal to zero at each vertex of any T

in Th and on �0 ∪ �, and equal to arbitrary real vectors vkj at all midpoints xkj.
In what follows and for brevity, we denote by

∑
(kj) the sum over all edges with

endpoints xk and xj which are shared by two triangles of Th. We can also write
vh as

∑
(kj) ϕkjvkj, where ϕkj is a basis function of Vh/2 which is one at xkj and

zero at the other vertices of triangles of Th/2. The end of the proof is divided
into five steps.

Step 1. The norm of ϕkjvkj is bounded by

‖ϕkjvkj‖2
L2

1(Tk)2 �
∫

Dk

r |ϕkjvkj|2 � |vkj|2dk.

Fig. 3 The two triangles Tk
and Tj
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Then

‖vh‖2
L2

1(�)
2 �

∑

(kj)

‖ϕkjvkj‖2
L2

1(�)
2 �

∑

(kj)

|vkj|2(dk + dj).

By the inverse inequality (11) and noting hk the diameter hTk ,

‖vh‖2
V1

1 (�)×H1
1 (�)

� c
∑

Tk∈Th

h−2
k ‖vh‖2

L2
1(Tk)2

� c
∑

Tk∈Th

∑

Tj∩Tk=edge

h−2
k |vkj|2dk

= c
∑

(kj)

(
h−2

k dk + h−2
j dj

)
|vkj|2

� cσ−2
∑

(kj)

h−2
kj |vkj|2(dk + dj),

where hkj = max{hk, hj} and the last inequality holds since Tk and Tj have a
common edge. We have shown that

‖vh‖2
V1

1 (�)×H1
1(�)

� c
∑

(kj)

h−2
kj |vkj|2(dk + dj). (43)

Step 2. The vector field ∇aqh is constant on Tk and it is noted by (∇q)k. Let
χD be the characteristic function of a set D, then by integration by parts

b(ϕkjvkj, qh) =
∫

�

rϕkjvkj · ∇aqh =
∫

�

rϕkjvkj · ((∇q)kχDk + (∇q)jχDj).

Now by considering the cases where Tk is of type 1, 2 or 3 and using [5, Sect. VII,
Proposition 2.3], we check that there exist two positive constants α1 and α2 only
depending on σ and a scalar ρkj with α1 < ρkj < α2, such that

∫

Dk

ϕkj r dx = dkρkj. (44)

This implies that

∫

�

rϕkjvkj · (∇q)kχDk =
∫

Dk

r ((∇q)k · ϕkjvkj) = ((∇q)k · vkj)dkρkj,
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hence

b(vh, qh) =
∑

(kj)

(
ρkjdk(∇q)k + ρjkdj(∇q)j

) · vkj. (45)

Step 3. Equation (43) together with (45) gives

max
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1(�)

� c max
(vkj)(kj)

⎡

⎢⎢
⎣

∑
(kj)
(
ρkjdk(∇q)k + ρjkdj(∇q)j

) · vkj

(∑
(kj) h−2

kj |vkj|2(dk + dj)
) 1

2

⎤

⎥⎥
⎦. (46)

We now take vkj = h2
kj(ρkjdk(∇q)k + ρjkdj(∇q)j)/(dk + dj), so we are in the case

of equality in the Cauchy–Schwarz inequality

∑

(kj)

⎡

⎣ρkjdk(∇q)k + ρjkdj(∇q)j

h−1
kj (dk + dj)

1
2

· h−1
kj vkj(dk + dj)

1
2

⎤

⎦

=
⎡

⎣
∑

(kj)

∣∣ρkjdk(∇q)k + ρjkdj(∇q)j
∣∣2

h−2
kj (dk + dj)

⎤

⎦

1
2
⎡

⎣
∑

(kj)

h−2
kj |vkj|2(dk + dj)

⎤

⎦

1
2

. (47)

Therefore, from (46) and (47)

max
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1 (�)

� c

⎡

⎣
∑

(kj)

h2
kj

∣∣ρkjdk(∇q)k + ρjkdj(∇q)j
∣∣2

dk + dj

⎤

⎦

1
2

. (48)

Step 4. Since in Tk the gradient ∇aqh|Tk=(∇q)k is constant, setting qk=qh(xk),
etc., leads to

(∇q)k · xk − xj

|xk − xj| = qk − qj

|xk − xj| (49)

and the same holds in Tj. Then

(
ρkjdk(∇q)k + ρjkdj(∇q)j

) · xk − xj

|xk − xj| =
(
ρkjdk + ρjkdj

) (
qk − qj

)

|xk − xj| .
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Note that the ρkj are larger than α1. For a vector a and a unit vector e,

|a|2 � |a · e|2. Taking e = xk−xj

|xk−xj| , the square of the previous inequality gives

(
ρkjdk(∇q)k + ρjkdj(∇q)j

)2 � c

(
dk + dj

)2 (qk − qj
)2

|xk − xj|2 . (50)

Step 5. We note xl the third vertex of Tk. Equality (49) and the regularity of
the family of triangulations allow to write for m = k and l,

|(∇q)k|2 � c

[
(qk − ql)

2

|xk − xl|2 + (qm − qj)
2

|xm − xj|2
]

. (51)

Inequalities (48) and (50) yield

max
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1 (�)

� c

⎧
⎨

⎩

∑

Tk∈Th

edges of Tk∑

(xk,xj)

h2
kj

(qk − qj)
2

|xk − xj|2 (dk + dj)χ{xkj /∈�∪�0}

⎫
⎬

⎭

1
2

.

Since for each triangle T in Th there is at least one vertex inside �, in the
previous equation at least two midpoints of the edges are not in � ∪ �0.

Let tk denote the weighted measure of the triangle Tk. Since dkj � 3
8 tk

(see [9, Appendix A1]), inequality (51) leads to

max
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1(�)

�c

⎛

⎝
∑

Tk∈Th

h2
k tk |(∇q)k|2

⎞

⎠

1
2

=c

⎛

⎝
∑

T∈Th

h2
T‖∇aqh‖2

L2
1(T)

⎞

⎠

1
2

.

��

5.2 Axisymmetric inf–sup condition in (V1
1(�) × H1

1(�)) × L2
1(�)

Verfürth in [15] shows the inf–sup condition for the Stokes problem with
P1isoP2/P1 elements in the Cartesian case. Verfürth’s argument is based on
the propositions presented in the previous sections. Now we are going to state
and prove the inf–sup theorem for axisymmetric P1isoP2/P1 finite elements.

Theorem 4 (Axisymmetric P1isoP2/P1 inf–sup) There exists a positive constant
c independent of h such that

∀qh ∈ Qh, sup
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1(�)

� c‖qh‖L2
1(�). (52)
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Proof Let qh be in Qh with ‖qh‖L2
1(�) = 1, and denote η as the quantity

(
∑

T∈Th
h2

T |qh|2
H1

1 (T)
)1/2. Proposition 4 implies

sup
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1(�)

� c1η. (53)

It follows from the inf–sup condition (5) that there is a u satisfying

divau + 1
r

ur = −qh and ‖u‖V1
1 (�)×H1

1 (�)
� β−1‖qh‖L2

1(�) = β−1. (54)

This implies |b(u, qh)| = ‖qh‖2
L2

1(�)
= 1. On the other hand, taking uh = Rhu

and using (40) yields

∑

T∈Th

h−2
T ‖uh − u‖2

L2
1(T)

� c2
∑

T∈Th

‖u‖2
V1

1 (	T )×H1
1(	T )

� c′2‖u‖2
V1

1 (�)×H1
1(�)

� β−2c′2.

By integration by parts together with the Schwarz inequality, we derive that

|b(uh − u, qh)| =
∣∣∣∣∣∣

∑

T∈Th

∫

T

(uh − u)∇aqh rdx

∣∣∣∣∣∣

�

⎛

⎝
∑

T∈Th

h−2
T ‖u − uh‖2

L2
1(T)

⎞

⎠

1/2⎛

⎝
∑

T∈Th

h2
T‖∇aqh‖2

L2
1(T)

⎞

⎠

1/2

� c η. (55)

Using (54), (41) and (55) yields

sup
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1 (�)

� b(u, qh) − |b(uh − u, qh)|
‖u‖V1

1 (�)×H1
1(�)

+ ‖uh − u‖V1
1 (�)×H1

1(�)

� c (b(u, qh) − |b(uh − u, qh)|) � c
(
1 − c′ η

) = c2 − c3η. (56)
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Inequalities (53) and (56) imply

sup
vh∈Vh/2

b(vh, qh)

‖vh‖V1
1 (�)×H1

1(�)

� max {c1η, c2 − c3η}

� min
t�0

max {c1t, c2 − c3t} = c1c2

c1 + c3
.

This ends the proof in the case ‖qh‖L2
1(�) = 1. Otherwise, if qh is different from

zero, take q̃h = qh/‖qh‖L2
1(�), which concludes the proof. ��

It is also possible to replace Vh/2 by piecewise quadratic functions on Th, i.e.,

Ṽh =
{
vh ∈ C0(�)2 : vh|� = 0, vh,r|�0 = 0; ∀T ∈ Th vh|T ∈ P2(T)2

}
.

The degrees of freedom of this space are exactly the same as for Vh/2, so by the
same arguments as previously, the inf–sup condition (52) still holds with Vh/2

replaced by Ṽh.

5.3 Existence, uniqueness and a priori error estimates

The spaces V1
1�(�) × H1

1�(�) equipped with ‖ · ‖V1
1 (�)×H1

1(�)
and L2

1,0(�) with

‖ · ‖L2
1(�) are Hilbert spaces. In fact (see Proposition 1 and [4, Sect. II.2]) they

are isomorphic to subspaces of H1(�̆)3 and L2(�̆) respectively. The bilinear
form a(·, ·) is elliptic (property derived from ă(·, ·)), and the bilinear form b(·, ·)
satisfies by Theorem 4 the inf–sup condition. Hence the abstract results of
Babuška [1], Brezzi [6] (see also [7, Sect. II.2.2] and [11, Sect. II.1]) yield the
well-posedness of the discrete Stokes problem (6).

Theorem 5 Problem (6) has a unique solution (uh, ph) in Vh/2 × Qh. Further-
more, if u is in Hs+1

1 (�)2 and p in Hs
1(�), 0 < s � 1, then there exists a constant

C such that

‖u − uh‖V1
1 (�)×H1

1(�)
+ ‖p − ph‖L2

1(�) � Chs
(
‖v‖Hs+1

1 (�)2 + ‖p‖Hs
1(�)

)
. (57)

Proof As pointed out in Eq. (4), the operator a(·, ·) can be expressed by the
three-dimensional operator ă(·, ·), which is coercive (see for example
[4, Sect. II.2]). In Sect. 5.2 the inf–sup condition (52) is proved, hence Theorem
1.1 in [11, Sect. II.1] yields

‖u − uh‖V1
1 (�)×H1

1(�)
+ ‖p − ph‖L2

1(�)

� C
(

inf
vh∈Vh/2

‖u − vh‖V1
1 (�)×H1

1(�)
+ inf

qh∈Qh
‖p − qh‖L2

1(�)

)
.
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In the case s = 1, Mercier and Raugel [13] in Theorem 4.4 show that the space
of functions in H2

1(�) vanishing on �0 is included in V1
1(�). Theorems 1 and 2

and Corollary 3 lead to

inf
vh∈Vh

‖u − vh‖V1
1 (�)×H1

1(�)
� C h‖v‖H2

1 (�)2

and

inf
qh∈Qh

‖p − qh‖L2
1(�) � C h‖p‖H1

1 (�)
,

which proves (57). Extending this result to the case 0 < s < 1 follows from
an interpolation argument (note that the inequality ‖v‖V1

1 (�)
� c ‖v‖Hs+1

1 (�)
is

valid for all s > 0 and for any function v in Hs+1
1 (�) ∩ V1

1(�), see [3, Chap. I,
Appendix]). ��

In particular, Bernardi et al. in [4, Sect. IX.1] show that if � is convex and
the angles between � and �0, are not too large (for example less than 3

4π is

enough), and if f is in L2
1(�)

2
, then u is in H2

1(�)2 and p is in H1
1(�) (in fact

they show that u is even more regular than that). So the error behaves like c h
at least when these conditions on the geometry of � are satisfied.

Acknowledgements The third author was supported by the ETH board through a stipend for
exchange between ETH Zürich and EPF Lausanne.

References

1. Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192
(1972/73)

2. Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes
problem in the primitive variables. Numer. Math. 33(2), 211–224 (1979)

3. Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev World, Preprints of the Labo-
ratories J.-L. Lions (2003)

4. Bernardi, C., Dauge, M., Maday, Y.: Spectral Methods for Axisymmetric Domains. Gauthier-
Villars, Éditions Scientifiques et Médicales Elsevier, Paris (1999). Numerical algorithms and
tests due to Mejdi Azaïez

5. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problèmes aux limites
elliptiques. Collection Mathématiques et Applications, Vol. 45, Springer, Berlin Heidelberg
New York (2004)

6. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising
from Lagrangian multipliers. RAIRO Anal. Numér. 8(R-2), 129–151 (1974)

7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg
New York (1991)

8. Clément, P.: Approximation by finite element functions using local regularization. RAIRO
Anal. Numér. 9(R-2), 77–84 (1975)

9. Deparis, S.: Numerical analysis of axisymmetric flows and methods for fluid-structure interac-
tion arising in blood flow simulation. PhD Thesis, École Polytechnique Fédérale de Lausanne
(2004)

10. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp.
34(150), 441–463 (1980)



Weighted Clément operator and application 247

11. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Theory and
Algorithms. Springer, Berlin Heidelberg New York (1986)

12. Kufner, A.: Weighted Sobolev Spaces, Teubner-Texte zur Mathematik [Teubner Texts in Math-
ematics] Vol. 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980) (with German, French
and Russian summaries)

13. Mercier, B., Raugel, G.: Résolution d’un problème aux limites dans un ouvert axisymétrique
par éléments finis en r, z et séries de Fourier en θ . RAIRO Anal. Numér. 16(4), 405–461 (1982)

14. Tabata, M.: Finite element analysis of axisymmetric flow problems. Angew. Z. Math. Mech.
76(suppl. 1), 171–174, (1996) ICIAM/GAMM 95 (Hamburg, 1995)

15. Verfürth, R.: Error estimates for a mixed finite element approximation of the Stokes equations.
RAIRO Anal. Numér. 18(2), 175–182 (1984)

16. Ying, L.A.: Finite element approximation to axial symmetric Stokes flow. J. Comput. Math.
4(1), 38–49 (1986)


	Weighted Clément operator and applicationto the finite element discretization of the axisymmetric Stokes problem
	Abstract
	Introduction
	Axisymmetric Stokes equations
	Model description
	The Stokes problem and its weak form
	Weighted Sobolev spaces
	Dimension reduction
	The weak axisymmetric form
	Finite element formulation
	Weighted inverse inequalities
	Preliminary results
	Inverse inequalities
	Weighted approximation properties
	Preliminary results
	Lagrange interpolation operator
	The basic Clément operator
	Other Clément operators
	Inf--Sup condition for the Stokes problem and a priori error estimates
	Axisymmetric inf--sup condition in ([1]) [1] 
	Axisymmetric inf--sup condition in ([1]) [1]
	Existence, uniqueness and a priori error estimates
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


