
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

M.Sc. in computer science, State University of Campinas, Campinas, Brésil
et de nationalité brésilienne

acceptée sur proposition du jury:

Prof. C. Petitpierre, président du jury
Prof. W. Zwaenepoel, Prof. F. Pedone, directeurs de thèse

Dr M. Aguilera, rapporteur
Prof. B. Garbinato, rapporteur
Prof. A. Schiper, rapporteur

DeferreD-UpDate Database replication:
theory anD algorithms

Rodrigo MALTA SChMIDT

ThÈSE NO 4022 (2008)

ÉCOLE POLYTEChNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 7 MARS 2008

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE SYSTÈMES D'EXPLOITATION

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis is about the design of high-performance fault-tolerant computer systems. More
specifically, it focuses on how to develop database systems that behave correctly and with
good performance even in the event of failures. Both performance and dependability can be
improved by means of the same technique, namely replication. If several database replicas
are available, performance can be improved by distributing the load among them. Moreover,
if one of the replicas cannot be accessed due to failures, users can still rely on the other ones.
However, providing the interface of a single database system out of several replicas is not
an easy task since one has to ensure they are always consistent with each other. Allowing
replicas to diverge would easily break the illusion of having a single high-performance
fault-tolerant database system.

Although we would like to have replicas as independent of each other as possible for
performance and dependability reasons, we must keep them synchronized if we want to
provide a consistent interface to users. In this work, we study how we can balance this trade-
off to provide good performance and fault-tolerance without compromising consistency.
Our basis is a widely used technique for database replication known as the deferred update
technique. In this technique, transactions are initially executed in a single replica. Passive
transactions, which do not change the state of the database, can commit locally to the replica
they execute. Active transactions, which change the database state, must be synchronized
with the transactions running on other replicas.

This thesis makes four major contributions. First, we introduce an abstract specification
that generalizes the deferred update technique. This specification provides a strong model
to prove lower bounds on replication algorithms, design new correct-by-construction proto-
cols tailor-made for specific settings, and prove existing protocols correct more easily, in a
standard way. Using this model, we show that the problem of termination of active transac-
tions in deferred-update protocols is highly related to the problem of sequence agreement
among a set of processes. In this context, we study the problem of implementing latency-
optimal fault-tolerant solutions to sequence agreement and present a novel, highly-dynamic,
algorithm that can quickly adapt to system changes in order to preserve its optimal latency.
Our algorithm is based on a new agreement problem we introduce that seems to be more
suitable to solve problems like sequence agreement than previously used abstractions.

i

II

Our last two contributions are in the context of specific deferred-update algorithms,
where we present two new fault-tolerant protocols derived from our general abstraction.
The first algorithm uses no extra assumptions about database replicas. Yet, it has very little
overhead associated with the termination of active transactions, propagating only strictly
necessary information to replicas. Our second protocol uses strong assumptions about the
concurrency control mechanism used by database replicas to reduce even more the latency
and the burden associated with transaction termination. These algorithms are good exam-
ples of how our general abstraction can be extended to create new protocols and prove them
correct.

Keywords: distributed systems, fault tolerance, crash-recovery, deferred-update repli-
cation, serializability, sequence agreement, consensus, Paxos, collision-fast, in-memory
databases, transaction termination.

Résumé

Cette thèse aborde le projet de systèmes tolérants aux pannes de hautes performances.
Plus précisément, elle se concentre sur le développement de bases des données qui se com-
portent correctement et avec bonne performance même en cas de défaillance. Tant la per-
formance comme la fiabilité peut être améliorées par la même technique, c’est-à-dire la
réplication. Si plusieurs répliques de base de données sont disponibles, la performance peut
être améliorée en répartissant la charge entre eux. De plus, si l’une des répliques n’est pas
accessible en raison des défaillances, les utilisateurs peuvent toujours compter sur les autres.
Toutefois, fournir l’interface d’un seul système de base de données sur plusieurs répliques
n’est pas une tâche facile car il faut assurer qu’ils soient toujours consistent les uns avec les
autres. La permission de divergence des répliques peut facilement briser l’illusion d’avoir
un simple système tolérant aux pannes de haute performance.

Bien que nous aimerions avoir des répliques comme indépendantes les uns des autres
pour des raisons de fiabilité et de performance, nous devons garder les répliques synchro-
nisées si nous voulons fournir une interface cohérente pour les utilisateurs. Dans ce tra-
vail, nous étudions comment nous pouvons équilibrer cet échange pour fournir de bonne
performance et tolérants aux pannes sans compromettre la cohésion. Notre base est une
technique largement utilisée pour réplication de base de données connue sous le nom de
technique de mise à jour différée (deferred update technique). Dans cette technique, les
transactions sont d’abord exécutées en une seule réplique. Les transactions passives, qui
ne modifient pas l’état de la base de données, peuvent être validées (committed) locale-
ment à la réplique qu’elles exécutent. Les transactions actives, qui changent l’état de la base
de données, doivent être synchronisées avec les transactions en exécution sur les autres
répliques.

Cette thèse comporte quatre contributions majeures. Tout d’abord, nous présentons une
spécification abstraite qui généralise la technique de mise à jour différée. Cette spécification
fournit un modèle fort pour prouver bornes inférieures (lower bounds) sur les algorithmes
de réplication, projeter des nouveaux protocoles corrects pour construction spécifiques pour
des contextes particuliers, et prouver protocoles existants corrects plus facilement, et de
façon standard. Par l’utilisation de ce modèle, nous montrons que le problème de la ter-
minaison des transactions actives en protocoles de mise à jour différées est fortement lié

iii

IV

au problème d’accord de séquence (sequence agreement) entre un ensemble de processus.
Dans ce contexte, nous étudions le problème d’implémentation des solutions tolérantes aux
pannes de latence optimal pour l’accord de séquence et présentons un algorithme origi-
nal et très dynamique, qui peut rapidement s’adapter aux modifications du système afin de
préserver sa latence optimale. Notre algorithme est basé sur un nouveau problème d’accord
qui semble être plus approprié pour résoudre des problèmes comme l’accord de séquence
que les abstractions utilisées précédemment.

Nos deux dernières contributions sont dans le contexte des algorithmes spécifiques de
mise à jour différés, où nous présentons deux nouveaux protocoles tolérants aux pannes
dérivés de notre abstraction général. Le premier algorithme ne utilise pas de suppositions
supplémentaires concernant les répliques de base de données. Cependant, il a très peu d’ove-
rhead associé à la terminaison des transactions actives, propageant seulement des informa-
tions strictement nécessaires aux répliques. Notre deuxième protocole utilise des fortes hy-
pothèses sur le mécanisme de contrôle de concurrence utilisé par les répliques de la base de
données pour réduire encore plus la latence et la charge associée à la terminaison de tran-
sactions. Ces algorithmes sont de bons exemples de la façon dont notre abstraction générale
peut être étendu pour créer de nouveaux protocoles et les prouver correctement.

Mots-clés : systèmes distribués, tolérance aux fautes, technique de mise à jour différée,
consistance, accord de séquence, consensus, Paxos, collision, base des données en mémoire,
terminaison de transactions.

To Bianca,
for her love and support

VI

Acknowledgments

I am very grateful to many people who helped in one way or another for this work. First
of all, I would like to thank Fernando Pedone and Willy Zwaenepoel for their confidence in
me, for accepting me in their research groups and for supervising me in this work.

I wish to thank all my lab colleagues at EPFL and USI for the important scientific
discussions, collaborations, and friendship: Lásaro Camargos, Emmanuel Cecchet, Olivier
Crameri, Steven Dropsho, Dan Dumitriu, Sameh Elnikety, Ming-Yee Iu, Aravind Menon,
Nicolas Schiper, Marija Stamenkovic, Duy VO Duc, Marcin Wieloch, and Vaide Zuikevi-
ciute.

I am thankful to Prof. Claude Petitpierre for accepting to preside the exam, and to the
members of the jury, Dr. Marcos Aguilera, Prof. Benoı̂t Garbinato, and Prof. André Schiper
for the time they spent examining this thesis and for their valuable comments.

Several other people played important roles in my doctorate. Among them, my warm
thanks to Suzanne Eichenberger and Madeleine Robert for their crucial help whenever it
was necessary.

vii

VIII

Preface

This thesis concerns the Ph.D. work I did under the supervision of Prof. Fernando Pedone
and Prof. Willy Zwaenepoel at the School of Computer and Communication Sciences,
EPFL, from 2004 to 2007. During this period, I also worked on (1) message diffusion in
unreliable environments [GPS04a, AGPSS07, GPS04b], (2) checkpointing and rollback-
recovery [SGPB05, SM06], (3) recovery of in-memory database federations [SP05], and
(4) partial database replication [SSP06]. More recently, I have also worked on the use of
multicoordination on Paxos [CSP07].

This thesis focuses on deferred-update database replication and its relation to the problem of
distributed sequence agreement. Part of the results presented in it appear in three previous
papers: [SP07, SCP07, CPS06].

[SP07] R. Schmidt and F. Pedone. A Formal Analysis of the Deferred Update Technique.
In Proceedings of the 11th International Conference on Principles of Distributed Sys-
tems (OPODIS-2007), Guadeloupe, French West Indies, December 2007.
Brief Announcement in Proceedings of the 21st International Symposium on Dis-
tributed Computing (DISC-2007), Cyprus, September 2007.

[SCP07] R. Schmidt, L. Camargos, and F. Pedone. On Collision-fast Atomic Broadcast.
EPFL Technical Report, Switzerland, 2007.

[CSP07] L. Camargos, R. Schmidt, and F. Pedone. Multicoordinated Paxos. EPFL Techni-
cal Report, Switzerland, December 2007.
Brief Announcement in Proceedings of the 26th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC-2007), Portland, USA, August 2007.

[AGPSS07] M. Alani, B. Garbinato, F. Pedone, R. Schmidt, and M. Stamenković. Local-
Knowledge Algorithms for Structured Message Diffusion in Unreliable Environments.
In 2nd Workshop on Locality Preserving Distributed Computing Methods (LOCAL-
ITY 2007), Portland, USA, August 2007.

[SSP06] N. Schiper, R. Schmidt, and F. Pedone. Optimistic Algorithms for Partial Database
Replication. In Proceedings of the 10th International Conference on Principles of

ix

X

Distributed Systems (OPODIS-2006), Bordeaux, France, December 2006.
Brief Announcement in Proceedings of the 20th International Symposium on Dis-
tributed Computing (DISC-2006), Stockholm, Sweden, 2006.

[CPS06] L. Camargos, F. Pedone, and R. Schmidt. A Primary-Backup Protocol for In-
Memory Database Replication. In Proceedings of the 5th IEEE International Sympo-
sium on Network Computing and Applications (NCA-2006), Cambridge, USA, July
2006.

[SM06] R. Schmidt and P. Murray. Woodfrog: A Persistence Library for Smartfrog Com-
ponents. Technical Report HPL-2006-37, HP Labs, Bristol, UK, March 2006.

[SP05] R. Schmidt and F. Pedone. Consistent Main-Memory Database Federations un-
der Deferred Disk Writes. In Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems (SRDS-2005), Orlando, USA, October 2005.

[SGPB05] R. Schmidt, I. C. Garcia, F. Pedone, and L. E. Buzato. Asynchronous Garbage
Collection for RDT Checkpointing Protocols. In Proceedings of the 25th Inter-
national Conference on Distributed Computing Systems (ICDCS-2005), Columbus,
USA, June 2005.
Brief Announcement in Proceedings of the 23rd Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC-2004), St. John’s, Canada, July 2004.

[GPS04a] B. Garbinato, F. Pedone, and R. Schmidt. An Adaptive Algorithm for Efficient
Message Diffusion in Unreliable Environments. In Proceedings of the 2004 Inter-
national Conference on Dependable Systems and Networks (DSN-2004), Florence,
Italy, July 2004.

[GPS04b] B. Garbinato, F. Pedone, and R. Schmidt. A Modular Approach to Optimizing
Highly-Dynamic Distributed Systems. Fast Abstract in Proceedings of the 2004 In-
ternational Conference on Dependable Systems and Networks (DSN-2004), Florence,
Italy, 2004.

Contents

1 Introduction 1

1.1 Database Replication . 1

1.1.1 Distributed Locking Approach . 2

1.1.2 Deferred-Update Replication . 2

1.1.3 Consensus and Paxos . 3

1.2 Research Contributions . 3

1.3 Methodology . 5

1.3.1 Refinement Mappings . 5

1.3.2 Formal Specifications . 5

1.4 Thesis Organization . 7

2 Formal Analysis of the Deferred Update Technique 9

2.1 Serializability . 10

2.2 The Deferred Update Technique . 13

2.2.1 Preliminaries . 13

2.2.2 Abstract Algorithm . 15

xi

XII CONTENTS

2.2.3 Termination Protocol . 19

2.3 A Simple Implementation . 23

2.4 Theorem Proofs . 25

2.4.1 Proof of Theorem 2.1 . 25

2.4.2 Proof of Theorem 2.3 . 39

2.4.3 Proof of Theorem 2.4 . 40

2.5 TLA+ Specifications . 40

2.5.1 Module DatabaseConstants . 40

2.5.2 Module SerializableDB . 43

2.5.3 Module OPSerializableDB . 45

2.5.4 Module AOPSerializableDB . 46

2.5.5 Module GeneralDeferredUpdate 47

2.5.6 Module GeneralTermination . 52

2.6 Related Work and Final Remarks . 54

3 Collision-fast Sequence Agreement and Paxos 57

3.1 Sequence Agreement and Consensus . 58

3.2 Model and Definitions . 59

3.2.1 Model . 59

3.2.2 Sequence Agreement . 60

3.2.3 Algorithms . 61

3.3 M-Consensus . 63

3.3.1 Value Mapping Sets . 64

CONTENTS XIII

3.3.2 Problem Definition . 65

3.4 Collision-fast Paxos . 66

3.4.1 Basic Algorithm . 66

3.4.2 Ensuring Liveness . 72

3.4.3 Runtime Reconfiguration . 74

3.5 Solving Sequence Agreement . 74

3.5.1 General Approach . 74

3.5.2 Collision-fast Paxos Approach . 75

3.6 Correctness of Collision-fast Paxos . 76

3.6.1 Preliminaries . 76

3.6.2 Abstract Collision-fast Paxos . 83

3.6.3 Distributed Abstract Collision-fast Paxos 88

3.6.4 Collision-fast Paxos . 91

3.6.5 The Liveness of Collision-fast Paxos 98

3.7 Correctness of the Sequence Agreement Algorithm 102

3.7.1 Complete Algorithm Specification 102

3.7.2 Safety . 104

3.7.3 Liveness . 106

3.8 TLA+ Specifications . 107

3.8.1 Module SAgreement . 107

3.8.2 Module VMapping . 108

3.8.3 Module MConsensus . 110

XIV CONTENTS

3.8.4 Module PaxosConstants . 111

3.8.5 Module AbstractCFPaxos . 115

3.8.6 Module DistAbsCFPaxos . 117

3.8.7 Module DistCFPaxosLiv . 121

3.8.8 Module CFPaxosSAgreement 131

3.9 Related Work and Final Remarks . 138

4 Optimized Algorithms 141

4.1 Certification-based Algorithm . 142

4.1.1 Model and Definitions . 142

4.1.2 General Idea and Data Structures 143

4.1.3 Atomic Actions . 146

4.1.4 Correctness and Optimizations . 151

4.2 In-memory Primary-Backup Replication 155

4.2.1 Motivation . 155

4.2.2 Concurrency Control Mechanism 157

4.2.3 The Algorithm . 158

4.2.4 Correctness and Optimizations . 166

4.3 TLA+ Specifications . 169

4.3.1 Module CertificationBased . 169

4.3.2 Module SOPSerializable . 182

4.3.3 Module PrimaryBackup . 183

4.4 Related Work and Final Remarks . 197

CONTENTS XV

5 Conclusion 199

5.1 Research Assessment . 199

5.2 Future Directions and Open Questions . 201

XVI CONTENTS

Chapter 1

Introduction

The beginning is the most important part of the work.
Plato

The focus of this thesis is on the design of high-performance fault-tolerant database
systems that behave correctly and with good performance even in the event of failures. In
this context, replication can be used to provide both performance and dependability. If
several database replicas are available, performance can be improved by distributing the
load among them. Moreover, if one of the replicas cannot be accessed due to failures,
resource users can still rely on the other ones. However, providing the interface of a single
database system out of several replicas is not an easy task since one has to ensure they
are always consistent with each other. Allowing replicas to diverge would easily break the
illusion of having a single high-performance fault-tolerant database system.

1.1 Database Replication

The problem of database replication is not recent and has been an active area of research
for the last 30 years [Gif79, Sto79, Tho79]. Yet, the trade-off between the synchronization
required to provide strong consistency and the performance overhead it generates is still
very strong, even with recent technologies, leaving space for new contributions in the field.

1

2 CHAPTER 1. INTRODUCTION

1.1.1 Distributed Locking Approach

Early methods to handle database replication used distributed locks to synchronize repli-
cas. The idea was basically to extend distributed locking protocols used for partitioned
databases to handle replication as well. In this scenario, each data replica is considered as a
different data item in the system. Read operations can acquire a single read lock from any
of the replicas, but write transactions must acquire write locks on all data replicas in order
to execute. Gray et al. have shown that this approach performs poorly as the number of
replicated database sites increase, with a rapid growth on the number distributed deadlocks
in the system [GHOS96].

Later works on database replication started to consider using group communication
primitives with some ordering guarantees in order to avoid the problem of distributed dead-
locks [AAAS97, PGS97, HAA99, PMJPKA00, RMA+02, KA00a, WPS+00a, WPS+00b].
Submitting operations to all replicas in total order helps to avoid deadlocks but adds a new
overhead to the system since ensuring total order is expensive. This favored a class of opti-
mistic protocols that executed transactions initially at a single replica and only synchronized
replicas during transaction termination. Since updates are only propagated after the trans-
action has executed all its operations, this approach receives the name of deferred update
technique.

More recently, research has also been pursued on mixing ordering guarantees with dis-
tributed locking to tolerate byzantine failures at the same time that distributed deadlocks are
avoided [VBLM07].

1.1.2 Deferred-Update Replication

The main idea of this technique consists in executing all operations of a transaction initially
on a single database. Transactions that do not change the database state can commit locally
to the replica they executed, but other transactions must be globally certified and, if com-
mitted, have their update operations (those that change the database state) submitted to all
database replicas. This technique is adopted by a number of database replication protocols
in different contexts (e.g., [AT02, KA00b, PMJPKA00, PF00, PGS03, SSP06]) for its good
performance in practical scenarios. Since most practical workloads have a vast majority of
read-only transactions, it allows for a good balance of the load amongst the replicas, which
execute such transactions completely independent of each other.

Replicas still have to synchronize to commit transactions that change the database state.
However, the technique usually packs all the transaction operations in a single message,
reducing the overhead as compared to techniques that propagate updates operation by oper-
ation.

1.2. RESEARCH CONTRIBUTIONS 3

1.1.3 Consensus and Paxos

Most deferred update algorithms rely directly on some sort of agreement abstraction to ter-
minate update transactions. Consensus is one of the most basic agreement problems in
distributed computing. In this problem, processes must agree on a single value, out of a set
of proposed ones. Despite its simplicity, it is a powerful abstraction. State-machine replica-
tion [Lam78] is probably the most important application of consensus. In this approach, a
reliable service is implemented by replicating it in several failure-independent processors,
where replicas consistently change their states by applying deterministic commands from an
agreed sequence. A consensus instance is used to decide on each command in the sequence.

Paxos is a very efficient and fault-tolerant consensus protocol originally intended for
state-machine replication [Lam98]. It allows efficient implementations and is very resilient
to failures, which favors its use in practical systems. For this reason, we use Paxos as the
basis of most algorithms in this work. During normal execution of Paxos, a set of pro-
poser processes (e.g., clients) send their proposed commands to an elected leader. Upon
the receipt of a command C , the leader selects the next consensus instance to which no
command has been proposed and forwards C , under the selected consensus instance, to a
set of acceptor processes. Acceptors “accept” C and send a notification to a set of learner
processes (e.g., replicas). Learners learn the decision of a consensus instance when they re-
ceive a notification coming from a quorum of acceptors. To tolerate the failure of the leader,
each instance of consensus is further subdivided into rounds, explained later. Instances and
rounds are similar in definition but completely different in purpose and the reader must be
careful not to confuse them.

1.2 Research Contributions

This thesis provides the following four major contributions

Abstraction of the Deferred Update Technique. We present a formal abstraction of the
deferred update technique for database replication. Despite its wide use, there was no for-
malization of it up to now, forcing the design, analysis, and correctness proof of this type
of protocols to be done by non-standard mechanisms. Our abstraction allows one to come
up with general results concerning this family of protocols (lower and upper bounds), prove
their correctness, and easily design novel correct-by-construction protocols. Based on this
model, we show that, contrary to the assumptions made by previous works on deferred-
update replication, the technique can cope with a concurrency control mechanism weaker
than strict order-preserving serializability on database replicas. In fact, this motivated us
to introduce the concept of active order-preserving serializability, which generalizes the be-

4 CHAPTER 1. INTRODUCTION

havior of some optimistic concurrency control algorithms and can be safely employed on
general deferred-update algorithms. Using this model, we show that the problem of termi-
nation of active transactions in deferred-update protocols is highly related to the problem of
sequence agreement among a set of process.

M-Consensus and Collision-fast Paxos. Collision-fast Paxos a very efficient fault-tolerant
solution to the problem of sequence agreement, a sequence-based specification of the atomic
broadcast problem[HT93]. Our latency-optimal algorithm, derived from the celebrated
Paxos consensus protocol [Lam98], is very dynamic and can quickly reconfigure and adapt
to failures, which distinguishes it from previous approaches achieving similar bounds. Our
algorithm is based on a variant of the consensus problem we call M-Consensus. M-Consensus
is more general than the original consensus problem, being much more suitable as a building
block for efficient sequence agreement implementations. We have extensively proved safety
and liveness of our solutions to both M-Consensus and sequence agreement and we believe
that some of the techniques we used are general enough to be applied to other agreement
problems.

Certification-based Deferred-Update Algorithm. This is a general deferred-update al-
gorithm that requires no extra assumptions about the database engines and, yet, has very lit-
tle overhead associated with the termination of active transactions, propagating only strictly
necessary information to replicas. We use the knowledge obtained from working with the
Paxos protocol to implement termination very efficiently, with the same latency and degree
of fault tolerance as the original algorithm. It can certify and propagate active transactions
to replicas within three communication steps as seen from the client. We know of no pre-
vious protocol that can ensure this latency propagating the same amount of information we
do.

In-memory Primary-Backup Replication Algorithm. In this algorithm, we use strong
assumptions about the concurrency control mechanism used by database replicas to reduce
even more the latency and the burden associated with transaction termination, requiring
only two communication steps and no extra certification procedure to commit proposed
transactions. This algorithm can be nicely coupled with in-memory databases to provide
very good performance in practice. Besides its practical relevance, it also shows how our
deferred-update abstraction can help the design and analysis of protocols even if termination
depends on stronger assumptions about the consistency guarantees of database replicas.

1.3. METHODOLOGY 5

1.3 Methodology

Our methodology for this work is to use correctness proofs based on refinement mappings
from complex algorithms to simpler, easily-proven, abstractions, and write our algorithms
and abstractions in terms of formal specifications.

1.3.1 Refinement Mappings

There are basically two ways of proving correctness of algorithms: behavioral and asser-
tional reasoning. In behavioral reasoning, proofs are based on the possible behaviors of the
algorithm and the actions whose execution led to one or another state. In assertional rea-
soning, proofs are based on invariants kept by the actions performed by the specification.
Complex distributed algorithms can be very hard to reason about in terms of behaviors.
The huge number of possible execution paths and corner cases can make it very easy to
forget checking one or another possibility. For this reason, due to the complexity of our
algorithms, we decided to use assertional reasoning to prove their correctness.

We use Lamport’s transition axiom method [Lam89] to specify and reason about prob-
lems and algorithms. In this assertional method, correctness is proved by finding a correct
refinement mapping from an algorithm to an abstract specification [AL91]. These refine-
ment mappings are proved with the help of invariants and assertional reasoning about the
algorithm. The advantage of this method is that it breaks correctness proofs in multiple
independent parts and allows for very precise proofs.

To increase our confidence in the results we present, we wrote our proofs very carefully.
Nevertheless, some steps can become very complicated and must be divided into sub-steps
to avoid mistakes. The best method we found to structure our proofs without risking making
mistakes is the one explained in [Lam95]. This is a very simple method that uses itemization
to break a proof into multiple steps and help their presentation.

1.3.2 Formal Specifications

Practical systems and algorithms are usually complex and difficult to analyze and prove
correct. Experience has shown that the “social process” of mathematics does not operate the
same way in the world of system design [MLP79]. We will hardly see engineers discussing
about correctness proofs of complicated systems, specially if they did not participate in their
design. Correctness of complex systems depend mainly, if not uniquely, on how careful their
designers were when developing their ideas. Careless design can lead to problems much
more complicated than simple programming bugs since incorrect algorithms may force a

6 CHAPTER 1. INTRODUCTION

system to be completely redesigned.

In this work, we wanted to make our algorithms as practical as possible and, in order
to cope with the problem above, we used formal specifications to reason about abstractions
and algorithms in this thesis. This forced us to care about many important details and
helped us find many mistakes in the original design of our ideas. More specifically, we
used the TLA+ specification language [Lam02] for its power and simplicity with respect to
the specification of distributed systems. Moreover, the existing tools for TLA+ allowed us
to find and correct many mistakes and the possibility of model checking our specifications
increased the confidence in our results.

In the chapters that follow, we use natural language and simple pseudo-code to describe
our specifications of abstractions and algorithms. However, at the end of each chapter, we
also present our unambiguous TLA+ specifications. We have put them there to break any
ambiguity or doubt that our higher-level description might create. We tried to put as many
comments as possible in our specifications to make them more easily readable in case of
necessity.

TLA+ specifications are not very different from the pseudo-code based on atomic ac-
tions usually used to describe distributed algorithms. The most important part of any speci-
fication is the description of the atomic actions it allows, so we can concentrate on that for
this brief introduction. In TLA+, each action is specified as a logical expression on old and
new variable values, where operator ′ refers to the state a variable has after the action takes
place. As an example, an action that simply assigns to variable x its previous value plus 3
is represented by the logic expression x ′ = x + 3.

Some aspects about its syntax might make expressions that define actions look more
complicated than they actually are. One of these aspects is the use of indentation to avoid
using parentheses. In TLA+, we can write expression (((a ∨ b) ∧ (c ∨ d)) ∨ e) as shown
in Figure 1.1. In fact, this visual representation of expressions makes it much easier to
understand the complicated enabling conditions found in distributed algorithms.

∨ ∧ ∨ a
∨ b

∧ ∨ c
∨ d

∨ e

Figure 1.1: TLA+ Example

To allow the composition of specifications, each action must specify the state change
of every variable in the system. Leaving a variable unspecified means that it can assume
any value if the action is executed. Operator UNCHANGED is used to simplify the task

1.4. THESIS ORGANIZATION 7

for the list of variables that are not changed by an action. Another useful operator worth
mentioning here is the operator EXCEPT . The expression [q EXCEPT ![x] = y], where
q is a vector, returns a vector almost equal to q except for entry x , which is set to value y .
This operator is extremely helpful when dealing with vectors.

In summary, TLA+ specifications are given by a disjunction of action expressions.
These actions are specified as the conjunction of their pre- and post-conditions, in a very in-
tuitive way. As an example, to define an action ChangeState(v) that sets entry x of vector
vec to v when variable y equals vec[x], we write the following TLA+ expression.

ChangeState(v) ∆= ∧ vec[x] = y pre-condition

∧ vec′ = [vec EXCEPT ![x] = v]
∧ UNCHANGED 〈y , x 〉

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 introduces our deferred-update abstraction.
It explains the database models we assume and proves some lower and upper bounds con-
cerning termination of active transactions, including the necessity of solving the sequence
agreement problem. This chapter also gives a simple example of how our abstract algorithm
can be extended into a distributed implementation. Chapter 3 presents our latency-optimal
and very dynamic solution to the sequence agreement problem, based on the Paxos consen-
sus protocol. It also introduces an abstraction different from consensus, more suitable for
fast sequence agreement implementations. Chapter 4 shows how the abstraction presented
in Chapter 2 can be used to design new correct-by-construction deferred-update protocols.
It introduces a general algorithm with very good latency and low overhead and a more spe-
cific algorithm that depends on special consistency guarantees given by the replicas to offer
even lower latency and overhead. In Chapter 5, we summarize the major results of this work
and outline future research directions.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Formal Analysis of the Deferred
Update Technique

If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is.

John Louis von Neumann

In the deferred update technique, a number of database replicas are used to imple-
ment a single serializable database interface. This technique is adopted by a number of
database replication protocols in different contexts (e.g., [PGS97, KA00b, PMJPKA00,
PF00, PGS03, SSP06]) for its good performance in general scenarios. The class of de-
ferred update protocols is very heterogeneous, including algorithms that can optimistically
apply updates of uncertified transactions [PMJPKA00], certify transactions locally to the
database that executed them [KA00b], execute all concurrent update transactions at the
same database [PF00], reorder transactions during certification [PGS97, PGS03], and even
cope with partial database replication [SSP06]. However, all of them share the same basic
structure, giving them some common characteristics and constraints.

Despite its wide use, we are not aware of any work that explored more deeply the the-
oretical aspects of deferred-update database replication. Ours seems to be the first attempt
in this direction. In this chapter, we specify a general abstract deferred update algorithm
that embraces all the protocols we know of. This general specification allows us to for-
mally characterize the deferred update technique and rigorously prove its properties. As
an example, we isolated the building block responsible for committing and propagating up-
date transactions and showed its specific relation with distributed agreement problems. Our
abstraction also eases the task of proving protocols correct, since it suffices to show a cor-
rect refinement mapping. Moreover, being a generalization of the technique, the abstract
algorithm can also be used to derive new correct-by-construction protocols from it.

9

10 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

2.1 Serializability

The consistency criterion for transactional systems in general is Serializability, which is
defined in terms of the equivalence between the system’s actual execution and a serial ex-
ecution of the submitted transactions [BHG87]. Traditional definitions of equivalence be-
tween two executions of transactions referred to the internal scheduling performed by the
algorithms and their ordering of conflicting operations. This approach has led to differ-
ent notions of equivalence and, therefore, different subclasses of Serializability [Pap79].
In a distributed scenario, however, defining equivalence in terms of the internal execution
of the scheduler is not straightforward since there is usually no central scheduler respon-
sible for ordering transaction operations. To compare a serial centralized schedule with
a general distributed one (e.g., in a replicated database), one has to create mappings be-
tween the operations performed in both schedules and extend the notion of conflicting op-
erations to deal with sets of operations, since a single operation in the serial centralized
schedule may be mapped to a set of operations executed on different sites in the distributed
one [BHG87]. This approach is highly dependent on the implemented protocol and, as
explained in [LMWF94], does not generalize well.

Differently, we specify a general serializable database system, which responds to re-
quests according to some internal serial execution of the submitted transactions. A database
protocol satisfies serializability if it implements the general serializable database specifica-
tion, that is, if its interface changes could be generated by the general serializable database.
This sort of analysis is very common in distributed systems for its compromise between
abstraction and rigorousness [Lam02, Lyn96, LMWF94].

In our specification of serializability, we first define all valid state transitions for normal
interactions between the clients and the database, without caring about the values returned as
responses to issued operations, but rather storing them internally as part of the transaction
state. The database is free to abort a transaction at any time during the execution of its
operations. However, a transaction t can only be committed if its commit request was
issued and there exists a sequential execution order for all committed transactions and t that
corresponds to the results these transactions provided. We say the transaction is decided if
the database has aborted or committed it. Operations issued for decided transactions get the
final decision as its result.

We assume each transaction has a unique identifier and let Tid be the set of all
identifiers. We call Op the set of all possible transaction operations, which execute
over a database state in set DBState and generate a result in set Result and a new
database state. We abstract the correct execution of an operation by the predicate
CorrectOp(op, res, dbst ,newdbst), which is true iff operation op, when executed over
database state dbst , may generate res as the operation result and newdbst as the new
database state. This makes our specification completely independent of the set of allowed
operations, coping with predicate-based or nondeterministic ones. As a simple example, one

2.1. SERIALIZABILITY 11

could define a database with two integer variables x and y with read and write operations
for each variable. In this case, DBstate corresponds to all possible combinations of values
for x and y , Op is the combination of an identifier for x or y with a read tag or an integer
(in case of a write), and Result is the set of integers. CorrectOp(op, res, dbst ,newdbst)
is satisfied iff newdbst and res correspond to the results for the read or write operation op
applied to dbst .

Two special requests, Commit and Abort , both not present in Op, are used to terminate
a transaction, that is, to force a decision to be taken. Two special responses, Committed
and Aborted , not present in Result , are used to tell the database user if the transaction has
been committed or aborted. We also define some auxiliary sets to help us deal more easily
with these special requests and responses. Specifically, we define Decided to equal the set
{Committed ,Aborted}, Request to equal Op ∪ {Commit ,Abort}, and Reply to equal
Result ∪Decided .

During a transaction’s execution, operations are issued and responses are given until the
client issues a Commit or Abort request or the transaction is aborted by the database for
some internal reason. We represent the history of a transaction execution by a sequence
of elements in Op × Result , corresponding to the sequence of operations executed on the
transaction’s behalf and their respective results. We say that a transaction history h is atom-
ically correct with respect to initial database state initst and final database state finalst
iff it satisfies the recursive predicate defined below, where THist is the set of all possible
transaction histories and Head and Tail are the usual operators for sequences. Moreover,
for notation simplicity, we identify the first and second elements of a tuple t in Op×Result
by t .op and t .res , respectively.

CorrectAtomicHist(h ∈ THist , initst ,finalst ∈ DBState) ∆=
if h = 〈〉 then initst = finalst

else ∃ist ∈ DBState : CorrectOp(Head(h).op,Head(h).res, initst , ist) ∧
CorrectAtomicHist(Tail(h), ist ,finalst)

Intuitively, a transaction history is atomically correct with respect to initst and finalst iff
there are intermediate database states so that all operations in the history can be executed in
their correct order and generate their correct results.

During the system’s execution, many transactions are started and terminated (possibly
concurrently). We represent the current history of all transactions by a data structure
called history vector that maps each transaction to its current history. We abstract this data
structure by the set THistVector , containing all the possible history vectors. A sequence
seq of transactions and a history vector thist correspond to a correct serialization with
respect to initial state initst and final state finalst iff the recursive predicate below is
satisfied, where Seq(S) represents the set of all finite sequences of elements in set S .

12 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

CorrectSerialization(seq ∈ Seq(Tid), thist ∈ THistVector , initst ,finalst ∈ DBState) ∆=
if seq = 〈〉 then initst = finalst

else ∃ist ∈ DBState : CorrectAtomicHist(thist(Head(seq)), initst , ist) ∧
CorrectSerialization(Tail(seq), thist , ist ,finalst)

Intuitively, this predicate is satisfied iff there are intermediate database states so
that all transactions in the sequence can be atomically executed in their correct or-
der generating the correct results for their operations. We can now easily define a
predicate IsSerializable(S , thist , initst) for a finite set of transaction id’s S , history
vector thist , and database state initst , satisfied iff there is a sequence seq containing
exactly one copy of each element in S and a final database state finalst such that
CorrectSerialization(seq , thist , initst ,finalst) is satisfied. Predicate IsSerializable
indicates when a set of transactions can be serialized in some order, according to their
execution history, so that every operation returns its correct result when the execution is
started in a given database state.

We abstract the interface of our specification by the primitives DBRequest(t , req),
which represents the reception of a request req on behalf of transaction t , and
DBResponse(t , rep), which represents the database response to the last request on behalf
of t with reply rep. The only restriction we make with respect to the database interface is
that an operation cannot be submitted on behalf of transaction t if the last operation sub-
mitted for t has not been replied yet, which releases us from the burden of using unique
identifiers for operations in order to match them with their results. Notice that the system
still allows a high degree of concurrency since operations from different transactions can be
submitted concurrently.

Our specification is based on the following internal variables:

thist: A history vector, initially mapping each transaction to an empty history.

tdec: A mapping from each transaction to its current decision status: Unknown ,
Committed , or Aborted . Initially, it maps each transaction to Unknown .

q: A mapping from each transaction to its current request or NoReq if no request is being
executed on behalf of that transaction. Initially, it maps each transaction to NoReq .

Figure 2.1 presents the pseudo-code for the atomic actions of our specification. Action
ReceiveReq(t , req) is responsible for receiving a request on behalf of transaction t . Action
ReplyRep(t , rep) replies to a received request. It is enabled only if the transaction has been
decided and the reply is the final decision or the transaction has not been decided but the
current request is an operation (neither Commit nor Abort) and the reply is in Result . This
means that responses given after the transaction has been decided carry the final decision
and requests to commit or abort a transaction are only replied after the transaction has

2.2. THE DEFERRED UPDATE TECHNIQUE 13

ReceiveReq(t ∈ Tid , req ∈ Request)
Enabled iff:
• DBRequest(t , req)
• q[t] = NoReq

Effect:
• q[t]← req

ReplyReq(t ∈ Tid , rep ∈ Reply)
Enabled iff:
• q[t] ∈ Request
• if tdec[t] ∈ Decided

then rep = tdec[t]
else q[t] ∈ Op ∧ rep ∈ Result

Effect:
• DBResponse(t , rep)
• q[t]← NoReq
• if tdec[t] /∈ Decided then

thist [t]← thist [t] ◦ 〈q[t], rep〉

DoAbort(t ∈ Tid)
Enabled iff:
• tdec[t] /∈ Decided

Effect:
• tdec[t]← Aborted

DoCommit(t ∈ Tid)
Enabled iff:
• tdec[t] /∈ Decided
• q[t] = Commit
• IsSerializable(committedSet ∪ {t},

thist , InitialDBState)
Effect:
• tdec[t]← Committed

Figure 2.1: The atomic actions allowed in our specification of a serializable database.

been decided. Action ReplyReq is responsible for updating the transaction history if the
transaction has not been decided. It does that by appending the pair 〈q [t], rep〉 to thist [t]
(we use ◦ to represent the standard append operation for sequences). Action DoAbort(t)
simply aborts a transaction if it has not been decided yet. Action DoCommit(t) commits t
only if a t’s commit request was issued and the set of all committed transactions (represented
by committedSet) together with t is serializable with respect to the initial database state,
denoted by the constant InitialDBState .

2.2 The Deferred Update Technique

2.2.1 Preliminaries

As mentioned before, deferred update algorithms initially execute transactions on a single
replica. Transactions that do not change the database state (hereinafter called passive) may
commit locally only, but active transactions (as opposed to passive ones) must be globally
certified and, if committed, have their updates propagated to all replicas (i.e., operations that
make them active). In order to correctly characterize the technique, we need to formalize the
concepts of active and passive operations and transactions. An operation op is passive iff its
execution never changes the database state, that is, iff the following condition is satisfied.

∀st1, st2 ∈ DBState, rep ∈ Result : CorrectOp(op, rep, st1, st2)⇒ st1 = st2 (2.1)

An operation that is not passive is called active. Similarly, we define a transaction history h
to be passive iff the condition below is satisfied.

∀st1, st2 ∈ DBState : CorrectAtomicHist(h, st1, st2)⇒ st1 = st2 (2.2)

14 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

Notice that a transaction history composed of passive operations is obviously passive, but
the converse is not true. A transaction that adds and subtracts 1 to a variable is passive even
though its operations are active.

The deferred update technique requires some extra assumptions about the system. Oper-
ations, for example, cannot generate new database states nondeterministically for this could
lead different replicas to inconsistent states. The following assumption makes sure that
operations do not change the database state nondeterministically but still allows nondeter-
ministic results to be provided to the database user.

Assumption 2.1 (State-deterministic operations) For every operation op, and database
states st and st1, if there is a result res1 such that CorrectOp(op, res1, st , st1), then there
is no result res2 and database state st2 such that st1 6= st2∧CorrectOp(op, res2, st , st2).

As for the database replicas, one may wrongly think that simply assuming that they
are serializable is enough to ensure global serializability. However, two replicas might
serialize their transactions (local and global) differently, making the distributed execution
non-serializable. Consider, for example, an execution with two active transactions t1 and
t2, operating in a database whose state is composed of two integer variables, x and y , both
initially 0. Assume t1 writes 1 to x , t2 writes 1 to y , and all databases receive both trans-
actions and commit them. Notice that any ordering of these two transactions is serializable.
Now, assume that a single replica r1 executes a passive transaction t3 that reads the state
〈x = 0, y = 1〉. Since the sequence 〈t2, t3, t1〉 represents a correct execution, t3 is free
to commit. Assume that a second replica r2, which will never be notified of t3 for it is a
passive transaction, executes a passive transaction t4 that reads the state 〈x = 1, y = 0〉.
The sequence 〈t1, t4, t2〉 represents a correct serial execution of the transactions submitted
to replica r2 and t4 is also free to commit. However, no sequential execution containing all
four transactions can generate their correct results, making it impossible for a serializable
interface to commit all of them.

For this reason, previous works on deferred update protocols assumed the notion of
order-preserving serializability, originally introduced by Beeri et al. in the context of nested
transactions [BBG89]. In our model, order-preserving serializability ensures that the trans-
actions’ commit order represents a correct execution sequence, a condition satisfied by two-
phase locking, for example. We show that this assumption can be relaxed since deferred
update protocols can work with the weaker notion of active order-preserving serializabil-
ity we introduce. Active order-preserving serializability ensures that there is an execution
sequence of the committed transactions that generates their correct outputs and respects
the commit order of all active transactions only. This notion is weaker than strict order-
preserving serializability in that passive transactions do not have to provide results based on
the latest committed state. Some multiversion concurrency control mechanisms [BHG87]
are active order-preserving but not strict order-preserving.

2.2. THE DEFERRED UPDATE TECHNIQUE 15

DoCommit(t ∈ Tid)
Enabled iff:
• tdec[t] /∈ Decided
• q[t] = Commit
• ∃st ∈ DBState :

CorrectSerialization(serialSeq ◦ t , thist , InitialDBState, st)
Effect:
• tdec[t]← Committed
• serialSeq ← serialSeq ◦ t

(a)

DoCommit(t ∈ Tid)
Enabled iff:
• tdec[t] /∈ Decided
• q[t] = Commit
• ∃seq ∈ Perm(committedSet ∪ {t}), st ∈ DBState :

CorrectSerialization(seq, thist , InitialDBState, st) ∧
ActiveExtension(serialSeq, t) is a subsequence of seq

Effect:
• tdec[t]← Committed
• serialSeq ← ActiveExtension(serialSeq, t)

(b)

Figure 2.2: DoCommit action for (a) strict and (b) active order-preserving serializability.

Specifications of order-preserving and active order-preserving serializability can be de-
rived from our specification in Figure 2.1 by just adding a variable serialSeq , initially equal
to the empty sequence, and changing the DoCommit action. We show the required changes
in Figure 2.2 below. The strict case (a) is simple and only requires that serialSeq◦t be a cor-
rect sequential execution of all committed transactions. The action automatically extends
serialSeq with t . The active case (b) is a little more complicated to explain and requires
some extra notation. Let Perm(S) be the set of all permutations of elements in finite set
S (all the possible orderings of elements in S), and let ActiveExtension(seq , t) be seq if
thist [t] is a passive history or seq ◦ t otherwise. The action is enabled only if there exists a
sequence containing all committed transactions such that it represents a correct sequential
execution and ActiveExtension(seq , t) is a subsequence of it.1 In this action, serialSeq is
extended with t only if t is an active transaction.

2.2.2 Abstract Algorithm

Our abstract deferred update algorithm generalizes the ideas of a handful of deferred update
protocols and makes it easy to think about sufficient and necessary requirements for them

1sequence subseq is a subsequence of seq iff it can be obtained by removing zero or more elements of seq .

16 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

to work correctly. Our specification assumes a set Database of active order-preserving seri-
alizable databases, and we use the notation DB(d)!Primitive() to represent the execution
of interface primitive Primitive (either DBRequest or DBResponse) of database d . Since
transactions must initially execute on a single replica only, we let DBof (t) represent the
database responsible for the initial execution of transaction t . One important remark is that
these internal databases receive transactions whose id set is Tid ×N, whereN is the set of
natural numbers. This is done so because a single transaction in the system might have to
be submitted multiple times to a database replica in order to ensure that it commits locally.
Recall that our definition of active order-preserving serializability does not force transac-
tions to commit. Therefore, transactions that have been committed by the algorithm and
submitted to the database replicas are not guaranteed to commit unless further assumptions
are made. The only way around this is to submit these transactions multiple times (with
different versions) until they commit. Besides the set of databases, we assume a concurrent
termination protocol, fully explained in the next section, responsible for committing active
transactions and propagating their active operations to all databases.

The algorithm we present in the following orchestrates the interactions between the
global database interface and the individual internal databases. It is mainly based on the
following internal variables:

thist , q: Essentially the same variables as in the specification of a serializable database.

dreq: A mapping from each transaction t to the operation that is currently being submitted
for execution on DBof (t), or NoReq if no operation is being submitted. This variable
is used to implement the asynchronous communication that tells DBof (t) to execute
an operation of t . Initially all transactions are mapped to NoReq .

dreply: Similar to dreq , but mapping each transaction t to the last response given by
DBof (t).

dcnt: A mapping from each database d and transaction t to an integer representing the
number of operations that executed on d for t . It counts the number of operations
DBof (t) has executed for t during t’s initial execution and, if t is active, the number
of active operations the other databases (or DBof (t) if it does not manage to com-
mit t directly after it is globally committed) have executed for t after it is globally
committed. It is initially 0 for all databases and transactions.

pdec: A mapping like tdec in the specification of a serializable database, used to tell
whether the transaction was decided without being proposed for global termination
either because it was prematurely aborted during its initial execution or because it
was a passive transaction that committed on its execution database.

vers: A mapping from each database d and transaction t to an integer representing the
current version of t being submitted to d . It is initially 0 for all databases and trans-
actions.

2.2. THE DEFERRED UPDATE TECHNIQUE 17

dcom: A mapping from each database d and transaction t to a boolean telling whether t
has been committed on d . It is initially false for all databases and transactions.

When a Commit request is issued for a transaction whose history has been active, a
decision must be taken on whether to commit or abort this transaction with respect to active
transactions executed on other databases. In our specification, this is done separately by a
termination protocol. The reason why we isolated this part of the specification is twofold.
First, the nature of the rest of the algorithm is essentially local to the database that is exe-
cuting a given transaction and it seems interesting to separate it from the part of the spec-
ification responsible for synchronizing active transactions executed on different databases.
Second, the properties of the termination protocol, when isolated, can be related to prop-
erties of other agreement problems in distributed computing, which helps understand and
solve it. The interface variables of the termination protocol used in our general specification
are the following:

proposed : This is an input variable that keeps the set of all proposed transactions. It is
initially empty.

gdec: An output variable that keeps a mapping like pdec above, but managed by the termi-
nation protocol only. It tells whether a proposed transaction has already been decided
or not.

learnedSeq: Another output variable mapping each database d to a sequence of globally
committed active transactions. This sequence tells database d the order in which
these active transactions must be committed to make the whole execution serializable.
Initially, it maps each database to the empty sequence.

Our specification implements a serializable database, which can be proved by a refine-
ment mapping from its internal variables to those of a general serializable database. Ac-
tually, the only internal variable of our specification of a serializable database not directly
implemented in our abstract algorithm is tdec, given by joining the values of pdec and gdec
in the following way:

tdec[t] ∆= if t ∈ proposed then gdec[t] else pdec[t] (2.3)

For simplicity, we use this definition of tdec in some parts of our specification. Another
extra definition used in our algorithm is the ActHist(t) operator that returns a subsequence
of thist [t] containing all its active operations. The atomic actions of our abstract algorithm,
without the internal actions of the individual databases and the termination protocol, are
shown in Figure 2.3.

Action ReceiveReq treats the receipt of a transaction request. If the transaction respon-
sible for the operation has been decided (either for pdec or gdec according to the definition

18 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

ReceiveReq(t ∈ Tid , req ∈ Request)
Enabled iff:
• DBRequest(t , req)
• q[t] = NoReq

Effect:
• q[t]← req
• if tdec[t] /∈ Decided then

if req = Commit ∧ thist [t] “is active”
then proposed ← proposed ∪ {t}
else dreq[t]← req

ReplyReq(t ∈ Tid , rep ∈ Reply)
Enabled iff:
• q[t] ∈ Request
• if tdec[t] ∈ Decided

then rep = tdec[t]
else q[t] ∈ Op ∧ rep ∈ Result ∧

dcnt [DBof (t)][t] > Len(thist [t]) ∧
rep = dreply[t]

Effect:
• DBResponse(t , rep)
• q[t]← NoReq
• if tdec[t] /∈ Decided then

– thist [t]← thist [t] ◦ 〈q[t], rep〉
– dreq[t]← NoReq

PrematureAbort(t ∈ Tid)
Enabled iff:
• t /∈ proposed
• pdec[t] /∈ Decided

Effect:
• pdec[t]← Aborted

PassiveCommit(t ∈ Tid)
Enabled iff:
• t /∈ proposed
• pdec[t] /∈ Decided
• dreply[t] = Committed

Effect:
• pdec[t]← Committed

DBReq(d ∈ Database, t ∈ Tid , req ∈ Request)
Enabled iff any of the conditions below hold.

Condition 1: (external operation request)
• d = DBof (t)
• dreq[t] = req
• dcnt [d][t] = Len(thist [t])

Condition 2: (operation after termination)
• t ∈ proposed
• dcnt [d][t] < Len(ActHist(t))
• req = ActHist(t)[dcnt [d][t] + 1].op

Condition 3: (commit after termination)
• req = Commit
• ∃i ∈ 1..Len(learnedSeq[d]) :

learnedSeq[d][i] = t ∧
∀j < i : dcom[d][learnedSeq[d][j]]

• either d = DBof (t) ∧ vers[d][t] = 0
or dcnt [d][t] = Len(ActHist(t))

Effect:
• DB(d)!DBRequest(〈t , vers[d][t]〉, req)

DBRep(d ∈ Database, t ∈ Tid , rep ∈ Reply)
Enabled iff:
• DB(d)!DBResponse(〈t , vers[d][t]〉, rep)

Effect:
• if d = DBof (t) then dreply[t]← rep
• if rep = Aborted ∧ t ∈ proposed then

– vers[d][t]← vers[d][t] + 1
– dcnt [d][t]← 0

else if rep ∈ Result then
– dcnt [d][t]← dcnt [d][t] + 1

else
– dcom[d][t]← rep = Committed

Figure 2.3: The atomic actions our abstract protocol.

of tdec given above), then it only changes q [t]. Otherwise, it either proposes t for the
termination protocol or sends the request to DBof (t) through variable dreq [t]. Our com-
plete specification allows passive transactions to be submitted for the termination protocol
too and this is why we wrote “is active” between quotation marks. We allow that because
sometimes it might not be possible to identify all passive transactions. Therefore, our spec-
ification also embraces algorithms that identify only a subset of the passive transactions as
passive and conservatively propose the others for global termination.

Action ReplyReq replies a transaction request. It is very similar to the original
ReplyReq action of our serializable database specification. The small differences only make
sure that the value replied for a normal operation comes from DBof (t) and, in this case,
dreq [t] is set back to NoReq to wait for the next operation. Actions PrematureAbort and

2.2. THE DEFERRED UPDATE TECHNIQUE 19

PassiveCommit abort or commit a transaction that has not been proposed for global ter-
mination. It can only be committed if a commit request was correctly replied by DBof (t),
which can only happen if t has a passive history.

Action DBReq submits a request to a database. There are three conditions that enable
this action. The first one represents a normal request during the transaction’s initial execu-
tion or a commit request for a passive transaction. The second one represents an operation
request for an active transaction that has been proposed to the termination protocol. Notice
that operations of proposed transactions can be optimistically submitted to the database be-
fore they commit or appear in some learnedSeq . Some algorithms do that to save processing
time after the transaction is committed, reducing the latency for propagating transactions to
the replicas. The third condition that enables this action represents a commit request for a
transaction that has been committed by the termination protocol. For that to happen, the
transaction must be present in learnedSeq [d] and all transactions previous to it in the se-
quence must have been committed on that database. Moreover, all active operations of that
transaction must have been applied to the database already, which is true if the database
is the one originally responsible for the transaction and it has not changed the transaction
version or the operations counter dcnt [d][t] equals the number of active operations in the
transaction history. Recall that, by the definition of a serializable database, a request can
only be submitted if there is no pending request for the same transaction. This is actually
an implicit pre-condition for DBReq given by the specification of a serializable database.

Action DBRep treats the receipt of a response coming from a database. If the database
is the one responsible for initially executing the transaction, it sets drepy [t] to the value
returned. If the transaction is aborted but it has been proposed for global termination, it
changes the version of that transaction on that database and sets the operation counter to
zero so that the transaction’s operations can be resubmitted for its new version; otherwise,
it just increments the operation counter and sets dcom accordingly.

2.2.3 Termination Protocol

The termination protocol gives a final decision to proposed transactions and, if they are com-
mitted, forwards them to the database replicas. It “reads” from variables proposed and thist
(it relies on the transaction history to decide on whether to commit or abort it), and changes
variables gdec and learnedSeq . As explained before, variable gdec simply assigns the final
decision to a transaction; learnedSeq , however, represents the order in which each database
should submit the active transactions committed by the termination protocol. These are the
three safety properties that define the termination protocol:

20 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

Nontriviality For any transaction t , t is decided (gdec[t] ∈ Decided) only if it was pro-
posed.

Stability For any transaction t , if t is decided at any time, then its decision does not change
at any later time; and, for any database d , the value of learnedSeq [d] at any time is a
prefix of its value at all later times.

Consistency There exists a sequence seq containing exactly one copy of every
committed transaction (according to gdec) and a database state st such that
CorrectSerialization(seq , thist , InitialDBState, st) is true and, for every database
d , learnedSeq [d] is a prefix of seq .

The following theorem asserts that our complete abstract specification of a deferred
update protocol is serializable. This result shows that every protocol that implements our
specification automatically satisfies serializability. The proofs of our theorems are given in
Section 2.4.

Theorem 2.1 Our abstract deferred update algorithm implements the specification of a
serializable database given in Section 2.1.

This theorem results in an interesting corollary, stated below. It shows that indeed
databases are not required to be strict order-preserving serializable, an assumption that can
be relaxed to our weaker definition of active order-preserving serializability.

Corollary 2.2 Serializability is guaranteed by our specification if databases are active
order-preserving serializable instead of strict order-preserving serializable.

The three aforementioned safety properties are not strictly necessary to ensure serial-
izability. Nontriviality can be relaxed so that non-proposed transactions may be aborted
before they are proposed and Serializability is still guaranteed. However, we see no practi-
cal use of this since our algorithm already allows a transaction to be aborted at any point of
the execution before it is proposed. Committing a transaction before proposing depends on
making sure that the history of the transaction will not change and, in case it is active, on
whether there are alternative sequences that ensure the Consistency properties if the trans-
action is committed or not, a rather complicated condition to be used in practice. Stability
can be relaxed by allowing changes on suffixes of learnedSeq [d] that have not been sub-
mitted to the database yet. However, keeping knowledge of what part of the sequence has
already been submitted to the database and possibly changing the rest of it is equivalent to
implementing our abstract algorithm with learnedSeq [d] being the exact sequence locally
submitted to the database. As a result, we see no practical advantage in relaxing Stability.

2.2. THE DEFERRED UPDATE TECHNIQUE 21

Consistency can be relaxed in a more complicated way. In fact, the different sequences
learnedSeq [d] can differ, as long as the set of intermediate states they generate (states
in between transactions) are a subset of the intermediate states generated by a sequence
seq corresponding to a permutation of all globally committed transactions that satisfies
CorrrectSerialization(seq , thist , InitialDBState, st) for some state st . Ensuring this prop-
erty without forcing the learnedSeq sequences to prefix a common sequence is hard and
may lead to situations in which committed transactions cannot be added to a sequence
learnedSeq [d] for they would generate states that are not present in any sequence that could
satisfy our consistency criterion.

One might think, for example, that the consistency property can be relaxed to allow
commuting transactions that are not related (i.e., operate on disjunct parts of the database
state) in the sequences learnedSeq [d]. For that, however, we have to make some assump-
tions about the database state in order to define what we mean by disjunct parts of the
database state. For simplicity, let us assume our database state is a mapping from objects in
a set Object to values in a set Value and operations can read or write a single object value.
We define the objects of a transaction history h , represented by Obj (h), to be the set of ob-
jects the operations in h read or write. A consistency property based on the commutativity
of transactions that have no intersecting object sets can be intuitively defined as follows:

Alternative Consistency There exists a sequence seq containing exactly one copy of ev-
ery committed transaction (according to gdec) and a database state st such that
CorrectSerialization(seq , thist , InitialDBState, st) is true and, for every database
d , learnedSeq [d] contains exactly one copy of some committed transactions (accord-
ing to gdec) and, for every transaction t in learnedSeq [d], the following conditions
are satisfied:

• Every transaction t ′ that precedes t in seq and shares some objects with t also
precedes t in learnedSeq [d], and

• Every transaction t ′ that precedes t in learnedSeq [d] either precedes t in seq or
shares no objects with t .

Although this new consistency condition seems a little complicated, it is weaker than
our original property for it allows the sequences learnedSeq [d] differ in their order for trans-
actions that operate on different objects. The following theorem shows that this property is
not enough to ensure Serializability in our abstract algorithm.

Theorem 2.3 Our abstract deferred update algorithm with the Consistency property for
termination changed for the Alternative Consistency property defined above does not im-
plement the specification of a serializable database given in Section 2.1.

22 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

This result basically means that one cannot profit much from using Generic Broadcast [PS02]
algorithms to propagate committed transactions. Our properties as originally defined seem
to be the weakest practical conditions for ensuring Serializability in deferred update proto-
cols. In fact, we are not aware of any deferred update replication algorithm whose termina-
tion protocol does not satisfy the three properties above.

So far, we have not defined any liveness property for the termination protocol. Although
we do not want to force protocols to commit transactions in any situation (since this might
rule out some deferred update algorithms that conservatively abort transactions), we think
that a termination protocol that does not update the sequences learnedSeq [d] eventually, af-
ter having committed a transaction, is completely useless. Therefore, we add the following
liveness property to our specification of the termination protocol:

Liveness If t is committed at a given time, then learnedSeq [d] eventually contains t .

As it happens with agreement problems like Consensus, this property must be revisited
in failure-prone scenarios, since it cannot be guaranteed for databases that have crashed.
Independently of that, one can easily spot some similarities between the properties we have
defined and those of Sequence Agreement as explained in [Lam04]. Briefly, in the sequence
agreement problem, a set of processes agree on an ever-growing sequence of values, built
out of proposed ones. The problem is specified in terms of proposer processes that pro-
pose values to be learned by learner processes, where learned [l] represents the sequence of
values learned by learner l . Sequence Agreement is defined by the following properties:

Nontriviality For any learner l , the value of learned [l] is always a sequence of proposed
values.

Stability For any learner l , the value of learned [l] at any time is a prefix of its value at any
later time.

Consistency For any learners l1 and l2, it is always the case that one of the sequences
learned [l1] and learned [l2] is a prefix of the other.

Liveness If value V has been proposed, then eventually the sequence learned [l] will con-
tain V as an element.

This problem is a sequence-based specification of the celebrated atomic broadcast prob-
lem [HT93]. The exact relation between the termination protocol and Sequence Agreement
is given by the following theorem.

Theorem 2.4 The four properties Nontriviality, Stability, Consistency, and Liveness above
satisfy the safety and liveness properties of Sequence Agreement for transactions that com-
mit.

2.3. A SIMPLE IMPLEMENTATION 23

One possible way of reading this theorem is that any implementation of the termination
protocol is free to abort transactions, but it must implement Sequence Agreement for the
transactions it commits. As a consequence, any lower bound or impossibility result for
atomic broadcast and consensus applies to the termination protocol.

2.3 A Simple Implementation

It is not very difficult to extend the previous algorithm to more specific distributed imple-
mentations. In this section, we give the main idea of how it can be done with a simple
example. The system is composed of clients, databases and a Sequence Agreement imple-
mentation where clients propose and databases learn, as shown in Figure 2.4 below. Clients
access the replicated serializable interface through a local driver. For the execution of oper-
ations, these drivers contact the databases directly. Passive transactions can commit locally
at the database they are executed but active transactions have their histories broadcast to all
databases through the Sequence Agreement primitive. Databases certify these transactions
based on the order they are delivered and apply their updates in case they are committed.

More specifically, when a client starts a new transaction t , its local driver connects to
DBof (t) (chosen randomly or given by some load balancing mechanism not depicted here).
The local driver keeps variables q [t], dreq [t], thist [t], and pdec[t], for all transactions t that
can have requests issued by that client (we tacitly assume that a single transaction cannot
have requests issued by different clients). The driver also keeps the subset of proposed
containing all proposed transactions coming from that client.

Sequence Agreement

C1

driver

C2

driver

C3

driver

C4

driver

C5

driver

D1 D2 D3

Figure 2.4: Structure of our architecture.

When a client issues an operation request (neither Commit nor Abort), the driver ex-
ecutes action ReceiveReq locally and forwards the requests to the database responsible for
that transaction through unreliable numbered messages. The number in each message re-

24 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

flects the length of thist [t] at the time the message was sent and the highest-numbered
message, while undelivered, contains the current value of dreq [t]. Since these messages
can be lost, the driver may want to resend them in case it suspects of message loss.

Database d is wrapped by a local proxy that keeps, for any transaction t , variables
dcnt [d][t], vers[d][t], dcom[d][t], learned [d] (output variable of the sequence agreement
implementation), and learnedSeq [d] (output variable of the termination protocol). More-
over, it keeps variable dreply [t] for all transactions t such that DBof (t) = d and a variable
dgdec[d][t] that keeps a local copy of gdec[t] at d , for every transaction t . When the proxy
receives a numbered message from a client driver, it submits the message operation to its
local database only if its transaction is not currently executing an operation and the message
number corresponds to the next operation to be executed, which clearly implements action
DBReq enabled by Condition 1. Notice that, in this case, the proxy can safely assume
that the transaction has not been proposed and will not be proposed until after the database
gives a result back. When the database responds to the request, the proxy executes action
DBRep as specified in the abstract algorithm, knowing that d = DBof (t) and t has not
been proposed, which means that the first if condition evaluates to true and the second one
to false . In this case, the proxy sends a message containing the database response, which
equals dreply [t], and the new value of dcnt [d][t] to the driver of the client responsible for t .
When the driver receives a response message such that the value of dcnt [d][t] it contains is
greater than Len(thist [t]), it is guaranteed that neither dcnt [d][t] nor dreply [t] has changed
since the message was sent. It can then locally execute ReplyReq and give a response back
to the client.

The client keeps on issuing operations and getting responses for t according to the afore-
mentioned procedure, until it decides to terminate the transaction by an Abort or Commit
request. If the client issues an Abort request, the driver can locally execute the sequence of
actions 〈ReceiveReq ,PrematureAbort ,ReplyReq〉, without sending any messages. How-
ever, if the client issues a Commit request, different actions must be taken. If the current
transaction history is passive, the driver behaves exactly as if the request was a normal op-
eration. DBof (t) will receive the message containing the Commit request, apply it to the
database, and return a message back with the database response. At this point, instead of
executing ReplyReq , disabled because q [t] /∈ Op, the driver will choose between executing
PrematureAbort or PassiveCommit depending on the response given by the database.

If the client has issued a Commit request for an active transaction t , the driver will add
it to its local proposed set. At this point, it will propose tuple 〈t , thist [t]〉 to the sequence
agreement primitive. Databases build the sequence learnedSeq [d] based on learned [d] and
some deterministic function DSelect(seq) that returns a subsequence subseq of seq that sat-
isfies CorrectSerialization(subseq , thist , InitialDBState, st) for some (unique) database
state st . We explain in the following how DSelect can be implemented. For now, let us con-
centrate on how it can be used to implement the termination protocol. In order to simplify
our algorithm, we also assume that DSelect(seq) is always a prefix of DSelect(seq ◦v), for
any sequence v . In this implementation, learnedSeq [d] is given by DSelect(learned [d])

2.4. THEOREM PROOFS 25

and dgdec[d][t] is Unknown if t does not appear in learned [d], Committed if it appears
in learnedSeq [d], and Aborted in case t appears in learned [d] but it is not selected by
DSelect . When dgdec[DBof (t)][t] changes from Unknown to Committed or Aborted ,
DBof (t) sends a message to the driver of the client responsible for t notifying the transac-
tion outcome. If the driver suspects DBof (t) to have crashed, it can simply ask any other
database for this outcome. Recall that every database d can calculate dgdec[d][t] and since
DSelect is deterministic, all databases will have the same decision for t .

The simplest implementation of DSelect(seq) is given by returning always the empty
sequence. This, however, would force all active transactions to abort, never changing the
database state. A more plausible implementation for DSelect(seq) can be recursively de-
fined as follows. If seq is empty, it returns the empty sequence. Otherwise, let l be the last
element of seq , and pseq be the prefix of seq that includes all its elements but l . We first
recursively calculate DSelect(pseq) and call it pseqsel . If CorrectSerialization(pseqsel ◦
〈l .id〉, thist , InitialDBState, st) is satisfied, it returns pseqsel ◦ 〈l〉; otherwise, it returns
pseqsel only.

This simplistic algorithm description avoids many important implementation details. In
fact, a number optimizations are possible and some redundant variables can be eliminated
from the algorithm. Our purpose, however, is just to give a simple idea of how our spec-
ification can be extended without much effort. The algorithm we presented in this section
is a generalization of the Database State Machine (DBSM) algorithm given in [PGS03].
In the original paper, some extra assumptions about the databases’ concurrency control
mechanism are made to allow capturing and using the set of items read only instead of
read operations and results. This assumption also simplifies the evaluation of predicate
CorrectSerialization , making it more practical. Moreover, the original DBSM also re-
quires changing the internals of the database in order to force certified active transaction to
be committed in their first execution. Our general specification deals nicely with this case
by allowing transactions to have multiple versions inside each database and guaranteeing
that only one of them commits.

2.4 Theorem Proofs

We now prove the three theorems presented in Section 2.2.3.

2.4.1 Proof of Theorem 2.1

The first theorem is the hardest one to prove since it involves reasoning about the actions
defined in our abstract algorithm. To avoid mistakes, we divided the proof into parts and
proved each one in a structured way.

26 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

2.4.1.1 Main Invariants

In order to prove Theorem 2.1, we state three invariants satisfied by our abstract algo-
rithm. The invariants are very intuitive, given the algorithm’s expected behavior. How-
ever, a rigorous proof that the algorithm actually satisfies them is given in Section 2.4.1.3.
Before presenting these invariants, though, we introduce some auxiliary notation. We let
CommittedAt(d) be the set of all transactions that have been committed at database d
under any version number. That is,

CommittedAt(d) ∆= {t ∈ Tid : ∃v ∈ N : DB(d)!tdec[〈t , v〉] = Committed}.

Moreover, we let NVserialSeq(d) be the standard projection of sequence DB(d)!serialSeq
without the transactions’ version numbers.

Our first invariant relates the databases’ internal states to the global variables thist and
learnedSeq . It is mainly based on the fact that databases are active order-preserving se-
rializable and transactions proposed to the termination protocol (which includes all active
ones) have their Commit requests submitted to database d according to the order specified
by learnedSeq [d].

Database Invariant
For every database d , there exists a sequence seq ∈ Perm(CommittedAt(d)), and
a database state st such that all conditions below hold:

1. CorrectSerialization(seq , thist , InitialDBState, st),
2. NVserialSeq(d) is the subsequence of seq containing all its active transactions,

and
3. NVserialSeq(d) is the subsequence of a prefix of learnedSeq [d] that contains

all its active transactions.

Besides the invariant above, our proof uses the following two auxiliary invariants.

tdec Invariant For every transaction t , if t /∈ proposed and pdec[t] = Committed , then
thist [t] is passive and t ∈ CommittedAt(DBof (t)).

dreply Invariant For every transaction t , if dreply [t] = Committed and t /∈ proposed ,
then thist [t] is passive and t belongs to CommittedAt(DBof (t)).

2.4.1.2 Theorem Proof

Theorem 2.1 Our abstract deferred update algorithm implements the specification of a
serializable database given in Section 2.1.

2.4. THEOREM PROOFS 27

PROOF: The proof is by a refinement mapping where thist and q are implemented by the
variables with the same name and tdec is implemented according to the definition in terms of
proposed , pdec, and gdec given in the explanation of our abstract deferred update algorithm.
Below, we show that each action executed by the abstract algorithms implements an action
of our serializable database specification.

1. Action ReceiveReq implements the action with the same name.
PROOF SKETCH: Pre- and post-conditions on variables q and thist are exactly the same.
The action may change variable proposed , influencing tdec. However, t is proposed only
if tdec[t] /∈ Decided and the Nontriviality property of the termination protocol ensures
that tdec remains the same.

2. Action ReplyReq implements the action with the same name.
PROOF SKETCH: The actions’ pre- and post-conditions are obviously stricter than those
of the original action.

3. Action PrematureAbort implements action DoAbort
PROOF SKETCH: The action changes pdec iff its changes reflect the changes on tdec
performed by action DoAbort .

We now skip action PassiveCommit for it deserves a slightly more complicated analysis.
It is explained right after the simple actions below.

4. Actions DBReq , DBRep, and internal actions performed by any database represent stut-
tering steps in our specification of a serializable database
PROOF SKETCH: Such actions do not change variables q , thist , proposed , pdec and
gdec, not influencing the mapping.

5. Changes on learnedSeq performed by the termination protocol also implement stuttering
steps
PROOF SKETCH: Such changes have no influence on variables q , thist , proposed , pdec
and gdec.

The two cases below deserve a special analysis and a higher degree of rigorousness.

6. Action PassiveCommit implements action DoCommit
PROOF: Let committedSet be the set of all committed transactions (according
to the definition of tdec in terms of pdec and gdec). We must show that
IsSerializable(committedSet ∪{t}, thist , InitialDBState) is true before the execution
of PassiveCommit . We prove that in the following proof steps.
6.1. Choose a sequence gseq that contains exactly one copy of every transaction mapped

to Committed in gdec and satisfies the two conditions below
1. ∃st ∈ DBState : CorrectSerialization(gseq , thist , InitialDBState, st)
2. ∀d ∈ Database : learnedSeq [d] is a prefix of gseq
PROOF: This sequence exists for the Consistency property of the termination pro-
tocol.

LET: subgseq be the subsequence of gseq containing all its active transactions.
6.2. For every database d , NVSerialSeq(d) is a prefix of subgseq .

PROOF: By step 6.1 and the third item of the Database Invariant.

28 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

6.3. For any transaction t contained by subgseq , let stgen(t) be the unique database state
st such that CorrectSerialization(preft , thist , InitialDBState, st) is satisfied for
the prefix preft of subgseq limited by (and containing) t .
PROOF: Such state exists by the step PC1 and the definition of subgseq , and it is
unique by Assumption 2.1 (State-deterministic Operations).

6.4. For every passive transaction t that belongs to CommittedAt(DBof (t)), that is,
every transaction committed with some version at its delegate database, either one
of the two conditions below is satisfied:
• CorrectAtomicHist(thist [t], InitialDBState, InitialDBSTAte), or
• ∃tw ∈ Tid :

– tw appears in subgseq and
– CorrectAtomicHist(thist [t], stgen(tw), stgen(tw))

PROOF: By the Database Invariant and the fact that t belongs to
CommittedAt(DBof (t)), there exists a sequence seq such that:
1. seq contains t ,
2. there exists a database state st such that

CorrectSerialization(seq , thist , InitialDBState, st),
3. NVserialSeq(DBof (t)) is the subsequence of seq containing all its active trans-

actions,
4. NVserialSeq(DBof (t)) is the subsequence of a prefix of learnedSeq [d] con-

taining all its active transactions.
Let strippedseq be the subsequence of seq containing all its active transactions
and t , only. Since only passive transactions are taken out, by the definition of
a correct serialization, strippedseq also represents a correct serialization with re-
spect to thist , InitialDBState , and st . Now take the longest prefix of strippedseq
that does not contain t and let us call it strippedpref . If strippedpref is empty,
then the definition of a correct serialization and the fact that t is passive imply
that thist [t] is atomically correct with respect to InitialDBState (first condition
of step 6.4). Otherwise, strippedpref is a prefix of subgseq , and Assumption 2.1
(State-deterministic Operations) implies that thist [t] is atomically correct with re-
spect to stgen(tw), where tw is the transaction immediately before t in strippedseq ,
which satisfies the second condition of step 6.4.

6.5. Q.E.D.
PROOF: By the Consistency and Nontriviality properties of the termination proto-
col, gseq contains every transaction t such that t is proposed and gdeq [t] equals
Committed . We first extend gseq with all other committed transactions. By
our mapping of tdec, these are the transactions not in proposed but mapped to
Committed by pdec. However, the tdec Invariant tells us that these transactions are
passive and internally committed at their delegate databases. Step 6.4 tells us that
they can be inserted at some position of gseq and still generate a correct serializa-
tion, by the definition of CorrectSerialization . Last, the dreply Invariant and the
pre-condition of action PassiveCommit also imply that t is passive and internally
committed at DBof (t). Therefore, by step 6.4, t can also be inserted at some posi-

2.4. THEOREM PROOFS 29

tion of gseq and generate a correct serialization with initial state InitialDBState .

7. Changes on gdec[t] due to the termination protocol implement either DoCommit(t) or
DoAbort(t)
PROOF SKETCH: Here we assume the termination protocol changes only one entry of
gdec at a time. An implementation that does not do that can be easily proved equivalent
to this behavior by the creation of “dummy” states that change one entry at a time with
the introduction of prophecy variables [AL91]. If gdec[t] is changed to Aborted , the
Nontriviality and Stability properties automatically imply the pre- and post-conditions
of DoAbort(t). Otherwise, we must follow basically the same steps as in step 6. The
only two (small) differences are the following:

• Step 1 should be based on the consistency property guaranteed after gdec is changed,
producing a sequence gseq that already contains t .

• The Q.E.D. step does not have to add t to the built sequence since it is originally
in the gseq sequence initially created.

2.4.1.3 Proving the Basic Invariants

In order to prove the basic invariants, we have to define a number of auxiliary invariants.
We divided the auxiliary invariants into two types: transaction invariants and database-
transaction invariants. The first group refers to invariants that are based on transactions
only. The second group refers to invariants that relate transactions and databases.

The only extra notation we introduce in these auxiliary invariants is the definition of an
operator Substr(seq , begin, end) for a sequence seq and naturals begin and end , used in
invariant DTI5. This operator returns the substring of seq from index begin until index end .
If end < begin , it is assumed to return an empty sequence.

Transaction Invariants (TI) For every transaction t :

1. (tdec[t] /∈ Decided ∧ q [t] ∈ Op)⇒

(a) ∀d ∈ Database : t /∈ CommittedAt(d) and

(b) t /∈ proposed

2. (tdec[t] /∈ Decided ∧ q [t] = NoReq)⇒

(a) ∀d ∈ Database : t /∈ CommittedAt(d),

(b) t /∈ proposed ,

(c) vers[DBof (t)][t] = 0,

30 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

(d) thist [t] = DB(DBof (t))!thist [〈t , 0〉],
(e) dcnt [DBof (t)][t] = Len(thist [t]),

(f) ∀d ∈ Database : DB(d)!q [〈t , vers[d][t]〉] = NoReq , and

(g) dreq [t] = NoReq

3. dcnt [DBof (t)][t] > Len(thist [t])⇒

(a) ∀d ∈ Database : DB(d)!q [〈t , vers[d][t]〉] = NoReq ,

(b) vers[DBof (t)][t] = 0,

(c) thist [t] ◦ 〈dreq [t], dreply [t]〉 = DB(DBof (t))!thist [〈t , 0〉], and

(d) dcnt [DBof (t)][t] = Len(thist [t]) + 1

(e) t /∈ proposed

4. t ∈ proposed ⇒

(a) thist [t] = DB(DBof (t))!thist [〈t , 0〉],
(b) tdec[t] ∈ Decided ∨ q [t] = Commit ,

(c) dcnt [DBof (t)][t] = Len(thist [t]) ∨ vers[DBof (t)][t] > 0, and

(d) dreq [t] = NoReq

5. dreq [t] ∈ Request ∧ dcnt [d][t] = Len(thist [t])⇒

(a) t /∈ proposed ,

(b) vers[DBof (t)][t] = 0, and

(c) thist [t] = DB(DBof (t))!thist [〈t , 0〉]

6. (tdec[t] /∈ Decided ∧ t /∈ proposed)⇒ dreq [t] = q [t]

7. dreq [t] = Commit ⇒

(a) thist [t] is passive and

(b) t /∈ proposed

Database-Transaction Invariants (DTI) For every database d and transaction t :

1. DB(d)!q [〈t , v〉] 6= NoReq ⇒ v = vers[d][t]

2. ∀v 6= vers[d][t] : DB(d)!tdec[〈t , v〉] 6= Committed

3. If DB(d)!q [〈t , vers[d][t]〉] = Commit , then either

(a) thist [t] = DB(d)!thist [〈t , vers[d][t]] or

2.4. THEOREM PROOFS 31

(b) the projection of the operations in DB(d)!thist [〈t , vers[d][t]〉] equals the pro-
jection of the operations in ActHist(t).

4. If DB(d)!tdec[〈t , vers[d][t]〉] = Committed and thist [t] is active, then for all
database states st1, st2, and st3 :
∧CorrectAtomicHist(DB(d)!thist [〈t , vers[d][t]], st1, st2)
∧CorrectAtomicHist(thist [t], st1, st3)
⇒ st2 = st3

5. If ¬(d = DBof (t) ∧ vers[d][t] = 0), then the projection of the opera-
tions in DB(d)!thist [〈t , vers[d][t]〉] equals the projection of the operations in
Substr(ActHist(t), 1, dcnt [d][t]).

6. If DB(d)!tdec[〈t , vers[d][t]〉] = Committed and t is proposed, then t appears in
learnedSeq [d] and every transaction t ′ that precedes t in learnedSeq [d] satisfies
dcom[d][t ′].

7. dcom[d][t]⇒ t ∈ CommittedAt(d)

8. If DB(d)!q [〈t , vers[d][t]〉] = Commit , then either tdec[t] ∈ Decided or q [t] =
Commit .

9. If DB(d)!q [〈t , vers[d][t]〉] = Commit and t is proposed, then t appears in
learnedSeq [d] and every transaction t ′ that precedes t in learnedSeq [d] satisfies
dcom[d][t ′].

10. DB(d)!q [〈t , vers[d][t]〉] ∈ Request ∧ t /∈ proposed ⇒

(a) d = DBof (t),
(b) dcnt [d][t] = Len(thist [t]),
(c) DB(d)!q [〈t , vers[d][t]〉] = dreq [t],
(d) vers[DBof (t)][t] = 0, and
(e) thist [t] = DB(DBof (t))!thist [〈t , 0〉]

11. DB(d)!q [〈t , vers[d][t]〉] ∈ Op ∧ t ∈ proposed ⇒

(a) d 6= DBof (t) ∨ vers[d][t] 6= 0 and
(b) DB(d)!q [〈t , vers[d][t]〉] = ActHist(t)[dcnt [d][t] + 1].op

12. ∀v > vers[d][t] : DB(d)!thist [〈t , v〉] = 〈〉

The intuition of the proof is quite simple. It is relatively easy to check the invariants for
the initial state of the abstract algorithm. We then assume that they are true and show that
they remain true after the execution of each of the algorithm’s atomic actions no matter what
was the state upon which the action was executed (as long as the invariants were satisfied
on it). In the following we analyze action by action and sketch the proof for each of the
invariants we have previously defined.

32 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

Action ReceiveReq

Database Invariant This action does not change any of the variables involved in the
Database Invariant.

tdec Invariant With respect to the tdec Invariant, this action can only propose a
transaction, which does not invalidate the invariant.

dreply Invariant As in the previous case, this action can only propose a transaction,
which does not invalidate the invariant.

TI1 This action sets q [t] to a request and may add t to proposed . Invariant TI2(a,b)
and the fact that t is added to proposed only if q [t] is set to Commit , which is
not in Op, imply that TI1 is preserved.

TI2 The action sets q [t] to a request (different from NoReq), which preserves the
invariant, since it invalidates the implication condition for transaction t .

TI3 Invariant TI2(e) and the action’s pre-condition invalidate the implication condi-
tion of this invariant for transaction t .

TI4 If t is proposed, then TI2(d) ensures TI4(a). TI4(b) is ensured because t is
proposed only if q [t] is set to Commit , TI4(c) is ensured by TI2(e), and TI4(d)
is ensured by TI2(g).

TI5 If dreq [t] is set to a value in Request , the invariant is ensured by TI2(b-d).

TI6 The action sets q [t] to req . It does nothing else if tdec ∈ Decided , but this
condition invalidates the invariant’s implication condition. Otherwise, the action
either proposes t , which also invalidates the invariant’s implication condition,
or it makes dreq [t] equal to q [t]. In all the cases, the invariant is preserved.

TI7 Condition (a) is easily verified. Condition (b) is ensured in case the action sets
dreq [t] to Commit by TI2(b).

DTI1-5,7 Automatically preserved.

DTI6 Transaction t is proposed only if tdec[t] /∈ Decided and the action’s pre-
condition together with invariant TI2(a) implies that t has not been committed
at any database under any version, which invalidates this invariant’s implication
condition.

DTI8 For the sake of contradiction, assume there is a database d such that
DB(d)!q [〈t , vers[d][t]〉] = Commit , tdec[t] /∈ Decided , and q [t] is set to
Commit by this action. Then, invariant TI2(f) with these assumptions and the
action’s pre-condition imply that DB(d)!q [〈t , vers[d][t]〉] = NoReq , a contra-
diction with our first assumption.

DTI9 Transaction t is proposed only if tdec[t] /∈ Decided and the action’s pre-
condition together with invariant TI2(f) implies that DB(d)!q [〈tvers[d][t]〉] =
NoReq , which invalidates this invariant’s implication condition.

DTI10 For the sake of contradiction, assume there is a database d such that
DB(d)!q [〈t , vers[d][t]〉] ∈ Request , t /∈ proposed , and dreq [t] is set to a

2.4. THEOREM PROOFS 33

value different from DB(d)!q [〈t , vers[d][t]〉] (we concentrate on condition (c)
since the verification of the other conditions and the implication itself are sim-
ple). Then, invariant TI2(f) with these assumptions and the fact that dreq [t]
is only changed if tdec[t] /∈ Decided imply that DB(d)!q [〈t , vers[d][t]〉] =
NoReq , a contradiction with our first assumption.

DTI11 If t is proposed by this action, then tdec[t] /∈ Decided and invariant TI2(f)
invalidates this invariant’s implication condition.

DTI12 Automatically preserved.

Action ReplyReq

Database Invariant The action changes thist , which could affect the Database In-
variant. However, TI1(a) implies that t has not been committed at any database,
preserving the Database Invariant.

tdec Invariant The action only changes thist [t] if tdec[t] /∈ Decided , which is not
true if t /∈ proposed and pdec[t] = Committed , by the definition of tdec.
Therefore, the invariant is preserved.

dreply Invariant According to the action’s pre-condition, thist [t] is only changed if
rep ∈ Result and rep = dreply [t], which implies that dreply [t] 6= Committed
and automatically preserves the invariant.

TI1 The action changes q [t] to NoReq , which automatically preserves this invariant.

TI2 The action’s pre-condition implies that it is executed for a transaction t such that
tdec[t] /∈ Decided only if q [t] ∈ Op. Invariant TI 1 implies that no database
has committed t in this case and t has not been proposed. Conditions (c-f) are
ensured by TI3(a-d) and condition (g) is ensured by the action definition.

TI3 By invariant TI3 and the action’s definition, if thist [t] changes, its length will
equal dcnt [DBof (t)][t], which just invalidates TI3’s implication condition.

TI4 As for conditions (a), (c), and (d), the action only changes thist [t] and dreq [t] if
tdec[t] /∈ Decided and q [t] ∈ Op. Invariant TI1(b) implies that t /∈ proposed ,
which contradicts the invariant’s implication condition. As for condition (b),
assume t ∈ proposed , tdec[t] /∈ Decided and q [t] is changed from Commit to
NoReq by this action. Such assumptions conflict with the action definition since
q [t] must be in Op for it to be enabled when tdec[t] /∈ Decided .

TI5 The action only changes thist [t] if it sets dreq [t] to NoReq , which automatically
preserves the invariant.

TI6 Easily verified.

TI7 If the action changes thist [t], it also sets dreq [t] to NoReq , preserving the in-
variant.

DTI1-2 Automatically preserved.

34 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

DTI3 The only variable related to the invariant that is changed by the action is
thist . However, thist [t] is only changed if tdec[t] /∈ Decided , q [t] ∈ Op, and
dcnt [DBof (t)][t] > Len(thist [t]). Invariant TI1(b) validates the implication
condition of TI3 for t and TI3(a) automatically invalidates the implication con-
dition of DTI3, preserving the invariant.

DTI4 Again, the only variable of interest is thist , and it is changed only if
tdec[t] /∈ Decided and q [t] ∈ Op. In this case, invariant TI1(a) invalidates the
implication condition of DTI4, preserving the invariant.

DTI5 The action may only extend thist [t], which automatically preserves this in-
variant.

DTI6-7 Automatically preserved.
DTI8 Assume, for the sake of contradiction, that DB(d)!q [〈t , vers[d][t]〉] =

Commit , tdec[t] /∈ Decided and q [t] is changed from Commit to NoReq by
this action. However, the action is only enabled when tdec[t] /∈ Decided if
q [t] ∈ Op, which contradicts the fact that q [t] equals Commit before the ac-
tion is executed.

DTI9 Automatically preserved.
DTI10 The action only changes thist [t] and dreq [t] if tdec[t] /∈ Decided and, in this

case, the action’s pre-condition implies that dcnt [d][t] > Len(thist [t]), which
conflicts with the invariant’s condition (b) and contradicts its validity before the
action execution, unless the implication condition is not satisfied. Since the
action does not change the variables involved in the implication condition, the
invariant is preserved.

DTI11 This action only changes thist [t] if tdec[t] /∈ Decided and invariant TI2(f)
invalidates DTI11’s implication condition, preserving the invariant.

DTI12 Automatically preserved.

Action PrematureAbort

Database Invariant Automatically preserved since this invariant does not involve
pdec.

tdec Invariant The invariant preserved since it involves only transactions t such
that t /∈ proposed and pdec[t] = Committed . PrematureAbort executes for
a transaction t only if t /∈ proposed and pdec[t] /∈ Decided and it changes
pdec[t] to Aborted , not interfering with the invariant condition.

dreply Invariant Automatically preserved.
TI1-2,6 This action can only change tdec[t] from Unknown to Aborted , which pre-

serves these invariants since Aborted ∈ Decided .
TI3 Automatically preserved.
TI4 Conditions (a), (c) , and (d) are automatically preserved. As for condition (b),

this action can only change tdec[t] to a value in Decided (Aborted), preserving
the invariant as well.

2.4. THEOREM PROOFS 35

TI5,7 Automatically preserved

DTI1-7,9-12 Automatically preserved.

DTI8 Easily verified.

Action PassiveCommit

Database Invariant Automatically preserved.

tdec Invariant If tdec[t] is changed to Committed , the action’s pre-condition im-
plies that dreply [t] equals Committed and the dreply Invariant ensures that
thist [t] is passive and t belongs to CommittedAt(DBof (t)).

dreply Invariant Automatically preserved.

TI1-2,6 This action can only change tdec[t] from Unknown to Committed , which
preserves these invariants since Committed ∈ Decided .

TI3 Automatically preserved.

TI4 Condition (a), (c), and (d) are automatically preserved. As for condition (b), this
action can only change tdec[t] to a value in Decided (Committed), preserving
the invariant as well.

TI5,7 Automatically preserved

DTI1-7,9-12 Automatically preserved.

DTI8 Easily verified.

Action DBReq joint with DB(d)!ReceiveReq

Database Invariant Automatically preserved.

tdec Invariant Automatically preserved.

dreply Invariant Automatically preserved.

TI1 Automatically preserved.

TI2 This action could break condition (f) of invariant TI2 for some transaction t .
If the action is enabled by its first condition, invariants TI5(a) and TI6 imply
that q [t] ∈ Request , contradicting TI2’s implication condition. If the action is
enabled by its second or third condition, then the termination properties ensure
that t ∈ proposed and invariant TI4(b) contradict TI2’s implication condition.

TI3 This action sets DB(d)!q [〈t , vers[d][t]〉] to a value different from NoReq and
could break TI3(a) for t . However, condition 1 requires that dcnt [DBof (t)][t] =
Len(thist [t]), contradicting TI3’s implication condition. Conditions 2 and 3
(with the Nontriviality property of the termination protocol) imply that t has
been proposed, also contradicting TI3’s implication condition.

TI4-7 Automatically preserved.

DTI1 Obviously preserved.

36 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

DTI2 Automatically preserved.

DTI3 This action can only set Db(d)!q [〈t , vers[d][t]〉] to Commit by conditions
1 or 3. In the first case, the invariant is guaranteed by invariant TI5(b-c). If
condition 3 enables this action, there are two cases to consider.

d = DBof (t) ∧ vers[d][t] = 0: The Nontriviality and Consistency properties
of the termination protocol imply that t ∈ proposed and invariant TI4(a)
ensures that DTI3 is preserved.

dcnt [d][t] = Len(ActHist(t)): In this case, DTI3 is ensured by DTI5.

DTI4-7 Automatically preserved.

DTI8 If the action is triggered by condition 1 and sets DB(d)!q [〈t , vers[d][t]〉] to
Commit , then dreq [t] = Commit . Invariant TI7 implies that t /∈ proposed and
invariant TI6 ensures DTI8. If the action is triggered by condition 2, it cannot
set DB(d)!q [〈t , vers[d][t]〉] to Commit . Finally, if the action is triggered by
condition 3, then the Consistency and Nontriviality properties of the termination
protocol ensure that tdec[t] = Committed .

DTI9 If the action is triggered by condition 1, then t /∈ proposed by TI7(b). If the
action is triggered by condition 3, this condition itself ensures DTI9.

DTI10 The only enabling condition that could interfere with this invariant for this
action is condition 1. However, it can be easily verified that it ensures DTI10(c).

DTI11 The only enabling condition that could interfere with this invariant for this
action is condition 2. TI4(c) ensures DTI11(a) and DTI11(b) is easily verified.

DTI12 Automatically preserved.

Action DB(d)!DoAbort

Database, tdec, and dreply Invariants, and TI1-2
The action can only change DB(d)!tdec by internally aborting a transaction,
which does not change CommittedAt(d).

TI3-7 Automatically preserved.

DTI1 Automatically preserved.

DTI2 Easily verified since it changes DB(d)!tdec[〈t , v〉] from Unknown to Aborted .

DTI3 Automatically preserved.

DTI4 Easily verified since it changes DB(d)!tdec[〈t , v〉] from Unknown to Aborted .

DTI5 Automatically preserved.

DTI6 Easily verified since it changes DB(d)!tdec[〈t , v〉] from Unknown to Aborted .

DTI7-12 Automatically preserved.

Action DB(d)!DoCommit

Database Invariant There are two cases to consider.

2.4. THEOREM PROOFS 37

t ∈ proposed Take the sequence seq of the Database Invariant before the ac-
tion is executed. Invariants DTI9 and DTI7 imply that all transactions pre-
vious to t in learnedSeq [d] are already present in seq . Invariants DTI6 and
DTI7 imply that all proposed transactions committed at d appear before
t in learnedSeq [d], otherwise t would have already been committed at d
and the action would not be enabled. This fact and conditions 2 and 3 of
the Database Invariant imply that the sequence of states generated by seq
is the same as the one generated by the longest prefix not including t of
the sequence defined in the Consistency property for termination. Let st be
the last state generated by this sequence. The Consistency property ensures
that there is a state st2 such that CorrectAtomicHist(thist [t], st , st2) is
true. As a result, we can add t to the end of seq and satisfy condi-
tion 1 of the Database Invariant after the action is executed. By DTI3,
Assumption 2.1, the definition of ActHist , if thist [t] is active, so is
DB(d)!thist [〈t , vers[d][t]〉] and t should be added to DB(d)!serialSeq ,
satisfying condition 2 of the Database Invariant. Condition 3 is satisfied be-
cause, as we pointed out in the very beginning of this case’s analysis, a pro-
posed transaction is committed at d iff it appears before t in learnedSeq [d].

t /∈ proposed As before, take sequence seq of the Database Invariant before the
action is executed. A simple induction on the size of DB(d)!serialSeq and
NVerialSeq(d) taking into consideration the Database Invariant as well as
DTI4 shows that the sequence of different states generated by these two
sequences with respect to DB(d)!thist and thist , respectively, is exactly
the the same. DTI10(c), TI7 and the definition of action DoCommit imply
that t is passive and it can be atomically executed after some of the states
mentioned in the previous step. We can place t exactly after that state is
generated in seq , satisfying condition 1 of the Database Invariant after the
action is executed. Conditions 2 and 3 are automatically satisfied since t is
passive.

tdec Invariant Easily preserved, since CommittedAt(d) can only be increased.

dreply Invariant Easily preserved, since CommittedAt(d) can only be increased.

TI1-2 Easily preserved, given DTI7.

TI3-7 Automatically preserved.

DTI1 Automatically preserved.

DTI2 Easily verified given DTI1.

DTI3,5 Automatically preserved.

DTI4 By DTI3.

DTI6 By DTI9.

DTI7 Obviously preserved, since CommittedAt(d) can only be increased.

DTI8-12 Automatically preserved.

38 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

Action DBRep joint with DB(d)!ReplyReq

Database and tdec Invariants Automatically preserved.

dreply Invariant dreply [t] is set to Committed only if DB(d)!q [〈t , vers[d][t]〉]
equals Commit . Invariants DTI10(c) and TI 7(a) imply that thist [t] is passive,
and invariant DTI10(a) with the definition of action DB(d)!ReplyReq ensures
that t will belong to CommittedAt(DBof (t)).

TI1 Automatically preserved.

TI2 The fact that t ∈ proposed contradicts TI2(b) and imply that the implication
condition of TI2 is false. Therefore, we have to consider only the case in
which t /∈ proposed . In this case, DTI10(c) implies that dreq [t] is different
from NoReq and TI6 implies that so is q [t], a contradiction with the implication
condition of TI2.

TI3 Easily verified by DTI10 and the action definition.

TI4 DTI11(a) implies that TI4(a) is preserved. TI4(b) is automatically preserved,
and TI4(c) is easily verified by TI4(c) itself and the action definition. TI4(d) is
also automatically preserved.

TI5 If t ∈ proposed , TI4(d) implies that dreq [t] = NoReq , contradicting the impli-
cation condition and preserving the invariant. If t /∈ proposed , DTI10(b) and
the action definition imply that dcnt [d][t] is set to Len(thist [t]) + 1, also con-
tradicting the implication condition and preserving the invariant.

TI6-7 Automatically preserved.

DTI1 The action sets DB(d)!q [〈t , vers[d][t]〉] to NoReq , preserving the invariant.

DTI2 vers[d][t] is increased only if DB(d)!tdec[〈t , v〉] equals Aborted .

DTI3 Easily verified by DTI1 and the action definition since DB(d)!q [〈t , vers[d][t]〉]
is set to NoReq .

DTI4 If vers[d][t] is changed, DTI2 preserves DTI4. Otherwise, if
DB(d)!tdec[〈t , vers[d][t]〉] = Committed , DB(d)!thist is not changed and
the invariant is preserved.

DTI5 If vers[d][t] is changed, then it is increased and dcnt [d][t] is set to 0. In
this case, invariant DTI12 preserves DTI5. If vers[d][t] is not changed, there
are to cases to analyze. If t /∈ proposed the invariant’s implication condition
is invalidated by DTI10(a,d); If t ∈ proposed , then DTI11(b) and the action
definition preserve DTI5.

DTI6 Easily verified by DTI2 in case vers[d][t] changes.

DTI7 Easily verified by the action definition.

DTI8-9 Easily verified in case vers[d][t] changes by DTI1.

DTI10-11 The action sets DB(d)!q [〈t , vers[d][t]〉] to NoReq , invalidating these in-
variants’ implication condition.

2.4. THEOREM PROOFS 39

DTI12 By DTI12 and the fact that vers[d][t] can only be increased.

Termination action changing gdec[t] from Unknown to a value in Decided

Database, tdec, and dreply Invariants Automatically preserved.

TI1-2 Easily verified since this action can only change tdec[t] to a value in Decided ,
invalidating these invariants’ implication condition.

TI3 Automatically preserved.

TI4 Conditions (a) and (c-d) are automatically preserved. Condition (b) is easily
verified since this action changes tdec[t] to a value in Decided .

TI5,7 Automatically preserved.

TI6 Easily verified since this action can only change tdec[t] to a value in Decided ,
invalidating the invariant’s implication condition.

DTI1-7,9-12 Automatically preserved.

DTI8 Easily verified since this action can only change tdec[t] to a value in Decided ,
invalidating the invariant’s implication condition.

Termination action changing learnedSeq [d] — Recall that this action can only extend
learnedSeq [d] by the Stability property of the termination protocol.

Database Invariant Easily verified since learnedSeq [d] is only extended.

tdec and dreply Invariants Automatically preserved.

TI1-7 Automatically preserved.

DTI1-5,7-8,10-12 Automatically preserved.

DTI6,9 Easily verified since learnedSeq [d] is only extended.

2.4.2 Proof of Theorem 2.3

Theorem 2.3 Our abstract deferred update algorithm with the Consistency property for
termination changed for the Alternative Consistency property defined above does not im-
plement the specification of a serializable database given in Section 2.1.

PROOF SKETCH: To understand why, consider the case with two active transactions t1 and t2
that write distinct database objects, x and y , respectively, and do not read anything. Trans-
action t1 can execute on database d1 and transaction t2 can execute on database d2. Both
transactions are free to commit and can be proposed to the termination protocol. Executing
either t1 before t2 or t2 before t1 leads to the same final state and they both can be com-
mitted in gdec. Assume, then, that database d1 follows the ordering 〈t1, t2〉 and executes
and commits t1 first. Database d2 follows the ordering 〈t2, t1〉, executing and committing
t2 first. At this point, if a passive transaction reads the whole state of database d1, it will

40 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

see the execution of t1 but not the execution of t2, which implies that t1 must be serialized
before t2. If a passive transaction reads d2, it will imply that t2 must be serialized before
t1. Since passive transactions are free to execute completely at the databases responsible
for them, all these transactions are free to commit locally and this scenario would break the
global serializability.

2.4.3 Proof of Theorem 2.4

Theorem 2.4 The four properties Nontriviality, Stability, Consistency, and Liveness of our
Termination Protocol specification satisfy the Nontriviality, Stability, Consistency, and Live-
ness properties of Sequence Agreement for transactions that commit where values are trans-
actions and learnedSeq implements learned .

PROOF SKETCH: For any execution of the Termination Protocol, consider only the set of
proposed transactions that eventually commit (gdec[t] is set to Committed) as the set of
proposed transactions in an execution of Sequence Agreement. We show that all properties
of Sequence Agreement are guaranteed in the following:

Nontriviality Guaranteed by Consistency and Nontriviality of Termination.

Stability Trivially guaranteed by Stability of Termination.

Consistency By the Consistency property of Termination, all learnedSeq sequences are
prefixes of a common sequence seq of committed (proposed, for Sequence Agree-
ment) transactions, which guarantees that, for every two of them, one is a prefix of
the other.

Liveness By the Liveness property of Termination.

2.5 TLA+ Specifications

In this section, we present our specifications more formally using the unambiguous TLA+

specification language [Lam02]. The existing tools for TLA+ allowed us to find and correct
many design mistakes and the possibility of model checking our specifications increased
the confidence in our results.

2.5.1 Module DatabaseConstants

This module contains general database definitions.
MODULE DatabaseConstants

2.5. TLA+ SPECIFICATIONS 41

EXTENDS Sequences, FiniteSets, Naturals

The specification is based on the following constants:
- Tid : Set of transaction ids, where each id identifies a single transaction.
- Op: Set of possible transaction operations different from Commit or Abort .
- Commit , Abort : Special operations for committing/aborting a transaction.
- Result : Set of operation results.
- Committed , Aborted : Special results returned when a transaction is committed/aborted.
- CorrectOp(op, res, dbstate, newdbstate): Predicate that tells if operation op, when executed upon
database state dbstate , may give res as a result and generate new database state newdbstate .
- DBState: Set of database states.
- InitialDBState: Initial database state.
- FSeq : A substitute for Seq – just a trap for the model checker.
- Universe: A set to bound unbounded CHOOSE statements – another trap for the model checker.

CONSTANTS Tid , Op, Commit , Abort , Result , Committed , Aborted ,
CorrectOp(, , ,), DBState, InitialDBState, FSeq(), Universe

We define Unknown as a transaction status in which the transaction has been neither committed nor aborted.

Decided ∆= {Committed , Aborted}
Unknown ∆= CHOOSE v ∈ Universe : v /∈ Decided

Request is the set of all possible requests and NoReq is defined to be something that is not a (valid) request.

Request ∆= Op ∪ {Commit , Abort}
NoReq ∆= CHOOSE noreq ∈ Universe : noreq /∈ Request

Reply is the set of all possible replies for a request.

Reply ∆= Result ∪Decided

Assumptions

The values used as transaction decisions (Committed and Aborted) must be different from operation results
because we assume the decision is given as the response for operations issued after the transaction has been
committed or aborted, so that the client is told that the operation was not performed because the transaction has
been decided. If Committed or Aborted corresponds to a correct operation result, the client cannot tell if the
operation executed or the transaction terminated.

ASSUME Committed /∈ Result
ASSUME Aborted /∈ Result ∪ {Committed}

We must also assume that Commit and Abort requests are different and not present in Op.

ASSUME Commit /∈ Op
ASSUME Abort /∈ Op ∪ {Commit}

InitialDBState must belong to DBState

ASSUME InitialDBState ∈ DBState

CorrectOp must be a correct predicate on op, res , dbstate , and newdbstate

ASSUME ∀ op ∈ Op, res ∈ Result ,
dbstate ∈ DBState, newdbstate ∈ DBState :

42 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

CorrectOp(op, res, dbstate, newdbstate) ∈ BOOLEAN

Auxiliar Expressions

OpRec represents a tuple in Op × Result as a record with two fields: op and res .

OpRec ∆= [op : Op, res : Result]

THist is the set of all possible transaction histories.

THist ∆= FSeq(OpRec)

THistVector is the set of all possible history vectors.

THistVector ∆= [Tid → THist]

CorrectAtomicHist verifies if the operations in transaction history h , when sequentially applied to the database
state initst , can provide the same results they provided in h and generate the final database state finalst .
It is defined as a recursive function that tests operation by operation, in order, with a simple tail recursion.
CorrectAtomicHist is defined so that even nondeterministic operations are allowed. A single operation can
provide nondeterministic results or change the database nondeterministically.

CorrectAtomicHist [h ∈ THist , initst ∈ DBState, finalst ∈ DBState] ∆=
IF h = 〈〉

THEN initst = finalst
ELSE ∃ ist ∈ DBState : ∧ CorrectOp(Head(h).op, Head(h).res, initst , ist)

∧ CorrectAtomicHist [Tail(h), ist , finalst]

Perm(S) represents all sequences containing exactly one copy of each element in set S . It represents all the
possible orderings of elements in S . The name Perm comes from permutations although a permutation is a
function from S to S , and not a sequence derived from S . For want of a better name, we kept Perm .

Perm(S) ∆= LET N ∆= Cardinality(S)
IN {s ∈ [1 . . N → S] : {s[i] : i ∈ 1 . . N } = S}

CorrectSerialization verifies if sequence seq of transaction ids represents a correct serial execution of its
transactions with respect to their histories in history vector thist , initial database state initst , and final database
state finalst . It is defined as as a recursive function, like CorrrectAtomicHist , that verifies transaction by
transaction with a simple tail recursion.

CorrectSerialization[seq ∈ FSeq(Tid), thist ∈ THistVector , initst ∈ DBState,
finalst ∈ DBState] ∆=

IF seq = 〈〉
THEN initst = finalst
ELSE ∃ ist ∈ DBState : ∧ CorrectAtomicHist [thist [Head(seq)], initst , ist]

∧ CorrectSerialization[Tail(seq), thist , ist , finalst]

IsSerializable(S , thist , initst) verifies if set S can have a sequence containing each of its elements exactly
once such that its execution is serializable with respect to history vector thist and initial database state initst .

IsSerializable(S , thist , initst) ∆=
∃ seq ∈ Perm(S), db ∈ DBState : CorrectSerialization[seq , thist , initst , db]

PassiveOp(op) is satisfied iff operation op is passive.

2.5. TLA+ SPECIFICATIONS 43

PassiveOp(op) ∆=
∀ st1, st2 ∈ DBState, res ∈ Result :

CorrectOp(op, res, st1, st2)⇒ st1 = st2

PassiveHist(h) is satisfied iff history h is passive.

PassiveHist(h) ∆=
∀ st1, st2 ∈ DBState :

CorrectAtomicHist [h, st1, st2]⇒ st1 = st2

2.5.2 Module SerializableDB

This module presents a TLA+ version of our serializable database specification. It ex-
tends module DBInterface that defines interface operators DBRequest and DBResponse
in terms of an interface variable DBinter . Our specifications are practically oblivious to
how these operators are defined as long as their definitions are disjoint. For the sake of
simplicity, we do not present our specification of module DBInterface.

MODULE SerializableDB
EXTENDS DatabaseConstants, DBInterface

VARIABLES thist , tdec, q and DBinter from DBInterface

Types and Auxiliar Expressions

Type Invariants guaranteed by the specification

thistType ∆= THistVector
tdecType ∆= [Tid → Decided ∪ {Unknown}]
qType ∆= [Tid → Request ∪ {NoReq}]

TypeInv ∆= ∧ thist ∈ thistType
∧ tdec ∈ tdecType
∧ q ∈ qType

Set of all committed transactions

committedSet ∆= {t ∈ Tid : tdec[t] = Committed}

Actions
ReceiveReq(t , req) deals with the receipt of a transaction request. It stores the received request in q [t] for it to
be processed later.

ReceiveReq(t , req) ∆= ∧DBRequest(t , req)
∧ q [t] = NoReq
∧ q ′ = [q EXCEPT ![t] = req]

44 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

∧ UNCHANGED 〈thist , tdec〉

ReplyReq(t , rep) deals with the response of an executing request. It checks whether transaction t has already
been decided; if so, the response to t’s executing request is its final decision. If t has not been decided yet, then
the action is enabled only if op is in Op and rep is in Result . In such a case, the operation and its result are
enqueued in t’s history.

ReplyReq(t , rep) ∆= ∧ q [t] ∈ Request
∧DBResponse(t , rep)
∧ q ′ = [q EXCEPT ![t] = NoReq]
∧ IF tdec[t] ∈ Decided

THEN ∧ rep = tdec[t]
∧ UNCHANGED 〈thist , tdec〉

ELSE ∧ q [t] ∈ Op
∧ rep ∈ Result
∧ thist ′ = [thist EXCEPT ![t] =

Append(@, [op 7→ q [t],
res 7→ rep])]

∧ UNCHANGED 〈tdec〉

Action DoAbort(t) aborts t by setting tdec[t] to Aborted . This can be done at any time as long as t has not
been decided yet.

DoAbort(t) ∆= ∧ tdec[t] /∈ Decided
∧ tdec′ = [tdec EXCEPT ![t] = Aborted]
∧ UNCHANGED 〈thist , q , DBinter〉

Action DoCommit(t) commits t by setting tdec[t] to Committed , which is done only if t has not been
decided and t’s commit request has been issued.

DoCommit(t) ∆= ∧ tdec[t] /∈ Decided
∧ q [t] = Commit
∧ tdec′ = [tdec EXCEPT ![t] = Committed]
∧ IsSerializable(committedSet ′, thist , InitialDBState)
∧ UNCHANGED 〈thist , q , DBinter〉

Specification

Initialization.

Init ∆= ∧ InitInterface
∧ thist = [i ∈ Tid 7→ 〈〉]
∧ tdec = [i ∈ Tid 7→ Unknown]
∧ q = [t ∈ Tid 7→ NoReq]

Next defines the possible “next” steps in a correct execution.

Next ∆= ∃ t ∈ Tid :
∨ ∨ ∃ req ∈ Request : ReceiveReq(t , req)
∨ ∃ rep ∈ Reply : ReplyReq(t , rep)

2.5. TLA+ SPECIFICATIONS 45

∨DoCommit(t)
∨DoAbort(t)

Final specification.

Spec ∆= Init ∧2[Next]〈thist , tdec, q, DBinter〉

Type Invariant Theorem

THEOREM Spec ⇒ 2TypeInv

2.5.3 Module OPSerializableDB

This module presents our specification of an order-preserving serializable database.
MODULE OPSerializableDB

EXTENDS SerializableDB Simply extends a serializable database

serialSeq keeps the commit order

VARIABLES serialSeq

serialSeqType ∆= {s ∈ FSeq(Tid) : ∀ i , j ∈ DOMAIN s : i 6= j ⇒ s[i] 6= s[j]}

Actions

The only action we change is DoCommit , which is replaced by the action defined below

OPDoCommit(t) ∆=
∧ tdec[t] = Unknown
∧ q [t] = Commit
∧ tdec′ = [tdec EXCEPT ![t] = Committed]
∧ serialSeq ′ = Append(serialSeq , t)
∧ ∃ st ∈ DBState : CorrectSerialization[serialSeq ′, thist ,

InitialDBState, st]
∧ UNCHANGED 〈thist , q , DBinter〉

Specification

Initialization.

OPInit ∆= ∧ Init
∧ serialSeq = 〈〉

Next defines the possible “next” steps in a correct execution.

OPNext ∆= ∃ t ∈ Tid :

46 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

∨ ∧ ∨ ∃ req ∈ Request : ReceiveReq(t , req)
∨ ∃ rep ∈ Reply : ReplyReq(t , rep)
∨DoAbort(t)

∧ UNCHANGED serialSeq
∨OPDoCommit(t)

Final specification.

OPSpec ∆= OPInit ∧2[OPNext]〈thist , tdec, q, DBinter , serialSeq〉

Type Invariant Theorem

THEOREM OPSpec ⇒ 2(TypeInv ∧ serialSeq ∈ serialSeqType)

2.5.4 Module AOPSerializableDB

This module presents our specification of an active order-preserving serializable database.
MODULE AOPSerializableDB

EXTENDS SerializableDB

serialSeq keeps the commit order

VARIABLES serialSeq

serialSeqType ∆= {s ∈ FSeq(Tid) : ∀ i , j ∈ DOMAIN s : i 6= j ⇒ s[i] 6= s[j]}

Actions

Function IsSubSeq below verifies if smallseq is a subsequence of bigseq .

IsSubSeq [smallseq ∈ FSeq(Tid), bigseq ∈ FSeq(Tid)] ∆=
(smallseq 6= 〈〉)⇒
∃ i ∈ 1 . . Len(bigseq) :
∧ bigseq [i] = Head(smallseq)
∧ ∀ j ∈ 1 . . Len(bigseq) :

bigseq [j] = Head(smallseq)⇒ j ≥ i
∧ IsSubSeq [Tail(smallseq), SubSeq(bigseq , i + 1, Len(bigseq))]

The only action we change is DoCommit , which is replaced by the action defined below

AOPDoCommit(t) ∆= ∧ tdec[t] = Unknown
∧ q [t] = Commit
∧ tdec′ = [tdec EXCEPT ![t] = Committed]
∧ IF PassiveHist(thist [t])

THEN UNCHANGED serialSeq

2.5. TLA+ SPECIFICATIONS 47

ELSE serialSeq ′ = Append(serialSeq , t)
∧ ∃ seq ∈ Perm(committedSet ′), st ∈ DBState :
∧ CorrectSerialization[seq , thist , InitialDBState, st]
∧ IsSubSeq [serialSeq ′, seq]

∧ UNCHANGED 〈thist , q , DBinter〉

Specification

Initialization.

AOPInit ∆= ∧ Init
∧ serialSeq = 〈〉

Next defines the possible “next” steps in a correct execution.

AOPNext ∆= ∃ t ∈ Tid :
∨ ∧ ∨ ∃ req ∈ Request : ReceiveReq(t , req)

∨ ∃ rep ∈ Reply : ReplyReq(t , rep)
∨DoAbort(t)

∧ UNCHANGED serialSeq
∨AOPDoCommit(t)

Final specification.

AOPSpec ∆= AOPInit ∧2[AOPNext]〈thist , tdec, q, DBinter , serialSeq〉

Type Invariant Theorem

THEOREM AOPSpec ⇒ 2(TypeInv ∧ serialSeq ∈ serialSeqType)

2.5.5 Module GeneralDeferredUpdate

This is the TLA+ specification of our abstract deferred-update algorithm.
MODULE GeneralDeferredUpdate

EXTENDS DatabaseConstants, DBInterface

CONSTANTS Database, DBof (), StripPassive()

VARIABLES thist , q , dreq , pdec, Client variables

dreply , dcnt , vers, dcom, Database variables

ldinter , dthist , dtdec, dq , dserialSeq , Internal database variables

proposed , learnedSeq , gdec Termination variables

Extra Assumptions

48 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

ASSUME ∀ t ∈ Tid : DBof (t) ∈ Database

ASSUME ∀ hist ∈ THist , st1, st2 ∈ DBState :
∧ StripPassive(hist) ∈ THist
∧ CorrectAtomicHist [hist , st1, st2]⇒

CorrectAtomicHist [StripPassive(hist), st1, st2]

We assume state-deterministic operations

ASSUME ∀ op ∈ Op, res1, res2 ∈ Result , st , st1, st2 ∈ DBState :
∧ CorrectOp(op, res1, st , st1)
∧ CorrectOp(op, res2, st , st2)
⇒ st1 = st2

Auxiliar Expressions and Replicas’ Instantiation

Definition of tdec based on pdec e gdec

tdec ∆= [t ∈ Tid 7→ IF t ∈ proposed
THEN gdec[t]
ELSE pdec[t]]

Each database accepts transactions with ids in the form 〈tid , version〉 where tid is an element of Tid and
version is a Natural. This allows “a single” transaction to be submitted to a database multiple times.
LocalTid ∆= Tid ×Nat

The definition below instantiates each local database used by the general algorithm.

DBS (d) ∆= INSTANCE AOPSerializableDB WITH Tid ← LocalTid ,
DBinter ← ldinter [d],
thist ← dthist [d],
tdec ← dtdec[d],
q ← dq [d],
serialSeq ← dserialSeq [d]

NoRep is defined to be some value that is not a valid reply.

NoRep ∆= CHOOSE v : v /∈ Reply

The definition below creates an instance of the termination protocol specification.

GT ∆= INSTANCE GeneralTermination

Auxiliary definitions to help dealing with the declared variables.

cvars ∆= 〈thist , q , dreq , pdec〉
ldvars ∆= 〈ldinter , dthist , dtdec, dq , dserialSeq〉
gdvars ∆= 〈dreply , dcnt , vers, dcom〉
dvars ∆= 〈gdvars, ldvars〉
tvars ∆= 〈proposed , learnedSeq , gdec〉

2.5. TLA+ SPECIFICATIONS 49

ActHist(t) returns the current history of transaction t with some of its passive operations taken out of the
sequence (according to operator StripPassive).

ActHist(t) ∆= StripPassive(thist [t])

DBvars(d) returns the internal variables of database d . It is used by the auxiliar action defined below.

DBvars(d) ∆= 〈ldinter [d], dthist [d], dtdec[d], dq [d], dserialSeq [d]〉

OtherDBsStutter(d) is an auxiliar action that forces all databases but d to execute a stuttering step, that is,
a step in which their internal variables do not change values. For simplicity, our specification does not allow
interleaving of database actions. In fact, as we explain in the following, it does not allow interleaving at all.

OtherDBsStutter(d) ∆=
LET dbfn ∆= [nd ∈ (Database \ {d}) 7→ DBvars(nd)]
IN dbfn ′ = dbfn

Actions

These are the atomic actions of the general deferred update technique, not including the internal database actions
and the internal actions of the termination protocol. In order to model check this specification, we had to make it
noninterleaving, that is, we had to specify it in terms of actions that cannot occur concurrently (even considering
that they are executed by different specification components). This prevented us from using the DBRequest
and DBResponse primitives to interact with the internal databases. Instead, we used the ReceiveReq and
ReplyReq actions directly to submit an operation and get a response from a database.

The ReceiveReq action.

ReceiveReq(t , req) ∆=
∧DBRequest(t , req)
∧ q [t] /∈ Request
∧ q ′ = [q EXCEPT ![t] = req]
∧ IF tdec[t] /∈ Decided

THEN ∨ ∧ req = Commit
∧GT !Propose(t)
∧ UNCHANGED 〈thist , dreq , pdec, dvars〉

∨ ∧ req = Commit ⇒ PassiveHist(thist [t])
∧ dreq ′ = [dreq EXCEPT ![t] = req]
∧ UNCHANGED 〈thist , pdec, dvars, tvars〉

ELSE UNCHANGED 〈thist , dreq , pdec, dvars, tvars〉

The ReplyReq action.

ReplyReq(t , rep) ∆=
∧ q [t] ∈ Request
∧DBResponse(t , rep)
∧ q ′ = [q EXCEPT ![t] = NoReq]
∧ IF tdec[t] ∈ Decided

THEN ∧ rep = tdec[t]
∧ UNCHANGED 〈thist , dreq , pdec, dvars, tvars〉

ELSE ∧ q [t] ∈ Op

50 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

∧ rep ∈ Result
∧ dcnt [DBof (t)][t] > Len(thist [t])
∧ rep = dreply [t]
∧ thist ′ = [thist EXCEPT ![t] = Append(@, [op 7→ q [t],

res 7→ rep])]
∧ dreq ′ = [dreq EXCEPT ![t] = NoReq]
∧ UNCHANGED 〈pdec, dvars, tvars〉

The PrematureAbort action.

PrematureAbort(t) ∆= ∧ t /∈ proposed
∧ pdec[t] /∈ Decided
∧ pdec′ = [pdec EXCEPT ![t] = Aborted]
∧ UNCHANGED 〈thist , q , dreq , dvars, tvars, DBinter〉

The PassiveCommit action.

PassiveCommit(t) ∆= ∧ t /∈ proposed
∧ pdec[t] /∈ Decided
∧ dreply [t] = Committed
∧ pdec′ = [pdec EXCEPT ![t] = Committed]
∧ UNCHANGED 〈thist , q , dreq , dvars, tvars, DBinter〉

The DBReq action with its three enabling conditions.

DBReq(d , t , req) ∆=
∧ ∨ ∧ d = DBof (t) Condition 1

∧ dreq [t] = req
∧ dcnt [d][t] = Len(thist [t])

∨ ∧ t ∈ proposed Condition 2

∧ dcnt [d][t] < Len(ActHist(t))
∧ req = ActHist(t)[dcnt [d][t] + 1].op

∨ ∧ req = Commit Condition 3

∧ ∃ i ∈ 1 . . Len(learnedSeq [d]) :
∧ learnedSeq [d][i] = t
∧ ∀ j ∈ 1 . . i − 1 : dcom[d][learnedSeq [d][j]]

∧ ∨ d = DBof (t) ∧ vers[d][t] = 0
∨ dcnt [d][t] = Len(ActHist(t))

∧ DBS (d)!ReceiveReq(〈t , vers[d][t]〉, req)
∧ OtherDBsStutter(d)
∧ UNCHANGED 〈cvars, gdvars, tvars, DBinter〉

The DBRep action.

DBRep(d , t , rep) ∆=
∧ DBS (d)!ReplyReq(〈t , vers[d][t]〉, rep)
∧ OtherDBsStutter(d)
∧ IF d = DBof (t) THEN dreply ′ = [dreply EXCEPT ![t] = rep]

2.5. TLA+ SPECIFICATIONS 51

ELSE UNCHANGED dreply
∧ IF rep = Aborted ∧ t ∈ proposed

THEN ∧ vers ′ = [vers EXCEPT ![d][t] = @ + 1]
∧ dcnt ′ = [dcnt EXCEPT ![d][t] = 0]
∧ UNCHANGED dcom

ELSE ∧ dcnt ′ = [dcnt EXCEPT ![d][t] = @ + 1]
∧ dcom ′ = [dcom EXCEPT ![d][t] = (rep = Committed)]
∧ UNCHANGED vers

∧ UNCHANGED 〈cvars, tvars, DBinter〉

Specification

Initialization.

Init ∆= ∧ InitInterface
∧ q = [t ∈ Tid 7→ NoReq]
∧ dreq = [t ∈ Tid 7→ NoReq]
∧ dreply = [t ∈ Tid 7→ NoRep]
∧ pdec = [t ∈ Tid 7→ Unknown]
∧ vers = [d ∈ Database 7→ [t ∈ Tid 7→ 0]]
∧ dcom = [d ∈ Database 7→ [t ∈ Tid 7→ FALSE]]
∧ dcnt = [d ∈ Database 7→ [t ∈ Tid 7→ 0]]
∧ ∀ d ∈ Database : DBS (d)!AOPInit
∧GT !Init includes thist

The next-state action in terms of noninterleaving actions.

Next ∆= ∨ ∃ t ∈ Tid : ∨ ∃ req ∈ Request : ReceiveReq(t , req)
∨ ∃ rep ∈ Reply : ReplyReq(t , rep)
∨ PrematureAbort(t)
∨ PassiveCommit(t)

∨ ∃ d ∈ Database : ∨ ∃ t ∈ Tid : ∨ ∃ req ∈ Request : DBReq(d , t , req)
∨ ∃ rep ∈ Reply : DBRep(d , t , rep)

∨ ∧ UNCHANGED ldinter [d] ∧DBS (d)!AOPNext
∧OtherDBsStutter(d)
∧ UNCHANGED 〈cvars, gdvars, tvars, DBinter〉

∨ ∧ UNCHANGED 〈cvars, dvars, DBinter〉
∧GT !TNext

The final safety specification

Safety ∆= Init ∧2[Next]〈cvars, dvars, tvars, DBinter〉

The final specification, including the liveness condition of the termination protocol.

Spec ∆= Safety ∧GT !Liveness

52 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

2.5.6 Module GeneralTermination

This module presents our specification of the Termination Protocol.
MODULE GeneralTermination

EXTENDS DatabaseConstants

CONSTANTS Database

VARIABLES proposed , learnedSeq , gdec, thist

Auxiliar Expressions

vars ∆= 〈proposed , learnedSeq , gdec〉

committedSet ∆= {t ∈ Tid : gdec[t] = Committed}

IsPrefix (smallseq , bigseq) verifies if smallseq is a prefix of bigseq .

IsPrefix (smallseq , bigseq) ∆= ∃n ∈ 0 . . Len(bigseq) : smallseq = SubSeq(bigseq , 1, n)

The consistency property in TLA+ The other properties are automatically guaranteed by the atomic actions
below.
Consistency ∆=
∃ seq ∈ Perm(committedSet), st ∈ DBState :

∧ CorrectSerialization[seq , thist , InitialDBState, st]
∧ ∀ d ∈ Database : IsPrefix (learnedSeq [d], seq)

Actions

Propose(t) proposes a transaction t for termination.

Propose(t) ∆=
∧ t /∈ proposed
∧ proposed ′ = proposed ∪ {t}
∧ UNCHANGED 〈learnedSeq , gdec〉

Decide(t) makes a final decision (Committed or Aborted) about proposed transaction t .

Decide(t) ∆=
∧ t ∈ proposed
∧ gdec[t] = Unknown
∧ ∃ v ∈ Decided : gdec′ = [gdec EXCEPT ![t] = v]
∧ UNCHANGED 〈proposed , learnedSeq〉
∧ Consistency ′

Learn(d , seq) extends learnedSeq [d], but only if the new value ensures consistency.

Learn(d , seq) ∆=
∧ IsPrefix (learnedSeq [d], seq) ∧ Len(seq) > Len(learnedSeq [d])

2.5. TLA+ SPECIFICATIONS 53

∧ learnedSeq ′ = [learnedSeq EXCEPT ![d] = seq]
∧ UNCHANGED 〈proposed , gdec〉
∧ Consistency ′

Specification

The following two definitions have to do with our weak liveness requirement for termination.

LivenessDatabase(t , d) ∆=
gdec[t] = Aborted ⇒

3(t ∈ {learnedSeq [d][i] : i ∈ DOMAIN learnedSeq [d]})

Liveness ∆=
2(∀ t ∈ Tid , d ∈ Database : LivenessDatabase(t , d))

The following action simply helps model checking. It changes the transactions’ history vector.

ChangeHist(t) ∆=
∧ t /∈ proposed
∧ ∃ o ∈ Op, r ∈ Result :

thist ′ = [thist EXCEPT ![t] = Append(@, [op 7→ o,
res 7→ r])]

∧ UNCHANGED vars

TNext allows any action but Propose(v). It is used in the specification of our general deferred update protocol.

TNext ∆=
∨ ∃ t ∈ Tid : Decide(t)
∨ ∃ d ∈ Database, seq ∈ FSeq(Tid) : Learn(d , seq)

Next allows all the actions and is used by to model check termination in an isolated way.

Next ∆=
∨ TNext ∧ UNCHANGED thist
∨ ∃ t ∈ Tid : ∨ Propose(t) ∧ UNCHANGED thist

∨ ChangeHist(t)

Initialization.

Init ∆=
∧ proposed = {}
∧ learnedSeq = [d ∈ Database 7→ 〈〉]
∧ gdec = [t ∈ Tid 7→ Unknown]
∧ thist = [t ∈ Tid 7→ 〈〉]

Final specification.

Spec ∆= Init ∧2[Next]〈vars, thist〉 ∧ Liveness

54 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

2.6 Related Work and Final Remarks

Database replication techniques can be classified in eager or lazy, according to the way
updates are propagated [GHOS96]. In eager replication, updates are applied to database
replicas as part of the original transaction (i.e., if the transaction commits, it is guaranteed
that correct replicas will eventually apply them locally). In lazy replication, a transaction
first commits at one replica, and then its updates are propagated to the others. Clearly, lazy
replication may not preserve a serializable interface, even in the absence of failures.

Eager replication admits two variations [BHG87]. Immediate-update replication prop-
agates updates to replicas during the transaction execution, whereas deferred-update repli-
cation propagates updates to replicas after the transaction has had its operations executed
and a commit request has been issued. Deferred-update algorithms reduce the amount of
synchronization between replicas and ensure a serializable interface to the database users,
which makes them of practical interest [WPS+00a, WPS+00b]. Nevertheless, we are not
aware of any work that explored more deeply the theoretical aspects and limitations of
deferred-update database replication.

Consistency criteria for databases systems have been defined in many different ways.
It is known that definitions based on anomalies allowed and disallowed by the system lead
to some inconsistencies [BBG+95]. A more correct way to specify a consistent database
is done in terms of the equivalence between the system’s actual execution and a serial ex-
ecution of the submitted transactions [BHG87]. Traditional definitions of equivalence be-
tween two executions of transactions referred to the internal scheduling performed by the
algorithms and their ordering of conflicting operations. This approach has led to different
notions of equivalence and, therefore, different subclasses of Serializability [Pap79].

Schedule-comparison specifications are very good for the specific algorithms people had
in mind when designing them [BHG87]. However, they are hard to adapt to more compli-
cated algorithms [LMWF94]. A more general approach to specifying database consistency
criteria consists of specifying a state machine that corresponds to the behavior an idealized
correct database system should have [LMWF94]. Proving algorithms correct using this ap-
proach boils down to finding a refinement mapping between the algorithm and the correct
specification [AL91]. A special issue of Distributed Computing devoted to the formal spec-
ification of concurrent systems had different specifications of a Serializable database, based
on different specification techniques [Bro92, KS92, LS92]. Our model-based specification
of Serializability resembles the specifications in [LMWF94] and [LS92].

Our methodology for proving our abstraction correct resembles the work done in
[LLOR99] to prove that a lazy-caching protocol satisfies sequential consistency. Never-
theless, their work referred to proving a specific protocol correct, which leads to no general
results concerning a class of algorithms. In our case, since we are dealing with an abstrac-
tion, results generalize to all possible algorithmic implementations.

2.6. RELATED WORK AND FINAL REMARKS 55

In this chapter, we have formalized the deferred update technique for database repli-
cation and stated some intrinsic characteristics and limitations of it. Previous works have
only considered new algorithms, with independent specifications, analysis, and correctness
proofs. To the best of our knowledge, our work is first effort to formally characterize this
family of algorithms and establish its requirements. Our general abstraction can be used to
derive other general limitation results as well as to create new algorithms and prove exist-
ing ones correct. Some algorithms can be easily proved correct by a refinement mapping
to ours. Others may require an additional effort due to the extra assumptions they make,
but the task seems still easier than with previous formalisms. Chapter 4 shows how our
abstraction can be used to obtain interesting protocols and correctness proofs.

56 CHAPTER 2. FORMAL ANALYSIS OF THE DEFERRED UPDATE TECHNIQUE

Chapter 3

Collision-fast Sequence Agreement
and Paxos

A distributed system is one in which the failure of a computer you didn’t even know existed
can render your computer unusable.

Leslie Lamport

As shown in the previous chapter, the Sequence Agreement problem is highly related to
the termination of transactions in deferred update database replication protocols since any
practical termination protocol must implement sequence agreement for the transactions it
commits. Besides that, as presented in Section 2.3, sequence agreement itself can be used
to implement the termination protocol in a very elegant way. Therefore, understanding the
limitations of this problem and being able to efficiently solve it is paramount to designing
and implementing deferred update replication.

In this chapter we explore this direction and present a very efficient fault-tolerant solu-
tion to sequence agreement. Our latency-optimal algorithm, derived from the Paxos con-
sensus protocol [Lam98], is very dynamic and can quickly reconfigure and adapt to failures,
which distinguishes it from previous approaches achieving similar bounds. Our algorithm
is based on a variant of the consensus problem we call M-Consensus. M-Consensus is more
general than the original consensus problem, being much more suitable as a building block
for efficient sequence agreement implementations. Last, but not least, we have extensively
proved safety and liveness of our solutions to both M-Consensus and sequence agreement
and we believe that some of the techniques we used are general enough to be applied to
other agreement problems.

57

58 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

3.1 Sequence Agreement and Consensus

As mentioned in Chapter 2, sequence agreement is a sequence-based specification of the
celebrated atomic broadcast problem [HT93], often solved using the consensus problem as
a building block. In fact, the two problems are equivalent with respect to solvability but
consensus has a simpler definition since learners must eventually learn only a single value
out of the set of proposed ones. The equivalence between consensus and sequence agree-
ment, though, brings out some interesting results. First, it extends to sequence agreement
the famous FLP impossibility result stating that consensus is not deterministically solvable
in asynchronous systems subject to failures [FLP85]. Moreover, since the reduction from
consensus to sequence agreement is direct (learners learn only the first element of the agreed
sequence), any lower bounds for consensus also apply to sequence agreement.

Generally speaking, one can solve sequence agreement by means of a totally ordered
succession of consensus instances. A proposer that wants to propose a value proposes it in
the first instance for which it has not proposed or learned anything yet. Consensus ensures
that the decision reliably reaches all nonfaulty learners, and the sequence order is given by
the ordering of the instances, that is, the i th instance’s decision gives the i th element in the
learned sequence. Proposers must be also consensus learners so that they can check if their
proposal in some instance was decided or not and repropose it in a different instance in case
it was not the consensus decision. Clearly, the performance of any implementation of this
general approach is highly dependent on the consensus protocol it hinges upon.

This solution to sequence agreement has a problem, though: Because the decision of
each instance is bounded to a single proposal, values proposed but not decided in a given
instance must be reproposed on subsequent instances until they get decided, increasing their
learning delay. Notice that even implementations in which proposals are composed of sets
of messages (e.g., [CT96]) may suffer from this problem since there is no guarantee that all
processes propose always the same sets in all instances.

Some consensus algorithms for the asynchronous model rely on a leader to coordinate
the agreement procedure and this can be used to bypass the problem above. In such al-
gorithms, proposals are sent to the leader, which selects one as the possible decision and
continues with the algorithm execution. In a sequence agreement implementation, all the
consensus instances could share the same leader, as done in Paxos [Lam98]. Instead of
selecting an instance of consensus by the time a value is proposed, proposals could be just
forwarded to the leader. The leader selects the first instance it has not used and contin-
ues with the algorithm as if the received proposal related to that instance. This gives to
the sequence agreement implementation the same latency as the consensus protocol—three
message steps in general, or two for values proposed by the leader.

There are consensus protocols that can achieve the latency of two message steps for
multiple proposers by employing stricter conditions for a proposal to be decided (e.g., Fast

3.2. MODEL AND DEFINITIONS 59

Paxos [Lam06a]). In such algorithms, there is no leader involved in the general case for
getting a proposal decided but quorums are necessarily bigger. Moreover, the absence of a
leader to circumvent the FLP impossibility result creates a problem called collision, which
happens when two concurrent proposals are issued but none gets decided after two message
steps [Lam06b]. To resolve a collision, extra message steps are required. It is possible to
ensure a latency of two message steps in normal runs and avoid collisions. An asynchronous
consensus algorithm that achieves this is called collision-fast. In [Lam06b], Lamport states
the two conditions in which collision-fast asynchronous consensus algorithms are possible.
The first case restricts fault tolerance to a single failure and is solved by a simple variant of
Paxos, which allows the optimization we mentioned in the previous paragraph for sequence
agreement. As for the second condition, which does not require strong failure assumptions,
its algorithm applied to solving sequence agreement cannot solve the problem of different
proposals for the same instance of consensus resulting in a single decision. Thus, non-
decided proposals must be resubmitted in different instances, delaying their learning.

Indeed, when more than one process can fail, it seems impossible to use the standard
reduction from sequence agreement to consensus and obtain a collision-fast sequence agree-
ment protocol, that is, a sequence agreement implementation in which values proposed are
learned within two message steps in normal runs. Differently, we reduce sequence agree-
ment to a variation of consensus we call M-Consensus. In M-Consensus, processes de-
cide not on a single proposed value, but on a bounded composition of them. This way, if
concurrent proposals happen, all of them may take part in the final decision. To imple-
ment sequence agreement, we use a succession of M-Consensus instances as done before
with standard consensus. Wise collision-fast implementations of M-Consensus, however,
can produce a collision-fast sequence agreement. Collision-fast Paxos, our solution to M-
Consensus, extends the original Paxos algorithm to allow multiple proposers, and not only
the leader, to have their proposals decided in two message steps. As we show in the paper,
our protocol can be used to implement a collision-fast sequence agreement that tolerates as
many failures as the original Paxos.

3.2 Model and Definitions

3.2.1 Model

Instead of using processes, we state our definitions in terms of agents that perform actions
in the system; processes can aggregate the roles of several agents. We assume an asyn-
chronous crash-recovery model in which agents communicate by exchanging messages,
with no bounds on the time it takes for messages to be transmitted or actions to be exe-
cuted. Messages can be lost or duplicated but not corrupted; agents can fail by stopping
only and never perform incorrect actions. Agents are assumed to have some sort of local
stable storage to keep their state in between failures so that finite periods of absence are not

60 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

distinguishable from excessive slowness. Although we assume agents may recover, they
are not obliged to do so once they have failed. An agent is considered to be nonfaulty iff it
never stops executing enabled actions.

3.2.2 Sequence Agreement

As briefly explained in the previous chapter, given two sets of agents, namely proposers and
learners, the sequence agreement problem consists of ensuring that learners learn increasing
prefixes of a single sequence built out of the proposed value. In order to deal more easily
with sequences throughout the chapter, we introduce some useful notation. We represent
a sequence s as the tuple of its elements 〈v1, v2, . . . , vn〉, where n is the length of s and
vi equals s[i], the sequence’s i th element. We say that sequence s is a prefix of sequence
t , noted as s v t , iff the length of s is less than or equal to the length of t and, for all i
from 1 to the length of s , s[i] = t [i]; s and t are equal iff s v t and t v s . The empty
sequence 〈〉 has length zero and is a prefix of any other sequence. Sequence agreement’s
safety properties can then be stated as follows, where learned [l] refers to the prefix currently
learned by learner l , initially 〈〉.

Nontriviality For any learner l , learned [l] contains only proposed values.

Stability For any learner l , if learned [l] = s at some time, then s v learned [l] at all later
times.

Consistency For any pair of learners l1 and l2, either learned [l1] v learned [l2] or
learned [l2] v learned [l1].

The liveness requirement stated in the previous chapter, forcing every proposed value
to be eventually learned by all learners is too strong for real systems. In an actual system,
client applications propose commands and learn the result of their execution, tasks possibly
associated with proposers and learners in our model. Since we cannot require clients not to
fail, we define liveness in terms of another set of agents: the acceptors. Let a quorum be any
finite set of acceptors large enough to ensure liveness. The liveness property of sequence
agreement is defined as follows.

Liveness For any proposer p and learner l , if p, l and a quorum of acceptors are nonfaulty
and p proposes value v , then eventually learned [l] contains v .

3.2. MODEL AND DEFINITIONS 61

3.2.3 Algorithms

In this section, we formally define sequence agreement algorithms and what it means for
them to be collision-fast. The formal definitions we give are mostly borrowed from [Lam06b];
as in that work, we start by describing events.

An event is an action performed at some agent either spontaneously or triggered by the
reception of a message. Each event e performed by agent eagent sends exactly one message
emsg , receivable by any agent, including itself. We assume that events are totally ordered at
the agents performing them, that is, we assume that each event e performed by agent eagent

is uniquely identified by the positive integer enum , indicating that e was the enum
th event

performed by eagent . For an event e triggered by the reception of a message, we let ercvd

equal the triple 〈m, a, i〉, where m is the received message, a is the agent that sent it, and i
the index enum of m’s sending event e .

A scenario is the set of events performed in some single (partial) execution of an al-
gorithm. For every event in a scenario, all other events that could have causally influ-
enced it must also be in the scenario. To formally define a scenario, we let �S be, for
any set S of events, the transitive closure of the relation → on S such that e → f iff
either (i) eagent = fagent and enum ≤ fnum or (ii) f is a message-receiving event and
frcvd = 〈emsg , eagent , enum〉.

Definition 3.1 (Scenario [Lam06b]) A scenario S is a set of events such that:

• for any agent a , the set of events in S performed by a consists of ka events numbered
from 1 through ka , for some natural number ka ;

• for every message-receiving event e ∈ S , there exists d ∈ S , d 6= e , such that
ercvd = 〈dmsg , dagent , dnum〉; and

• �S is a partial order on S .

A scenario obtained by removing the last events of a scenario S , according to the precedence
relation �S , is called a prefix of S .1

Definition 3.2 (Prefix [Lam06b]) A subset S of a scenario T is a prefix of T , written
S v T , iff for any events d in T and e in S , if d �T e then d is in S .

1For simplicity, we use the same nomenclature and notation to define the prefix relation between sequences,
scenarios, and, as shown later, v-mappings. These sets are different and used in different contexts, which makes
us believe this cannot be a source of confusion.

62 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

An algorithm can be seen as the set of non-empty scenarios it allows. However, we are
only interested in algorithms that are compliant with our model. We define an asynchronous
algorithm as follows, where Agents(S) is the set of agents that performed events in S .

Definition 3.3 (Asynchronous Algorithm [Lam06b]) An asynchronous algorithm Alg is
a set of scenarios such that:

• every prefix of a scenario in Alg is in Alg; and

• if T and U are scenarios of Alg and S is a prefix of both T and U such that
Agents(T \ S) and Agents(U \ S) are disjoint sets, then T ∪ U is a scenario
of Alg .

We define a source of a scenario S as an event e ∈ S that is minimal in the ordering
�S , and we let the depth of an event be the number of message steps that precede the event.

Definition 3.4 (Event Depth [Lam06b]) The depth of an event e in a scenario S equals 0
if e is a source of S , otherwise it equals the maximum of

(i) the depths of all events d with dagent = eagent and dnum < enum , and

(ii) if e is an event that receives a message sent by event b, then 1 plus the depth of b.

We now must define what a collision-fast sequence agreement protocol is. For simplic-
ity, the definition we present considers only scenarios in which values are proposed in the
source events. As a result, an algorithm might be collision-fast according to this simplified
definition even if it does not ensure the same delivery latency for non-source proposals.
Nonetheless, we believe that algorithms that satify our definition can be usually adapted to
ensure the same delivery latency for all values proposed in normal runs, as this is the case
for our solution.

A normal scenario is one in which the execution starts by one or more proposers propos-
ing values, messages are not lost or duplicated, timeouts do not occur, messages are received
in FIFO order, and no event receives a message with depth lower than its own minus one,
that is, message reception is not delayed for two message steps or more.

Definition 3.5 (Normal Scenario [Lam06b]) A scenario S is normal iff:

• the only sources of S are propose events;

3.3. M-CONSENSUS 63

• the message sent by any single event is not received twice by the same agent;

• every non-source event is a message receiving event;

• if d1 and d2 are events in S with d1agent = d2agent and d1 �S d2, and e2 is an
event in S that receives the message sent by d2, then there exists an event e1 in S
with e1agent = e2agent and e1 �S e2 such that e1 receives the message sent by d1;
and,

• if d and e are events in S and e receives the messages sent by d , then edepth equals 1
plus ddepth in S .

Our definition of collision-fast sequence agreement states that the values initially pro-
posed are delivered in two message steps. In order to measure that, we use the definition
below.

Definition 3.6 (Complete to Depth [Lam06b]) An agent a is complete to depth δ in a sce-
nario S iff either δ = 0 or every agent in Agents(S) is complete to depth δ − 1 and a
receives every message sent by an event in S with depth less than δ.

We consider a sequence agreement algorithm to be collision-fast iff there is a set M of
agents and a set P of at least two proposers such that all values initially proposed by any
subset O of the proposers in P are delivered by a learner l when l is complete to depth 2 in
a normal scenario in which no agent in M ∪O ∪ {l} crashes. Our formal definition below
is derived from the definition of Collision-fast Accepting in [Lam06b].

Definition 3.7 (Collision-fast Algorithm) An asynchronous sequence agreement algorithm
Alg is collision-fast iff there is a set M of agents and a set P of proposers with at least two
proposers such that, for every nonempty subset {p1, . . . , pk} of P with pi all distinct:

• for any proposable values v1, . . . , vk there is a scenario {e1, . . . , ek} in Alg such that
each ei is a source event in which pi proposes vi ; and,

• for every learner l and every normal scenario S of Alg with Agents(S) =
{l , p1, . . . , pk} ∪M that contains {e1, . . . , ek} as a prefix, if l is complete to depth 2
in S , then learned [l] contains v1, . . . , vk .

3.3 M-Consensus

As mentioned before, instead of solving sequence agreement based on Consensus, we do it
based on a different problem we call M-Consensus. The problem with standard Consensus

64 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

is that it does not allow multiple proposals to take part of a single decision. Differently, in
the M-Consensus problem, where M stands for mapping, agents must agree on an increas-
ing mapping from proposers to either proposed values or to the special value Nil . Before
formalizing the problem, though, we define the value mapping data structure, v-mapping
for short, it depends upon.

3.3.1 Value Mapping Sets

In order to introduce v-mappings, we must define some function notation. As usual, we
let f (d) be the result of function f for its domain element d . We represent the set of all
functions with domain D and range R by [D → R], and the domain of a function f by
Dom(f). Moreover, we assume the existence of a special function ⊥ such that Dom(⊥) =
{}.

A value mapping set is a data structure defined in terms of sets Domain and Value .
Each pair 〈Domain,Value〉 corresponds to a different set ValMap of value mappings, de-
fined as all functions from subsets of Domain to Value ∪ {Nil}, where Nil is a special
value not present in Value . More formally, ValMap =

⋃
{[D → R] : D ⊆ Domain∧R =

Value ∪ {Nil}}. A v-mapping is therefore a function that maps some elements of Domain
to either a value in Value or Nil . Notice that, since {} ⊆ Domain for any set Domain ,
⊥ is present in every v-mapping set. To ease the presentation, hereinafter we consistently
use uppercase letters for values in Value ∪ {Nil} and lowercase letters for v-mappings in
ValMap.

We call a pair 〈d ,V 〉, where d ∈ Domain and V ∈ Value ∪ {Nil}, a single mapping,
or s-mapping for short, and define the append operation v • 〈d ,V 〉, where v is a v-mapping
and 〈d , v〉 is an s-mapping, to equal v-mapping f such that:

• Dom(f) = Dom(v) ∪ {d} and

• ∀q ∈ Dom(f) : IF q ∈ Dom(v) THEN f (q) = v(q) ELSE f (q) = V .

Informally, v • 〈d ,V 〉 extends v with the s-mapping 〈d ,V 〉 iff d is not in the domain of
v . The append operator defines a partial order relation on a v-mapping set. We say that
v-mapping v is a prefix of v-mapping w , and w is an extension of v (v v w), iff w can be
generated from v by a series of append operations. The precedence between v and w can be
easily checked since v v w iff Dom(v) ⊆ Dom(w) and ∀d ∈ Dom(v) : v(d) = w(d).
We define v < w to be true iff v v w and v 6= w .

Given a set T ⊆ ValMap, we say that v-mapping v is a lower bound of T iff v v w
for all w in T . A greatest lower bound (glb) of T is a lower bound v of T such that

3.3. M-CONSENSUS 65

w v v for every lower bound w of T . Similarly, we say that v is an upper bound of T
iff w v v for all w in T . A least upper bound (lub) of T is an upper bound v of T such
that v v w for every upper bound w of T . There is always a unique glb for a set T of
v-mappings. The existence of a lub, however, depends on whether the set T is compatible,
but if it exists, then it is unique. Two v-mappings v and w are defined to be compatible
iff there exists a v-mapping u such that v v u and w v u . A set S of v-mappings is
compatible iff its elements are pairwise compatible. Compatibility can be easily checked
since two v-mappings are compatible iff the elements in the intersection of their domains
are mapped to the same values. Given a set T , we represent its glb by uT , and its lub by
tT . Moreover, for simplicity, we use v u w and v t w to represent u{v ,w} and t{v ,w},
respectively.

We say that a value mapping is complete iff its domain equals Domain . It is easy to see
that a complete v-mapping does not have any strict extension, since no append operation
applied to it can result in a different v-mapping. An interesting complete v-mapping is the
one that maps every element in Domain to Nil . This v-mapping is independent of the set
Value and, for this reason, we call it the trivial v-mapping. A v-mapping is nontrivial iff it
is different from the trivial one.

3.3.2 Problem Definition

As we have done for sequence agreement, we define the M-Consensus problem in terms of
the sets of proposer, acceptor, and learner agents, and a set of proposable values. The prob-
lem considers the v-mapping set with Domain equal to the set of proposers and Value equal
to the set of proposable values. Proposers propose values and learners learn v-mappings that
can differ but must always be compatible, can only be extended, and must eventually equal
the same complete nontrivial v-mapping. We say that a v-mapping is proposed iff all ele-
ments of its domain are mapped either to Nil or to a proposed value and we let learned [l]
represent the v-mapping currently learned by learner l , initially ⊥. Based on that, the prop-
erties of M-Consensus are defined as follows:

Nontriviality For any learner l , learned [l] is always a nontrivial proposed v-mapping.

Stability For any learner l , if learned [l] = v at some time, then v v learned [l] at all later
times.

Consistency The set of learned v-mappings is always compatible and has a nontrivial lub.

Liveness For any proposer p and learner l , if p, l and a quorum of acceptors are nonfaulty
and p proposes a value, then eventually learned [l] is complete.

Learners initially know ⊥, which is a valid prefix for any v-mapping. As proposers
make proposals, learners can extend their learned v-mappings as long as they are always

66 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

proposed and nontrivial. Note that a v-mapping that maps all its domain to Nil but does
not cover all elements in Domain is nontrivial and can be learned by a learner, which
is not a problem since the remaining elements of Domain can still be mapped to some
value. Consistency ensures that all currently learned values can be extended to a common
v-mapping that satisfies the Nontriviality property. The existence of a nontrivial lub is also
implied by Liveness and Nontriviality, but its presence in the Consistency property makes
the problem specification machine-closed [AL91], isolating safety from liveness properties.
The Liveness property states that all correct learners will eventually learn a complete v-
mapping, which implies that, like consensus and differently from sequence agreement, an
instance of M-Consensus eventually terminates.

With respect to solvability, M-Consensus is equivalent to consensus. It is easy to see
that an algorithm that solves consensus can solve M-Consensus by just having learners learn
a mapping in which a specific proposer is mapped to the decided value and all the others are
mapped to Nil . An algorithm that solves M-Consensus also trivially solves consensus by
just totally ordering the set of proposers and picking up the value mapped to the first pro-
poser not mapped to Nil . Actually, this equivalence lends to M-Consensus all known lower
bounds and impossibility results for consensus. The advantage of M-Consensus, though,
has to do with the implementation of sequence agreement since it allows two concurrent
proposals to appear in the problem solution, mapped to different proposers. This avoids the
proposal collision problem present in consensus-based sequence agreement and explained
in Section 3.1.

3.4 Collision-fast Paxos

This section describes Collision-fast Paxos, our solution to M-Consensus. Collision-fast
Paxos builds on top of the original Paxos consensus algorithm [Lam98]. It extends the
original protocol to allow multiple processes, instead of a single coordinator, to propose
values that will take part in the final decision. We later employ Collision-fast Paxos to solve
sequence agreement.

3.4.1 Basic Algorithm

We first describe our basic algorithm, which satisfies safety but does not guarantee live-
ness, a topic addressed in the next section. The algorithm is structured in rounds and the
only assumption we make about them is that they are totally ordered by a relation ≤. For
simplicity, it can be assumed that rounds correspond to the natural numbers unless we ex-
plicitly state it differently (Section 3.4.3). As in the original Paxos protocol, every round has
a single coordinator assigned to it. Coordinators represent a different sort of agent besides

3.4. COLLISION-FAST PAXOS 67

proposers, acceptors, and learners.

We also assign to each round r a subset of the proposers we call the collision-fast
proposers of r . The collision-fast proposers of a round are the only proposers allowed to
have their proposals learned in two communication steps at that round. As we explain later,
making all proposers collision-fast for all rounds would restrict the algorithm’s resilience.

At some round r , a collision-fast proposer p fast-proposes an s-mapping 〈p,V 〉 at most
once. It does that when it has a value to be proposed or when it notices that another collision-
fast proposer of round r has fast proposed a non-Nil value—a situation in which p fast-
proposes 〈p,Nil〉. If the fast proposal contains a mapping with a proposed value, it is sent to
the acceptors and other collision-fast proposers; otherwise it is sent directly to the learners.
An acceptor may accept multiple v-mappings as long as the newly accepted v-mapping
extends the previous one. The v-mappings accepted by the acceptors are generated from
the non-Nil s-mappings fast-proposed and, therefore, always map at least one proposer to a
non-Nil value.

We say that a v-mapping v is chosen at round r iff there exists a (possibly empty) subset
P of the collision-fast proposers of r such that the two conditions below hold:

• every proposer p ∈ P has fast-proposed s-mapping 〈p,Nil〉 and

• there exists a quorum Q of acceptors such that every acceptor a ∈ Q has accepted a
v-mapping w such that v is a prefix of w extended with 〈p,Nil〉 for every proposer
p ∈ P .

More intuitively, one can think that if a collision-fast proposer p has fast-proposed 〈p,Nil〉
at round r , then every acceptor that has accepted or later accepts some v-mapping at r
will “automatically”, though not explicitly, extend it with 〈p,Nil〉. Thinking this way, a v-
mapping is chosen at round r if it is a prefix of every v-mapping accepted by some quorum
acceptor Q at r .

Chosen v-mappings are guaranteed to be compatible and a learner can extend learned [l]
by setting it to the lub between learned [l] and any chosen v-mapping. If at least one
collision-fast proposer fast-proposes a value, no process crashes, and messages are cor-
rectly delivered, it is easy to see that learners learn a complete nontrivial v-mapping within
two message steps. However, new rounds might have to be started due to failures. To ensure
consistency in this case v-mappings chosen in some round must be made compatible with
v-mappings chosen in other rounds.

The algorithm keeps the invariant that if a v-mapping is or might be chosen at some
round r then any v-mapping accepted at a higher-numbered round extends the possibly
chosen one. This is guaranteed by the actions taken to start a new round. A new round’s

68 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

coordinator queries a quorum of acceptors to discover if some v-mapping has been or might
be chosen at a lower-numbered round. If this is the case, the coordinator extends such v-
mapping with Nil mappings to make it complete and sends it to the acceptors for it to be
accepted and chosen directly. If no v-mapping has been or might be chosen at a lower-
numbered round, the collision-fast proposers of the current round are notified that they can
fast-propose for that round (collision-fast proposers wait for this confirmation before fast-
proposing at some round).

For the coordinator to be able to identify if some value has been or might be chosen
at a lower-numbered round by just querying a quorum of acceptors, we need the following
assumption about quorums:

Assumption 3.1 (Quorum Requirement) If Q and R are quorums, then Q ∩ R 6= ∅.

In fact, any general algorithm for asynchronous consensus (and, therefore, M-Consensus)
must satisfy a similar requirement, as shown by the Accepting Lemma in [Lam06b]. A
simple way to ensure this is defining quorums as any majority of the acceptors.

To make our algorithm description precise, we must explain the variables required by
each agent. A proposer p has the following variables:

prnd [p] : The current round of p. Initially 0.

pval [p] : The value p has fast-proposed at round prnd [p] or special value none if p has not
fast-proposed anything at round prnd [p]. Initially none .

The variables of a coordinator c are:

crnd [c] : The current round of c. Initially 0.

cval [c] : The initial v-mapping for round crnd [c], if c has already queried a quorum of
acceptors for crnd [c] or special value none otherwise. Initially⊥ for the coordinator
of round 0 and none for all the others.

An acceptor a keeps three variables:

rnd [a] : The current round of a . Initially 0.

vrnd [a] : The round at which a has accepted its latest value. Initially 0.

vval [a] : The v-mapping a has accepted at vrnd [a] if it has accepted something at vrnd [a],
or special value none otherwise. Initially none .

3.4. COLLISION-FAST PAXOS 69

Each learner l keeps only the v-mapping it has learned so far.

learned [l] : The v-mapping currently learned by l . Initially ⊥.

In the following, we present the basic atomic actions that compose the algorithm.

Propose(p,V) Executed by proposer p when it wants to propose value V . p sends mes-
sage 〈“propose”,V 〉 to some collision-fast proposer for round prnd [p]. It is just a
local message (from one agent to another inside the same process) if p is a collision-
fast proposer of prnd [p].

Phase1a(c, r) Executed by coordinator c to start round r . It is enabled iff:

• c is the coordinator of round r and

• crnd [c] < r .

It sets crnd [c] to r , cval [c] to none , and sends message 〈“1a”, r〉 to the acceptors.

Phase1b(a, r) Executed by acceptor a , for round r . It is enabled iff:

• a has received a 〈“1a”, r〉 message and

• rnd [a] < r

It sets rnd [a] to r and sends message 〈“1b”, r , a, vrnd [a], vval [a]〉 to the coordinator
of round r . Setting rnd [a] to r makes sure that no mapping will be further accepted
by a at a round lower than r and the “1b” message tells the coordinator of r that the
last value accepted by a for a round lower than r was vval [a] at round vrnd [a].

Phase2Start(c, r) Executed by coordinator c of round r . This action picks up an initial
v-mapping for round r based on the “1b” messages the coordinator c received for
round r from a quorum of acceptors. It is enabled iff:

• r = crnd [c],

• cval [c] = none , and

• c has received a “1b” message for round r from every acceptor in a quorum Q .

Let k be the highest vrnd field received in the “1b” messages mentioned above and
let S be the set of all v-mappings (different from none) received in the “1b” messages
with field vrnd equal to k . If S is empty, then no v-mapping has been or might be
chosen at a lower-numbered round and c can pick up v-mapping ⊥ to start round
r . In this case, it sets cval [c] to ⊥ and sends message 〈“2S”, r ,⊥〉 to all proposers,
allowing them to fast-propose when they are ready. Acceptors need not be notified in
this case.

70 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

If S is not empty, then it might be the case that some v-mapping has been or might
be chosen at a round lower than or equal to k . As mentioned before, the algorithm
guarantees that if a v-mapping was or might be chosen at some round lower than k ,
then it is a prefix of all values accepted in k , including those in S . Moreover, if any
v-mapping has been or might be chosen at round k , then, by the quorum assumption,
it must have been accepted by some acceptor in Q and, thus, is present in S . As
we explain in action Phase2b(a, r), v-mappings accepted by acceptors for the same
round are always compatible and this obviously guarantees the compatibility of set S .
Therefore, tS extends both the v-mappings possibly chosen at rounds lower than k
and the v-mappings possibly chosen at k . Because acceptors only accept v-mappings
that map at least one proposer to a non-Nil value, tS also satisfies this property
and extending it with s-mappings 〈p,Nil〉 for every proposer p does not generate the
trivial mapping. Let v betS extended with 〈p,Nil〉 for every proposer p; coordinator
c sets cval [c] to v and sends message 〈“2S”, r , v〉 to all acceptors and proposers.

Phase2Prepare(p, r) Executed by proposer p, for round r . It is enabled iff:

• prnd [p] < r and

• p has received a message 〈“2S”, r , v〉.

First, it sets prnd [p] to r . If v = ⊥, it sets pval [p] to none; otherwise, it sets pval [p]
to v(p). Recall, from action Phase2Start(c, r) above, that a “2S” message for any
round contains either ⊥ or a complete v-mapping.

Phase2a(p, r ,V) Executed by proposer p, where r is the current round of p and V is
either a proposed value or Nil . It is enabled iff:

• prnd [p] = r ,

• p is a collision-fast proposer of r ,

• pval [p] = none , and

• either p has received message 〈“propose”,V 〉 or V equals Nil and p has
received message 〈“2a”, r , 〈q ,W 〉〉, where 〈q ,W 〉 is an s-mapping from any
proposer q to a non-Nil value W .

It sets pval [p] to V and sends message 〈“2a”, r , 〈p,V 〉〉 either to the acceptors and
other collision-fast proposers of r , if V does not equal Nil , or directly to the learners
otherwise. In this action, proposer p fast-proposes, giving its opinion about the value
it should be mapped to. It is triggered by the receipt of a “propose” message with
a proposed value (a local 0-latency message if p sent it to itself) or by the receipt of a
“2a” message from another collision-fast proposer, which forces p to set its opinion
to Nil .

Phase2b(a, r) Executed by acceptor a , for round r and v-mapping v . It is enabled iff:

• rnd [a] ≤ r and

3.4. COLLISION-FAST PAXOS 71

• Either one of the two following conditions is satisfied:

a) a has received message 〈“2S”, r , v〉, where v 6= ⊥, and vrnd [a] < r or
vval [a] = none

b) a has received message 〈“2a”, r , 〈p,V 〉〉, where V 6= Nil .

It sets rnd [a] and vrnd [a] to r and changes vval [a] depending on whether condition
(a) or (b) above is satisfied. If condition (a) is true, it sets vval [a] to v . If condition
(b) is true and vrnd [a] < r or vval [a] = none , then it sets vval [a] to ⊥ • 〈p,V 〉
extended with 〈q ,Nil〉 for every proposer q that is not collision-fast for r ; otherwise,
it sets vval [a] to its previous value extended with 〈p,V 〉, that is, vval [a] • 〈p,V 〉.
It then sends message 〈“2b”, r , a, vval [a]〉 to all learners, with the updated value of
vval [a].

Condition (a) implies that the coordinator of round r has picked up v-mapping v 6= ⊥
for round r based on the votes of a quorum of acceptors for lower-numbered rounds.
As explained in action Phase2Start(c, r), this v-mapping v is complete and different
from the trivial mapping.

Condition (b) implies that the coordinator of round r has picked up ⊥ for the initial
v-mapping of r and collision-fast proposers were allowed to fast-propose. In this
case, the first mapping acceptor a accepts for round r maps the proposer p that sent
the “2a” message to the (non-Nil) value it sent and maps every proposer that is
not collision-fast for r to Nil , since they are not allowed to fast-propose. When
a receives the “2a” messages from other collision-fast proposers of round r with
non-Nil values, a just appends the received s-mapping to the previously accepted
v-mapping.

It is not possible that, for some round r , an acceptor executes this action due to con-
dition (a) and another acceptor executes it due to condition (b). If acceptors execute
this action for a round r satisfying condition (a), they must accept the same complete
v-mapping v . If acceptors execute this action for r satisfying condition (b), they must
accept v-mappings that map a proposer p either to Nil , if p is not collision-fast for
r , or to the value p sent in its “2a” message, if p is collision-fast for r . Since no
proposer can send different “2a” messages for the same round, all v-mappings ac-
cepted by condition (b) must be compatible. This argument shows that it is safe to
calculate the lub of any set of v-mappings accepted for the same round, as done in
action Phase2Start(c, r).

Learn(l) Executed by learner l . It is enabled iff l has received “2b” messages for some
round r from a quorum Q and message 〈“2a”, r , 〈p,Nil〉〉 from every proposer p
in a (possibly empty) subset P of the collision fast proposers of round r . It calcu-
lates the lub of the chosen v-mappings based on the received information in order
to update the currently learned v-mapping of l . Let Q2bVals be the set of all v-
mappings received in the “2b” messages for round i from acceptors in Q , and let
newv be uQ2bVals extended with 〈p,Nil〉 for every proposer p in P . The action
sets learned [l] to learned [l] t newv .

72 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

3.4.2 Ensuring Liveness

The previous actions ensure safety, but if messages are lost, coordinators or collision-fast
proposers crash, or coordinators keep on starting new rounds, then they will not ensure
progress. We now extend the algorithm for that. Some of the assumptions we make are very
basic. It is clear that no algorithm can ensure progress if messages can be indiscriminately
lost and non-crashed agents indefinitely refuse to take actions that are enabled. Therefore,
we assume that if agents a and b do not crash and a keeps resending message m to b, then
b eventually receives m . Moreover, we assume weak fairness on the actions an agent may
take, that is, no action remains enabled forever without being executed. We tacitly assume
that an action is enabled only if its agent is not crashed.

The FLP result and the equivalence between consensus and M-Consensus with re-
spect to solvability imply that these assumptions are not enough to ensure liveness for M-
Consensus. As in the original Paxos protocol, we circumvent FLP by eventually electing a
distinguished coordinator—the leader—responsible for starting new rounds. For it to work,
we require also that every coordinator be reponsible for infinitely many higher-numbered
rounds, which is easily ensured by having round numbers defined as tuples 〈n, c〉 where n
is a natural number and c is its coordinator identifier.

When the leader starts a round and picks up⊥ as its initial value, the round will only suc-
ceed in getting a complete v-mapping chosen and learned if all its collision-fast proposers
remain up. This is inherent to collision-fast consensus algorithms like ours as implies the
Collision-fast Learning Theorem of [Lam06b] and, in fact, it is the main reason why we de-
signed Collision-fast Paxos so that the set of collision-fast proposers depends on the round;
had we done it differently, the failure of any collision-fast proposer would not allow our
algorithm to become collision-fast again. As a result, the leader must be able to somehow
identify when a collision-fast proposer of the current round has crashed in order to start a
new one. We assume that a coordinator c that believes itself to be the leader keeps a set
activep[c] with all the proposers it believes to be currently up. We assume this set can take
any valid value but, in order to ensure liveness, it must eventually satisfy some conditions
we show later in this section.

For progress, we need to make a number of small changes to the algorithm we presented
in Section 3.4.1:

• We add “c believes itself to be the leader” as a pre-condition to actions Phase1a(c, r)
and Phase2Start(c, r).

• If an acceptor a receives a “1a”, “2S”, or “2a” message for round r such that r <
rnd [a] and the coordinators of r and rnd [a] differ, then a sends a special message to
the coordinator of r to inform that round rnd [a] was initiated.

• The same sort of special message is sent if a proposer p receives a “2S” message for

3.4. COLLISION-FAST PAXOS 73

round r such that r < prnd [p] and the coordinators of r and prnd [p] differ.

• Besides the first modification, coordinator c executes action Phase1a(c, r) only if
either it receives a special message informing of round j (r > j > crnd [c]) was
initiated, or the set of collision fast-proposers of crnd [c] is not a subset of activep[c]
but the set of collision-fast proposers of r is.

• Each proposer p that has sent a “propose” message keeps resending it to one of the
collision-fast proposers of prnd [p].

• Each coordinator that believes itself to be the leader keeps resending, to all its original
receivers, the last “1a” or “2S” message it sent.

• Each proposer p that has executed action Phase2a(p, r ,V), for round r = prnd [p]
and any V , keeps resending the last “2a” message it sent.

• Each acceptor keeps resending the last “1b” or “2b” message it sent.

These changes do not affect safety because they incur new actions that do not change the
algorithm’s variables and make some actions’ pre-conditions more restrictive only.

Except for the conditions related to new variable activep, the liveness assumption
of Collision-fast Paxos is the same as the one of the original protocol (c.f. Section 2.3
of [Lam06a]). We define LA(p, l , c,Q) for any proposer p, learner l , coordinator c, and
quorum Q of acceptors, to be the conjunction of the following conditions:

• {p, l , c} ∪Q are not crashed.

• p has proposed a value.

• c is the only coordinator that believes itself to be the leader.

• All proposers in activep[c] are not crashed.

• For every round r > crnd [c], c is the coordinator of a round s > r whose collision-
fast proposers are all in activep[c].

• activep[c] is a subset of all its future values.

If LA(p, l , c,Q) holds for some proposer p, coordinator c, and quorum Q , from some point
in time on, then eventually l learns a complete v-mapping. If every coordinator is itself
the only collision-fast proposer for infinitely higher-numbered rounds that it coordinates,
then Collision-fast Paxos could ensure liveness in the same situations where Paxos would.
In fact, a round in which the only collision-fast proposer is the round coordinator itself
implements a standard Paxos round.

74 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

3.4.3 Runtime Reconfiguration

In any real world scenario, distributed systems are subject to crashes, slow components, and
workload variations. To handle these situations Collision-Fast Paxos explores the fact that
M-Consensus poses no limitations on the number of proposers, and assumes an infinite set
of proposers and coordinators. At the bootstrap, just a relatively small set of proposers and
coordinators is made active. If some agent becomes unresponsive or if any other change in
the environment requires it, agents can be activated or permanently deactivated.

As we mentioned before, the set of collision-fast proposers is defined per round, so that
failed proposers can be excluded from the set to allow collision-fast termination even after
failures. For that, we extend round numbers with the round’s set of collision-fast proposers,
defining round numbers as tuples of the form 〈n, c, cf 〉, where n is a natural number, c is
the round’s coordinator, and cf is the sorted list of the round’s collision-fast proposers. It
is clear from this definition that a lexicographical comparison induces a total order on the
round numbers. To ensure the uniqueness of the special round Zero, it is defined a priori
as 〈0, c, cf 〉, for some coordinator c and list cf . This scheme grants to each coordinator an
infinite number of rounds for every possible set of collision-fast proposers.

Another consequence of being able to replace crashed proposers and coordinators by
brand new ones is that these agents do not have to write on disk. Since the number of
proposers, coordinators, and learners, is not limited by any assumption in the algorithm,
these agents do not have to keep their state on stable storage. If one of them crashes and
later recovers, it can simply assume a completely new identity (based on some incarnation
number) before joining the system [Agu04]. Acceptors still have to write their state on
stable storage, but optimizations similar to those presented in [CSP06].

3.5 Solving Sequence Agreement

Solving sequence agreement with M-Consensus is simple; achieving a collision-fast solu-
tion, though, depends on the M-Consensus algorithm in use. We first present the general
approach and then extend it to use Collision-fast Paxos.

3.5.1 General Approach

To implement sequence agreement, we use infinitely many M-Consensus instances, each
one uniquely identified by a natural number. To differentiate messages and variables of
different instances we superscript them with the instance’s identification (e.g., learned i ,
“1bj ”). Sequence agreement proposers act both as proposers and learners in each of the

3.5. SOLVING SEQUENCE AGREEMENT 75

M-Consensus instances.

To propose a value v for sequence agreement, a proposer p proposes v in the small-
est instance of M-Consensus i in which it has neither proposed nor learned anything yet.
Being also a learner, p eventually learns the decision of i , and checks if there exists some
proposer q such that learned i [p](q) = v . If there is, then p knows that v was successfully
proposed and will eventually be learned by all nonfaulty learners; otherwise, p re-proposes
v in the next free M-Consensus instance. This procedure can be executed in parallel for
many values.

Assuming there is a known total order of proposers, learner l in the sequence agreement
problem builds its sequence learned [l] by appending mapped results different from Nil ,
following a (instance, proposer) order.

3.5.2 Collision-fast Paxos Approach

Using Collision-fast Paxos, all M-Consensus instances can share the same coordinator. This
also allows us to keep all instances synchronized with respect to their current round in all
agents. As a result, variables rnd [a], prnd [p], and crnd [c] can be shared amongst all
instances. The other variables are not shared but could be allocated for an instance only
when their value changes from the initial one.

When a coordinator executes action Phase1a(c, r), it does that for all instances and
sends a single “1a” message. An acceptors a that executes action Phase1b(a, r), also
does that for all instances and aggregates all “1bi ” messages it should send in a single
one. Only a finite number of instances will have vval i [a] 6= none , which allows the com-
pression of this message to a finite size. After collecting these composite “1b” messages
from a quorum of acceptors, a coordinator c executes Phase2Start(c, r) for all instances
and, similarly, generates a composite “2S” message containing the “2Si ” message of ev-
ery instance i . A proposer p that receives such composite “2S” message, simply executes
Phase2Prepare(p, r) for all instances.

The actions above are executed only when the leader changes. During normal execution,
things are simpler. A collision-fast proposer that wants to propose value v , fast-proposes v
in the first instance i for which pval i [p] = none by executing action Phase2a i(p, r ,M).
If everything goes fine, the message will be eventually learned; if failures or suspicions pre-
vent the normal case, eventually pval i [p] will change from v to Nil due to a “2S” message
and p will notice that it will have to repropose v in another instance. When a proposer that
is not collision-fast for its current round wants to propose a value, it simply forwards it to
one of the collision-fast proposers. Notice that, since Collision-fast Paxos ensures that a
collision-fast proposer eventually knows if its fast proposal was learned or not, this imple-
mentation does not require that proposers be learners too. Acceptors and Learners execute

76 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

actions Phase2b(a, r) and Learn(l) independently for each instance. As for progress,
this sequence agreement implementation has the same liveness condition as Collision-fast
Paxos.

As discussed in Section 3.4.1, in the normal case, if a collision-fast proposer p fast-
proposes a message, then a v-mapping containing it is learned in two message steps. If
there are no concurrent (non-Nil) fast-proposals for the same instance, this v-mapping will
be complete. Otherwise, a learner complete to depth 2 plus the depth of p’s fast proposal
will learn a complete v-mapping containing all fast proposals, since all are learned in two
steps. Because a value to be proposed by a collision-fast proposer never waits to be fast-
proposed in some instance and a collision-fast proposer leaves no gaps between instances,
this sequence agreement algorithm is collision-fast. In fact, according to our definition it is
collision-fast for P equal to the collision-fast proposers of round 0 and M equal to Q ∪ P
where Q is a quorum.

3.6 Correctness of Collision-fast Paxos

This section presents the proof that Collision-fast Paxos satisfies the safety properties of
M-Consensus.

3.6.1 Preliminaries

We start by defining a special data structure we call a ballot array. Our definition is highly-
inspired by the data structure with the same name presented in [Lam04]. A ballot array
represents the voting history of a set of acceptors, that is, the history of v-mappings accepted
by acceptors on different rounds. For every acceptor a , it keeps the current round of a , b̂Aa ,
and, for every acceptor a and round r , the vote a has cast at r , bAa [r]. If an acceptor has
not cast a vote at round r , then bAa [r] equals special value none . To ease the design of our
algorithms, we force acceptors to vote only for v-mappings that have at least one element of
their domain mapped to a non-Nil value. A v-mapping that satisfies this constraint is called
a valued v-mapping. The complete definition of a ballot array is given below.

Definition 3.8 (Ballot Array) A ballot array bA is a mapping that assigns to each acceptor
a a round b̂Aa and to each acceptor a and round r a value bAa [r] that is a v-mapping or
equals none , such that for every acceptor a:

• The set of rounds m with bAa [m] 6= none is finite,

• bAa [r] = none for all rounds r > b̂Aa , and

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 77

• bAa [r] is either none or a valued v-mapping for all rounds r .

As mentioned in Section 3.4.1, a v-mapping is learned depending not only on the votes
cast by acceptors but also on the Nil values proposed by proposers. Because of that, we
define another data structure we call a proposal array. A proposal array represents a history
of proposals made by proposers at different rounds. It keeps, for every proposer p and round
r , the (possibly Nil) value p has proposed at round r , or special value none if p has not
proposed at round r .

Definition 3.9 (Proposal Array) A proposal array pA is a mapping that assigns to each
proposer p and round r a value pAp [r] that is either a proposable value, special value Nil ,
or special value none .

In fact, proposal arrays are important only for their Nil proposals because these propos-
als are used to define a chosen v-mapping, that is, a v-mapping that can be safely learned by
a learner without jeopardizing consistency. Before we give a formal definition for a chosen
v-mapping, though, we have to introduce the operator NilExtension(v ,P), which we refer
to as the Nil -extension of v for P where v is a v-mapping and P is a set of proposers. This
operator returns none if v equals none; otherwise, it is defined as v-mapping w satisfying
the three conditions below:

1. Dom(w) = Dom(v) ∪ P

2. ∀p ∈ Dom(w) ∩Dom(v) : w(p) = v(p)

3. ∀p ∈ Dom(w) \Dom(v) : w(p) = Nil

Intuitively, NilExtension(v ,P) extends v by mapping each proposer in P \Dom(v) to Nil .
A different but equivalent definition of this operator appears in TLA+ module PaxosConstants
in Section 3.8.

We say that a v-mapping v is chosen at some round r in pair 〈bA, pA〉, where bA is a
ballot array and pA is a proposal array, iff there is a quorum Q of acceptors and a (possibly
empty) set P of collision-fast proposers for r that have proposed Nil at round r such that,
for every acceptor a in Q , v is a prefix of the NilExtension of the v-mapping a has accepted
at round r for P . For completeness, we define that none is not a prefix or an extension of
any v-mapping.

Definition 3.10 (Chosen at) A v-mapping v is chosen at round r in 〈bA, pA〉, where bA is
a ballot array and pA is a proposal array, iff there exists a set P of collision-fast proposers
for r and a quorum Q such that:

78 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

• ∀p ∈ P : pAp [r] = Nil

• ∀q ∈ Q : v v NilExtension(bAa [r],P)

A v-mapping v is chosen in 〈bA, pA〉 iff it is chosen at some round r in 〈bA, pA〉.

We say that a v-mapping v is choosable at some round r if it is possible to extend the
voting history represented by bA and the proposal array pA so that v satisfies the condition
above to be considered chosen at r in 〈bA, pA〉.

Definition 3.11 (Choosable at) A v-mapping v is choosable at round r in pair 〈bA, pA〉,
where bA is a ballot array and pA is a proposal array, if, and only if, considering P to be
the set of proposers p such that pAp [r] is either Nil or none , there exists a quorum Q such
that v v NilExtension(bAa [r],P) for every acceptor a in Q with b̂Aa > r .

We say that a v-mapping is safe at some round in a pair 〈bA, pA〉, where bA is a ballot
array and pA is a proposal array, if it extends all v-mappings that are choosable at lower-
numbered rounds in 〈bA, pA〉. We also say that a a pair 〈bA, pA〉 is safe if all v-mappings
that acceptors have voted for in bA are safe at the rounds they were accepted in 〈bA, pA〉.

Definition 3.12 (Safe at) A v-mapping v is safe at round r in 〈bA, pA〉, where bA is a
ballot array and pA is a proposal array, iff w v v for every round k < r and every v-
mapping w that is choosable at k . A pair 〈bA, pA〉 is safe iff for every acceptor a and
balnum k , if bAa [k] 6= none then it is safe at k in 〈bA, pA〉.

The proposition below states that if a pair of ballot and proposal arrays is safe, then all
its chosen v-mappings are compatible.

Proposition 3.1 Let bA be a ballot array and pA be a proposal array, if 〈bA, pA〉 is safe,
then the set of values that are chosen in 〈bA, pA〉 is compatible.

PROOF: By the definition of Consistency, it suffices to
ASSUME: 1. 〈bA, pA〉 is safe

2. v-mapping v is chosen at round r in 〈bA, pA〉
3. v-mapping w is chosen at round s ≥ r in 〈bA, pA〉

PROVE: v and w are compatible.
1. Choose a quorum Qv and set Pv of collision-fast proposers for r such that

• ∀p ∈ Pv : pAp [r] = Nil

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 79

• ∀q ∈ Qv : v v NilExtension(bAa [r],Pv)

PROOF: This follows from proof assumption 2 and the definition of chosen at.
2. Choose a quorum Qw and set Pw of collision-fast proposers for s such that

• ∀p ∈ Pw : pAp [r] = Nil

• ∀q ∈ Qw : v v NilExtension(bAa [r],Pw)

PROOF: This follows from proof assumption 3 and the definition of chosen at.
3. CASE: r = s

3.1. Choose an acceptor a in Qv ∩Qw

PROOF: a exists by the Quorum Requirement (Assumption 3.1).
3.2. v v NilExtension(bAa [r],Pv ∪ Pw)

3.2.1. v v NilExtension(bAa [r],Pv)
PROOF: By steps 1 and 3.1.

3.2.2. NilExtension(bAa [r],Pv) v NilExtension(bAa [r],Pv ∪ Pw)
PROOF: By the definition of Nil -extension.

3.2.3. Q.E.D.
3.3. w v NilExtension(bAa [r],Pv ∪ Pw)

3.3.1. w v NilExtension(bAa [r],Pw)
PROOF: By steps 2 and 3.1.

3.3.2. NilExtension(bAa [r],Pw) v NilExtension(bAa [r],Pv ∪ Pw)
PROOF: By the definition of Nil -extension.

3.3.3. Q.E.D.
3.4. Q.E.D.

PROOF: By steps 3.2 and 3.3 and the definition of compatible.
4. CASE: r < s

4.1. v is choosable at r in 〈bA, pA〉
PROOF: By the definition of choosable, any v-mapping chosen at some round is
also choosable at it.

4.2. Choose any acceptor a in Qw

PROOF: The Quorum Requirement implies that quorums cannot be empty.
4.3. v v bAa [s]

PROOF: By the fact that 〈bA, pA〉 is safe (proof assumption 1).
4.4. w v NilExtension(bAa [s],Pw)

PROOF: By Step 2.
4.5. Q.E.D.

PROOF: Step 4.3 and the definition of Nil -extension imply that v v
NilExtension(bAa [s],Pw). Step 4.4, and the definition of compatible complete
the proof.

5. Q.E.D.
PROOF: All cases were considered since r ≤ s according to proof assumption 3.

We define a pair 〈bA, pA〉 to be conservative iff all v-mappings accepted by any accep-
tors a and b at the same round are compatible and if the v-mapping accepted by b maps

80 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

some proposer not mapped by the v-mapping accepted by a , then this proposer is mapped
to the value it has proposed for that round.

Definition 3.13 (Conservative) A pair 〈bA, pA〉 is conservative iff for every round r and
all acceptors a and b, if bAa [r] and bAb [r] are different from none , then the two conditions
below hold:

• bAa [r] and bAb [r] are compatible and

• ∀p ∈ Dom(b) \Dom(a) : bAb [r][p] = pAp [r].

Below we present the definition of operator ProvedSafe(Q , r , bA), which returns a v-
mapping that is proved to be safe at round r in 〈bA, pA〉 for any proposal array pA based
only on the votes of acceptors in Q , given that 〈bA, pA〉 is safe and conservative, and, for
every acceptor a in Q , b̂Aa ≥ r . In the definition below, we let Proposer be the set of all
proposers and RNum be the set of round numbers.

Definition 3.14 (ProvedSafe) For any round r , quorum Q , and ballot array bA, let:

• KS ∆= {i ∈ RNum | (i < r) ∧ (∃a ∈ Q : bAa [i] 6= none])}

• k ∆= Max (KS)

• AS ∆= {a ∈ Q : bAa [k] 6= none}

• G ∆= {bAa [k] : a ∈ S}

If KS = {}, then ProvedSafe(Q , r , bA) is defined to equal⊥; otherwise, ProvedSafe(Q , r , bA)
is defined to equal NilExtension(tG ,Proposer), where Proposer is the set of all pro-
posers.

The proposition below states that the value returned by ProvedSafe(Q , r , bA) is indeed
safe at r in 〈bA, pA〉 if 〈bA, pA〉 is safe and conservative and, for every acceptor a in Q ,
b̂Aa ≥ r .

Proposition 3.2 For any round r , quorum Q , ballot array bA, and proposal array pA, if

• 〈bA, pA〉 is safe,

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 81

• 〈bA, pA〉 is conservative, and

• b̂Aa ≥ r for all a ∈ Q ,

then ProvedSafe(Q , r , bA) is safe at r in 〈bA, pA〉.

ASSUME: There exist round r , quorum Q , ballot array bA, and proposal array pA such
that:
1. 〈bA, pA〉 is safe
2. 〈bA, pA〉 is conservative
3. ∀a ∈ Q : b̂Aa ≥ r

PROVE: ProvedSafe(Q , r , bA) is a v-mapping safe at r in 〈bA, pA〉
LET: KS be the set KS in the definition of ProvedSafe for Q ,r , and bA.
1. CASE: KS is empty

1.1. No v-mapping v is choosable at a round s < r in 〈bA, pA〉
PROOF: By the definition of choosable at, it suffices to
LET: P be the set {p ∈ Proposer : pAp [s] = Nil}
ASSUME: There exist v-mapping v , round s < r , and quorum Qv such that v v

NilExtension(bAa [s],P), for every acceptor a in Qv with b̂Aa > s
PROVE: FALSE
1.1.1. Choose any acceptor a ∈ Qv ∩Q

PROOF: Such acceptor exists because of the Quorum Requirement (Assump-
tion 3.1).

1.1.2. b̂Aa > s
PROOF: Since a belongs to Q , proof assumption 3 states that b̂Aa ≥ r , and
the assumption of step 1.1 states that r > s . As a result, b̂Aa > s .

1.1.3. v 6v NilExtension(bAa [s],P)
PROOF: By the definition of KS , if KS is empty, then bAa [s] must equal
none , otherwise KS would have s as an element. By definition, any Nil -
extension of none equals none and no v-mapping is a prefix of none .

1.1.4. Q.E.D.
PROOF: Steps 1.1.2 and 1.1.3 and the fact that a belongs to Qv given by step
1.1.1 contradict the assumption of step 1.1.

1.2. Q.E.D.
PROOF: By step 1.1, any v-mapping is safe at r in bA. Therefore, ⊥, which is the
value returned by ProvedSafe(Q , r , bA), is safe too.

2. CASE: KS is not empty
2.1. Choose round k and sets AS and G so that they satisfy the definitions of k , AS and

G in the definition of ProvedSafe for Q ,r , and bA.
PROOF: k exists since KS is not empty. AS and G exist because k exists.

2.2. AS and G are not empty.
PROOF: Given that k belongs to KS , there is at least one acceptor a in Q such that
bAa [k] 6= none .

2.3. G is compatible.

82 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

PROOF: All elements of G are v-mappings accepted by acceptors in Q at round k .
These v-mappings are guaranteed to be compatible because bA is assumed to be
conservative (proof assumption 2).

2.4. NilExtension(tG ,Proposer) is safe at r in bA
PROOF: By the definition of safe at, it suffices to
ASSUME: There exist v-mapping w and round s < r such that w is choosable at s

in bA
PROVE: w v NilExtension(tG ,Proposer)
2.4.1. CASE: s < k

2.4.1.1. Choose a ∈ AS
PROOF: a exists by step 2.2, which states that AS is not empty.

2.4.1.2. w v bAa [k]
PROOF: By the definition of AS , bAa [k] 6= none . Since bA is safe
(proof assumption 1), any v-mapping choosable at a round lower-
numbered than k , including w given that step 2.4.1 considers only
the case where s < k , must be a prefix of bAa [k].

2.4.1.3. bAa [k] v tG
PROOF: By the definition of G and least upper bound, and the fact
that a ∈ AS (step 2.4.1.1).

2.4.1.4. Q.E.D.
PROOF: Steps 2.4.1.2 and 2.4.1.3, and the fact that v is a partial or-
der relation over v-mappings imply that w v tG . Moreover, by the
definition of Nil -extension, tG v NilExtension(tG ,Proposer).
Since v is a partial order relation over v-mappings, w v
NilExtension(tG ,Proposer).

2.4.2. CASE: s ≥ k
LET: P be the set {p ∈ Proposer : pAp [s] = Nil}
2.4.2.1. Choose Qw such that w v NilExtension(bAa [s],P) for every ac-

ceptor a in Qw with b̂Aa > s
PROOF: Qw exists by the definition of choosable and the assumption
of step 2.4.

2.4.2.2. Choose a ∈ Q ∩Qw

PROOF: a exists by the Quorum Requirement.
2.4.2.3. bAa [s] 6= none

PROOF: Proof assumption 3 states that b̂Aa ≥ r and the assumption
of step 2.4 states that r > s; therefore b̂Aa > s . Steps 2.4.2.1
and 2.4.2.2 imply that w v NilExtension(bAa [s],P), which is not
possible if bAa [s] = none .

2.4.2.4. s = k
PROOF: If s > k , and given that s < r by the assumption of step
2.4, then step 2.4.2.3 above contradicts the definition of k since a
belongs to Q , s > k and bAa [s] 6= none .

2.4.2.5. w v NilExtension(bAa [k],P)

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 83

PROOF: Steps 2.4.2.1, 2.4.2.2, and 2.4.2.4.
LET: P− ∆= P \Dom(bAa [k])
2.4.2.6. No v-mapping in G maps a proposer in P− to a value different from

Nil
PROOF: Assume, for the sake of contradiction, that there is a v-
mapping in G that maps an element p of P− to something different
from Nil . Since 〈bA, pA〉 is conservative and p /∈ Dom(bAa [k]),
pAp [k] must equal the mapped value, which contradicts the defini-
tion of P .

2.4.2.7. NilExtension(bAa [k],P) v NilExtension(tG ,Proposer)
PROOF: Steps 2.4.2.3 and 2.4.2.4 imply that a ∈ AS and, therefore,
bAa [k] ∈ G . The definition of a Nil -extension and step 2.4.2.6
complete the proof.

2.4.2.8. Q.E.D.
PROOF: By steps 2.4.2.5 and 2.4.2.7, and the transitivity of v.

2.4.3. Q.E.D.
2.5. Q.E.D.

PROOF: Directly, since NilExtension(tG ,Proposer) is the value returned by
ProvedSafe(Q , r , bA) in case KS is not empty.

3. Q.E.D.
PROOF: Since KS is defined to be a set, all cases are being covered.

3.6.2 Abstract Collision-fast Paxos

We structure our proof of correctness as a series of refinement mappings [AL91]. In this
section, we present an abstract algorithm that can be more easily proved correct. We then
refine this algorithm in the following sections until we obtain the algorithm presented in
Section 3.4.1. We are initially concerned with Safety properties only. The liveness of
Collision-fast Paxos is proved in Section 3.6.5.

Our initial abstraction is based upon the following variables:

learned An array of v-mappings, where learned [l] is the v-mapping currently learned by
learner l . Initially, learned [l] = ⊥ for all learners l .

proposed The set of proposed values. It initially equals the empty set.

bA A ballot array. It represents the current state of the voting. Initially, b̂Aa = 0 and
bAa [r] = none for every acceptor a and round r .

pA A proposal array. It represents the proposal history. Initially, pAp [r] = none for every
proposer p and round r .

84 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

minTried An array of v-mappings, where minTried [r] is either a v-mapping or equal to
none , for every round r . Initially, minTried [0] = ⊥ and maxTried [r] = none for
all r > 0.

The Abstract Collision-fast Paxos algorithm satisfies the following invariants, which, as
we prove next, imply the properties Nontriviality and Consistency of M-Consensus.

minTried Invariant For every round r , if minTried [r] 6= none , then

1. minTried [r] is proposed.

2. minTried [r] is safe at r in 〈bA, pA〉.
3. If minTried [r] 6= ⊥, then minTried [r] is valued and complete.

bA Invariant For all acceptors a and rounds r , if bAa [r] 6= none , then

1. minTried [r] v bAa [r].

2. bAa [r] is a valued and proposed v-mapping.

3. If minTried [r] = ⊥ then ∀p ∈ Dom(bAa [r]) : bAa [r](p) = pAp [r]; other-
wise, bAa [r] = minTried [r].

pA Invariant For all proposers p and rounds r , if pAp [r] 6= none , then pAp [r] is either
Nil or a proposed value.

learned Invariant For every learner l :

1. learned [l] is a nontrivial proposed v-mapping.

2. learned [l] is the lub of a finite set of v-mappings chosen in 〈bA, pA〉.

Proposition 3.3 The learned invariant implies the Nontriviality property of M-Consensus.

PROOF: By part 1 of the learned invariant.

Proposition 3.4 Invariants minTried, bA, and learned imply the Consistency property of
M-Consensus.

PROOF: By the definition of Consistency, it suffices to assume that invariants bA and
learned are true, and prove that, for every pair of learners l1 and l2, learned [l1] and learned [l2]
are compatible. The proof is divided into four steps, presented below:
1. 〈bA, pA〉 is safe.

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 85

PROOF: This follows from part 1 of the bA invariant, part 2 of the minTried invariant, the
fact that the extension of a safe v-mapping is also safe by definition, and the definition
of a safe ballot array (Definition 3.12).

LET: S = {v : v is chosen in 〈bA, pA〉}
2. S is compatible.

PROOF: By step 1 and Proposition 3.1.
3. For every learner l , learned [l] v tS .

PROOF: This is true by part 2 of the learned invariant and the definition of least upper
bound, which implies that if set S is compatible, then the lub of S is equal to or extends
the lub of any subset of S .

4. Q.E.D.
PROOF: By step 3 and the definition of compatible c-structs.

Abstract Collision-fast Paxos has six atomic actions, described below. A complete spec-
ification of the algorithm in TLA+ is given in Section 3.8.

Propose(V), for any value V . It is enabled iff V /∈ proposed and sets proposed to
proposed ∪ {V }.

JoinRound(a, r), for any acceptor a and round r . It is enabled iff b̂Aa < r and sets b̂Aa

to r .

StartRound(r ,Q) , for any round r and quorum Q of acceptors. It is enabled iff

• minTried [r] = none and

• ∀a ∈ Q : r ≤ b̂Aa .

It sets minTried [r] to ProvedSafe(Q , r , bA).

Suggest(p, r ,V), for proposer p, round r , and (possibly Nil) value V , where p is a
collision-fast proposer of r . It is enabled iff

• pAp [r] = none and

• either (i)minTried [r] /∈ {⊥,none} and V = minTried [r](p), (ii)V is a pro-
posed value, or (iii)V = Nil and there is a collision-fast proposer q of r such
that pAq [r] /∈ {Nil ,none}.

It sets pAp [r] to V .

ClassicVote(a, r , v), for acceptor a , round r , and v-mapping v . Let P− be the subset of
collision-fast proposers of r such that p ∈ P ⇐⇒ pAp [r] = none , and let MaxT
equal the v-mapping that maps each proposer q in Proposer \ P− to pAq [r] if q is
collision-fast for r or to Nil otherwise. This action is enabled iff

• b̂Aa ≤ r ,

86 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

• v is a valued v-mapping,

• minTried [r] 6= none ,

• v v MaxT , if minTried [r] = ⊥, or v = minTried [r], othewise, and

• either bAa [r] = none or bAa [r] < v .

It sets b̂Aa to r and bAa [r] to v .

AbstractLearn(l , v), for any learner l and v-mapping v . It is elabled iff v is chosen in
〈bA, pA〉 and sets learned [l] to learned [l] t v .

The following proposition proves that the algorithm also satisfies the Stability property
of M-Consensus.

Proposition 3.5 Abstract Collision-fast Paxos satisfies the Stability property of M-Consensus.

PROOF: For any learner l , the only action that changes the value of learned [l] is
AbstractLearn(l , v). Since, by the definition of lub, this action can only extend the value
of learned [l], Stability is ensured.

It is easy to verify that the algorithm’s actions keep the type invariant of the vari-
ables it uses. The most complicated case concerns the ballot array bA, updated by actions
JoinRound(a, r) and ClassicVote(a, r , v). However, action JoinRound(a, r) only in-
creases the value of b̂Aa and action ClassicVote(a, r , v) sets bAa [r] to v , where r always
equals b̂Aa after the action is executed. These changes to bA keep it a ballot array according
to the definition.

It remains to prove that the abstract algorithm satisfies the invariants minTried , bA,
pA, and learned . For the sake of simplicity, however, we use some extra notation in the
proof. When analyzing the execution of an action, we use ordinary expressions such as exp
to represent the value of that expression before the action is executed, and we let exp′ be
the value of that expression after the action execution.

Proposition 3.6 Abstract Collision-fast Paxos satisfies the invariants minTried, bA, pA,
and learned.

PROOF: The invariants are trivially satisfied in the initial state. Therefore, it suffices to
assume that the invariants are true and prove that, for every action α, they remain true if α
is executed. We do that in the following, analyzing case by case.

1. CASE: Action Propose(V) is executed, where V is a non-Nil value.

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 87

PROOF SKETCH: Action Propose(V) only changes variable proposed , which is the set
of proposed values, and does that by adding a new element to it. Invariant conditions
that do not refer to this set are obviously preserved. The others are kept true since
the set proposed only increases and v-mappings composed of proposed values remain
composed of proposed values.

2. CASE: Action JoinRound(a, r) is executed, where a is an acceptor and r is a round
number.

PROOF SKETCH: Action JoinRound(a, r) only changes b̂Aa , setting it to r , which is
bigger than b̂Aa . Invariant conditions that do not refer to b̂Aa are obviously preserved.
It remains to check that safe or chosen v-mappings in 〈bA, pA〉 are kept safe or chosen
in 〈bA′, pA′〉. The definition of chosen does not involve b̂Ae for any acceptor e . The
definition of safe is based upon the definition of choosable at, which does refer to b̂Ae ,
but implies that a v-mapping w that is choosable at round k in 〈bA′, pA′〉 is also choos-
able at k in 〈bA, pA〉. By the definition of safe, this implies that a value x that is safe at
round s in 〈bA, pA〉 is also safe at s in 〈bA′, pA′〉.

3. CASE: Action StartRound(r ,Q) is executed, where r is a round and Q is a quorum of
acceptors.

PROOF SKETCH: Action StartRound(r ,Q) changes minTried [r] from none to
ProvedSafe(Q , r , bA). The action does not change the other variables.The bA invariant
implies that the pair 〈bA, pA〉 is conservative, which ensures that ProvedSafe(Q , r , bA)
is safe at r in 〈bA, pA〉. Moreover, the bA invariant states that all accepted v-mappings
are proposed and valued, which guarantees that ProvedSafe(Q , r , bA) is either ⊥ or a
proposed, valued, and complete v-mapping by the definition of ProvedSafe(Q , r , bA).
All these things imply that the action preserves the minTried invariant. It preserves the
bA invariant because it does not change bA and bAe [r] is ensured to equal none , for
any acceptor e , by the bA invariant itself. The other invariants are obviously preserved
because the variables they refer to do not change.

4. CASE: Action Suggest(p, r ,V) is executed, where p is a collision-fast proposer for
round r and V is either a proposed value or Nil .

PROOF SKETCH: This action only changes pAp [r] from none to V and clearly keeps all
invariants.

5. CASE: Action ClassicVote(a, r , v) is executed, where a is an acceptor, r is a round
number, and v is a v-mapping.

PROOF SKETCH: The definition of choosable at implies that if a value is choosable at
round s in 〈bA′, pA′〉, then it is chossable at s in 〈bA, pA〉. This fact, by the definition of
safe at, implies that a value that is safe at round s in 〈bA, pA〉 is necessarily safe at s in
〈bA′, pA′〉. This, together with the fact that no variable but bA is updated by this action,
implies that the action preserves invariants minTried , pA, and learned . As for the bA
invariant, there are two cases to consider. If minTried [r] 6= ⊥, then this action sets

88 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

bAa [r] to minTried [r], which is ensured to be valued, safe, and complete. In this case,
the bA invariant is clearly preserved. Now, let us assume minTried [r] = ⊥ and check
if the action preserves the bA invariant with respect to bAa [r], which is the only entry
of bA changed in this action. Condition 1 of the bA invariant is trivially true because
minTried [r] = ⊥. Condition 2 is true because MaxT is proposed by the pA invariant
and v is ensured to be valued by the action’s pre-condition. Condition 3 is ensured by
the definition of MaxT .

6. CASE: Action AbstractLearn(l , v) is executed, where l is a learner and v is a v-mapping.
PROOF SKETCH: Action AbstractLearn(l , v) only changes variable learned , which is
the array of learned v-mappings, and does that by extending one entry to the lub of it
with a chosen v-mapping. Invariants maxTried and bA are obviously preserved. The
first part of the learned invariant is preserved because of the pA invariant and the fact
that v-mappings accepted by acceptors are both proposed and valued. The second part is
obviously preserved.

3.6.3 Distributed Abstract Collision-fast Paxos

As an intermediate step in our proof, we introduce a distributed version of the abstract
algorithm in the previous section. This algorithm is based on the same variables as the
previous algorithm plus a variable msgs , used to simulate a message passing system by
holding the messages sent between agents. Variable initialization is done as before for the
common variables, and msgs is set to {〈“2S”, 0,⊥〉} initially, which implies that a 2S
message for round 0 is implicitly sent when the algorithm starts. Message duplication is
implemented by never taking messages out of set msgs , which would permanently enable
actions that depend on an existing message. Since we are proving only safety, we do not
have to implement the loss of messages because a message loss would only imply that some
actions would not be executed.

The distributed abstract algorithm is described in terms of the following actions. Its
formal specification in TLA+ is given in the appendix section 3.8.

Propose(V), for any value V . It is enabled iff V /∈ proposed . It sets proposed to
proposed ∪ {V } and adds message 〈“propose”,V 〉 to msgs .

Phase1a(c, r), executed by coordinator c, for round r . The action is enabled iff
minTried [r] = none . It sends the message 〈“1a”, r〉 to acceptors (adds it to msgs).

Phase1b(a, r), executed by acceptor a , for round r . The action is enabled iff

• b̂Aa < r and

• 〈“1a”, r〉 ∈ msgs

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 89

It sets b̂Aa to r and adds message 〈“1b”, r , a, bAa〉 to msgs .

Phase2Start(r), for round r . The action is enabled iff:

• minTried [r] = none and

• There exists a quorum Q such that for all a ∈ Q , there is a message 〈“1b”, r , a, ρ〉
in msgs , for some ρ.

Let v = ProvedSafe(Q , r , β), where β is any ballot array such that, for every accep-
tor a in Q , β̂a = r and there exists message 〈“1b”, r , a, ρ〉 in msgs with ρ = βa .
This action sets minTried [r] to v and adds message 〈“2S”, r , v〉 to msgs .

Phase2Prepare(p, r), executed by proposer p, for round r . It is enabled iff:

• pAp [r] = none and

• There exists message 〈“2S”, r , v〉 in msgs with v 6= ⊥

It sets pAp [r] to v(p).

Phase2a(p, r ,V), executed by proposer p, for round r and (possibly Nil) value V . The
action is enabled iff:

• p is a collision-fast proposer of r ,

• pAp [r] = none ,

• 〈“2S”, r ,⊥〉 ∈ msgs , and

• either 〈“propose”,V 〉 ∈ msgs or V = Nil and there exists a message
〈“2a”, r , 〈q ,U 〉〉 in msgs with U 6= Nil .

This action sets pAp [r] to V and adds message 〈“2a”, r , 〈p,V 〉〉 to msgs .

Phase2b(a, r , v), executed by acceptor a , for round r and v-mapping v . It is enabled iff
b̂Aa ≤ r and either one of the following conditions hold:

a) bAa [r] = none and message 〈“2S”, r , v〉 exists in msgs , where v 6= Nil , or

b) message 〈“2a”, r , 〈p,V 〉〉 exists in msgs , where V 6= Nil , and either one of
the two following conditions hold:

b1) bAa [r] = none and v = NilExtension(⊥• 〈p,V 〉,P), where P is the set
of all proposers that are not collision-fast for round r , or

b2) bAa [r] 6= none and v = bAa [r] • 〈p,V 〉.

The action sets b̂Aa to r and bAa [r] to v , and adds message 〈“2b”, r , a, v〉 to msgs .

Learn(l , v), executed by learner l , for v-mapping v . It is enabled iff there exist round r ,
quorum Q , and set P of collision-fast proposers for r such that the two conditions
below hold:

• ∀p ∈ P : 〈“2a”, r , 〈p,Nil〉〉 ∈ msgs and

90 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

• ∀a ∈ Q : 〈“2b”, r , a, u〉 ∈ msgs , where v v u .

It sets learned [l] to learned [l] t v .

The distributed abstract algorithm implements the the non-distributed version in the
sense that all behaviors of the former are also behaviors of the latter.

Proposition 3.7 Distributed Abstract Collision-fast Paxos implements the Abstract Collision-
fast Paxos specification.

PROOF SKETCH: The initial state of both algorithms with respect to their shared variables is
exactly the same. As a result, to prove this proposition we must only show that every action
in the distributed algorithm implements an action of the non-distributed algorithm with
respect to the variable states before and after the action is taken [AL91]. In the following
we analyze each action of the distributed version.

Propose(V) This action clearly implements the action with the same name in the non-
distributed algorithm. The only difference has to do with variable msgs which is not
present in the non-distributed version.

Phase1a(c, r) This action changes only variable msgs , and implements a no-action (stut-
tering) step in the non-distributed algorithm, since it keeps the rest of the state the
same as before.

Phase1b(a, r) This action clearly implements action JoinRound of the non-distributed
algorithm. It is more restrictive, though, since it requires a “1b” message for r to be
present in msgs .

Phase2Start(r) This action implements action StartRound of the non-distributed algo-
rithm. Let Q be the quorum of action Phase2Start ; the reception of the “1b” mes-
sages for round r coming from acceptors a in Q implies that every acceptor a ∈ Q
has set b̂Aa to r . Since b̂Aa is never decreased, we can conclude that b̂Aa ≥ r
for every acceptor a in Q , as required by action StartRound . By the definition of
ProvedSafe and the fact that the vectors sent in the “1b” messages are consistent
with the current state of bA, one can easily verify that ProvedSafe(Q , r , β) returns
exactly the same value as ProvedSafe(Q , r , bA).

Phase2Prepare(p, r) This action implements Suggest(p, r ,V) when minTried [r] is dif-
ferent from ⊥ (identified by the “2S” message) and V = minTried [r](p).

Phase2a(p, r ,V) This action implements Suggest(p, r ,V) when minTried [r] equals ⊥
(identified by the received “2S” message). Notice that V is either a proposed value
(received in a “propose” message) or it equals Nil but other collision-fast proposer
q for round r has set pAq [r] to a non-Nil value, a situation identified by a “2a”
message.

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 91

Phase2b(a, r , v) This action implements ClassicVote(a, r , v). There are three cases to
consider:

• bAa [r] = none and message 〈“2S”, r , v〉 (v 6= Nil) exists in msgs , where
v 6= Nil .
In this case, minTried [r] = v and the implementation of ClassicVote(a, r , v)
is easily verified.

• message 〈“2a”, r , 〈p,V 〉〉 (V 6= Nil) exists in msgs , bAa [r] = none , and
v = NilExtension(⊥ • 〈p,V 〉,P), where P is the set of all proposers that are
not collision-fast for round r .
In this case, since a “2a” message was sent and it is only sent by a collision-fast
proposer of r when minTried [r] = ⊥, we can infer that p is a collision-fast pro-
poser of r and minTried [r] = ⊥. By the definition of MaxT in ClassicVote ,
it is easy to see that v satisfies the pre-condition of this action. The rest of the
action implementation is easily checked.

• message 〈“2a”, r , 〈p,V 〉〉 (V 6= Nil) exists in msgs , bAa [r] 6= none , and
v = bAa [r] • 〈p,V 〉.
Once again, the existence of a “2a” message for round r implies that p is
collision-fast for r and minTried [r] = ⊥. Notice that no value pAp [r] can
change after it is set to something different from none and the same happens
with minTried [r]. Since entry bAa [r] is only changed by a Phase2b(a, r , v)
action, by the definition of MaxT it is easy to see that bAa [r] v MaxT . Given
that v = bAa [r] • 〈p,V 〉, it also follows from the definition of MaxT that
v v MaxT .

Learn(l , v) This action implements action AbstractLearn(l , v) by the definition of a cho-
sen v-mapping and the fact that “2a” and “2b” messages reflect stable changes, in
the sense that no further changes can happen, to entries in pA and bA respectively.

3.6.4 Collision-fast Paxos

To prove correctness of algorithm presented in Section 3.4.1, we first add the following
history variables to the algorithm presented in the previous section.

prnd : An array of round numbers, where prnd [p] represents the current round of proposer
p. Initially 0.

pval : An array of v-mappings, where pval [p] represents the v-mapping fast-proposed by
proposer p on round prnd [p] or none , if p has not fast-proposed in that round. Ini-
tially none .

92 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

crnd : An array of round numbers, where crnd [c] represents the current round of coordi-
nator c. Initially 0.

cval : An array of v-mappings, where cval [c] represents the latest v-mapping sent by coor-
dinator c in a phase “2S” message for round crnd [c]. Initially ⊥ for the coordinator
of round 0 and none for all the others.

rnd : An array of round numbers, where rnd [a] is the current round of acceptor a , that is,
the highest-numbered round a has heard of. Initially 0.

vrnd : An array of round numbers, where vrnd [a] is the round at which acceptor a has
accepted the latest v-mapping. Initially 0.

vval : An array of v-mappings, where vval [a] is the v-mapping acceptor a has accepted at
vrnd [a] or none . Initially none .

msgs2 : Counterparts of the messages sent by the original protocol, but built with the values
of history variables. Initially {〈“2S”, 0,⊥〉}.

Propose(V), for any value V . It is enabled iff V /∈ proposed . It sets proposed to proposed∪
{V } and adds message 〈“propose”,V 〉 to msgs and msgs2.

Phase1a(c, r), executed by coordinator c, for round r . The action is enabled iff minTried [r] =
none . It sets crnd [c] to r and cval [c] to none , and adds a message 〈“1a”, c,m〉 to
msgs and msgs2.

Phase1b(a, r), executed by acceptor a , for round r . The action is enabled iff

• b̂Aa < r and

• 〈“1a”, r〉 ∈ msgs

It sets b̂Aa to r and rnd [a] to r and adds the message 〈“1b”, r , a, bAa〉 to msgs and
“1b”r,a,vrnd[a],vval[a] to msgs2.

Phase2Start(r), executed by the coordinator c of round r , for round r . The action is
enabled iff:

• minTried [r] = none and

• There exists a quorum Q such that for all a ∈ Q , there is a message 〈“1b”, r , a, ρ〉
in msgs , for some ρ.

Let v = ProvedSafe(Q , r , β), where β is any ballot array such that, for every
acceptor a in Q , β̂a = r and there exists message 〈“1b”, r , a, ρ〉 in msgs with
ρ = βa . This action sets minTried [r] and cval [c] to v , crnd [c] to r , and adds
message 〈“2S”, r , v〉 to msgs and msgs2.

Phase2Prepare(p, r), executed by proposer p, for round r . It is enabled iff:

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 93

• pAp [r] = none and

• There exists message 〈“2S”, r , v〉 in msgs

If v 6= ⊥, it sets pAp [r] and pval [p] to v(p), and prnd [p] to r . Otherwise, if v equals
⊥, pval [p] is set to none and prnd [p] to r .

Phase2a(p, r ,V), executed by proposer p, for round r and (possibly Nil) value V . The
action is enabled iff:

• p is a collision-fast proposer of r ,

• pAp [r] = none ,

• 〈“2S”, r ,⊥〉 ∈ msgs , and

• either 〈“propose”,V 〉 ∈ msgs or V = Nil and there exists a message
〈“2a”, r , 〈q ,U 〉〉 in msgs with U 6= Nil .

This action sets pAp [r] and pval [p] to V and adds message 〈“2a”, r , 〈p,V 〉〉 to msgs
and msgs2.

Phase2b(a, r , v), executed by acceptor a , for round r and v-mapping v . It is enabled iff
b̂Aa ≤ r and either one of the following conditions hold:

a) bAa [r] = none and message 〈“2S”, r , v〉 exists in msgs , where v 6= Nil , or

b) message 〈“2a”, r , 〈p,V 〉〉 exists in msgs , where V 6= Nil , and either one of
the two following conditions hold:

b1) bAa [r] = none and v = NilExtension(⊥• 〈p,V 〉,P), where P is the set
of all proposers that are not collision-fast for round r , or

b2) bAa [r] 6= none and v = bAa [r] • 〈p,V 〉.

The action sets b̂Aa , rnd [a], and vrnd [a] to r , bAa [r] and vval [a] to v , and adds
message 〈“2b”, r , a, v〉 to msgs and msgs2.

Learn(l , v), executed by learner l , for v-mapping v . It is enabled iff there exist round r ,
quorum Q , and set P of collision-fast proposers for r such that the two conditions
below hold:

• ∀p ∈ P : 〈“2a”, r , 〈p,Nil〉〉 ∈ msgs and

• ∀a ∈ Q : 〈“2b”, r , a, u〉 ∈ msgs , where v v u .

It sets learned [l] to learned [l] t v .

Variables prnd , pval , crnd , cval , rnd , vrnd , vval , and msgs2 appear in no pre-
condition and, therefore, are clearly history variables satisfying conditions H1-5 of [AL91].
This implies that the resulting algorithm is equivalent to (i.e., accepts the same behaviors
as) the previous one without such variables. The following invariants can be easily proved
for this new algorithm:

94 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

InvDA1: crnd [c] = k ⇒ ∀j > k : c is coordinator of j : minTried [j] = none

InvDA2: minTried [crnd [c]] = cval [c]

InvDA3: rnd [a] = b̂Aa

InvDA4: vrnd [a] = k ⇐⇒ ∧ bAa [k] 6= none
∧ ∀j > k : bAa [j] = none

InvDA5: vval [a] = bAa [vrnd [a]]

InvDA6: prnd [p] = k ⇒ ∀j > k : pAp [j] = none

InvDA6.5: pval [p] = pAp [prnd [p]]

InvDA7: 〈“1a”,m〉 ∈ msgs ⇐⇒ 〈“1a”,m〉 ∈ msgs2

InvDA8: 〈“1b”,m, ρ〉 ∈ msgs ⇐⇒ 〈“1b”,m, vval , vrnd〉 ∈ msgs2, where vrnd is the
highest balnum k such that ρ[k] 6= none and vval equals ρ[vrnd].

InvDA9: 〈“2S”,m, v〉 ∈ msgs ⇐⇒ 〈“2S”,m, v〉 ∈ msgs2

InvDA10: 〈“2a”,m, v〉 ∈ msgs ⇐⇒ 〈“2a”,m, v〉 ∈ msgs2

InvDA11: 〈“2b”,m, v〉 ∈ msgs ⇐⇒ 〈“2b”,m, v〉 ∈ msgs2

We can use these invariants to rewrite the pre-conditions of the previous algorithm’s
actions in the following way:

Propose(V), for any value V . It is enabled iff V /∈ proposed . It sets proposed to
proposed ∪ {V } and adds message 〈“propose”,V 〉 to msgs and msgs2.
The action remains the same.

Phase1a(c, r), executed by coordinator c, for round r . The action is enabled iff

• c is the coordinator of round r and

• crnd [c] ≤ r .

It sets crnd [c] to r and cval [c] to none , and adds a message 〈“1a”, c,m〉 to msgs
and msgs2.
By invariant InvDA1.

Phase1b(a, r), executed by acceptor a , for round r . The action is enabled iff

• rnd [a] < r and

• 〈“1a”, r〉 ∈ msgs2

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 95

It sets b̂Aa and rnd [a] to r , and adds the message 〈“1b”, r , a, bAa〉 to msgs and
“1b”r,a,vrnd[a],vval[a] to msgs2.
By invariants InvDA3 and InvDA7.

Phase2Start(r), executed by the coordinator c of round r , for round r . The action is
enabled iff:

• crnd [c] = r

• cval [c] = none and

• There exists a quorum Q such that for all a ∈ Q , there is a message
〈“1b”, r , a, vval , vrnd〉 in msgs2.

Let v = ProvedSafe(Q , r , β), where β is any ballot array such that, for every ac-
ceptor a in Q , β̂a = r and there exists message 〈“1b”, r , a, vrnd , vval〉 in msgs2
with βavrnd = vval and βaor = none for any round or 6= vrnd . This action sets
minTried [r] and cval [c] to v , crnd [c] to r , and adds message 〈“2S”, r , v〉 to msgs
and msgs2.
By invariants InvDA2 and InvDA8. ProvedSafe(Q , r , β) still gives the expected result because it only
uses the latest values accepted by each acceptor, the only value in β.

Phase2Prepare(p, r), executed by proposer p, for round r . It is enabled iff:

• prnd [p] ≤ r and

• There exists message 〈“2S”, r , v〉 in msgs2

If v 6= ⊥, it sets pAp [r] and pval [p] to v(p), and prnd [p] to r . Otherwise, if v equals
⊥, pval [p] is set to none and prnd [p] to r .
By invariants InvDA6, Inv6.5, and InvDA9. If v 6= ⊥, then this action implements its previous version.
Otherwise, it implements a stuttering step of its previous specification.

Phase2a(p, r ,V), executed by proposer p, for round r and (possibly Nil) value V . The
action is enabled iff:

• prnd [p] = r

• p is a collision-fast proposer of r ,

• pval [r] = none ,

• 〈“2S”, r ,⊥〉 ∈ msgs2, and

• either 〈“propose”,V 〉 ∈ msgs2 or V = Nil and there exists a message
〈“2a”, r , 〈q ,U 〉〉 in msgs2 with U 6= Nil .

This action sets pAp [r] and pval [p] to V and adds message 〈“2a”, r , 〈p,V 〉〉 to msgs
and msgs2.
By invariants InvDA6 and InvDA6.5. Since it is more restrictive than its previous version (requires the
prior action to execute), and the other pre-conditions are equivalent, the action implements its previous
version.

96 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

Phase2b(a, r , v), executed by acceptor a , for round r and v-mapping v . It is enabled iff
rnda ≤ r and either one of the following conditions hold:

a) vrnd [a] < r ∨ vval [a] = none and message 〈“2S”, r , v〉 exists in msgs2,
where v 6= Nil , or

b) message 〈“2a”, r , 〈p,V 〉〉 exists in msgs2, where V 6= Nil , and either one of
the two following conditions hold:

b1) vrnd [a] < r ∨ vval [a] = none and v = NilExtension(⊥ • 〈p,V 〉,P),
where P is the set of all proposers that are not collision-fast for round r , or

b2) vrnd [a] = r ∧ vval [a] 6= none and v = vval [a] • 〈p,V 〉.

The action sets b̂Aa , rnd [a], and vrnd [a] to r , bAa [r] and vval [a] to v , and adds
message 〈“2b”, r , a, v〉 to msgs and msgs2.
By invariants InvDA4, InvDA5, InvDA9, InvDA10, and because rnd [a] ≥ vrnd [a] (By InvDA3, In-
vDA4 and the definition of ballot array).

Learn(l , v), executed by learner l , for v-mapping v . It is enabled iff there exist round r ,
quorum Q , and set P of collision-fast proposers for r such that the two conditions
below hold:

• ∀p ∈ P : 〈“2a”, r , 〈p,Nil〉〉 ∈ msgs2 and

• ∀a ∈ Q : 〈“2b”, r , a, u〉 ∈ msgs2, where v v u .

It sets learned [l] to learned [l] t v .
By invariant InvDA11.

The resulting algorithm now has variables bA, pA, minTried and msgs as history vari-
ables, since they do not appear on any action’s pre-condition and are only updated. This
algorithm is, therefore, equivalent to one that does not contain such variables, which we
present below.

Propose(V), for any value V . It is enabled iff V /∈ proposed . It sets proposed to
proposed ∪ {V } and adds message 〈“propose”,V 〉 to msgs2.

Phase1a(c, r), executed by coordinator c, for round r . The action is enabled iff

• c is the coordinator of round r and

• crnd [c] ≤ r .

It sets crnd [c] to r and cval [c] to none , and adds a message 〈“1a”, c,m〉 to msgs2.

Phase1b(a, r), executed by acceptor a , for round r . The action is enabled iff

• rnd [a] < r and

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 97

• 〈“1a”, r〉 ∈ msgs2

It sets rnd [a] to r and adds the message “1b”r,a,vrnd[a],vval[a] to msgs2.

Phase2Start(r), executed by the coordinator c of round r , for round r . The action is
enabled iff:

• crnd [c] = r

• cval [c] = none and

• There exists a quorum Q such that for all a ∈ Q , there is a message
〈“1b”, r , a, vval , vrnd〉 in msgs2.

Let v = ProvedSafe(Q , r , β), where β is any ballot array such that, for every accep-
tor a in Q , β̂a = r and there exists message 〈“1b”, r , a, vrnd , vval〉 in msgs2 with
βavrnd = vval and βaor = none for any round or 6= vrnd . This action sets cval [c]
to v , crnd [c] to r , and adds message 〈“2S”, r , v〉 to msgs2.

Phase2Prepare(p, r), executed by proposer p, for round r . It is enabled iff:

• prnd [p] ≤ r and

• There exists message 〈“2S”, r , v〉 in msgs2

If v 6= ⊥, it sets pval [p] to v(p), and prnd [p] to r . Otherwise, if v equals ⊥, pval [p]
is set to none and prnd [p] to r .

Phase2a(p, r ,V), executed by proposer p, for round r and (possibly Nil) value V . The
action is enabled iff:

• prnd [p] = r

• p is a collision-fast proposer of r ,

• pval [r] = none ,

• 〈“2S”, r ,⊥〉 ∈ msgs2, and

• either 〈“propose”,V 〉 ∈ msgs2 or V = Nil and there exists a message
〈“2a”, r , 〈q ,U 〉〉 in msgs2 with U 6= Nil .

This action sets pval [p] to V and adds message 〈“2a”, r , 〈p,V 〉〉 to msgs2.

Phase2b(a, r , v), executed by acceptor a , for round r and v-mapping v . It is enabled iff
rnda ≤ r and either one of the following conditions hold:

a) vrnd [a] < r ∨ vval [a] = none and message 〈“2S”, r , v〉 exists in msgs2,
where v 6= Nil , or

b) message 〈“2a”, r , 〈p,V 〉〉 exists in msgs2, where V 6= Nil , and either one of
the two following conditions hold:

b1) vrnd [a] < r ∨ vval [a] = none and v = NilExtension(⊥ • 〈p,V 〉,P),
where P is the set of all proposers that are not collision-fast for round r , or

98 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

b2) vrnd [a] = r ∧ vval [a] 6= none and v = vval [a] • 〈p,V 〉.

The action sets rnd [a] and vrnd [a] to r , vval [a] to v , and adds message 〈“2b”, r , a, v〉
to msgs2.

Learn(l , v), executed by learner l , for v-mapping v . It is enabled iff there exist round r ,
quorum Q , and set P of collision-fast proposers for r such that the two conditions
below hold:

• ∀p ∈ P : 〈“2a”, r , 〈p,Nil〉〉 ∈ msgs2 and

• ∀a ∈ Q : 〈“2b”, r , a, u〉 ∈ msgs2, where v v u .

It sets learned [l] to learned [l] t v .

The algorithm presented in Section 3.4.1 is a stricter implementation of the algorithm
above, which can be easily verified by simply comparing their actions. This concludes the
proof that Collision-fast Paxos satisfies the safety requirements of M-Consensus.

3.6.5 The Liveness of Collision-fast Paxos

We now prove that the extended Collision-fast Paxos algorithm presented in Section 3.4.2
satisfies the Liveness property of M-Consensus, given that its liveness condition is eventu-
ally satisfied.

Proposition 3.8 If there exist proposer p, learner l , coordinator c, and quorum Q , such
that LA(p, l , c,Q) holds from some time t0 on, then eventually learned [l] is complete.

PROOF: The proof is divided into following steps:
1. No coordinator other than c executes any action after t0

PROOF SKETCH: The extended algorithm states that coordinators only execute actions
if they believe to be the leader and the definition of LA(p, l , c,Q) states that only c
believes to be the leader after t0.

2. There is a time t1 ≥ t0 after which crnd [c] does not change
PROOF SKETCH: crnd [c] can only be changed by action Phase1a . In the extended al-
gorithm, though, this can only happen if c receives a special message informing about a
higher-numbered round already started or if not all collision-fast proposers for crnd [c]
are in activep[c]. As for the first condition, step 1 implies there is only a finite num-
ber of (possibly higher-numbered) rounds started before t0. As for the second one, the
definition of LA states that activep[c] contains only nonfaulty processes after t0 and no
element is taken out of the set. In the extended algorithm, if c starts a new round r after
t0, it is guaranteed that its collision-fast proposers are in activep[c], which makes sure

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 99

the second condition will not trigger the execution of action Phase1a more than once
after t0.

3. There is a time t2 ≥ t1 after which action Phase2Start(c, crnd [c]) will have been
executed
PROOF SKETCH: Let us assume, for the sake of contradiction, that c never executes
action Phase2Start(c, crnd [c]). By step 2 and the extended algorithm’s specification,
coordinator c keeps re-sending the “1a” message for round crnd [c] to all acceptors.
Acceptors in Q do not crash after t0 by the definition of LA and must receive such
messages. If they all execute action Phase1b for round crnd [c], then they will keep re-
sending their 1b messages and c will eventually execute Phase2Start , contradicting our
assumption. Therefore, there must be an acceptor a ∈ Q such that rnd [a] > crnd [c],
which prevents the execution of action Phase1b(a, crnd [c]). However, in the extended
algorithm a would send an infinite number of special messages to c, indicating that a
round higher than crnd [c] has been started and this would eventually lead c to execute
action Phase1a for a higher-numbered round, contradicting step 2.

4. From t2 on, cval [c] does not change
PROOF SKETCH: By steps 2 and 3 and the algorithm’s specification.

5. Eventually l learns a complete v-mapping
By step 4, there are two cases to consider after t2:
5.1. CASE: cval [c] = ⊥

5.1.1. From t2 on, prnd [q] ≤ crnd [c] for any proposer q such that q does not crash
after t2
PROOF SKETCH: Assume prnd [q] > crnd [c] after t2, for some proposer
q that does not crash after t2. In the extended algorithm, by steps 2 and 3,
coordinator c keeps sending the “2S” message for round crnd [c] to the set
of proposers. As a result, q will keep replying to c with special messages
indicating that a round higher-numbered than crnd [c] has been started and
this will force c to start an even higher-numbered round. This contradicts
step 2.

5.1.2. There is a time t3 ≥ t2 after which all proposers q that do not crash after
t3 will have executed action Phase2Prepare(q , crnd [c]) and set prnd [q] to
crnd [c] and pval [q] to none
PROOF SKETCH: By steps 2 and 3, coordinator c keeps sending the “2S”
message for round crnd [c] and, by step 5.1.1 and the definition of action
Phase2Prepare, every nonfaulty proposer q must eventually execute ac-
tion Phase2Prepare(q , crnd [c]) based on this “2S” message. By the ac-
tion’s definition, prnd [q] is set to crnd [c] and, since the message carries
v-mapping ⊥ (as the value for cval [c]), pval [q] is set to none .

5.1.3. There is a time t4 after which some collision-fast proposer q for round
crnd [c] will have executed action Phase2a(q , crnd [c],V), where V is a

100 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

proposed value
PROOF SKETCH: By steps 5.1.1 and 5.1.2 and the definition of LA, each
collision-fast proposer of crnd [c] is eventually prepared to execute action
Phase2a for round crnd [c] triggered by a “propose” or “2a” message.
Since a “2a” message is only sent by action Phase2a , some “propose”
message must trigger the first execution of action Phase2a for round crnd [c].
The existence of such a “propose” message is guaranteed by steps 5.1.1
and 5.1.2 since they ensure that proposer p (from the definition of LA) will
eventually keep sending its “propose” message to some collision-fast pro-
poser of round crnd [c]. Because the first Phase2a action executed for round
crnd [c] is necessarily triggered by a “propose” message, its parameter V
is a proposed value by the action’s definition.

5.1.4. From t4 on, rnd [a] ≤ crnd [c] for any acceptor a such that a does not crash
after t2
PROOF SKETCH: Assume rnd [a] > crnd [c] after t4, for some acceptor a
that does not crash after t4. By steps 5.1.1 and 5.1.3 and the definition of
LA, at least one nonfaulty collision-fast proposer of crnd [c] will eventually
keep sending a “2a” message for round crnd [c] to a . As a result, a will keep
sending notification messages to c indicating that a round higher-numbered
than crnd [c] has been started. This would force c to start a new higher-
numbered round, contradicting step 2.

5.1.5. There is a time t5 ≥ t4 after which all collision-fast proposers of round
crnd [c] will have executed action Phase2a for round crnd [c]
PROOF SKETCH: Assume there is a collision-fast proposer q for round crnd [c]
such that q never executes action Phase2a for round crnd [c]. By steps 5.1.1
and 5.1.2 and the definition of LA, q is eventually prepared to execute ac-
tion Phase2a for round crnd [c] triggered by a “propose” or “2a” mes-
sage. By steps 5.1.1 and 5.1.3, at least one nonfaulty collision-fast proposer
of crnd [c] will eventually keep sending a “2a” message for crnd [c] to q ,
which must eventually trigger its execution of action Phase2a for round
crnd [c]. This contradicts our initial assumption that q does not execute ac-
tion Phase2a for crnd [c].

5.1.6. There is a time t6 ≥ t5 after which, if action Phase2a(q , crnd [c],V) has
been executed for any proposer q and non-Nil value V , then all acceptors
in Q will have executed action Phase2b for round crnd [c] triggered by the
“2a” message sent by q
PROOF SKETCH: By step 5.1.1, if action Phase2a(q , crnd [c],V) is exe-
cuted, q will keep sending “2a” messages to the acceptors. By step 5.1.4,
acceptors will be able to execute action Phase2a for any “2a” message for
round crnd [c] with non-Nil values. Since LA ensures that all collision-fast
proposers of crnd [c] are nonfaulty, the “2a” message from q will be even-
tually received by the acceptors in Q (also nonfaulty by LA) and trigger the

3.6. CORRECTNESS OF COLLISION-FAST PAXOS 101

execution of a Phase2a action for round crnd [c].

5.1.7. Q.E.D.
PROOF SKETCH: After t6, by steps 5.1.6 and 5.1.4, acceptors in Q keep
sending “2b” messages to the learners with the same v-mapping v . By the
definition of action Phase2b, v maps each proposer that is not collision-
fast for crnd [c] to Nil . Moreover, according to step 5.1.6 and the definition
of action Phase2b, v maps each proposer q that is collision-fast for r and
has executed action Phase2a(q , crnd [c],V), where V 6= Nil , to V . All
other proposers are not mapped by v . According to steps 5.1.1 and 5.1.5,
proposers that have executed action Phase2a for round crnd [c] and value
Nil keep sending their “2a” messages to the learners. The “2b” messages
from the acceptors and the “2a” messages from the collision-fast proposers
allow l to eventually learn a complete v-mapping.

5.2. CASE: cval [c] 6= ⊥

5.2.1. cval [c] is complete
By the definition of action Phase2Start and the fact that cval [c] 6= ⊥.

5.2.2. From t2 on, rnd [a] ≤ crnd [c] for any acceptor a such that a does not crash
after t2
PROOF SKETCH: Assume rnd [a] > crnd [c] after t2, for some acceptor a
that does not crash after t2. By steps 2 and 3, coordinator c keeps sending
the “2S” message for round crnd [c] to the set of acceptors. In the extended
algorithm, though, a will keep replying to c with special messages indicating
that a round higher-numbered than crnd [c] has been started and this would
force c to start an even higher-numbered round, which contradicts step 2.

5.2.3. Eventually all acceptors a in Q execute action Phase2b(a, r) and set vrnd [a]
to crnd [c] and vval [a] to cval [c]
PROOF SKETCH: By steps 2 and 3, coordinator c keeps sending the “2S”
message for round crnd [c] and, by step 5.2.2, all acceptors in Q must even-
tually execute action Phase2b(a, crnd [c]) based on this “2S” message.

5.2.4. Q.E.D.
PROOF SKETCH: By steps 5.2.2 and 5.2.3, all acceptors in Q will eventually
keep sending “2b” messages for round crnd [c] with a complete v-mapping,
that is, cval [c]. Learner l will eventually receive such messages and learn
this complete v-mapping.

6. Q.E.D.

102 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

3.7 Correctness of the Sequence Agreement Algorithm

In this section we prove that our sequence agreement protocol indeed satisfies the safety and
liveness properties stated in Section 3.2. We start by presenting the complete specification
of the protocol and then proceed with the proofs.

3.7.1 Complete Algorithm Specification

In Section 3.5.2, we have presented our collision-fast sequence agreement algorithm. This
protocol uses infinitely many Collision-fast Paxos instances (Section 3.4.2), each of them
identified by a natural number i and referred as CFP(i) in the protocol. Actions and vari-
ables specific of an instance i are identified by the prefix CFP(i)! (instead of the superscript
of Section 3.5.2). The protocol forces the Collision-fast Paxos instances to execute the same
rounds at the same time. As a consequence, some of their variables, namely, proposed , rnd ,
prnd , crnd , and activep, are always equal. Intead of keeping multiple copies of these vari-
ables, we let all instances share the same copy (and drop the prefix CFP(i)! to simplify the
notation). The protocol introduces no other variable.

All actions of the algorithm execute the homonymous action either in one of the Collision-
fast Paxos instances, or in all of them at once in a composed manner. All composed actions
pre-conditions are defined only over shared variables and, therefore, either all actions in the
composition are enabled or all are disabled. The only exception is action Phase1a .

Action CFP(i)!Phase1a , for some Collision-fast Paxos instance i , has one pre-condition
over CFP(i)!msgs . We define NewPhase1a as a replacement to CFP(i)!Phase1a that
changes the said pre-condition to be satisfied if true for CFP(j)!msgs , for any instance j .
NewPhase1a and the other actions of the algorithm are defined bellow.

Propose(V) Executed to propose a message V . It is the composition of action
CFP(i)!Propose(V) for all Collision-fast Paxos instances i . Logically, each in-
stance sends the message 〈“propose”,V 〉. Since they are all the same, they can be
replaced by a single message valid for all Collision-fast Paxos instances.

NewPhase1a(i , c, r) Executed by coordinator c to start round r in instances i. The action
executes iff:

• c believes itself to be the leader,

• c is the coordinator of round r ,

• crnd [c] ≺ r ,

3.7. CORRECTNESS OF THE SEQUENCE AGREEMENT ALGORITHM 103

• either c received some special message informing of a round j (r > j >
crnd [c]) was initiated in any M-Consensus instance, or the set of collision-fast
proposers of round crnd [c] is not a subset of activep[c].

The action sets crnd [c] to r and CFP(i)!cval [i] to none , and sends a message
〈“1a”, r〉 in this instance.

Phase1a(c, r) Executed by coordinator c to start round r . It is the composition ac-
tion NewPhase1a(i , c, r) for all Collision-fast Paxos instances i , where action
NewPhase1a(i , c, r) is defined previously. Logically, each instance sends its own
“1a” message but, since they are all equal, a single message is sent instead.

Phase1b(a, r) Executed by acceptor a on round r when it receives the message 〈“1a”, r〉.
It is the composition of action CFP(i)!Phase1b(a, r) for all Collision-fast Paxos
instances i . Each instance sends its own “1b” message but they are all bundled
together in a single composite message.

Phase2Start(c, r) Executed by the coordinator c of round r when it receives a compos-
ite “1b” message. It is the composition of action CFP(i)!Phase2Start(c, r) for
all Collision-fast Paxos instances i . c sends a “2S” message in each instance, but
these messages are bundled together in a single physical message. Since only a finite
number of instances send “2S” messages different from 〈“2S”, r ,⊥〉, the composite
message has a finite size.

Phase2Prepare(p, r) Executed by proposer p when it receives a composite “2S” message
for round r . It is the composition of the actions CFP(i)!Phase2Prepare(p, r) of all
Collision-fast Paxos instances i .

Phase2a(p, r ,V) Executed by proposer p to fast-propose message V on round r . It is
executed iff p has not fast-proposed V on any Collision-fast Paxos instance before.
The action proposes V on the smaller Collision-fast Paxos instance i it is allowed
to propose (those instances j such that CFP(j)!pval [p] = none); it does so by
executing action CFP(i)!Phase2a(p, r ,V).

Phase2b(a, r) Executed by acceptor a to accept some v-mapping on some instance i . It
does so by executing action CFP(i)!Phase2b(a, r).

Learn(l , v) Executed by learner l to learn the v-mapping v in some Collision-fast Paxos
instance i . The action executes CFP(i)!Learn(l , v).

The sequence learned by a learner l in the sequence agreement problem is a function of
the v-mappings learned by l in all M-Consensus instances. To define this function properly,
we assume a total order <P , on the set of proposer agents, and a function RP (e,S), that
gives the rank of an element e of a set S with respect to the other elements in S , according
to the order <P (e.g., RP (3, {3, 1, 5}) = 2). The recursive definition of learned [l] is as
follows.

104 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

learned [l] ∆=
LET defSet(m, s) ∆=

{p ∈ Dom(m) :
∧m[p] 6= Nil
∧ ¬∃i ∈ 1..Len(s) : s[i] = m[p]
∧ ∀q ∈ Dom(m) : q <P p ⇒ m[q] 6= m[p]
∧ ∀q ∈ Proposer : q <P p ⇒ q ∈ Dom(m)}

defSeq(m, s) ∆= 〈e1, e2, . . . , en〉 :
∧ n = |defSet(m, s)|
∧ ∀p ∈ defSeq(m, s) : RP (p, defSet(m, s)) = i ⇔ ei = m[p]

deliver(l , i , s) ∆=
IF Domain = Dom(CF (i)!learned [l])
THEN deliver(l , i + 1, s ◦ defSeq(CF (i)!learned [l], s))
ELSE s ◦ defSeq(CF (i)!learned [l], s)

IN deliver(l , 0, 〈〉)

Informally, for each learner l , this function builds sequence learned [l]] by iterating over
the M-Consensus instances, from 0 to the first one in which l has not learned a complete
mapping yet. In each instance, the iteration proceeds over proposers, ascendingly in the
total order <P , adding the mapped value of each proposer to the sequence (if it has not
been added before). For the instance with an incomplete v-mapping, the iteration proceeds
only until a non-mapped proposer is found.

3.7.2 Safety

In the previous section we described all the actions of our collision-fast sequence agreement
algorithm. Except for one action, all the others simply execute the actions of its Collision-
fast Paxos instances. The exception is action Phase1a , that executes NewPhase1a instead
of the Phase1a of Collision-fast Paxos, defined in Section 3.4. However, comparing the
two definitions, it is easy to see that the first is in fact a more restricted version of the latter,
and therefore implements it. The proposition below formally states this property.

Proposition 3.9 For any Collision-fast Paxos instance i , coordinator c, and round r ,
NewPhase1a(i , c, r) implements CFP(i)!Phase1a(c, r).

ASSUME: There exist a natural number i , a coordinator c and a round number r such that
NewPhase1a(i , c, r) is enabled.

3.7. CORRECTNESS OF THE SEQUENCE AGREEMENT ALGORITHM 105

PROVE: CFP(i)!Phase1a(c, r) is enabled.

PROOF: Since all pre-conditions of CFP(i)!Phase1a(c, r) are also present in
NewPhase1a(i , c, r) and they are all satisfied by the assumption, the action
CFP(i)!Phase1a(c, r) must also be enabled.

Proposition 3.9 implies that all Collision-fast Paxos instances satisfy their safety proper-
ties. We use it to prove that our sequence agreement implementation also satisfies its safety
properties, according to our specification of sequence agreementgiven in Section 3.2.

Proposition 3.10 Our sequence agreementimplementation satisfies the safety specification
of the sequence agreementproblem given in Section 3.2.

1. At the initial state, learned [l] = 〈〉, for any learner l .
PROOF SKETCH: By the definition of learned [l], since initialization guarantees that
CFP(i)!learned [l] = ⊥ , for any learner l and M-Consensus instance i .

2. For any learner l , learned [l] contains only proposed values.
PROOF SKETCH: Our definition of learned [l] states that it contains only values decided
in a mapping for some M-Consensus instance. From the Nontriviality property of M-
Consensus, any value V 6= Nil in the decided mapping of an instance must have been
proposed in that instance. From our protocol’s specification, a value is only proposed to
an M-consensus instance if it has been proposed to sequence agreement.

3. For any learner l , if delivered [l] = s at some time, then s v delivered [l] at all later
times.
PROOF SKETCH: For some learner l , let k be the smallest instance for which l learned
an incomplete v-mapping at some point in time t . For all instances i < k , l has
learned a complete v-mapping for i (i.e., CFP(i)!learned [l] is complete). Because of
the Stability property of M-Consensus, for any instances i < k at any instant t ′ > t ,
CFP(i)!learned [l] will equal its value at instant t . As for instance k , CFP(k)!learned [l]
at time t will be a prefix of its value at time t ′.
By its definition, learned [l] is built by an ascending iteration over the instances i , 0 ≤
i ≤ k . For each instance i , the procedure iterates over the proposers p that have been
mapped to some value in CFP(i)!learned [l], in the ascending order defined by <P , and
appends V = CFP(i)!learned [l][p] to the sequence being created if V is not in the
sequence yet. On instance k , the iteration proceeds until the bigger proposer q for which
all the smaller proposers have been mapped.
Given the determinism in the iteration and the observations in the first paragraph, the
construction of learned [l] at any instant t ′ > t will proceed over instances 0 to k − 1
and then in instance k exactly as at the instant t , building the same sequence, and then
possibly extend it with other values mapped in k and bigger instances. Hence, learned [l]
at instant t is a prefix of learned [l] at any instant t ′ > t .

4. For any pair of learners l1 and l2, either learned [l1] v learned [l2] or learned [l2] v
learned [l1].

106 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

PROOF SKETCH: Let k , be the smallest M-Consensus instance for which either l1 or l2
has not learned a complete v-mapping. By the definition of learned [l] and the Con-
sistency property of M-Consensus, for all instances i ≤ k , CFP(k)!learned [l1] =
CFP(k)!learned [l2]. As a result, both sequences share the same prefix pref generated
based on such instances. As for instance k , the Consistency property of M-Consensus
also guarantees that no two values are mapped to the same proposer for different learn-
ers. The learner with the shortest sequence learned [l] will have pref extended with the
values mapped to some proposers in k . The same values must be mapped to these pro-
posers in instance k for the other learner, which ensures that one sequece is a prefix of
the other by the definition of learned [l].

5. Q.E.D.

3.7.3 Liveness

In this section we prove that values proposed using our sequence agreement protocol are
eventually delivered if the liveness condition of Collision-fast Paxos is eventually satisfied.

Proposition 3.11 If there exist proposer p, learner l , coordinator c, and quorum Q , such
that LA(p, l , c,Q) holds from some time t0 on, then eventually learned [l] contains the
values proposed by p.

PROOF SKETCH: The proof is divided into the following steps:
1. No coordinator other than c executes any action after t0.

By the definition of LA(p, l , c,Q), after t0, no coordinator except for c will ever believe
itself to be to leader again. Since this is a pre-condition for all coordinator actions, none
will be executed after t0.

2. There is a time t1 > t0 after which crnd [c] does not change.
The value of crnd [c] is only changed by executing action NewPhase1a for c. By its
defintion, this action can be executed only when c receives a special message informing
about a round numbered higher than crnd [c] already started, or if the set of collision-fast
proposers for round crnd [c] is not a subset of activep[c].
Step 1 implies there is just a finite number of (possibly higher-numbered) rounds started
before t0 and that could satisfy the first condition. As for the second condition, the
definition of LA states that activep[c] contains only correct processes after t0 and no el-
ement is taken out of the set. Therefore, if c starts a new round r after t0, it is guaranteed
that its collision-fast proposers are in activep[c], which makes sure the second condition
will not trigger the execution of action NewPhase1a and, consequently, Phase1a for a
higher-numbered round.

3. Q.E.D.
PROOF: By steps 1 and 2, by the time t1 c will have started a round r bigger than any
other started and will not start any bigger one. Moreover, all collision-fast proposers

3.8. TLA+ SPECIFICATIONS 107

of r are correct and accessible. For each Collision-fast Paxos instance, this situation is
equivalent to the one in which its Phase1a has been successfully executed for r and
LA(p, l , c,Q) holds. As we have shown in Section 3.6.5, Collision-fast Paxos satisfy
the liveness property of M-Consensus under these conditions.
All Collision-fast Paxos instances in the sequence agreement protocol satisfy such prop-
erty. Therefore, if p proposes value V , it will eventually be seen by some collision-fast
proposer q (not necessarily different from p) of round r . q will eventually fast-propose
V in the first instance for which it has not fast-proposed yet. The “2a” message it
generates will eventually trigger the termination of the instance and have l learn V .

3.8 TLA+ Specifications

3.8.1 Module SAgreement

This module presents a model-based specification of the safety properties of the sequence
agreement problem.

MODULE SAgreement
EXTENDS Sequences, Naturals

CONSTANTS Proposer , Learner , Value

VARIABLES proposed , learned

TypeInv asserts a type invariant; the assertion that TypeInv is always true is a property of (implied by) the
specification
TypeInv ∆= ∧ proposed ⊆ Value

∧ learned ∈ [Learner → Seq(Value)]

Init is the initial predicate.

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ 〈〉]

s1 v s2 ∆=
∧ Len(s1) ≤ Len(s2)
∧ ∀ i ∈ 1 . . Len(s1) : s1[i] = s2[i]

We now define the two actions of proposing a value and learning a sequence. The Learn action sets learned [l]
to a sequence extending its present value.

Propose ∆= ∧ ∃m ∈ Value :
proposed ′ = proposed ∪ {m}
∧ UNCHANGED 〈learned〉

Learn(l) ∆= ∧ ∃ v ∈ proposed :

108 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

∧ ¬∃ i ∈ 1 . . Len(learned [l]) :
learned [l][i] = v

∧ ∀ l2 ∈ Learner :
∨ learned [l] ◦ 〈v〉 v learned [l2]
∨ learned [l2] v learned [l]

∧ learned ′ = [learned EXCEPT ![l] = @ ◦ 〈v〉]
∧ UNCHANGED 〈proposed〉

Next is the complete next-state action; Spec is the complete specification.

Next ∆= Propose ∨ ∃ l ∈ Learner : Learn(l)

Spec ∆= Init ∧2[Next]〈proposed , learned〉

We now define the three safety properties as temporal formulas and assert that they and the type-correctness
invariant are properties of the specification.
Nontriviality ∆= ∀ l ∈ Learner :

2(learned [l] ∈ Seq(proposed))

Stability ∆= ∀ l ∈ Learner :
2(∃ s ∈ Seq(Value) : learned [l] = s
⇒ 2(s v learned [l]))

Consistency ∆= ∀ l1, l2 ∈ Learner :
2(∨ learned [l1] v learned [l2]
∨ learned [l2] v learned [l1])

THEOREM Spec ⇒ (2TypeInv) ∧Nontriviality ∧ Stability ∧ Consistency

3.8.2 Module VMapping

Module VMapping specifies constants and operators for dealing with v-mappings.
MODULE VMapping

This module defines constants and operators for dealing with value mappings.

LOCAL INSTANCE FiniteSets The FiniteSets module defines the operation Len

We declare the sets Domain and Value as parameters.

CONSTANTS Domain, Value, Nil , none

Nil is a no-value used to map an element in Domain to nothing.

Nil
∆
= CHOOSE n : n /∈ Value

ASSUME Nil /∈ Value

3.8. TLA+ SPECIFICATIONS 109

ValMap defines the set of all valid value mappings. It is composed of any function that maps a subset of the
domain to values or Nil .

ValMap ∆= UNION {[PS → Value ∪ {Nil}] : PS ∈ SUBSET Domain}

none is defined to be something that is not a ValMap

none
∆
= CHOOSE n : n /∈ ValMap

ASSUME none /∈ ValMap
ASSUME none 6= Nil
ASSUME none /∈ Value

We define Bottom to be the “empty” ValMap, that is, a ValMap function whose domain is the empty set. In
TLA, a function with empty domain is defined to be equal to the empty sequence, which allows the simplifica-
tion below. We use Bottom instead of ⊥.

Bottom ∆= 〈〉

For simplicity, Dom(f) is defined to be the domain of function f .

Dom(f) ∆= DOMAIN f

A SingleMap maps a single domain element to a Value or Nil .

SingleMap ∆= [p : Domain, v : Value ∪ {Nil}]

SM (p, v) defines a SingleMap from domain element p to value v .

SM (p, v) ∆= [p 7→ p, v 7→ v]

The basic operation over a ValMap is vm • sm . It agregates a SingleMap to a ValMap. It is well-defined only
if vm is a ValueMap and sm is a SingleMap.

vm • sm ∆= [p ∈ Dom(vm) ∪ {sm.p} 7→
IF p ∈ Dom(vm) THEN vm[p]

ELSE sm.v]

ValMap is a c-struct and admits all existing operators for c-structs. We define them in the following specifically
for the ValMap type, which allows many simplifications and optimizations.

A ValMap v is a prefix of a ValMap w (v v w) if it can be extended to w by a sequence of • applications
with single mappings. This can be verified in a simplified way by checking if the domain of v is a subset of the
domain of w and for every element in the domain of v , its mapped value in v is equal to its mapped value in w .
If v v w , we say that v is a prefix of w or that w extends v . We extend the definition of v v w so that it is true
if both v and w equals none.
v v w ∆= ∨ ∧ v 6= none

∧ w 6= none
∧Dom(v) ⊆ Dom(w)
∧ ∀ e ∈ Dom(v) : v [e] = w [e]

∨ ∧ v = none
∧ w = none

A ValMap v is a strict prefix of a Valmap w (v < w) if it is a prefix of w and it is different from w .

v < w ∆= (v v w) ∧ (v 6= w)

110 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

GLB(T) is the greatest lower bound of a set of value mappings. It is a ValMap u that is a prefix to all
ValMaps in T but is not a prefix of any other ValMap that is also a prefix of all ValMaps in T . It is more
simply defined as a function that maps each element that belongs to the domain intersection of all mappings
and whose mapped value in all mappings is the same to its mapped value in all value mappings.

GLB(T) ∆= LET witness ∆= CHOOSE f ∈ T : TRUE

CInter ∆= {p ∈ Dom(witness) :
∀ f ∈ T : ∧ p ∈ Dom(f)

∧ f [p] = witness[p]}
IN [p ∈ CInter 7→ witness[p]]

v u w is defined to be the greatest lower bound for the set {v , w}

v u w ∆= GLB({v , w})

A ValMap v is defined to be compatible with a ValMap w if they are both prefixes of a ValMap u. It is
equivalent to verifying if their common domain elements are mapped to the same values.

AreCompatible(v , w) ∆= ∀ e ∈ Dom(v) ∩Dom(w) : v [e] = w [e]

A set of ValMaps is compatible if its elements are pairwise compatible.

IsCompatible(S) ∆= ∀ v , w ∈ S : AreCompatible(v , w)

LUB(T) is the least upper bound of a set of value mappings. It is a ValMap u that extends all ValMaps in
T but does not extend any other ValMap that also extends all ValMaps in T . It is more simply defined as a
function that maps each element that belongs to the domain of any of the mappings to its mapped value on any
of the mappings whose domain it belongs to. It is only well-defined if T is a set of compatible value mappings.

LUB(T) ∆= [p ∈ UNION {Dom(f) : f ∈ T} 7→
(CHOOSE f ∈ T : p ∈ Dom(f))[p]]

v t w is defined to be the least upper bound for the set {v , w}

v t w ∆= LUB({v , w})

3.8.3 Module MConsensus

This module presents a model-based specification of the safety properties of the M-Consensus
problem.

MODULE MConsensus
CONSTANTS Proposer , Learner , Value, Nil , none

INSTANCE VMapping WITH Domain ← Proposer

VARIABLES proposed , learned

TypeInv asserts a type invariant; the assertion that TypeInv is always true is a property of (implied by) the
specification
TypeInv ∆= ∧ proposed ⊆ Value

∧ learned ∈ [Learner → ValMap]

3.8. TLA+ SPECIFICATIONS 111

Init is the initial predicate.

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]

IsProposed(m) ∆= ∀ p ∈ Dom(m) : m[p] ∈ (proposed ∪ {Nil})

IsTrivial(m) ∆= m = [p ∈ Proposer 7→ Nil]

We now define the two actions of proposing a value and learning a mapping. The Learn action sets learned [l]
to a mapping extending its present value.

Propose ∆= ∧ ∃ v ∈ Value :
proposed ′ = proposed ∪ {v}
∧ UNCHANGED 〈learned〉

Learn(l) ∆= ∧ ∃ v ∈ ValMap :
∧ IsProposed(v)
∧ ∀ l2 ∈ Learner : AreCompatible(v , learned [l2])
∧ ¬IsTrivial(LUB({learned [r] : r ∈ Learner}) t v)
∧ learned ′ = [learned EXCEPT ![l] = @ t v]

∧ UNCHANGED 〈proposed〉

Next is the complete next-state action; Spec is the complete specification.

Next ∆= Propose ∨ ∃ l ∈ Learner : Learn(l)

Spec ∆= Init ∧2[Next]〈proposed , learned〉

We now define the three safety properties as temporal formulas and assert that they and the type-correctness
invariant are properties of the specification.
Nontriviality ∆= ∀ l ∈ Learner :

2(IsProposed(learned [l]) ∧ ¬IsTrivial(learned [l]))

Stability ∆= ∀ l ∈ Learner :
2(∃ v ∈ ValMap : learned [l] = v ⇒ 2(v v learned [l]))

Consistency ∆= 2(∧ IsCompatible({learned [l] : l ∈ Learner})
∧ ¬IsTrivial(LUB({learned [r] : r ∈ Learner})))

THEOREM Spec ⇒ (2TypeInv) ∧Nontriviality ∧ Stability ∧ Consistency

3.8.4 Module PaxosConstants

Module PaxosConstants defines constants and operators used by all our Paxos abstrac-
tions.

112 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

MODULE PaxosConstants
This module defines the parameters and data structures for our algorithms.

EXTENDS FiniteSets

RNum is the set of round numbers and � defines an ordering relation amongst the set of rounds. The module
also has as a parameter an initial round number called Zero.
CONSTANTS RNum, � , Zero

We assume � is a total ordering of the set RNum of round numbers.

ASSUME LET PO ∆= INSTANCE OrderRelations WITH S ← RNum, v ← �
IN PO !IsTotalOrder

We define i ≺ j to be true iff i � j for two different rounds i and j .

i ≺ j ∆= (i � j) ∧ (i 6= j)

If B is a set of round numbers that contains a maximum element, then Max (B) is defined to equal that maxi-
mum. Otherwise, its value is unspecified.

Max (B) ∆= CHOOSE i ∈ B : ∀ j ∈ B : j � i

Are parameters of this module:
- A set Proposer of proposer agents,
- A set Learner of learner agents,
- A set Acceptor of acceptor agents,
- An operator Quorum that returns the acceptor quorums of a round,
- An operator CfProposer that returns the collision-fast proposers of a round,
- And a set Value of proposable Values.

CONSTANTS Proposer , Learner , Acceptor , Quorum(), CfProposer(), Value

Nil ∆= CHOOSE n : n /∈ Value
none ∆= CHOOSE n : n /∈ Value

The problem of MConsensus is defined in terms of a value mapping set whose Domain is the set of proposers

INSTANCE VMapping WITH Domain ← Proposer

We assume that quorums are finite subsets of the acceptors and every pair of quorums has a non-empty inter-
section.
QuorumAssumption ∆=
∀ i ∈ RNum :
∧Quorum(i) ⊆ SUBSET Acceptor
∧ ∀Q ∈ Quorum(i) : IsFiniteSet(Q)
∧ ∀ j ∈ RNum :
∀Q ∈ Quorum(i), R ∈ Quorum(j) : Q ∩ R 6= {}

ASSUME QuorumAssumption

Over the set of collision-fast proposers for a round i , we only assume they are a finite subset of the proposers.

CfProposerAssumption ∆=
∀ i ∈ RNum :

3.8. TLA+ SPECIFICATIONS 113

∧ CfProposer(i) ∈ SUBSET Proposer
∧ IsFiniteSet(CfProposer(i))

ASSUME CfProposerAssumption

We say that a value mapping is valued iff at least one element of its domain is mapped to a value (6= Nil). Our
algorithm makes sure that acceptors will only accept valued mappings, so that we can guarantee Nontriviality .

IsValued(m) ∆= ∃ p ∈ Dom(m) : m[p] 6= Nil

We define the Nil-extension of a valued mapping v for a set P of proposers to be the ValMap resulting from
adding to v the single mapping p → Nil , for every proposer p in P \Dom(v).

NilExtension(v , P) ∆=
IF v = none THEN none

ELSE [p ∈ Dom(v) ∪ P 7→ IF p ∈ Dom(v) THEN v [p]
ELSE Nil]

We define BallotArray to be the set of all ballot arrays. We represent a ballot array as a record, where we write
βa [m] as β.vote[a][m] and β̂a as β.rnd [a].

BallotArray ∆=
{beta ∈ [vote : [Acceptor → [RNum → ValMap ∪ {none}]],

rnd : [Acceptor → RNum]] :
∀ a ∈ Acceptor :
∧ IsFiniteSet({m ∈ RNum : beta.vote[a][m] 6= none})
∧ ∀m ∈ RNum :

∧ (beta.rnd [a] ≺ m)⇒ (beta.vote[a][m] = none)
∧ (beta.vote[a][m] 6= none)⇒ IsValued(beta.vote[a][m])}

We define CfPropArray to be the set of all proposal arrays.

PropArray ∆= [Proposer → [RNum → Value ∪ {Nil} ∪ {none}]]

We now formalize the definitions of chosen at, safe at, etc. We translate the English terms into obvious operator
names. For example, IsChosenAt(v , m, β, γ) is defined to be true iff v is chosen at m in 〈 β, γ 〉, assuming
that v is a ValMap, m is a round number, β is a ballot array, and γ is a proposal array. (We don’t care what
IsChosenAt(v , m, β, γ) means for other values of v , m , β, and γ.) We also assert the two propositions as
theorems.

IsChosenAt(v , m, beta, gamma) ∆=
LET NilP ∆= {p ∈ CfProposer(m) : gamma[p][m] = Nil}
IN ∃Q ∈ Quorum(m) :

∀ a ∈ Q : (v v NilExtension(beta.vote[a][m], NilP))

IsChosenIn(v , beta, gamma) ∆= ∃m ∈ RNum : IsChosenAt(v , m, beta, gamma)

IsChoosableAt(v , m, beta, gamma) ∆=
∃Q ∈ Quorum(m) :

LET P ∆= {p ∈ Proposer : gamma[p][m] ∈ {Nil , none}}
IN ∀ a ∈ Q :

(m ≺ beta.rnd [a])⇒

114 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

(v v NilExtension(beta.vote[a][m], Proposer))

IsSafeAt(v , m, beta, gamma) ∆=
∀ k ∈ RNum :

(k ≺ m)⇒ ∀w ∈ ValMap :
IsChoosableAt(w , k , beta, gamma)⇒ (w v v)

IsSafe(beta, gamma) ∆=
∀ a ∈ Acceptor , k ∈ RNum :

(beta.vote[a][k] 6= none)⇒ IsSafeAt(beta.vote[a][k], k , beta, gamma)

Proposition1 ∆=
∀ beta ∈ BallotArray , gamma ∈ PropArray :

IsSafe(beta, gamma)⇒
IsCompatible({v ∈ ValMap : IsChosenIn(v , beta, gamma)})

THEOREM Proposition1

IsConservative(beta, gamma) ∆=
∀m ∈ RNum, a, b ∈ Acceptor :
∧ beta.vote[a][m] 6= none
∧ beta.vote[b][m] 6= none
⇒ ∧AreCompatible(beta.vote[a][m], beta.vote[b][m])
∧ ∀ p ∈ Dom(beta.vote[b][m]) \Dom(beta.vote[a][m]) :

beta.vote[b][m][p] = gamma[p][m]

ProvedSafe(Q , m, beta) ∆=
IF ∀ a ∈ Q , i ∈ RNum : (i ≺ m)⇒ (beta.vote[a][i] = none)

THEN Bottom
ELSE LET k ∆= Max ({i ∈ RNum :

(i ≺ m) ∧ (∃ a ∈ Q : beta.vote[a][i] 6= none)})
AS ∆= {a ∈ Q : beta.vote[a][k] 6= none}
G ∆= {beta.vote[a][k] : a ∈ AS}

IN NilExtension(LUB(G), Proposer)

Proposition2 ∆=
∀m ∈ RNum, beta ∈ BallotArray , gamma ∈ PropArray :
∀Q ∈ Quorum(m) :
∧ IsSafe(beta, gamma)
∧ IsConservative(beta, gamma)
∧ ∀ a ∈ Q : m � beta.rnd [a]
⇒ IsSafeAt(ProvedSafe(Q , m, beta), m, beta, gamma)

THEOREM Proposition2

3.8. TLA+ SPECIFICATIONS 115

3.8.5 Module AbstractCFPaxos

Module AbstractCFPaxos provides the formal specification of the Abstract Collision-fast
Paxos algorithm.

MODULE AbstractCFPaxos
Abstract algorithm

EXTENDS PaxosConstants

The algorithm’s variables:
- proposed: set of proposed values
- learned: array that maps each learner to its currently learned ValMap
- bA: a ballot array that keeps current round and history of votes for each acceptor.
- pA: a proposal array that keeps the history of proposals for each proposer.
- minTried : a vector with the safe initial value to be accepted at each round.

VARIABLES proposed , learned , bA, pA, minTried

The type invariant asserts that the specification preserves the types of the variables according to the definition
below.
TypeInv ∆= ∧ proposed ⊆ Value

∧ learned ∈ [Learner → ValMap]
∧ bA ∈ BallotArray
∧ pA ∈ PropArray
∧minTried ∈ [RNum → ValMap ∪ {none}]

Initial state of the specification

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ bA = [vote 7→ [a ∈ Acceptor 7→ [m ∈ RNum 7→ none]],

rnd 7→ [a ∈ Acceptor 7→ Zero]]
∧ pA = [p ∈ Proposer 7→ [i ∈ RNum 7→ none]]
∧minTried = [i ∈ RNum 7→ IF i = Zero THEN Bottom

ELSE none]

Propose(V) adds value V to the set proposed if it is not there yet.

Propose(V) ∆=
∧V /∈ proposed
∧ proposed ′ = proposed ∪ {V }
∧ UNCHANGED 〈learned , bA, pA, minTried〉

JoinRound(a, m) changes the current round of acceptor a to m .

JoinRound(a, m) ∆=
∧ bA.rnd [a] ≺ m
∧ bA′ = [bA EXCEPT !.rnd [a] = m]
∧ UNCHANGED 〈proposed , learned , pA, minTried〉

116 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

StartRound(m, Q) sets minTried [m] to a value safe at m in bA, according to the definition of
ProvedSafe(Q , m, bA).

StartRound(m, Q) ∆=
∧minTried [m] = none
∧ ∀ a ∈ Q : m � bA.rnd [a]
∧minTried ′ = [minTried EXCEPT ![m] = ProvedSafe(Q , m, bA)]
∧ UNCHANGED 〈proposed , learned , bA, pA〉

Suggest(p, m, V) changes pA[p][m] from none to a value or Nil (this last, only if other proposer has sug-
gested a value or minTried [m][p] equals Nil).

Suggest(p, m, V) ∆=
∧ ∨minTried [m] /∈ {Bottom, none} ∧V = minTried [m][p]
∨V ∈ proposed
∨ ∧V = Nil
∧ ∃ pv ∈ CfProposer(m) : pA[pv][m] ∈ Value

∧ pA[p][m] = none
∧ pA′ = [pA EXCEPT ![p][m] = V]
∧ UNCHANGED 〈proposed , learned , bA, minTried〉

ClassicVote(a, m, v) extends the vote of acceptor a for round m , changing it for value v if the conditions
below are satisfied.

ClassicVote(a, m, v) ∆=
∧ bA.rnd [a] � m
∧ IsValued(v)
∧minTried [m] 6= none
∧minTried [m] v v
∧ LET sp(p) ∆= SM (p, pA[p][m])

pS ∆= {p ∈ CfProposer(m) : pA[p][m] 6= none}
maxTried ∆= LUB({minTried [m] • sp(p) : p ∈ pS})

IN v v NilExtension(maxTried , Proposer \CfProposer(m))
∧ ∨ bA.vote[a][m] = none
∨ bA.vote[a][m] < v

∧ bA′ = [bA EXCEPT !.rnd [a] = m, !.vote[a][m] = v]
∧ UNCHANGED 〈proposed , learned , pA, minTried〉

AbstractLearn(l , v) extends learned [l} with v iff v is chosen in 〈bA, pA〉.

AbstractLearn(l , v) ∆=
∧ IsChosenIn(v , bA, pA)
∧ learned ′ = [learned EXCEPT ![l] = learned [l] t v]
∧ UNCHANGED 〈proposed , bA, pA, minTried〉

Next defines the next-state relation and Spec is the complete specification.

Next ∆=
∨ ∃V ∈ Value : Propose(V)
∨ ∃ a ∈ Acceptor , m ∈ RNum : JoinRound(a, m)

3.8. TLA+ SPECIFICATIONS 117

∨ ∃m ∈ RNum :
∨ ∃Q ∈ Quorum(m) : StartRound(m, Q)
∨ ∃ p ∈ CfProposer(m), V ∈ Value ∪ {Nil} : Suggest(p, m, V)

∨ ∃ a ∈ Acceptor , m ∈ RNum, v ∈ ValMap : ClassicVote(a, m, v)
∨ ∃ l ∈ Learner , v ∈ ValMap : AbstractLearn(l , v)

Spec ∆= Init ∧2[Next]〈proposed , learned , bA, pA, minTried〉

The theorems below asserts that the spec ensures the type invariant and implements the general specification of
MConsensus .
THEOREM Spec ⇒ 2TypeInv

MC ∆= INSTANCE MConsensus
THEOREM Spec ⇒ MC !Spec

3.8.6 Module DistAbsCFPaxos

This module specifies our distributed abstract algorithm, which we later extend to our final
specification.

MODULE DistAbsCFPaxos
EXTENDS PaxosConstants

The algorithm’s variables are the same as in the abstract algorithm plus msgs: set of system messages. Since
we are specifying only safety, message loss is simply implemented by not executing actions that depend on the
message, without having to take it explicitly out of the set msgs . Moreover, duplicate messages are implemented
by keeping messages in msgs , since they could possibly trigger the same action multiple times.
VARIABLES proposed , learned , bA, pA, minTried , msgs

Msg is the set containing all possible messages by the algorithm. For clarity, we use records instead of se-
quences to represent messages.

Msg ∆= [type : {“propose”}, val : Value] ∪
[type : {“1a”}, rnd : RNum] ∪
[type : {“1b”}, rnd : RNum, acc : Acceptor ,

vote : [RNum → ValMap ∪ {none}]] ∪
[type : {“2S”}, rnd : RNum, val : ValMap] ∪
[type : {“2b”}, rnd : RNum, acc : Acceptor , val : ValMap] ∪
[type : {“2a”}, rnd : RNum, val : SingleMap]

Type Invariant

TypeInv ∆= ∧ proposed ⊆ Value
∧ learned ∈ [Learner → ValMap]
∧ bA ∈ BallotArray
∧ pA ∈ PropArray
∧minTried ∈ [RNum → ValMap ∪ {none}]

118 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

∧msgs ⊆ Msg
Initial state

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ bA = [vote 7→ [a ∈ Acceptor 7→ [m ∈ RNum 7→ none]],

rnd 7→ [a ∈ Acceptor 7→ Zero]]
∧ pA = [p ∈ Proposer 7→ [i ∈ RNum 7→ none]]
∧minTried = [i ∈ RNum 7→ IF i = Zero THEN Bottom

ELSE none]
∧msgs = {[type 7→ “2S”, rnd 7→ Zero, val 7→ Bottom]}

Actions

Action Send(msg) implements the sending of message msg .

Send(msg) ∆= msgs ′ = msgs ∪ {msg}

Propose(V) executes a value proposal. In the specification we make no distinction between a proposal made
by a collision-fast proposer and one made by an ordinary external proposer. The difference lies on whether the
“propose” message will be local to a processor or not.

Propose(V) ∆=
∧V /∈ proposed
∧ proposed ′ = proposed ∪ {V }
∧ Send([type 7→ “propose”, val 7→ V])
∧ UNCHANGED 〈learned , bA, pA, minTried〉

Action Phase1a(m) triggers the start of a new round m . It sends a phase “1a” message for round m .

Phase1a(m) ∆=
∧minTried [m] = none
∧ Send([type 7→ “1a”, rnd 7→ m])
∧ UNCHANGED 〈proposed , learned , bA, pA, minTried〉

Action Phase1b(a, m) is executed by acceptor a in response to a phase “1a” message. The action is executed
only once per round. It changes the current round of acceptor a to m and sends a phase “1b” message containing
the current voting situation of a.

Phase1b(a, m) ∆=
∧ [type 7→ “1a”, rnd 7→ m] ∈ msgs
∧ bA.rnd [a] ≺ m
∧ bA′ = [bA EXCEPT !.rnd [a] = m]
∧ Send([type 7→ “1b”, rnd 7→ m, acc 7→ a, vote 7→ bA.vote[a]])
∧ UNCHANGED 〈proposed , learned , pA, minTried〉

Action Phase2Start(m) “starts” round m . It is enabled iff the round has not been started and a quorum of
acceptors has sent phase “1b” messages for round m . It uses these “1b” messages to pick up a safe ValMap for
round m , using ProvedSafe(Q , m, beta) as defined in module PaxosConstants . minTried [m] is set to this
safe value and a phase “2S” message is sent to inform it.

3.8. TLA+ SPECIFICATIONS 119

Phase2Start(m) ∆=
∧minTried [m] = none
∧ ∃Q ∈ Quorum(m) :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .rnd = m
∧msg .acc = a

∧ LET 1bMsg ∆= [a ∈ Q 7→ CHOOSE msg ∈ msgs :
∧msg .type = “1b”
∧msg .rnd = m
∧msg .acc = a]

beta ∆= [vote 7→ [a ∈ Q 7→ 1bMsg [a].vote],
rnd 7→ [a ∈ Q 7→ m]]

v ∆= ProvedSafe(Q , m, beta)
IN ∧minTried ′ = [minTried EXCEPT ![m] = v]

∧ Send([type 7→ “2S”, rnd 7→ m, val 7→ v])
∧ UNCHANGED 〈proposed , learned , bA, pA〉

Action Phase2Prepare(p, m) is executed by proposer p, for round m . It is enabled iff pA[p][m] is different
from none and p has received a “2S” message containing a v -mapping different from Bottom . The action sets
pA[p][m] to v [p].

Phase2Prepare(p, m) ∆=
∧ pA[p][m] = none
∧ ∃ v ∈ ValMap :
∧ [type 7→ “2S”, rnd 7→ m, val 7→ v] ∈ msgs
∧ v 6= Bottom
∧ pA′ = [pA EXCEPT ![p][m] = v [p]]

∧ UNCHANGED 〈proposed , learned , bA, minTried , msgs〉

Action Phase2a(p, m, V) is executed by proposer p, for round m and value V . It is enabled iff p is a
collision-fast proposer for m , it has received a phase “2S” message containing Bottom and either a “propose”
or a “2a” message for m , and pA[p][m] equals none. The action sets pA[p][m] to V if p received a
〈“propose”, V 〉 message or to Nil otherwise (p received a phase “2a” message from another proposer). It
also sends a phase “2a” message for round m with a single mapping from p to V .

Phase2a(p, m, V) ∆=
∧ p ∈ CfProposer(m)
∧ pA[p][m] = none
∧ [type 7→ “2S”, rnd 7→ m, val 7→ Bottom] ∈ msgs
∧ ∨ [type 7→ “propose”, val 7→ V] ∈ msgs
∨ ∧V = Nil
∧ ∃ q ∈ CfProposer(m), U ∈ Value :

[type 7→ “2a”, rnd 7→ m, val 7→ SM (q , U)] ∈ msgs
∧ pA′ = [pA EXCEPT ![p][m] = V]
∧ Send([type 7→ “2a”, rnd 7→ m, val 7→ SM (p, V)])
∧ UNCHANGED 〈proposed , learned , bA, minTried〉

120 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

Action Phase2b(a, m, v) is executed by acceptor a, for round m and ValMap v . It is enabled only if m is
higher than or equal to the current round of a, either v is valued and came on a phase “2S” message or v is built
out of a phase “2a” message whose value is a mapping from a proposer to a (non-Nil) value. Moreover, the
current vote of a for m must be either none or a prefix of v . The action sets the current round of a to m and a’s
vote at m to v .

Phase2b(a, m, v) ∆=
∧ bA.rnd [a] � m
∧ ∨ ∧ [type 7→ “2S”, rnd 7→ m, val 7→ v] ∈ msgs

∧ IsValued(v)
∧ bA.vote[a][m] = none

∨ ∃ s ∈ SingleMap :
∧ [type 7→ “2a”, rnd 7→ m, val 7→ s] ∈ msgs
∧ s.v 6= Nil
∧ ∨ ∧ bA.vote[a][m] = none

∧ v = NilExtension(Bottom • s, Proposer \CfProposer(m))
∨ ∧ bA.vote[a][m] 6= none
∧ v = bA.vote[a][m] • s

∧ bA′ = [bA EXCEPT !.rnd [a] = m, !.vote[a][m] = v]
∧ Send([type 7→ “2b”, rnd 7→ m, acc 7→ a, val 7→ v])
∧ UNCHANGED 〈proposed , learned , pA, minTried〉

Action Learn is executed by learner l , for a ValMap v . Let P be the set of proposers from which l has received
phase “2a” messages with single mappings from them to Nil . The action is enabled if there is a quorum Q of
acceptors from which l has received phase “2b” messages such that v is a prefix of the of the values in each of
these messages Nil-extended for P . The action sets learned [l] to the lub between its previous value and v .

Learn(l , v) ∆=
∧ ∃m ∈ RNum :
∃Q ∈ Quorum(m), P ∈ SUBSET CfProposer(m) :
∧ ∀ p ∈ P : [type 7→ “2a”, rnd 7→ m, val 7→ SM (p, Nil)] ∈ msgs
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “2b”

∧msg .rnd = m
∧msg .acc = a
∧ v v NilExtension(msg .val , P)

∧ learned ′ = [learned EXCEPT ![l] = @ t v]
∧ UNCHANGED 〈proposed , bA, pA, minTried , msgs〉

Next defines the next-state relation and Spec is the complete specification.

Next ∆= ∨ ∃V ∈ Value : Propose(V)
∨ ∃m ∈ RNum : Phase1a(m)
∨ ∃ a ∈ Acceptor , m ∈ RNum : Phase1b(a, m)
∨ ∃m ∈ RNum : Phase2Start(m)
∨ ∃ p ∈ Proposer , m ∈ RNum, V ∈ Value ∪ {Nil} :

Phase2a(p, m, V)
∨ ∃ a ∈ Acceptor , m ∈ RNum, v ∈ ValMap : Phase2b(a, m, v)
∨ ∃ l ∈ Learner , v ∈ ValMap : Learn(l , v)

3.8. TLA+ SPECIFICATIONS 121

Spec ∆= Init ∧2[Next]〈proposed , learned , bA, pA, minTried , msgs〉

The theorems below asserts that the spec ensures the type invariant and implements the general specification of
MConsensus .
THEOREM Spec ⇒ 2TypeInv

MC ∆= INSTANCE MConsensus
THEOREM Spec ⇒ MC !Spec

3.8.7 Module DistCFPaxosLiv

This module completely specifies our Collision-fast Paxos protocol with its liveness require-
mentes.

MODULE DistCFPaxosLiv
EXTENDS FiniteSets Standard module with basic operations for finite sets.

RNum is the set of round numbers and � defines an ordering relation amongst the set of rounds. The module
also has as a parameter an initial round number called Zero.
CONSTANTS RNum, � , Zero

We assume � is a total ordering of the set RNum of round numbers. Module OrderRelations can be found
in our complete technical report.
ASSUME LET PO ∆= INSTANCE OrderRelations WITH S ← RNum,

v ← �
IN PO !IsTotalOrder

We define i ≺ j to be true iff i � j for two different rounds i and j .

i ≺ j ∆= (i � j) ∧ (i 6= j)

If B is a set of round numbers that contains a maximum element, then Max (B) is defined to equal that maxi-
mum. Otherwise, its value is unspecified.

Max (B) ∆= CHOOSE i ∈ B : ∀ j ∈ B : j � i

Are parameters of this module:
- A set Proposer of proposer agents,
- A set Learner of learner agents,
- A set Coord of coordinator agents,
- An operator CoordOf that returns the coordinator of a round,
- A set Acceptor of acceptor agents,
- An operator Quorum that returns the acceptor quorums of a round,
- An operator CfProposer that returns the collision-fast proposers of a round,
- A set Value of proposable Values,
- A special value Nil not in Value ,
- And a special value none not in Value .

CONSTANTS Proposer , Learner , Coord , CoordOf (), Acceptor ,

122 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

Quorum(), CfProposer(), Value, Nil , none

ASSUME Nil /∈ Value
ASSUME none /∈ Value

The problem of MConsensus is defined in terms of a value mapping set whose Domain is the set of proposers

INSTANCE VMapping WITH Domain ← Proposer

We make the assumption that, for every round r , r has a single coordinator responsible for it and every coordi-
nator is is responsible for a round higher-numbered than r .
CoordAssumption ∆=
∀ r ∈ RNum : ∧ CoordOf (r) ∈ Coord

∧ ∀ c ∈ Coord : ∃ r2 ∈ RNum : ∧ r ≺ r2
∧ c = CoordOf (r2)

ASSUME CoordAssumption

We assume that quorums are finite subsets of the acceptors and every pair of quorums has a non-empty inter-
section.
QuorumAssumption ∆=
∀ i ∈ RNum :
∧Quorum(i) ⊆ SUBSET Acceptor
∧ ∀Q ∈ Quorum(i) : IsFiniteSet(Q)
∧ ∀ j ∈ RNum :
∀Q ∈ Quorum(i), R ∈ Quorum(j) : Q ∩ R 6= {}

ASSUME QuorumAssumption

Over the set of collision-fast proposers for a round i , we only assume they are a finite subset of the proposers.

CfProposerAssumption ∆=
∀ i ∈ RNum :
∧ CfProposer(i) ∈ SUBSET Proposer
∧ IsFiniteSet(CfProposer(i))

ASSUME CfProposerAssumption

We say that a value mapping is valued iff at least one element of its domain is mapped to a value (6= Nil). Our
algorithm makes sure that acceptors will only accept valued mappings, so that we can guarantee Nontriviality .

IsValued(m) ∆= ∃ p ∈ Dom(m) : m[p] 6= Nil

We define the Nil-extension of a valued mapping v for a set P of proposers to be the ValMap resulting from
adding to v the single mapping p → Nil , for every proposer p in P \Dom(v).

NilExtension(v , P) ∆=
IF v = none THEN none

ELSE [p ∈ Dom(v) ∪ P 7→ IF p ∈ Dom(v) THEN v [p]
ELSE Nil]

The algorithm’s variables are the following:

3.8. TLA+ SPECIFICATIONS 123

- proposed: set of proposed values
- learned: array mapping each learner to its currently learned ValMap
- rnd : array mapping each acceptor to its current round.
- vrnd : array mapping each acceptor to the last round at which it accepted something.
- vval : array mapping each acceptor a to the ValMap accepted in vrnd [a].
- prnd : array mapping each proposer to its current round.
- pval : array mapping each proposer p to the value it fast-proposed at round prnd [p].
- crnd : array mapping each coordinator to its current round.
- cval : array mapping each coordinator to the initial ValMap it has picked for round crnd [p].
- msgs: set of messages that implements the message passing subsystem
- noncrashed : set of non-crashed agents in the system.
- amLeader : array mapping each coordinator to TRUE or FALSE depending on whether it believes to be the
leader or not
- activep: array mapping each coordinator to the set of proposers it currently believes to be active.

VARIABLES proposed , learned , rnd , vrnd , vval , prnd , pval , crnd , cval ,
msgs, noncrashed , amLeader , activep

aVars ∆= 〈rnd , vrnd , vval〉
pVars ∆= 〈prnd , pval〉
cVars ∆= 〈crnd , cval〉
oVars ∆= 〈proposed , learned , noncrashed , amLeader , activep〉

Msg is the set containing all possible messages sent by the algorithm. For clarity, we use records instead of
sequences to represent messages.

Msg ∆= [type : {“propose”}, val : Value] ∪
[type : {“1a”}, rnd : RNum] ∪
[type : {“1b”}, rnd : RNum, acc : Acceptor ,

vrnd : RNum, vval : ValMap ∪ {none}] ∪
[type : {“2S”}, rnd : RNum, val : ValMap] ∪
[type : {“2b”}, rnd : RNum, acc : Acceptor , val : ValMap] ∪
[type : {“2a”}, rnd : RNum, val : SingleMap]

Type Invariant

TypeInv ∆=
∧ proposed ⊆ Value
∧ learned ∈ [Learner → ValMap]
∧ rnd ∈ [Acceptor → RNum]
∧ vrnd ∈ [Acceptor → RNum]
∧ vval ∈ [Acceptor → ValMap ∪ {none}]
∧ prnd ∈ [Proposer → RNum]
∧ pval ∈ [Proposer → Value ∪ {Nil} ∪ {none}]
∧ crnd ∈ [Coord → RNum]
∧ cval ∈ [Coord → ValMap ∪ {none}]
∧msgs ⊆ Msg
∧ noncrashed ⊆ Acceptor ∪ Coord ∪ Proposer ∪ Learner
∧ amLeader ∈ [Coord → BOOLEAN]
∧ activep ∈ [Coord → SUBSET Proposer]

124 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

Initial state

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ rnd = [a ∈ Acceptor 7→ Zero]
∧ vrnd = [a ∈ Acceptor 7→ Zero]
∧ vval = [a ∈ Acceptor 7→ none]
∧ prnd = [p ∈ Proposer 7→ Zero]
∧ pval = [p ∈ Proposer 7→ none]
∧ crnd = [c ∈ Coord 7→ Zero]
∧ cval = [c ∈ Coord 7→ IF c = CoordOf (Zero)

THEN Bottom
ELSE none]

∧msgs = {}
∧ noncrashed = Acceptor ∪ Coord ∪ Proposer ∪ Learner
∧ amLeader = [c ∈ Coord 7→ IF c = CoordOf (Zero)

THEN TRUE

ELSE FALSE]
∧ activep = [c ∈ Coord 7→ Proposer]

Agent Actions

Action Send(msg) implements the sending of message msg .

Send(msg) ∆= msgs ′ = msgs ∪ {msg}

Propose(V) executes a value proposal. In the specification we make no distinction between a proposal made
by a collision-fast proposer and one made by an ordinary external proposer. The difference lies on whether the
“propose” message will be local to a processor or not.

Propose(V) ∆=
∧V /∈ proposed
∧ proposed ′ = proposed ∪ {V }
∧ Send([type 7→ “propose”, val 7→ V])
∧ UNCHANGED 〈aVars, pVars, cVars, learned , noncrashed , amLeader , activep〉

Action Phase1a(c, r) is executed by the coordinator c of round r as specified in the paper. To ensure Liveness,
c can only execute this action if it believes to be the leader and either c has received a message related to a round
between crnd [c] and r , or it suspects one of the current collision-fast proposers to have failed.

Phase1a(c, r) ∆=
∧ amLeader [c]
∧ c = CoordOf (r)
∧ crnd [c] ≺ r
∧ ∨ ∃msg ∈ msgs \ [type : {“propose”}, val : Value] :

∧ crnd [c] ≺ msg .rnd
∧msg .rnd ≺ r

∨ ∧ ¬(CfProposer(crnd [c]) ⊆ activep[c])

3.8. TLA+ SPECIFICATIONS 125

∧ CfProposer(r) ⊆ activep[c]
∧ crnd ′ = [crnd EXCEPT ![c] = r]
∧ cval ′ = [cval EXCEPT ![c] = none]
∧ Send([type 7→ “1a”, rnd 7→ r])
∧ UNCHANGED 〈aVars, pVars, oVars〉

Action Phase1b(a, r) is executed by acceptor a, for round r .

Phase1b(a, r) ∆=
∧ [type 7→ “1a”, rnd 7→ r] ∈ msgs
∧ rnd [a] ≺ r
∧ rnd ′ = [rnd EXCEPT ![a] = r]
∧ Send([type 7→ “1b”, rnd 7→ r , acc 7→ a,

vrnd 7→ vrnd [a], vval 7→ vval [a]])
∧ UNCHANGED 〈vrnd , vval , pVars, cVars, oVars〉

DistProvedSafe(Q , r , 1bMsg) returns a safe initial v -mapping for round r based on the “1b” messages for r
sent by acceptors in quorum Q . It returns Bottom if no v -mapping has been or might be chosen in a lower-
numbered round or a complete v -mapping that extends any v -mapping possibly chosen in a lower-numbered
round.

DistProvedSafe(Q , r , 1bMsg) ∆=
IF ∀ a ∈ Q : 1bMsg [a].vval = none

THEN Bottom
ELSE LET k ∆= Max ({1bMsg [a].vrnd : a ∈ Q})

AS ∆= {a ∈ Q : ∧ 1bMsg [a].vrnd = k
∧ 1bMsg [a].vval 6= none}

S ∆= {1bMsg [a].vval : a ∈ AS}
IN NilExtension(LUB(S), Proposer)

The action Phase2Start(c, r) follows the description given in the algorithm description. However, it is only
executed if c believes to be the current leader.

Phase2Start(c, r) ∆=
∧ crnd [c] = r
∧ cval [c] = none
∧ amLeader [c]
∧ ∃Q ∈ Quorum(r) :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .rnd = r
∧msg .acc = a

∧ LET 1bMsg ∆= [a ∈ Q 7→ CHOOSE msg ∈ msgs :
∧msg .type = “1b”
∧msg .rnd = r
∧msg .acc = a]

v ∆= DistProvedSafe(Q , r , 1bMsg)
IN ∧ cval ′ = [cval EXCEPT ![c] = v]

∧ Send([type 7→ “2S”, rnd 7→ r , val 7→ v])

126 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

∧ UNCHANGED 〈aVars, pVars, crnd , oVars〉

Phase2Prepare(p, r) simply follows the algorithm description.

Phase2Prepare(p, r) ∆=
∧ prnd [p] ≺ r
∧ ∃ v ∈ ValMap :
∧ [type 7→ “2S”, rnd 7→ r , val 7→ v] ∈ msgs
∧ ∨ ∧ v = Bottom

∧ pval ′ = [pval EXCEPT ![p] = none]
∨ ∧ v 6= Bottom
∧ pval ′ = [pval EXCEPT ![p] = v [p]]

∧ prnd ′ = [prnd EXCEPT ![p] = r]
∧ UNCHANGED 〈aVars, cVars, oVars〉

Action Phase2a(p, r , V) also just follows its previous description.

Phase2a(p, r , V) ∆=
∧ prnd [p] = r
∧ p ∈ CfProposer(r)
∧ pval [p] = none
∧ ∨ [type 7→ “propose”, val 7→ V] ∈ msgs
∨ ∧V = Nil
∧ ∃ q ∈ CfProposer(r), U ∈ Value :

[type 7→ “2a”, rnd 7→ r , val 7→ SM (q , U)] ∈ msgs
∧ pval ′ = [pval EXCEPT ![p] = V]
∧ Send([type 7→ “2a”, rnd 7→ r , val 7→ SM (p, V)])
∧ UNCHANGED 〈prnd , aVars, cVars, oVars〉

The same for action Phase2b(a, r).

Phase2b(a, r) ∆=
∧ rnd [a] � r
∧ ∃ v ∈ ValMap :
∧ ∨ ∧ [type 7→ “2S”, rnd 7→ r , val 7→ v] ∈ msgs

∧ IsValued(v)
∧ vrnd [a] ≺ r ∨ vval [a] = none

∨ ∃ s ∈ SingleMap :
∧ [type 7→ “2a”, rnd 7→ r , val 7→ s] ∈ msgs
∧ s.v 6= Nil
∧ ∨ ∧ vrnd [a] ≺ r ∨ vval [a] = none

∧ v = NilExtension(Bottom • s, Proposer \CfProposer(r))
∨ ∧ vrnd [a] = r ∧ vval [a] 6= none
∧ v = vval [a] • s

∧ vval ′ = [vval EXCEPT ![a] = v]
∧ rnd ′ = [rnd EXCEPT ![a] = r]
∧ vrnd ′ = [vrnd EXCEPT ![a] = r]

3.8. TLA+ SPECIFICATIONS 127

∧ Send([type 7→ “2b”, rnd 7→ r , acc 7→ a, val 7→ v])
∧ UNCHANGED 〈pVars, cVars, oVars〉

The Learn action is defined differently from the explanation in the algorithm description. Here, for simplicity,
we let the value being merged with learned [l] be an action parameter.

Learn(l , v) ∆=
∧ ∃ r ∈ RNum :
∃Q ∈ Quorum(r), P ∈ SUBSET CfProposer(r) :
∧ ∀ p ∈ P : [type 7→ “2a”, rnd 7→ r , val 7→ SM (p, Nil)] ∈ msgs
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “2b”

∧msg .rnd = r
∧msg .acc = a
∧ v v NilExtension(msg .val , P)

∧ learned ′ = [learned EXCEPT ![l] = @ t v]
∧ UNCHANGED 〈aVars, pVars, cVars, proposed , msgs,

noncrashed , amLeader , activep〉

Message Loss/Retransmission Actions

The following operator returns the last message sent by coordinator c

CoordLastMsg(c) ∆=
IF cval [c] = none

THEN [type 7→ “1a”, rnd 7→ crnd [c]]
ELSE [type 7→ “2S”, rnd 7→ crnd [c], val 7→ cval [c]]

The following operator returns the last message sent by proposer p. It is sound only if pval [p] 6= none ,
crnd [CoordOf (prnd [p])] = prnd [p], and cval [CoordOf (prnd [p])] = Bottom . This condition is true only
if p has fast-proposed a value at round prnd [p].

ProposerLastMsg(p) ∆=
[type 7→ “2a”, rnd 7→ prnd [p], val 7→ SM (p, pval [p])]

The following operator returns the last message sent by acceptor a.

AcceptorLastMsg(a) ∆=
IF vrnd [a] = rnd [a]

THEN [type 7→ “2b”, rnd 7→ rnd [a], acc 7→ a, val 7→ vval [a]]
ELSE [type 7→ “1b”, rnd 7→ rnd [a], acc 7→ a,

vrnd 7→ vrnd [a], vval 7→ vval [a]]

LoseMsg(m) implements the loss of message m . Any message may be lost except for: - a “propose” message:
Indeed the algorithm is resilient to their loss, but implementing

retransmission of a “propose” message would make our specification needlessly more complicated.
- the last message sent by a good coordinator that believes to be the leader
- the fast-proposal sent by a good proposer for its current round.
- the last message sent by a good acceptor.

Therefore, the algorithm only requires that such messages be always available for the agents they were sent to.

LoseMsg(m) ∆=

128 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

∧ ¬ ∨m.type ∈ {“propose”}
∨ ∧m.type ∈ {“1a”, “2S”}
∧m = CoordLastMsg(CoordOf (m.rnd))
∧ CoordOf (m.rnd) ∈ noncrashed
∧ amLeader [CoordOf (m.rnd)]

∨ ∧m.type ∈ {“2a”}
∧ pval [m.val .p] 6= none
∧ crnd [CoordOf (m.rnd)] = m.rnd
∧ cval [CoordOf (m.rnd)] = Bottom
∧m = ProposerLastMsg(m.val .p)
∧m.val .p ∈ noncrashed

∨ ∧m.type ∈ {“1b”, “2b”}
∧m = AcceptorLastMsg(m.acc)
∧m.acc ∈ noncrashed

∧msgs ′ = msgs \ {m}
∧ UNCHANGED 〈aVars, cVars, pVars, oVars〉

Even though the LoseMsg(m) action above does not apply for some messages, retransmission is necessary
because an agent can fail, have its message lost, and then recover. In this case it is necessary to re-send the lost
message. Below you will find the actions responsible for retransmission.

CoordRetransmit(c) ∆=
∧ amLeader [c]
∧ Send(CoordLastMsg(c))
∧ UNCHANGED 〈aVars, cVars, pVars, oVars〉

AcceptorRetransmit(a) ∆=
∧ Send(AcceptorLastMsg(a))
∧ UNCHANGED 〈aVars, cVars, pVars, oVars〉

ProposerRetransmit(p) ∆=
∧ pval [p] 6= none
∧ crnd [CoordOf (prnd [p])] = prnd [p]
∧ cval [CoordOf (prnd [p])] = Bottom
∧ Send(ProposerLastMsg(p))
∧ UNCHANGED 〈aVars, cVars, pVars, oVars〉

Other Actions

Action LeaderSelection allows an arbitrary change to the values of amLeader [c], for all coordinators c. Since
this action may be performed at any time, the specifiction makes no assumption about the outcome of leader
selection. (However, progress is guaranteed only under an assumption about the values of amLeader [c].)
LeaderSelection ∆=
∧ amLeader ′ ∈ [Coord → BOOLEAN]
∧ UNCHANGED 〈aVars, cVars, pVars, proposed , learned ,

noncrashed , activep, msgs〉

3.8. TLA+ SPECIFICATIONS 129

Action SuspectOrTrust arbitrarily changes the values of activep[c], for all coordinators c.

SuspectOrTrust ∆=
∧ activep′ ∈ [Coord → SUBSET Proposer]
∧ UNCHANGED 〈aVars, cVars, pVars, proposed , learned ,

noncrashed , amLeader , msgs〉

Action FailOrRecover also allows an arbitrary change to the value of noncrashed .

FailOrRecover ∆=
∧ noncrashed ′ ∈ SUBSET (Acceptor ∪ Coord ∪ Proposer ∪ Learner)
∧ UNCHANGED 〈aVars, cVars, pVars, proposed , learned ,

amLeader , activep, msgs〉

Final Specification

CoordNext(c) specifies the execution of some action by coordinator c.

CoordNext(c) ∆=
∨ ∃ r ∈ RNum : ∨ Phase1a(c, r)

∨ Phase2Start(c, r)
∨ CoordRetransmit(c)

ProposerNext(p) specifies the execution of some action by proposer p.

ProposerNext(p) ∆=
∨ ∃ r ∈ RNum, V ∈ Value ∪ {Nil} : Phase2a(p, r , V)
∨ ProposerRetransmit(p)

AcceptorNext(a) specifies the execution of some action by acceptor a.

AcceptorNext(a) ∆=
∨ ∃ r ∈ RNum : ∨ Phase1b(a, r)

∨ Phase2b(a, r)
∨AcceptorRetransmit(a)

LearnerNext(a) specifies the execution of some action by learner l .

LearnerNext(l) ∆=
∃ v ∈ ValMap : Learn(l , v)

Next defines the next-state action of the specification.

Next ∆= ∨ ∃V ∈ Value : Propose(V)
∨ ∃ c ∈ Coord ∩ noncrashed : CoordNext(c)
∨ ∃ p ∈ Proposer ∩ noncrashed : ProposerNext(p)
∨ ∃ a ∈ Acceptor ∩ noncrashed : AcceptorNext(a)
∨ ∃ l ∈ Learner ∩ noncrashed : LearnerNext(l)
∨ ∃m ∈ msgs : LoseMsg(m)
∨ LeaderSelection ∨ SuspectOrTrust ∨ FailOrRecover

130 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

vars ∆= 〈aVars, pVars, cVars, oVars, msgs〉

Fairness ∆=
∧ ∀ c ∈ Coord :
∧WFvars(c ∈ noncrashed ∧ CoordNext(c))
∧WFvars(c ∈ noncrashed ∧ (∃ r ∈ RNum : Phase1a(c, r)))

∧ ∀ p ∈ Proposer : WFvars(p ∈ noncrashed ∧ ProposerNext(p))
∧ ∀ a ∈ Acceptor : WFvars(a ∈ noncrashed ∧AcceptorNext(a))
∧ ∀ l ∈ Learner : WFvars(l ∈ noncrashed ∧ LearnerNext(l))

Spec ∆= Init ∧2[Next]vars ∧ Fairness

The theorems below asserts that the spec ensures the type invariant and implements the safety part of the
MConsensus specification.
THEOREM Spec ⇒ 2TypeInv

MC ∆= INSTANCE MConsensus
THEOREM Spec ⇒ MC !Spec

LA(l , c, Q) defines the liveness assumption required by the algorithm. Since our specification does not allow
a “propose” message to be lost, LA is slightly simpler than what we described in the paper.

LA(l , c, Q) ∆=
∧ {c, l} ∪Q ⊆ noncrashed
∧ proposed 6= {}
∧ ∀ c2 ∈ Coord : amLeader [c2] ≡ (c = c2)
∧ activep[c] ⊆ noncrashed
∧ ∀ r ∈ RNum :
∃ r2 ∈ RNum : ∧ r ≺ r2

∧ c = CoordOf (r2)
∧ CfProposer(r2) ⊆ activep[l]

∧ activep[c] ⊆ activep[c]′

The theorem below asserts that the algorithm’s specification satisfies Liveness if the liveness assumption even-
tually holds forever.
THEOREM ∀ l ∈ Learner :

∧ Spec
∧ ∃Q ∈ SUBSET Acceptor :
∧ ∀ r ∈ RNum : Q ∈ Quorum(r)
∧ ∃ c ∈ Coord : 32[LA(l , c, Q)]vars

⇒ 3(DOMAIN learned [l] = Proposer)

3.8. TLA+ SPECIFICATIONS 131

3.8.8 Module CFPaxosSAgreement

Module CFPaxosSAgreement specifies our complete collision-fast sequence agreement
algorithm based on Collision-fast Paxos.

MODULE CFPaxosSAgreement
This module presents the specification of an efficient collision-fast sequence agreement algorithm based on the
Collision-fast Paxos algorithm for M-Consensus.

EXTENDS Naturals, Sequences, FiniteSets Definitions concerning the natural numbers and sequences.

RNum is the set of round numbers and � defines an ordering relation amongst the set of rounds. The module
also has as a parameter an initial round number called Zero.
CONSTANTS RNum, � , Zero

The definition of i ≺ j

i ≺ j ∆= (i � j) ∧ (i 6= j)

The specification has the same parameters as the Collision-Fast Paxos algorithm.

CONSTANTS Proposer , Learner , Coord , CoordOf (), Acceptor ,
Quorum(), CfProposer(), Value, Nil , none

The Sequence Agreement algorithm is based on an infinite number of Collision-fast Paxos (CFPaxos) in-
stances. However, some variables such as proposed, rnd , prnd , crnd , noncrashed , amLeader , and activep
are shared by all instances. The other variables are implemented by arrays indexed by the instance. We represent
this arrays by the original variable name with the prefix x as it can be seen below.
VARIABLES proposed , xlearned , rnd , xvrnd , xvval , prnd , xpval ,

crnd , xcval , xmsgs, noncrashed , amLeader , activep

vars is a sequence containing all the specification variables.

vars ∆= 〈proposed , xlearned , rnd , xvrnd , xvval , prnd , xpval , crnd , xcval ,
xmsgs, noncrashed , amLeader , activep〉

CFP(i), where i is a Natural number, is the Collision-fast Paxos instance number i .

CFP(i) ∆= INSTANCE DistCFPaxosLiv WITH learned ← xlearned [i],
vrnd ← xvrnd [i],
vval ← xvval [i],
pval ← xpval [i],
msgs ← xmsgs[i],
cval ← xcval [i]

Initial state of the specification

Init ∆= ∧ proposed = {}
∧ xlearned = [i ∈ Nat 7→ [l ∈ Learner 7→ CFP(i)!Bottom]]
∧ rnd = [a ∈ Acceptor 7→ Zero]
∧ xvrnd = [i ∈ Nat 7→ [a ∈ Acceptor 7→ Zero]]
∧ xvval = [i ∈ Nat 7→ [a ∈ Acceptor 7→ none]]

132 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

∧ prnd = [p ∈ Proposer 7→ Zero]
∧ xpval = [i ∈ Nat 7→ [p ∈ Proposer 7→ none]]
∧ crnd = [c ∈ Coord 7→ Zero]
∧ xcval = [i ∈ Nat 7→ [c ∈ Coord 7→ IF c = CoordOf (Zero)

THEN CFP(i)!Bottom
ELSE none]]

∧ xmsgs = [i ∈ Nat 7→ {}]
∧ noncrashed = Acceptor ∪ Coord ∪ Proposer ∪ Learner
∧ amLeader = [c ∈ Coord 7→ IF c = CoordOf (Zero)

THEN TRUE

ELSE FALSE]
∧ activep = [c ∈ Coord 7→ Proposer]

Some actions of the algorithm have to do only with one instance of CFPaxos . For such cases it is interesting
to have an operator that keeps non-shared variables of other instances unchanged.

InstanceUnchanged(i) ∆=
UNCHANGED 〈xlearned [i], xvrnd [i], xvval [i],

xpval [i], xcval [i], xmsgs[i]〉

Action Phase1a(c, r) for instance i must be slightly changed so that a new round might be started if there is
an interfering message for a different round number in ANY of the running instances.

NewPhase1a(i , c, r) ∆=
∧ amLeader [c]
∧ c = CoordOf (r)
∧ crnd [c] ≺ r
∧ ∨ ∃ j ∈ Nat :

∃msg ∈ xmsgs[j] :
∧msg .type 6= “propose”
∧ crnd [c] ≺ msg .rnd
∧msg .rnd ≺ r

∨ ∧ ¬(CfProposer(crnd [c]) ⊆ activep[c])
∧ CfProposer(r) ⊆ activep[c]

∧ crnd ′ = [crnd EXCEPT ![c] = r]
∧ xcval ′[i] = [xcval [i] EXCEPT ![c] = none]
∧ CFP(i)!Send([type 7→ “1a”, rnd 7→ r])
∧ UNCHANGED 〈CFP(i)!aVars, CFP(i)!pVars, CFP(i)!oVars〉

Agent Actions

We now present the combinated actions each agent performs.

A Propose action sends a “propose” message that is valid for all the CFPaxos instances. This is logically im-
plemented by executing a propose action for each instance. Notice, however, that the multiple logical “propose”
messages are implemented by a single one in practice.

3.8. TLA+ SPECIFICATIONS 133

Propose(V) ∆=
∀ i ∈ Nat : CFP(i)!Propose(V)

Action Phase1a executes NewPhase1a specified above for all CFPaxos instances. It is easy to see that,
since all pre-conditions of the action are based on variables shared among all instances, the action is enable for
instance i iff it is enabled for instance j . As a result of this action, a “1a” message is sent for each instance. In
practice, a single “1a” message is sent and it is interpreted as valid for all instances.

Phase1a(c, r) ∆=
∀ i ∈ Nat : NewPhase1a(i , c, r)

Action Phase1b(a, r) is executed when acceptor a receives the “1a” message for a higher-numbered round
than its current one. Since there is a logical message for each instance, the Phase1b action of every instance is
equally enabled and are executed. However, different instances might generate different “1b” messages. These
different logical messages are sent on the same physical one. The size of this message can be limited because
only a finite number of (initial) instances will result on “1b” messages different from 〈“1b, r , a, Zero, none〉.
Phase1b(a, r) ∆=
∀ i ∈ Nat : CFP(i)!Phase1b(a, r)

Action Phase2Start(c, r) is executed by the coordinator of r when it receives the composite ”1b“ message
of the previous action. The coordinator calculates the different ”2S“ messages for every instance. These ”2S“
messages are sent together in the same physical one as we have done in the previous action. Recall that only a
finite number of instances will result on ”2S“ messages different from 〈”2S“, r , Bottom〉, which can be used
to limit the size of the composite ”2S“ message sent.

Phase2Start(c, r) ∆=
∀ i ∈ Nat : CFP(i)!Phase2Start(c, r)

Action Phase2Prepare(p, r) is executed by proposer p when it receives the composite ”2S“ message from
the action above. The action executes Phase2Prepare for every CFPaxos instance.

Phase2Prepare(p, r) ∆=
∀ i ∈ Nat : CFP(i)!Phase2Prepare(p, r)

Action Phase2a(p, r , V) is executed by proposer p when it fast-proposes value V . It executes
Phase2a(p, r , V) for some CFPaxos instance i , as long as p has not fast-proposed the same value for a
different instance. All the other instances are left unchanged.

Phase2a(p, r , V) ∆=
∃ i ∈ Nat :
∧V /∈ {xpval [j][p] : j ∈ Nat}
∧ CFP(i)!Phase2a(p, r , V)
∧ ∀ j ∈ Nat : j < i ⇒ xpval [j][p] 6= none
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(j)

Action Phase2b(a, r) executes Phase2b(a, r) for some CFPaxos instance i .

Phase2b(a, r) ∆=
∃ i ∈ Nat :
∧ CFP(i)!Phase2b(a, r)
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(j)

Action Learn(l , v) executes Learn(l , v) for some CFPaxos instance i .

Learn(l , v) ∆=

134 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

∃ i ∈ Nat :
∧ CFP(i)!Learn(l , v)
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(j)

Message Loss/Retransmission Actions

LoseMsg(m) takes into consideration the fact that messages ”1a“, ”2S“, and ”1b“ are composite, with a
logical message for every instance but with all grouped in the same physical message. As a result, all grouped
messages must be lost together. The other sorts of message are not composite and can be lost in a single instance
only.

LoseMsg(m) ∆=
∨ ∧m.type ∈ {“1a”, “2S”}
∧ ∀ i ∈ Nat :
∧ ∃m2 ∈ CFP(i)!Msg :
∧m2.type = m.type
∧m2.rnd = m.rnd
∧ CFP(i)!LoseMsg(m2)

∨ ∧m.type = “1b”
∧ ∀ i ∈ Nat :
∧ ∃m2 ∈ CFP(i)!Msg :
∧m2.type = m.type
∧m2.rnd = m.rnd
∧m2.acc = m.acc
∧ CFP(i)!LoseMsg(m2)

∨ ∧m.type ∈ {“2a”, “2b”}
∧ ∃ i ∈ Nat :
∧ CFP(i)!LoseMsg(m)
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(j)

By the way coordinator actions are grouped for all the instances, its last message is allways of the same type
and for the same round. Therefore, retransmission boils down to just retransmitting the last message in every
instance.

CoordRetransmit(c) ∆=
∀ i ∈ Nat : CFP(i)!CoordRetransmit(c)

If the last logical message of an acceptor for every instance is of type ”1b“, it means that its last action has been
a Phase1b(a, r) for some round r . In this case, it is not clear whether the coordinator of r has received the
composite ”1b“ message from a or not, so a resends it. If it is not the case that the last logical message of a
for every instance is of type ”1b“, then a has accepted some value for its current round and this means that the
coordinator does not need its composite ”1b“ message. So, a only re-sends the ”2b“ messages for the instances
at which it has accepted some value and leave the other instances unchanged.

AcceptorRetransmit(a) ∆=
∨ ∀ i ∈ Nat :
∧ CFP(i)!AcceptorLastMsg(a).type = “1b”

3.8. TLA+ SPECIFICATIONS 135

∧ CFP(i)!AcceptorRetransmit(a)
∨ ∧ ∃ i ∈ Nat : CFP(i)!AcceptorLastMsg(a).type = “2b”
∧ ∀ i ∈ Nat :

IF CFP(i)!AcceptorLastMsg(a).type = “2b”
THEN CFP(i)!AcceptorRetransmit(a)
ELSE InstanceUnchanged(i)

A proposer retransmission is only a single retransmission for some CFPaxos instance i .

ProposerRetransmit(p) ∆=
∃ i ∈ Nat :
∧ CFP(i)!ProposerRetransmit(p)
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(i)

Other Actions

LeaderSelection , SuspectOrTrust , and FailOrRecover just execute the actions with the same name on some
instance i and leave the other instances unchanged. These actions actually influence all the instances because
they deal with shared variables.
LeaderSelection ∆=
∃ i ∈ Nat :
∧ CFP(i)!LeaderSelection
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(i)

SuspectOrTrust ∆=
∃ i ∈ Nat :
∧ CFP(i)!SuspectOrTrust
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(i)

FailOrRecover ∆=
∃ i ∈ Nat :
∧ CFP(i)!FailOrRecover
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(i)

Final Specification

CoordNext(c) specifies the execution of some action by coordinator c.

CoordNext(c) ∆=
∨ ∃ r ∈ RNum : ∨ Phase1a(c, r)

∨ Phase2Start(c, r)
∨ CoordRetransmit(c)

ProposerNext(p) specifies the execution of some action by proposer p.

ProposerNext(p) ∆=
∨ ∃ r ∈ RNum, V ∈ Value ∪ {Nil} : Phase2a(p, r , V)

136 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

∨ ProposerRetransmit(p)

AcceptorNext(a) specifies the execution of some action by acceptor a.

AcceptorNext(a) ∆=
∨ ∃ r ∈ RNum : ∨ Phase1b(a, r)

∨ Phase2b(a, r)
∨AcceptorRetransmit(a)

LearnerNext(a) specifies the execution of some action by learner l .

LearnerNext(l) ∆=
∃ v ∈ CFP(0)!ValMap : Learn(l , v)

Next defines the next-state action of the specification.

Next ∆= ∨ ∃V ∈ Value : Propose(V)
∨ ∃ c ∈ Coord ∩ noncrashed : CoordNext(c)
∨ ∃ p ∈ Proposer ∩ noncrashed : ProposerNext(p)
∨ ∃ a ∈ Acceptor ∩ noncrashed : AcceptorNext(a)
∨ ∃ l ∈ Learner ∩ noncrashed : LearnerNext(l)
∨ ∃m ∈ UNION {xmsgs[i] : i ∈ Nat} : LoseMsg(m)
∨ LeaderSelection ∨ SuspectOrTrust ∨ FailOrRecover

The fairness condition of the specification. We need weak fairness on the agent actions for every instance, since
this is part of the liveness requirement for a single instance of CFPaxos .
Fairness ∆=
∧ ∀ c ∈ Coord :
∧WFvars(c ∈ noncrashed ∧ CoordNext(c))
∧WFvars(c ∈ noncrashed ∧ (∃ r ∈ RNum : Phase1a(c, r)))

∧ ∀ p ∈ Proposer , i ∈ Nat :
WFvars(p ∈ noncrashed ∧ CFP(i)!ProposerNext(p))
∧ ∀ a ∈ Acceptor , i ∈ Nat :

WFvars(a ∈ noncrashed ∧ CFP(i)!AcceptorNext(a))
∧ ∀ l ∈ Learner , i ∈ Nat :

WFvars(l ∈ noncrashed ∧ CFP(i)!LearnerNext(l))

The final specification

Spec ∆= Init ∧2[Next]vars ∧ Fairness

Below we define the interface mapping from the algorithm above and the specification of Sequence Agreement.

We assume the set Proposer can be totally ordered by a mapping POrd that matches each proposer to a natural
number and no two proposers to the same one.

ASSUME ∃POrd ∈ [Proposer → Nat] :
∀ p, q ∈ Proposer : p 6= q ⇒ POrd [p] 6= POrd [q]

POrd ∆= CHOOSE POrd ∈ [Proposer → Nat] :

3.8. TLA+ SPECIFICATIONS 137

∀ p, q ∈ Proposer : p 6= q ⇒ POrd [p] 6= POrd [q]

The array learned that maps each learner to its learned sequence is defined below, in terms of the instances that
have already been terminated and the last partially terminated sequence.
learned ∆=

LET defined [m ∈ CFP(0)!ValMap, s ∈ Seq(Value)] ∆=
LET defSet ∆= {p ∈ DOMAIN m :

∧m[p] 6= Nil
∧ ¬∃ i ∈ DOMAIN s : s[i] = m[p]
∧ ∀ q ∈ DOMAIN m : POrd [q] < POrd [p]⇒ m[q] 6= m[p]
∧ ∀ q ∈ Proposer : POrd [q] < POrd [p]⇒ q ∈ DOMAIN m}

IN CHOOSE f ∈ [1 . . Cardinality(defSet)→ defSet] :
∀ i , j ∈ DOMAIN f : i ≤ j ≡ POrd [f [i]] ≤ POrd [f [j]]

deliver [l ∈ Learner , i ∈ Nat , s ∈ Seq(Value)] ∆=
IF Proposer = DOMAIN xlearned [i][l]
THEN deliver [l , i + 1, s ◦ defined [xlearned [i][l], s]]
ELSE s ◦ defined [xlearned [i][l], s]

IN [l ∈ Learner 7→ deliver [l , 0, 〈〉]]

The following theorem asserts that the algorithm’s specification implements sequence agreement.

SA ∆= INSTANCE SAgreement
THEOREM Spec ⇒ SA!Spec

LA(V , l , c, Q) defines the liveness assumption required by the algorithm. It is the same as Collision-fast
Paxos .

LA(V , l , c, Q) ∆=
∧ {c, l} ∪Q ⊆ noncrashed
∧V ∈ proposed
∧ ∀ c2 ∈ Coord : amLeader [c2] ≡ (c = c2)
∧ activep[c] ⊆ noncrashed
∧ ∀ r ∈ RNum :
∃ r2 ∈ RNum : ∧ r ≺ r2

∧ c = CoordOf (r2)
∧ CfProposer(r2) ⊆ activep[l]

∧ activep[c] ⊆ activep[c]′

The theorem below asserts that the algorithm’s specification satisfies Liveness if the liveness assumption even-
tually holds forever.
THEOREM ∀ l ∈ Learner , V ∈ Value :

∧ Spec
∧ ∃Q ∈ SUBSET Acceptor :

138 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

∧ ∀ r ∈ RNum : Q ∈ Quorum(r)
∧ ∃ c ∈ Coord : 32[LA(V , l , c, Q)]vars

⇒ 3(∃ j ∈ 1 . . Len(learned [l]) : learned [l][j] = V)

3.9 Related Work and Final Remarks

As explained before, sequence agreement is a sequence-based specification of the famous
atomic broadcast problem of group communication [HT93]. The literature about atomic
broadcast is extensive [DSU04], and we concentrate on the works that relate to ours the
most. There are various fault-tolerant atomic broadcast algorithms that can deliver mes-
sages (extend the learned sequence in the sequence agreement problem) in two communi-
cation steps in optimistic runs [VR02, PS02, PS03, PSUC02]. However, these protocols
cannot guarantee this latency even in the total absence of failures. They are based on op-
timistic assumptions on the way messages are ordered by the communication network or
the absence of network contention. Even if the system is behaving synchronously, if their
assumptions do not hold, delivery in two communication steps will not be achieved due to
internal collisions.

The same problem happens with some fault-tolerant consensus protocols such as Fast
Paxos [Lam06a]. Concurrent proposals might collide and prevent the learning of any
of them within two communication steps. There exist collision-fast consensus proto-
cols [Lam06b, CBS06]; however their direct application to solving sequence agreement
does not lead to a collision-fast implementation since, by the definition of consensus, if two
proposals are made to the same instance, only one is given as the output and the other has
to be proposed again in a different instance (increasing the learning latency).

Instead of using consensus as the basis to build our protocol, we use a different abstrac-
tion we call M-Consensus. M-Consensus resembles the interactive consistency problem
defined for byzantine settings [PSL80]. There are some small differences between the two
problems besides those referring to the models they were defined. However, the main rea-
son why we give our problem a different name is that it can actually be defined based on any
mapping and not only a mapping from proposers to proposals. We assume such a mapping
in this chapter because this is mapping Collision-fast Paxos uses. However, the problem is
more general than that.

One could think that solutions to interactive consistency to solve sequence agreement
could give the same performance as collision-fast paxos. Interactive consistency is not
defined or used in the context of sequence agreement or atomic broadcast, though. Its
solutions usually assume all proposers propose in parallel and consider the mapping as
independent consensus instances [GL06]. This type of solution does not lead to collision-

3.9. RELATED WORK AND FINAL REMARKS 139

fast implementations because they do not ensure termination in two-communication steps if
a single proposer proposes. The other proposers will only hear about the first proposals after
one communication step and it will take at least two extra communication steps for their
empty proposals to be learned. Collision-fast Paxos provides better performance because
the mapping is considered as a single structure and it is architected wisely to allow proposers
to contact learners directly in some special cases.

It is possible to find many variants of Paxos in the literature. Disk Paxos [GL03] is a
variant of the original algorithm in which processes have access to network disks with some
limited processing power. Cheap Paxos [ML04] is also a simple variant of the original
protocol where cheap machines to help system configuration after failures and, with that,
provide better fault tolerance. Paxos Commit [GL06] uses the original protocol with some
simple optimization to solve inractive consistency in the context of transaction commit.
All these algorithms differ from ours in that they all assume a unique proposer can be
collision-fast for a round. Fast Paxos [Lam06a] allows rounds in which multiple proposers
can propose directly to acceptors, but this may lead to collisions and delay the learning
of proposed values. Collisions are also a problem with Generalized Paxos [Lam04] and
Multicoordinated Paxos [CSP06].

After designing Collision-fast Paxos, we came accross two protocols that can tolerate
more than a single failure and be collision-fast: [Zie06] and [KD96]. In fact, the two
protocols are very similar since they both seem to extend the timestamp-based algorithm
presented in [Lam78]. In contrast to the approach in [Zie06], ours considers a weaker
model, where processes can crash and recover, and messages can be lost or duplicated.
More importantly, our algorithm allows reconfiguration in case collision-fast proposers fail
so that execution can become collision-fast again for a different set of proposers. In [Zie06],
all processes are considered collision-fast proposers and a single failure makes the algorithm
slow down to a non-collision-fast execution mode forever.

The approach in [KD96] allows reconfiguration, but depends on a majority of the pro-
cesses being up and synchronized to allow collision-fast learning. In fact, due to the dy-
namic environment assumed by the algorithm, if the system is partitioned, not even a con-
sistent delivery order is guaranteed. This is a major difference to our algorithm since we
do not know how to adapt their work to make it comparable to ours. Their algorithm is
based on different building boxes with their own guarantees. This makes their algorithm
more expensive in terms of disk writes as compared to ours, which requires only acceptors
to write on disk. Reconfiguration and recovery in [KD96] is also more expensive than with
Collision-fast Paxos.

In summary, in this chapter we have discussed the design and implementation of a
very efficient and dynamic collision-fast sequence agreement protocol. Since the traditional
approach to implement sequence agreement based on standard consensus cannot result on a
resilient collision-fast implementation, we have proposed a new agreement problem called
M-Consensus that allows multiple proposals to take part in the final decision. Our solution

140 CHAPTER 3. COLLISION-FAST SEQUENCE AGREEMENT AND PAXOS

to M-Consensus is an extension of the Paxos protocol in which a number of proposers can
have their proposals as part of the final decision in two message steps. Using Collision-fast
Paxos to implement a collision-fast sequence agreement algorithm is simple and provides a
very efficient fault-tolerant protocol.

Chapter 4

Optimized Algorithms

We think in generalities, but we live in detail.
Alfred North Whitehead

In Chapter 2, we presented a simple algorithm that can be directly derived from our
deferred-update abstraction. This simple and general algorithm has some problems, though.
First of all, complete information about what was read and written by active transactions
must be forwarded to all databases through a sequence agreement protocol. As we have
seen in the previous chapter, fault-tolerant sequence agreement algorithms are expensive
and one should avoid sending too much information through them if good performance is
a system requirement. Moreover, the algorithm requires all databases to perform the same
certification test for all proposed transactions, even though its outcome is deterministic and,
therefore, guaranteed to have the same outcome. Comparing histories for certification re-
quires considerable processing time and having this task replicated in all database replicas
in the system hurts performance and does not add anything in terms of fault tolerance. Com-
bining our deferred update abstraction with termination protocols tailor-made for efficient
replication can provide much more efficient algorithms.

In this chapter, we present two such novel algorithms derived from our general abstrac-
tion. In our first algorithm, we use the knowledge obtained from working with the Paxos
protocol to implement termination very efficiently. We managed to reduce the burden of
transaction certification to a single process and propagate only transaction updates (active
operations) to acceptors and replicas, all that providing the same latency and degree of fault
tolerance as the original Paxos protocol, being able to certify and propagate active transac-
tions to replicas within three communication steps as seen from the client. We know of no
previous protocol with these characteristics. Our second algorithm assumes that stronger
properties are ensured by database replicas to achieve even better termination performance,
requiring only two communication steps and no certification procedure to commit proposed

141

142 CHAPTER 4. OPTIMIZED ALGORITHMS

transactions. It shows that our deferred-update abstraction can help the design and analy-
sis of protocols even if termination depends on stronger assumptions about the consistency
guarantees of database replicas.

4.1 Certification-based Algorithm

In this section we present our first optimized algorithm for database replication. It assumes
a model similar to the one we presented in Figure 2.4 of Section 2.3. Clients access the
interface of the replicated database through a local driver responsible for interacting with
databases and some extra agents we introduce to implement an efficient and fault-tolerant
termination protocol.

4.1.1 Model and Definitions

Our algorithm is based on four different types of agents: clients, databases, acceptors and
leaders. Clients implement the local drivers of the algorithm and databases implement the
proxies around the set of active order-preserving serializable replicas. We introduce ac-
ceptors to provide fault tolerance to our termination protocol and leaders to certify trans-
actions and propagate updates efficiently. As we did in Chapter 3, we assume an asyn-
chronous crash-recovery model in which agents communicate by exchanging messages,
with no bounds on the time it takes for messages to be transmitted or actions to be exe-
cuted. Messages can be lost or duplicated but not corrupted; agents can fail by stopping
only and never perform incorrect actions. Agents are assumed to have some sort of local
stable storage to keep their state in between failures so that finite periods of absence are not
distinguishable from excessive slowness. Although we assume agents may recover, they
are not obliged to do so once they have failed. An agent is considered to be nonfaulty iff it
never stops executing enabled actions.

Borrowing from our abstract deferred-update protocol, we must assume state-deterministic
operations. Moreover, each transaction t has a single database DBof (t) responsible for
the initial execution of its operations. We also assume transaction t has a single client
ClientOf (t) that can submit operations on its behalf. In simpler words, this means that a
transaction cannot have its operations submitted to the database by more than one client.

The algorithm is organized in a totally ordered set of rounds. For simplicity, it can be
assumed that rounds correspond to the natural numbers. We assume each round has a single
leader assigned to it, responsible for certifying and propagating update transactions at that
round. As in the previous chapter, acceptors are necessary to ensure liveness and we let a
quorum be any finite set of acceptors large enough to ensure liveness. To ensure consistency,

4.1. CERTIFICATION-BASED ALGORITHM 143

we need the following assumption about quorums:

Assumption 4.1 (Quorum Requirement) If Q and R are quorums, then Q ∩ R 6= ∅.

4.1.2 General Idea and Data Structures

The initial execution of transaction operations is done in the same way we specified for the
algorithm in Section 2.3. The main difference between that algorithm and this one lies on
the implementation of the termination protocol. During normal execution, a single leader
performs leader actions. In this scenario, when a client wants to propose an active trans-
action for termination, it sends a “propose” message to the current leader with complete
information about the transaction history. The leader keeps on its internal state the sequence
of active transactions that have been certified so far and, based on that, it can calculate the
final database state after all previously certified transactions are executed. To certify a pro-
posed transaction it simply verifies if the execution of the operations in its history produces
the same results. If it is the case, the transaction is added to the sequence of certified trans-
actions. Otherwise, it is added to a set of aborted transactions.

Whenever the leader changes its current state, after certifying a transaction, it sends
a message to the acceptors containing the current round number along with the sequence
of positively certified transactions and the set of aborted ones. Notice that the sequence
of positively certified transactions may contain only the active history for each transaction
in it, since these transactions have already passed a certification test. Different from the
algorithm on Section 2.3, no database needs to receive information about passive operations
performed by transactions originally executed on different databases. Having said that,
when an acceptor receives a new state change notification from the leader, if it has not
heard of a higher-numbered round, it extends its currently accepted values (sequence and
set) for that round with the values it received in the new message from the leader.

A pair 〈committedSeq , abortedset〉 is said to be chosen at round r if it has been ac-
cepted by a quorum Q of acceptors, that is, if committedSeq is a common prefix and
abortedset is a subset of the values currently accepted at round r for all acceptors in Q .
Since acceptors can only extend the values they accept at some round, this property is sta-
ble and can never become false once it is true. The termination protocol guarantees that no
incompatible pairs are chosen at different rounds and this makes chosen values safe to be
learned by databases and clients.

When an acceptor accepts new values, it propagates them to databases and clients along
with the round number at which the new values were accepted. A database that receives
acceptance notification messages from a quorum of acceptors for the same round number
calculates the maximum common prefix of the sequence of committed transactions in all the

144 CHAPTER 4. OPTIMIZED ALGORITHMS

messages. It then compares if it extends its currently stored sequence and, if that is the case,
updates it. This sequence implements variable learnedSeq of our abstraction with the plus
that it also contains the active history (the sequence of active operations) of each transaction
in it.

A client c that receives acceptance notification messages from a quorum of acceptors for
the same round number calculates the maximum subset of certified and aborted transactions
in all the messages. If these sets contain transactions previously proposed by c, the client
can safely deliver their outcomes (whether Committed or Aborted) to the application.

This algorithm runs nicely in this way if the leader never crashes, certifying and prop-
agating proposed transactions to databases and clients in three communication steps only.
The failure suspicion of the current leader by some other agent triggers the election of a new
leader in the system. This new leader starts a new, higher-numbered, round by sending a
notification to the acceptors. Acceptors that receive this notification for a round higher than
any other round they have heard of simply change their current round number and send a
notification to the new leader with the latest value they have accepted.

The algorithm keeps the invariant that a value accepted by an acceptor at round r extends
or equals any value chosen at a lower-numbered round. Therefore, when the new leader
receives the notification from a quorum of acceptors for the newly started round, it only
looks at the values that were accepted at the highest-numbered round. From the set of
values that satisfy this constraint, the leader picks up the pair 〈committedSeq , abortedSet〉
that extends all the other pairs. This pair becomes the new internal state of the leader
and is used to certify uncertified proposed transactions. This procedure guarantees that the
value picked by the leader extends all values possibly chosen in lower-numbered rounds
and preserves the invariant of the algorithm.

The specific implementation details of the complete protocol are given in the next sec-
tion. For now, let us concentrate on the data structures kept by each one of the agents in the
system. Many variables are straightforward, if not direct, mappings of the variables of our
general deferred-update abstraction. A client c keeps the following variables internally:

cthist [c] : A history vector mapping each transaction under c’s responsibility to its current
history, initially empty.

cq [c] : A mapping from each transaction under c to its current request or NoReq if no re-
quest is being executed on behalf of that transaction. Initially, it maps each transaction
to NoReq .

cdreq [c] : A mapping from each transaction t under c to the operation that is currently
being submitted for execution on DBof (t), or NoReq if no operation is being sub-
mitted. Initially all transactions are mapped to NoReq .

4.1. CERTIFICATION-BASED ALGORITHM 145

cpdec[c] : A mapping used to tell whether a transaction t under c was decided without
being proposed for global termination either because it was prematurely aborted dur-
ing its initial execution or because it was a passive transaction that committed on its
execution database.

cproposed [c] : Set of transaction ids proposed by c.

cgdec[c] : A mapping from each transaction t under c to the its termination decision.

The variables of a database d are:

ddreply [d] : Similar to cdreq [c] above, but mapping each transaction t such that
DBof (t) = d to the last response given by d to one of its operations.

dcnt [d] : A mapping from each transaction t to an integer representing the number of op-
erations that executed on d for t . It counts the number of operations DBof (t) has
executed for t during t’s initial execution and, if t is active, the number of active op-
erations the other databases (or DBof (t) if it does not manage to commit t directly
after it is globally committed) have executed for t after it is globally committed. It is
initially 0 for all transactions.

vers[d] : A mapping from each transaction t to an integer representing the current version
of t being submitted to d . It is initially 0 for all transactions.

dcom[d] : A mapping from each transaction t to a boolean telling whether t has been
committed on d . It is initially false for transactions.

dlearnedSeq [d] : A sequence of records of type [trans : Tid , acthist : Seq(Op)]1, where
acthist stores the sequence of operations of the active history of transaction trans .
The projection of sequence dlearnedSeq [d] considering only field trans for each
record gives the mapping to variable learnedSeq [d] in our general deferred-update
algorithm.

A leader l keeps two variables:

lrnd [l] : l ’s current round number, initially 0.

lval [l] : A record of type [seq : dlSeqType, aborted :⊆ Tid], where dlSeqType defines the
type of variable dlearnedSeq [d] above. In other words, lval [l] keeps a sequence seq
of certified transactions, where each element in the sequence contains a transaction
id and its sequence of active operations, as well as a set of aborted transactions. For
simplicity of notation in the acceptor variables, let us define ValType as the type of

1The operator Seq(S), introduced in Chapter 2 represents the set of all finite sequences of elements in set S

146 CHAPTER 4. OPTIMIZED ALGORITHMS

variable lval [l]. As for its initialization, all leaders except the leader of round 0 have
it set to a special value none . The leader of round 0 has its lval [l] pair set to an empty
sequence and an empty set.

Last, the variables kept by acceptor a are the following:

arnd [a] : The current round of a . Initially 0.

ahist [a] : The acceptance history of a , that is, a mapping from each round number to a
value of type ValType defined above. It is initially none for all rounds except round
0. The pair ahist [a][0] is set to an empty sequence and an empty set.

4.1.3 Atomic Actions

We now present more precisely the atomic actions that define the algorithm. The actions
whose names also appear in our general deferred-update abstraction represent implementa-
tions of them. The extra actions define our termination protocol.

ReceiveReq(c, t , req) Executed by client c, for transaction t and request req . This action
deals with the receipt of a request for transaction t by client c. It follows the basic
structure of the action with the same name in our deferred-update abstraction. If
the transaction has not been previously decided (either locally or by the termination
protocol) the request is evaluated and, depending on that, the action proposes t for
the termination protocol or forwards the request to the database responsible for it.
The action is enabled iff:

• c = ClientOf (t),

• DBRequest(t , req) was triggered by the application layer, and

• cq [c][t] = NoReq

It sets cq [c][t] to req and performs the following conditional action:

if t /∈ cproposed [c] ∧ cpdec[c][t] /∈ Decided then

if req = Commit and t may be active then
• cproposed [c]← cproposed [c] ∪ t
• Send 〈“propose”, t , cthist [c][t]〉 to leader

else
• cdreq [c][t]← req
• Send 〈“dreq”, t , req ,Len(cthist [c][t])〉 to DBof (t)

4.1. CERTIFICATION-BASED ALGORITHM 147

ReplyReq(c, t , rep) Executed by client c, for transaction t and reply rep. This action gives
a response to the application as a result of the last operation submitted on behalf of
transaction t . It assumes an operator ctdec(c, t) that returns the c’s local view of
abstract variable tdec, defined as follows.

ctdec(c, t) ∆= if t /∈ cproposed [c] then cpdec[c][t] else cgdec[c][t]

If c knows, based on ctdec(c, t), that t has been decided, it returns the decision to the
application. Otherwise, it replies the result given by a message of type drep coming
from DBof (t) with the database result to the last operation submitted.
The action is enabled iff:

• c = ClientOf (t),

• cq [c][t] ∈ Request , and

• if ctdec(c, t) ∈ Decided then
• rep = ctdec(c, t)

else
• cq [c][t] ∈ Op,
• rep ∈ Result , and
• c received message 〈“drep”, t , rep, cnt〉with cnt > Len(cthist [c][t])

It executes the following operations:

• DBResponse(t , rep),

• cq [c][t]← NoReq , and

• if ctdec(c, t) /∈ Decided then
– cthist [c][t]← cthist [c][t] ◦ 〈cq [c][t], rep〉
– cdreq [c][t]← NoReq

PrematureAbort(c, t) Executed by client c, for transaction t . This simple action allows c
to abort local transaction t .
It is enabled iff:

• c = ClientOf (t),

• t /∈ cproposed [c], and

• cpdec[c][t] /∈ Decided

It simply sets cpdec[c][t] to Aborted .

PassiveCommit(c, t) Executed by client c, for transaction t . It allows c to commit passive
transaction t given that DBof (t) managed to locally commit it.
It is enabled iff:

• c = ClientOf (t),

148 CHAPTER 4. OPTIMIZED ALGORITHMS

• t /∈ cproposed [c], and

• c received message 〈“drep”, t ,Committed〉 from DBof (t)

It simply sets cpdec[c][t] to Committed .

DBReq(d , t , req) Executed by database d , for transaction t and request req . This action
submits a request req to the local active order-preserving serializable database con-
trolled by proxy d . As we did in Chapter 2, we use the notation DB(d)!Action
to represent interface actions on the database replica controlled by d . As in our
abstract deferred-update algorithm, three conditions, shown below, can enable this
action. Notice however, that it is also subject to the pre-condition of interface action
DB(d)!DBRequest(〈t , vers[d][t]〉, req), since its execution must be performed as an
effect.

Condition 1 (external operation request)

• d = DBof (t),
• vers[d][t] = 0, and
• d received message 〈“dreq”, t , req , len〉 with len = dcnt [d][t]

Condition 2 (operation after termination)

• ∃i ∈ 1..Len(dlearnedSeq [d]) :
– dlearnedSeq [d][i].trans = t ,
– dcnt [d][t] < Len(dlearnedSeq [d][i].acthist), and
– req = dlearnedSeq [d][i].acthist [dcnt [d][t] + 1]

Condition 3 (commit after termination)

• req = Commit
• ∃i ∈ 1..Len(dlearnedSeq [d]) :

– dlearnedSeq [d][i].trans = t
– ∀j < i : dcom[d][dlearnedSeq [d][j].trans]

• either d = DBof (t) ∧ vers[d][t] = 0
or dcnt [d][t] = Len(dlearnedSeq [d][i].acthist)

It executes action DB(d)!DBRequest(〈t , vers[d][t]〉, req) to submit operation req to
its local active order-preserving serializable database.

DBRep(d , t , rep) Executed by database d , for transaction t and database reply rep. It
executes as a response to action DB(d)!ReplyReq(〈t , vers[d][t]〉, rep), triggered by
the database replica controlled by d . It follows basically the same structure of ac-
tion DBRep in our abstract algorithm. More specifically, it performs the following
operations:

• if d = DBof (t) then
– ddreply [d][t]← rep
– if t does not appear in dlearnedSeq [d] then

4.1. CERTIFICATION-BASED ALGORITHM 149

if rep ∈ Decided then send message 〈“drep”, t , rep〉 to ClientOf (t)
else send message 〈“drep”, t , rep, dcnt [d][t] + 1〉 to ClientOf (t)

• if rep = Aborted ∧ t appears in dlearnedSeq [d] then
– vers[d][t]← vers[d][t] + 1
– dcnt [d][t]← 0

else if rep ∈ Result then
– dcnt [d][t]← dcnt [d][t] + 1

else
– dcom[d][t]← rep = Committed

Phase1a(l , r) Executed by leader l , for round r . In this action, l starts a new round r to
overcome the possible failure of a previous leader.
It is enabled iff:

• l is the leader of round r and

• lrnd [l] < r

These pre-conditions ensures safety but can prevent progress without further con-
straints. We discuss liveness requirements on the following section. The action per-
forms the following operations:

• lrnd [l]← r

• lval [l]← none

• Send message 〈“1a”, r〉 to acceptors

Phase1b(a, r) Executed by acceptor a to start on round r . It is enabled iff:

• a receives a message 〈“1a”, r〉 and

• arnd [a] < r

The action sets arnd [a] to r and sends message 〈“1b”, r , a, vrnd , vval〉 back to the
leader of round r , where vrnd is the highest-numbered round at which a accepted
something and vval is the record containing the sequence of certified transactions
and set of aborted transactions that a accepted at vrnd .

Phase2Start(l , r) Executed by leader l , for round r . In this action, l installs the new round
and makes it operational.
It is enabled iff:

• l is the leader of round r ,

• lrnd [l] = r ,

• lval [l] = none , and

• l has received “1b” messages for round r from a quorum Q of acceptors.

150 CHAPTER 4. OPTIMIZED ALGORITHMS

From the “1b” messages received, l selects those with the highest value for vrnd .
From these selected messages, it picks up the pair vval with the longest sequence and
the biggest set. It sets lval [l] to vval and sends message 〈“2a”, r , vval〉 to all the
acceptors.

Phase2a(l , r) Executed by leader l , for round r . After l has installed round r (i.e., has set
lval [l] to a value different from none), it can start certifying proposed transactions.
It is enabled iff:

• l is the leader of round r ,

• lrnd [l] = r ,

• lval [l] 6= none , and

• l has received a “propose” message for a transaction t not present in
lval [l].committedSeq or lval [l].abortedSet .

Let FSTATE be the database state generated by executing the active histories
of every transaction in lval [l].committedSeq in order. Recall that elements of
lval [l].committedSeq contain both the transaction id and the active operations (up-
dates) of its execution history. Therefore, it is possible for l to generate FSTATE
based only on its local information. The certification of a proposed transaction t
is done by verifying if its history is compliant with an execution starting on state
FSTATE . If it is, l extends lval [l].committedSeq with a record containing t’s id and
its sequence of active operations. If t does not pass the certification test, l extends
lval [l].abortedSet with t’s id. Notice that after certification passive operations and
operation results referring to t’s history present in the “propose” message are sim-
ply thrown away by l . Then, l sends a message 〈“2a”, r , val〉, where val equals the
new value of lval [l], to all acceptors.

Phase2b(a, r) Executed by acceptor a , for round r . In this action, a accepts a value
forwarded by the leader of round r .
It is enabled iff:

• arnd [a] ≤ r ,

• a has received a message 〈“2a”, r , val〉 and either ahist [a][r] = none or val
extends ahist [a][r], in the sense that ahist [a][r].committedSeq is a prefix of
val .committedSeq and ahist [a][r].abortedSet is a subset of val .abortedSet .

The action sets arnd [a] to r and ahist [a][r] to the pair val received in the “2a”
message. It also sends a message 〈“2b”, r , a, val〉 to all databases and clients.

ClientLearn(c) Executed by client c. The action is enabled if c has received “2b” mes-
sages for the same round from a quorum of acceptors. c calculates the longest com-
mon prefix of all committedSeq sequences received and the longest common subset
of all abortedSet sets received. If a transaction t under c’s responsibility appears in
any of these values and cgdec[c][t] = Unknown , c sets cgdec[c][t] to Committed if

4.1. CERTIFICATION-BASED ALGORITHM 151

t appears in the common sequence of committed transactions or Aborted if it appears
in the common set of aborted ones.

DatabaseLearn(d) Executed by database d . The action is enabled if d has received “2b”
messages for the same round from a quorum of acceptors. d calculates the longest
common prefix of all committedSeq sequences received only. If the calculated value
extends dlearnedSeq [d], dlearnedSeq [d] is updated with the new value.

4.1.4 Correctness and Optimizations

The correctness of the algorithm above is given by a refinement mapping from its variables
to the variables of our abstract deferred-update algorithm. In fact, variables dcnt , vers ,
and dcom are the same. All the other variables but gdec are implemented by the simple
mappings below:

thist [t] ∆= cthist [ClientOf (t)][t]

q [t] ∆= cq [ClientOf (t)[t]

dreq [t] ∆= cdreq [ClientOf (t)][t]

pdec[t] ∆= cpdec[ClientOf (t)][t]

dreply [t] ∆= ddreply [DBof (t)][t]

proposed ∆=
⋃

c ∈ Client

cproposed [c]

learnedSeq [d] ∆= projection of sequence dlearnedSeq [d] over field trans.

As for gdec it depends on two extra definitions. We say that transaction t is globally
committed iff it appears in a common prefix of field seq for values accepted by a quorum of
acceptors at the same round, that is, iff

∃Q ∈ Quorum, r ∈ N, seq ∈ Seq(ValType) :

− seq contains t , and

− ∀a ∈ Q :

152 CHAPTER 4. OPTIMIZED ALGORITHMS

− ahist [a][r] 6= none and
− seq is a prefix of ahist [a][r].committedSeq

Similarly, we can define a transaction t as globally aborted iff it appears in the aborted set
accepted by a quorum of acceptors, that is, iff

∃Q ∈ Quorum, r ∈ N

− ∀a ∈ Q :
− ahist [a][r] 6= none and
− t appears in ahist [a][r].abortedSet

With these two definitions, we can easily create a mapping for termination variable gdec as
follows:

gdec[t] ∆=

Committed , if t is globally committed
Aborted , if t is globally aborted
Unknown , otherwise

The refinement mapping above is easily proved by analyzing the actions of the algorithm
and matching them with the corresponding actions they implement in our deferred-update
abstraction. Few, very intuitive, extra invariants are necessary as we show in the following.

Action ReceiveReq: This action directly implements its abstraction. The substitution of
tdec[t] /∈ Decide for t /∈ cproposed [c] ∧ cpdec[c][t] /∈ Decided is guaranteed to be
correct by Invariant TI4(b) of Section 2.4.1.3.

Action ReplyReq: The use of expression ctdec(c, t) instead of tdec[t] is correct because
cgdec[c][t] is only changed from Unknown to the value of gdec[t] according to our
mapping above by action ClientLearn . Therefore, if ctdec(c, t) ∈ Decided then
tdec[t] ∈ Decided . If ctdec(c, t) /∈ Decided , invariant TI3(e) and the action’s pre-
condition ensure correctness.

Action PrematureAbort: Direct implementation.

Action PassiveCommit: A “drep” message carrying the decision Committed implies
that dreply [t] had value Committed at some point. It is easy to show that dreply [t]
never changes to a different value once it is set to Commited .

Action DBReq: Enabling condition 1 is the only one not directly implementing the same
condition in our abstraction. However, it is easy to prove the invariant that a “dreq”
message satisfying these conditions when vers[d][t] = 0 carries the correct value of
dreq [t] and Len(thist [t]).

4.1. CERTIFICATION-BASED ALGORITHM 153

Action DBRep: In this algorithm, it is also easy to prove the invariant that, if
DB(d)!q [〈t , vers[d][t]〉] ∈ Request , then t ∈ proposed ⇐⇒ t appears in
dlearnedSeq [d]. This invariant makes it clear that the algorithm’s action implement
its abstraction correctly.

One might think that the most difficult part of the proof has to do with the actions im-
plementing the termination protocol. However, it is easy to see the resemblance between
these actions and those of Collision-fast Paxos presented in Chapter 3. In fact, our termina-
tion protocol is a variant of the original Paxos protocol [Lam98], based on its generalized
extension presented in [Lam04]. We just could not use Paxos as a black box because our
leader is responsible for certification and does not forward to the acceptors the information
that does not have to be propagated to replicas. Nevertheless, Nontriviality, Stability, Con-
sistency, and Liveness follow directly from the properties ensured by Paxos and the facts
that the sequence of transactions in any pair 〈committedSeq , abortedSet〉 propagated from
the leader to the acceptors is guaranteed to be serializable by the certification test and no
transaction will ever belong to both committedSeq and abortedSet .

The Liveness of termination is ensured by Paxos. For Paxos to ensure progress, we
must make the same assumptions and modifications to the algorithm stated in Section 3.4.2
with some required small adaptations. Progress of Paxos also depends on an unreliable
leader election algorithm that eventually elects a single nonfaulty leader. A leader l will
only execute leader actions if it believes to be the output of the leader election algorithm. A
nonfaulty quorum of acceptors is also required for liveness. A more complete explanation
and proof of Liveness concerning Paxos is given in [Lam06a].

As for the optimizations, there are many possibilities. As a simple example, variable
cthist [c][t] does not have to be kept after ctdec(c, t) ∈ Decided . The same is valid for
the active history and id of transactions stored by databases for proposed transactions that
have already been locally committed. In fact, many other variables do not have to be stored
forever, and can be released as soon as they will not be required by the algorithm. Variable
ahist is defined the way it is in order to ease our mapping of variable gdec as well as the
understanding of our termination protocol. In fact, acceptors can only keep the last value
they have accepted and the round at which it happened, since these are the only values sent
in “1b” and “2b” messages [Lam98, Lam04].

The sending of increasing sequences and sets in “2a” and “2b” messages during normal
execution can easily degrade performance of direct implementations. This can be easily op-
timized by sending just complementary information with respect to the information that was
sent before. For example, when the leader certifies a transaction t and adds it to sequence
lval [l].committedSeq , it could send just the index of t in the new sequence together with
the extra information about t (its id and active history). The same optimization can be done
if we represent lval [l].abortedSet also as a sequence (i.e., use a sequence to implement a
set). An acceptor only accepts information sent like that if it correctly extends the value

154 CHAPTER 4. OPTIMIZED ALGORITHMS

the acceptor has previously accepted, with no gaps. Messages received out of order can be
stored in a local buffer and ordered before being accepted. The same thing can be done
for “2b” messages, making both “2a” and “2b” messages sent during normal execution
of practical size, and without increasing the message complexity of the protocol. Message
losses can be recovered by using special messages to request missing information.

As for “1b” messages and the initial “2a” message sent by the leader of a new round, it
is possible to optimize them in similar ways, but this requires stronger assumptions and al-
gorithm changes that may depend on the application scenario. If the number of the databases
and clients in the system is finite (it is not possible to continuously add new ones to the sys-
tem), processes can store and send sequences in messages without prefixes that are known
to have been learned by all databases and clients. It is also possible to use checkpoints to
avoid dealing with long sequences of committed transactions. The set of aborted transac-
tions can be compressed if clients responsible for transactions in it have already received
the information or have surely crashed.

Assuming that databases have a consistency guarantee stronger than active order-
preserving serializability can also lead to optimizations. For example, if it is possible to in-
fer the consistent state from which a transaction reads (achievable with two-phase-locking,
some multiversion concurrency control mechanisms, or direct access to the internals of the
database engine) one can considerably compress the history information clients must keep.
In this case, it suffices to know which prefix of dlearnedSeq the state read by the transac-
tion refers to and the data items read by the transaction (no results must be kept). Then, the
certification test of a transaction t boils down to checking if any active transaction after the
prefix seen by t in the currently certified sequence changed any data item read by t during
its execution. To compress the stored information even further, clients can keep a reference
to a superset of the data items read by a transaction, keeping, for example, the reference
to a table the transaction read from instead of multiple references to individual table rows.
Assuming a transaction reads more than it actually reads can just force it to be aborted in
situations where it could be committed, but never the opposite. In an extreme case, it is
possible to assume the transaction has read the whole database state, reducing to a constant
size the amount of information related to read operations kept by clients and propagated to
the leader.

Notice that only the set of acceptors is assumed to be finite to ensure consistency of ter-
mination. Having an infinite number of possible leaders, clients, and databases, allows us to
improve performance by avoiding writing their state on stable storage. A leader that crashes
and recovers can just assume a new identity with an empty initial state before rejoining the
system [Agu04]. This means that no disk writes on the databases are necessary either.
However, databases are atomic and stable in their nature and most off-the-shelf databases
systems will not have the option to disable their disk writes. The algorithm in the next sec-
tion assumes a special class of databases that usually have this feature, thus providing very
good performance.

4.2. IN-MEMORY PRIMARY-BACKUP REPLICATION 155

In fact, the next algorithm is an extension of the current one based on the fact that
the certification test can be done by using a database to serialize the active transactions
submitted for termination. Assuming a stronger scheduler inside this database can lead to a
very efficient termination protocol.

4.2 In-memory Primary-Backup Replication

This section presents a primary-backup protocol to manage replicated in-memory database
systems (IMDBs). The protocol we present extends the one originally presented in [CPS06]
and, likewise, exploits features inherent to in-memory databases such as simpler concur-
rency control mechanisms and the possibility of deferring disk writes. The algorithm is
fault tolerant in that primary crashes can be suspected and, in that case, a new primary is
elected without jeopardizing consistency. False failure suspicions are tolerated and never
lead to incorrect behavior. The protocol uses a variant of Paxos to solve the sequence agree-
ment problem inside termination. Under normal circumstances (i.e., no failures or false
suspicions), transactions are committed after only two communication steps, as seen by the
application, with no risk of collisions.

4.2.1 Motivation

Demand for high performance combined with plummeting hardware prices have led to the
widespread emergence of large computing clusters [Pfi98, SS99]. Often built out of com-
modity components, these systems are composed of servers interconnected through very fast
network switches and equipped with powerful processors and large memories. Applications
in these environments often rely on shared storage systems, accessible to the application
processes running on remote servers. A typical example is a multi-tier web application in
which some of the tiers run within the cluster [BN97]. Storage systems are used to keep
shared information, managed concurrently by different application processes, as well as to
provide fault tolerance by allowing processes to save their state and later retrieve it for re-
covery and migration. Whatever the use, high-availability, good performance, and strong
consistency are key requirements of a storage service. In such environments, in-memory
databases (IMDBs) [GMS92] have been successfully used to increase the performance of
transactions [BK02]. The algorithm we present in the following section introduces high-
availability in a replicated IMDB setting with very small overhead.

IMDBs provide high transaction throughput and low response time by avoiding disk
I/O during the execution of transaction operations. The key characteristic of an IMDB is
that the database resides in the server’s main memory—virtual memory can also be used,
but maximum performance is achieved when data fits the server’s physical memory. Since

156 CHAPTER 4. OPTIMIZED ALGORITHMS

transactions do not have to wait for data to be fetched from disk, concurrency becomes
less important for performance and IMDBs rely on simple concurrency control mecha-
nisms [GMS92]. Some of them even consider very aggressive approaches such as multiple-
readers single-writer [BK02] in which read-only transactions can execute concurrently, but
update transactions are serialized.

Although IMDBs rely on main memory only for transaction execution, a transaction log
must be kept on disk for recovery. Read-only transactions execute in main memory only;
update transactions have to log information on disk before committing. In fact, storing
information on disk is the main overhead of update transactions executing in an IMDB. To
improve performance, disk writes can be deferred until after the transaction commits. This
approach, however, risks losing data in case of database crashes. In replicated environments,
though, durability can be ensured outside the database sites, by the termination protocol.
Recall that our abstract deferred-update algorithm does not require the number of databases
to be finite. Implementations can keep this characteristic and make use of databases without
strong durability (or without durability at all). A database that crashes and recovers without
transactions can simply assume a new identity and join the system as a new empty database.

The following sections present a low-overhead primary-backup protocol to handle repli-
cated IMDBs that follows our deferred update abstraction. Our solution consists in or-
chestrating IMDBs without changing their internals. Our protocol exploits two features of
IMDBs: simpler (and stronger) concurrency control mechanisms and deferred disk writes.
Assuming databases offer a strong concurrency control allowed us to reduce to only two
communication steps the latency needed to terminate update transactions, as seen by the
application.

Deferred disk writes allowed us to reduce the overhead of committing update trans-
actions. Transaction durability is ensured by the consistency property of the termination
protocol. Traditional deferred update algorithms with standard off-the-shelf databases in-
cur two disk accesses for the termination of update transactions: one done by the middle-
ware to ensure correctness despite arbitrary crashes and recoveries, and another done by the
database. By disabling durability at the databases, a single disk access is needed.

Our protocol is based on the primary-backup strategy. Read-only transactions can be
processed at any replica. Update transactions are executed first by the primary, and then
by the backups. From the application’s viewpoint, the system behaves as a single-copy
serializable database. Primary crashes are handled by electing a new primary whenever the
current one fails. False failure suspicion caused by aggressive failure detection is handled
by allowing more than one primary to coexist at the same time without violating correctness.
Provided that failures and suspicions cease, the protocol ensures that the system converges
to a state in which only one primary exists.

4.2. IN-MEMORY PRIMARY-BACKUP REPLICATION 157

4.2.2 Concurrency Control Mechanism

We now explain in detail our assumptions about the concurrency control mechanism inside
database replicas. First, in-memory database systems usually rely on lock-based concur-
rency control (two-phase locking [GR93]) for its simplicity, since IMDBs execute oper-
ations and transactions much faster than conventional disk-based databases. Lock-based
concurrency control is a stronger form of order-preserving serializability, presented in Sec-
tion 2.1. Not only does it guarantee that the commit order represents a correct transaction
serialization, but it also ensures that a transaction can be committed after the execution of
each of its operations. In simpler words, when the result of an operation is given, if it is dif-
ferent from Aborted , then the transaction responsible for that operation can have its current
history serialized right after the last committed transaction.

The problem of lock-based concurrency control is the possibility of deadlocks. To deal
with this, most database systems (whether in-memory or not) make use of timeouts. If a
lock is requested but not granted within a certain time interval, the operation is canceled
and the transaction responsible for it is aborted. Another property this simple approach
gives to the database implementing it is that transactions cannot be blindly aborted, that is,
transactions cannot have their locks released and be internally aborted in between operations
(just during their execution). Complex databases might set priorities to transactions or use
extra timeouts to abort transactions that hold locks for too long, which would invalidate this
property. However, most in-memory databases we are aware of either do not provide such
capabilities or allow them to be disabled for better performance.

Our complete assumptions about the concurrency control mechanism found in database
replicas are given in Figure 4.1 below. The figure shows the required changes in our pre-
vious specification of an order-preserving serializable database. The first modified action
is ReplyReq . Different from our previous specification, now a database can only reply to
an operation if it is possible to come up with a complete serialization of all committed and
running transactions, taking into consideration the current history of transactions that have
not been decided yet. We define undecidedSet to equal the set of all undecided transac-
tions with some history, which may not include t if it is executing its first operation. In the
pre-condition of this action, we use the postfix operator ′ to represent the value of a variable
after the action is taken. It is used on thist to represent its value after the transaction history
of t is extended with the operation being executed and its result is about to be given to the
client.

Action DoAbort expresses our assumption that transactions are not sporadically aborted
when they are not executing an operation. Action DoCommit is just simplified in this
specification since ReplyReq already guarantees that a running (undecided) transaction can
always be committed next.

158 CHAPTER 4. OPTIMIZED ALGORITHMS

ReplyReq(t ∈ Tid , rep ∈ Reply)
Enabled iff:
• q[t] ∈ Request
• if tdec[t] ∈ Decided

then
rep = tdec[t]

else
q[t] ∈ Op ∧ rep ∈ Result ∧
∀ sufix ∈ Perm(undecidedSet ∪ t) :
∃ st ∈ DBState :

CorrectSerialization(serialSeq ◦ sufix , thist ′, InitialDBState, st)
Effect:
• DBResponse(t , rep)
• q[t]← NoReq
• if tdec[t] /∈ Decided then

thist [t]← thist [t] ◦ 〈q[t], rep〉

DoAbort(t ∈ Tid)
Enabled iff:
• tdec[t] /∈ Decided
• q[t] ∈ Op

Effect:
• tdec[t]← Aborted

DoCommit(t ∈ Tid)
Enabled iff:
• tdec[t] /∈ Decided
• q[t] = Commit

Effect:
• tdec[t]← Committed
• serialSeq ← serialSeq ◦ t

Figure 4.1: Changes in our order-preserving serializability specification.

4.2.3 The Algorithm

Our replication protocol is similar to the protocol in Section 4.1. As for the agents we
assume, the only difference is that the current algorithm does not assume a set of lead-
ers. Termination certification is performed using one of the database replicas. The model
assumed is basically the same, with the difference that a round now has a single primary
database related to it instead of a leader.

The main idea of this protocol is to have active transactions executing on a single
database site, the primary, in order to use its concurrency control mechanism to perform
their certification for termination. If we disconsider failures, the concurrency control mech-
anism we assume for databases guarantees that all transactions that are not currently exe-
cuting operations do not conflict with each other and could be committed or aborted in any
order. Therefore, clients can simply propose their active histories to a sequence agreement
protocol and databases can apply their updates in the selected order.

As before, we use rounds to overcome the problem of failures. Each round has a sin-
gle primary responsible for processing active transactions (those requiring certification for

4.2. IN-MEMORY PRIMARY-BACKUP REPLICATION 159

termination). When a client sends the first operation of a transaction to the primary, the
response from the primary also brings the round number in which the transaction should be
proposed. A round change will prevent the transaction from being chosen (and learned),
automatically aborting it. We explain in detail how this mechanism works later. At this
point, we want to concentrate on the main idea of the algorithm.

Instead of having clients propose active transactions to a leader responsible for order-
ing and forwarding them to acceptors, we take a different approach. Since clients have to
contact the primary to submit operations of active transactions, their ordering can be cal-
culated during the operation execution phase and the ordering information can be sent to
the client together with the operation results. This allows clients to propose active trans-
actions directly to the acceptors and releases the primary from the burden of dealing with
“propose” messages.

The necessary total ordering of proposed transactions is done by using an infinite num-
ber of consensus instances (starting from 0), as explained in Section 3.1. Whenever the
primary sends the result of an operation back to the client, it sends also the reference to a
“free” instance of consensus the client can use to propose that transaction. The way these
instances are selected makes sure that no two transactions are proposed for the same round
and the same instance, which automatically avoids the problem of collisions.

Clients send their proposals directly to acceptors with no risk of collisions due to the
ordering information provided by the primary. Acceptors accept transactions and forward
them to databases and clients. A proposed transaction is chosen and can be safely learned
by databases and clients if it has been accepted by a quorum of acceptors, which normally
happens after two communication steps only. A transaction is aborted if the round it exe-
cuted at has been overtaken by a new round without it being chosen in the process. The
detailed description of the algorithm is given later in this section.

If instance gaps are formed when a new round starts (due to clients not making their
proposals in time to get them chosen), the new primary can fill them with a special trans-
action ⊥ that will not be considered by database replicas. In fact, to simplify some actions
of the termination protocol, we initialize the system so that ⊥ is already chosen and learned
for instance 0.

Many variables and actions of the algorithm are equal to or resemble those of the previ-
ous one. A client c keeps the following variables:

cthist [c], cq [c], cdreq [c], cpdec[c], cproposed [c] : The same as in the previous protocol.

crndof [c] A mapping from each transaction under the responsibility of c to the round in
which it should be proposed. This variable is initialized during the execution of the
algorithm.

160 CHAPTER 4. OPTIMIZED ALGORITHMS

cinstof [c] A mapping from each transaction under the responsibility of c to the instance in
which it should be proposed. This variable is also initialized during the execution of
the algorithm.

clearned [c] A mapping from each consensus instance i to a transaction id or a special value
NoTrans . Initially, it maps all instances to NoTrans .

The variables of a database d are shown in the following. Variables with prefix p are used
by d to start a new round coordinated by it.

ddreply [d], dcnt [d], vers[d], dcom[d] : The same as in the previous protocol.

drnd [d] : The round number database d is currently at, initially 0.

prnd [d]: The new round number d wants to start, if prnd [d] 6= drnd [d], initially 0.

pfproposal [d] : A mapping from instances to values (pairs containing a transaction’s id and
active history) that might have been chosen in rounds previous to prnd [d], in case
prnd [d] 6= drnd [d] (i.e., when d is starting a new round). Initially, it is an empty
mapping for all databases but the primary of round 0, in which case pfproposal [d] is
a single mapping from instance 0 to special transaction ⊥.

dfreeinsts[d] : A set containing all the instances that are free for round rnd [d], if d is the
primary of round rnd [d]. The primary of round 0 has it initialized to all instances but
instance 0.

dinstof [d] : A mapping from each transaction t under the responsibility of d to the current
consensus instance that is assigned to t or special value nothing . Initially, it maps
each transaction to nothing .

dlearned [d] : A mapping from each instance i to a pair containing a transaction’s id and
active history or special value none . Initially it maps instance 0 to ⊥ and all the
others to none .

Acceptor a keeps the following three variables:

arnd [a] The round number a is currently at, initially 0.

vrnd [a] The highest-numbered round a has accepted a value at (in any instance). Differ-
ent from the previous protocol, we do not keep the whole acceptance history of an
acceptor. We do that to show how the protocol can be implemented efficiently.

vval [a] A mapping from each instance i to the pair 〈tid , acthist〉 a has accepted at round
vrnd [a], or special value none if a has not accepted any value at vrnd [a] for instance
i . vval [a] can also be ⊥ if ⊥ was proposed to fill a gap at instance i . It is initially
none for all instances except for instance 0, which is set to ⊥.

4.2. IN-MEMORY PRIMARY-BACKUP REPLICATION 161

In the following we describe in detail the atomic actions performed by each agent of the
algorithm. Instead of forwarding active transactions to the current primary during the exe-
cution, we assume DBof (t) is so that it associates active transactions to the current primary.
Active transactions executed at non-primary databases will not be able to be proposed. The
assumption about DBof (t) is practical because there is no restriction about the way trans-
action ids are created. One could think of an implementation where the transaction id is
defined by a scheduling box outside the replicated database that creates the id right before
the transaction starts executing in a way that it is directed to the correct replica. A simple
example could have a transaction id as a record that has as one of its fields the database
replica it should execute at.

ReceiveReq(c, t , req) This action is very similar to the one described for our previous al-
gorithm. For example, it is enabled by exactly the same pre-conditions:

• c = ClientOf (t),

• DBRequest(t , req) was triggered by the application layer, and

• cq [c][t] = NoReq

As the previous action, it sets cq [c][t] to req , but performs a slightly different condi-
tional action, described below.

if t /∈ cproposed [c] ∧ cpdec[c][t] /∈ Decided then
if req = Commit ∧

t has executed at least one active operation ∧
DBof (t) is the primary of crndof [c][t]
then
• cproposed [c]← cproposed [c] ∪ t
• Send 〈“2a”, cinstof [c][t], crndof [c][t], t , acthist〉, where acthist is
the active history of t , to acceptors

else
• cdreq [c][t]← req
• Send 〈“dreq”, t , req ,Len(cthist [c][t])〉 to DBof (t)

The change makes sure that only active transactions that have executed operations at
the correct primary of crndof [c][t] are proposed. Moreover, proposals go directly to
the acceptors in “2a” messages containing both the instance and the round for which
the proposal is being made.

ReplyReq(c, t , rep) This action is almost identical to the action with the same name in
our previous algorithm. Since the variable used by clients to learn about globally
committed and aborted transaction is different, it uses the following definition for
operator ctdec(c, t):

ctdec(c, t) ∆= if t /∈ cproposed [c]

162 CHAPTER 4. OPTIMIZED ALGORITHMS

then cpdec[c][t]

else if clearned [c][cinstof [c][t]] = NoTrans

then Unknown

else if clearned [c][cinstof [c][t]] = t

then Committed

else Aborted
This definition basically says that a proposed transaction is committed if it is the deci-
sion of the instance in which it was proposed and is aborted if a different transaction
was decided for that instance. The action is enabled iff:

• c = ClientOf (t),

• cq [c][t] ∈ Request , and

• if ctdec(c, t) ∈ Decided then

• rep = ctdec(c, t)

else

• cq [c][t] ∈ Op,
• rep ∈ Result , and
• c received message 〈“drep”, t , rep, cnt , instof , rndof 〉 with cnt >

Len(cthist [c][t])

It executes the following operations:

• DBResponse(t , rep),

• cq [c][t]← NoReq , and

• if ctdec(c, t) /∈ Decided then

– cthist [c][t]← cthist [c][t] ◦ 〈cq [c][t], rep〉
– cdreq [c][t]← NoReq
– cinstof [c][t]← instof
– crndof [c][t]← rndof

The “drep” messages from DBof (t) now carries on the information about the in-
stance and the round at which t should be proposed if it is active. This information is
stored on variables cinstof [c][t] and crndof [c][t].

PrematureAbort(c, t) This exaction is exactly the same as in the previous algorithm.
However, to avoid building gaps if passive transactions are also executed at the pri-
mary, it is recommended to execute it only if a message 〈“drep”, t ,Aborted〉 is
received from DBof (t).

PassiveCommit(c, t) This action is exactly the same as in the previous algorithm.

4.2. IN-MEMORY PRIMARY-BACKUP REPLICATION 163

DBReq(d , t , req) If we define dlearnedSeq [d] as being the sequence built out of dlearned
by starting at the first instance and appending every element that differs from ⊥ until
a value none is reached for the first time, this action has the same enabling conditions
as the same action in the previous algorithm, that is,

Condition 1 (external operation request)

• d = DBof (t),
• vers[d][t] = 0, and
• d received message 〈“dreq”, t , req , len〉 with len = dcnt [d][t]

Condition 2 (operation after termination)

• ∃i ∈ 1..Len(dlearnedSeq [d]) :
– dlearnedSeq [d][i].trans = t ,
– dcnt [d][t] < Len(dlearnedSeq [d][i].acthist), and
– req = dlearnedSeq [d][i].acthist [dcnt [d][t] + 1]

Condition 3 (commit after termination)

• req = Commit
• ∃i ∈ 1..Len(dlearnedSeq [d]) :

– dlearnedSeq [d][i].trans = t
– ∀j < i : dcom[d][dlearnedSeq [d][j].trans]

• either d = DBof (t) ∧ vers[d][t] = 0
or dcnt [d][t] = Len(dlearnedSeq [d][i].acthist)

It executes a few more actions than its counterpart though, since it releases the in-
stance that was previously assigned to transaction t .

• DB(d)!DBRequest(〈t , vers[d][t]〉, req)

• dfreeinsts[d]← dfreeinsts[d] ∪ {dinstof [d][t]}
• dinstof [d][t]← nothing

DBRep(d , t , rep) Executed by database d , for transaction t and database reply rep, in
response to action DB(d)!ReplyReq(〈t , vers[d][t]〉, rep), triggered by the database
replica controlled by d . It performs the following operations:

• if d = DBof (t) then
– ddreply [d][t] = rep
– if @i : dlearned [d][i].tid = t then

if rep ∈ Decided then send message 〈“drep”, t , rep〉 to ClientOf (t)
else

- Select instance inst in dfreeinsts[d] (lowest value to avoid gaps)
- Send 〈“drep”, t , rep, dcnt [d][t]+1, inst , drnd [d]〉 to ClientOf (t)
- dfreeinsts[d]← dfreeinsts[d] \ {inst}

164 CHAPTER 4. OPTIMIZED ALGORITHMS

- dinstof [d][t]← inst

• if rep = Aborted ∧ ∃i : dlearned [d][i].tid = t then
– vers[d][t]← vers[d][t] + 1
– dcnt [d][t]← 0

else if rep ∈ Result then
– dcnt [d][t]← dcnt [d][t] + 1

else
– dcom[d][t]← rep = Committed

Phase1a(p, r) Executed by primary p, for round r . In this action, p starts a new round r
to overcome the possible failure of a previous primary or because it suspects one of
its clients has crashed without proposing a transaction, which would leave a gap in
the instances and prevent the liveness of termination.
It is enabled iff:

• p is the leader of round r and

• prnd [p] < r

As before, these pre-conditions ensures safety but can prevent progress without fur-
ther constraints. We discuss liveness requirements on the following section. The
action performs the following operations:

• prnd [p]← r

• pfproposal [p]← special value calculating

• Send message 〈“1a”, r〉 to acceptors

Phase1b(a, r) Executed by acceptor a to start on round r . It is enabled iff:

• a receives a message 〈“1a”, r〉 and

• arnd [a] < r

The action sets arnd [a] to r and sends message 〈“1b”, r , a, vrnd [a], vval [a]〉 back
to the primary of round r .

Phase2Start(p, r) Executed by primary p, for round r . In this action, p calculates the
value of pfproposal based on the “1b” messages it received from a quorum of accep-
tors.
It is enabled iff:

• p is the primary of round r ,

• prnd [p] = r ,

• drnd [p] < prnd [p],

• pfproposal [p] = calculating , and

4.2. IN-MEMORY PRIMARY-BACKUP REPLICATION 165

• p has received “1b” messages for round r from a quorum Q of acceptors.

To build pfproposal [p], p first calculates the highest value of vrnd it received in
the “1b” messages. For each instance i , if all values vval [i] received equal none ,
pfproposal [p][i] is set to none as well; otherwise it is set to any of the values (which
are guaranteed to be the same). After this initial calculation, gaps in pfproposal [p]
at instances lower than some instance i to which pfproposal [p][i] was defined are
filled with ⊥. In the end, pfproposal [p] maps each instance i lower than some upper
bound to either a value that might have been chosen in a previous round or ⊥. This
will be the initial proposal for round r and primary p cannot start accepting active
transactions for round r until it receives an acceptance confirmation for it from the
acceptors and it has learned all the values in pfproposal [p]. Therefore, p sends a
message 〈“2aS”, r , pfproposal [p]〉 to all acceptors.

Phase2b(a, r) Executed by acceptor a , for round r .
When a receives a message 〈“2aS”, r , pfproposal〉 such that arnd [a] ≤ rnd and
vrnd [a] < r , it does the following:

• vval [a]← pfproposal

• vrnd [a]← r

• arnd [a]← r

• Send 〈“2bS”, r , a, inst , vval〉 to databases and clients

When a receives a message 〈“2a”, inst , r , t , acthist〉 such that arnd [a] ≤ r ,
vrnd [a] = r , and vval [a][inst] = none , it takes the following actions:

• vval [a][inst]← 〈t , acthist〉
• vrnd [a]← r

• arnd [a]← r

• Send 〈“2b”, r , a, inst , t , acthist〉 to databases and clients

ActivateRound(p, r) Executed by primary p, for round r . After action Phase2Start is
executed, the value of drnd [p] remains the same old value lower than prnd [p]. This
means that active transactions executing on p will not be proposed under the new
round. This is paramount to the correctness of the protocol since p can only allow
active transactions to be proposed after it is guaranteed that all transactions commit-
ted at previous rounds are committed inside its local database, so that they can be
correctly serialized with the currently running transactions. This action is responsible
for updating drnd [p], thus allowing new active transactions to be proposed at the new
round.
It is enabled iff:

• p is the primary of round r ,

• prnd [p] = r ,

166 CHAPTER 4. OPTIMIZED ALGORITHMS

• drnd [p] < prnd [p],

• pfproposal [p] = calculating ,

• dlearned [p] matches pfproposal [p],

• every transaction t in pfproposal [p] has dcom[p][t] = true

• p has received “2bS” messages for round r from a quorum Q of

These pre-conditions make sure that all previously committed transactions were
learned by p and have been committed at its local database. More than that, it guar-
antees that acceptors have received and acknowledged the “1bS” message sent. At
this point p can allow active transactions running on it to be proposed under the new
round. The action executes the following operations:

• drnd [p]← prnd [p]

• dfreeinsts[p]← instances not mapped in pfproposal [p]

• ∀t : dinstof [p][t]← nothing

ClientLearn(c) Executed by client c. The action is enabled if c has received “2b” mes-
sages for the same round and instance from a quorum of acceptors, or if c has re-
ceived “2bS” messages for the same round from a quorum of acceptors. c verifies if
any value has been chosen (accepted by a quorum for the same round and instance)
and updates clearned [c] accordingly.

DatabaseLearn(d) Executed by database d . It is very similar to ClientLearn , with the dif-
ference that dlearned [d][i] keeps both the transaction id and the active history of the
transaction chosen for instance i , whereas clearned [c][i] keeps only the transaction
id.

4.2.4 Correctness and Optimizations

The correctness of our in-memory primary-backup replication protocol can be proved using
the same approach as our certification-based algorithm from Section 4.1. In fact, if we
define dlearnedSeq [d] the same way we did for action DBRep above, we can practically
use the same refinement mapping, except for variable gdec. The mapping for gdec[t] is
different because transactions are globally committed or aborted differently in the current
protocol. To come up with a mapping for the abstract variable gdec we must extend the
algorithm with a history variable, that is, variables that keep some history of the protocol
execution. In our case, we need only to define a variable ahist to keep the acceptance
history of acceptors in the following way.

ahist [a][r][i] : The unique value accepted by acceptor a at round r for instance i , or none
if nothing was accepted by a for that round and instance.

4.2. IN-MEMORY PRIMARY-BACKUP REPLICATION 167

A proposed transaction t is globally committed if it has been chosen, that is, if has been
accepted by a quorum of acceptors for the same round and instance.

Committed(t) ∆=
∃Q ∈ Quorum, r ∈ N, i ∈ N :

• ahist [a][r][i] /∈ {none,⊥}
• ahist [a][r][i].trans = t

A transaction t is globally aborted if it has been proposed for some instance i and a
different transaction is chosen for that instance.

Aborted(t) ∆=
• t ∈ cproposed [ClientOf (t)]
∃Q ∈ Quorum, r ∈ N, i ∈ N :

– ahist [a][r][i] /∈ {none,⊥}
– ahist [a][r][i].trans 6= t

We can now easily create a mapping for termination variable gdec as follows:

gdec[t] ∆=

Committed , if Committed(t)
Aborted , if Aborted(t)
Unknown , otherwise

The proof that actions not related to termination implement the actions with the same
name in our deferred-update abstraction given this refinement mapping follows exactly the
same steps (and uses the same invariants) presented in Section 4.1.4 and there is no need
for us to repeat them here.

As for termination, again we are using a simple variant of Paxos based on the optimiza-
tion presented in [GL06]. The leader is implemented by the primary but it can give up the
right to send “2a” messages to other processes as long as it is guaranteed that there will
be no two such messages for the same instance and round but with different values being
proposed. Different from [GL06], in our algorithm transactions can dynamically change the
instance and round at which they should be proposed. At each interaction with the primary,
an active transaction can be assigned to a different instance and round. Nevertheless, our
algorithm guarantees that no instance is assigned to different transactions at the same round.

Paxos ensures that no consensus instance will ever decide on two different values. This
solves the sequence agreement part of the termination protocol. It is still necessary to show
that all the sequence of committed active transactions is serializable and the serialization
order respects the common sequence being learned by databases. When a primary starts
a new round, action ActivateRound guarantees that all previously committed transactions
have been learned and applied to its local database. More than that, it guarantees that
acceptors have completely accepted the initial proposal for the round and no transactions

168 CHAPTER 4. OPTIMIZED ALGORITHMS

proposed on previous rounds will ever be chosen. The strong consistency guarantees of the
primary database do the rest of the work, ensuring that any subset of the running transaction
can be committed at any order.

The liveness guarantees for termination are basically the same of Paxos, with the leader
election algorithm being responsible for electing the current primary. The only difference
is that now a primary might want to start new rounds to force the abortion of transactions
being executed by suspected clients. If the primary does not do that, it risks creating gaps in
the learning sequence, preventing committed transactions from being learned by database
replicas.

Other important practical liveness issue is the fact that some running transactions can
hold locks that will prevent new transactions from being learned. Since we do not constrain
the number of databases in the system. It is always possible for replicas to simulate a crash
and assume a new identity in the system, thus releasing any locks. In practice this is not
necessary, though. There are two conditions that can safely allow a database to simply abort
running transactions:

• The transaction is read-only and will not be proposed.

• The transaction has been aborted, because the instance in which it can be proposed
has decided a different value.

Databases can keep track of the necessary information in order to check these conditions
and abort transactions that might be holding important locks.

As for implementation optimizations, mappings considering all the instances can be
easily compressed since there is always only a finite number of instances mapped to a value
different from none . Moreover, clearned [c] can consider only the instances in which c has
proposed something and variable crndof [c][t] can be optimized to keep only one value—
the most recent round c has heard of—, since old transactions can be automatically aborted
by the client.

Last, as it was the case for the algorithm presented in Section 4.1, clients and databases
do not have to keep their state in stable storage. Since their number is not limited by the
algorithm, crashed processes can just return to the system with an empty state as long as
they assume a different identity. In-memory databases usually offer the option of completely
disabling disk access, even for update transactions. This feature can be exploited by this
protocol and may result in significant performance gains.

We implemented a simplified version of this algorithm in [CPS06] and obtained some
performance results for it. Reducing the latency of the termination protocol from 3 to
2 communication steps represented a gain of of 8%–25% in the response time of update

4.3. TLA+ SPECIFICATIONS 169

transactions. By disabling durability at the replicas, a single disk access was performed by
acceptors to commit active transactions. In our experimental setup, such an improvement
represented a reduction of 51%–64% in the termination latency of update transactions.

4.3 TLA+ Specifications

4.3.1 Module CertificationBased

This module presents the complete specification of the Certification-based algorithm pre-
sented in 4.1.

MODULE CertificationBased
EXTENDS DatabaseConstants, DBInterface

CONSTANTS Client , Database, Acceptor , Quorum, Leader , LeaderOf (), DBof (),
ClientOf (), StripPassive()

Required Assumptions

We assume state-deterministic operations

ASSUME ∀ op ∈ Op, res1, res2 ∈ Result , st , st1, st2 ∈ DBState :
∧ CorrectOp(op, res1, st , st1)
∧ CorrectOp(op, res2, st , st2)
⇒ st1 = st2

Histories that go through the StripPassive operation generate the same final state as the original history.

ASSUME ∀ hist ∈ THist , st1, st2 ∈ DBState :
∧ StripPassive(hist) ∈ THist
∧ CorrectAtomicHist [hist , st1, st2]⇒

CorrectAtomicHist [StripPassive(hist), st1, st2]

Every transaction has a single client and a single database replica associated with.

ASSUME ∀ t ∈ Tid : ∧DBof (t) ∈ Database
∧ ClientOf (t) ∈ Client

Every round r has a single leader, and every leader is the leader of a round greater than r .

ASSUME ∀ r ∈ Nat : ∧ LeaderOf (r) ∈ Leader
∧ ∀ c ∈ Leader : ∃ r2 ∈ Nat : ∧ r < r2

∧ c = LeaderOf (r2)

We assume that quorums are finite subsets of the acceptors and every pair of quorums has a non-empty inter-
section.
ASSUME ∀ i ∈ Nat :

170 CHAPTER 4. OPTIMIZED ALGORITHMS

∧Quorum ⊆ SUBSET Acceptor
∧ ∀Q ∈ Quorum : IsFiniteSet(Q)
∧ ∀ j ∈ Nat :
∀Q ∈ Quorum, R ∈ Quorum : Q ∩ R 6= {}

Variables

VARIABLES cthist , cq , cdreq , cpdec, cproposed , cgdec, Client variables

ddreply , dcnt , vers, dcom, dlearnedSeq , External database variables

ldinter , dthist , dtdec, dq , dserialSeq , Internal database variables

lrnd , lval , Leader variables

arnd , ahist , Acceptor variables

msgs, amLeader Extra variables for message passing and

leader election

Auxiliary definitions to help dealing with the declared variables.

cvars ∆= 〈cthist , cq , cdreq , cpdec, cproposed , cgdec〉
ldvars ∆= 〈ldinter , dthist , dtdec, dq , dserialSeq〉
gdvars ∆= 〈ddreply , dcnt , vers, dcom, dlearnedSeq〉
dvars ∆= 〈gdvars, ldvars〉
lvars ∆= 〈lrnd , lval〉
avars ∆= 〈arnd , ahist〉

Definitiosn regarding internal database variables and database replicas

Each database accepts transactions with ids in the form 〈tid , version〉 where tid is an element of Tid and
version is a Natural. This allows “a single” transaction to be submitted to a database multiple times.
LocalTid ∆= Tid ×Nat

The definition below instantiates each local database used by the general algorithm.

DBS (d) ∆= INSTANCE AOPSerializableDB WITH Tid ← LocalTid ,
DBinter ← ldinter [d],
thist ← dthist [d],
tdec ← dtdec[d],
q ← dq [d],
serialSeq ← dserialSeq [d]

External variables’ Types

Client variables

cthistType ∆= [Client → THistVector]
cqdreqType ∆= [Client → [Tid → Request ∪ {NoReq}]]
cdecType ∆= [Client → [Tid → Decided ∪ {Unknown}]]

4.3. TLA+ SPECIFICATIONS 171

cproposedType ∆= [Client → SUBSET Tid]

Values propagated in messages and kept by leaders, acceptors, as well as learned by databases.

UpdatesType ∆= [trans : Tid , acthist : FSeq(Op)]
ValType ∆= [seq : FSeq(UpdatesType), aborted : SUBSET Tid]

Database variables

NoRep ∆= CHOOSE v : v /∈ Reply Not a valid reply

ddreplyType ∆= [Database → [Tid → Reply ∪ {NoRep}]]
dcntversType ∆= [Database → [Tid → Nat]]
dcomType ∆= [Database → [Tid → BOOLEAN]]
dlearnedSeqType ∆= [Database → Seq(UpdatesType)]

Coordinator variables

none ∆= CHOOSE v : v /∈ ValType Not a valid value

lrndType ∆= [Leader → Nat]
lvalType ∆= [Leader → ValType ∪ {none}]

Acceptor variables

arndType ∆= [Acceptor → Nat]
ahistType ∆= [Acceptor → [Nat → ValType]]

Other variables

amLeaderType ∆= [Leader → BOOLEAN]
msgsType ∆=

[type : {“dreq”}, trans : Tid , dreq : Request , len : Nat] ∪
[type : {“drep”}, trans : Tid , cnt : Nat , dreply : Result] ∪
[type : {“drep”}, trans : Tid , dreply : Decided] ∪
[type : {“propose”}, trans : Tid , hist : THist] ∪
[type : {“1a”}, rnd : Nat] ∪
[type : {“1b”}, rnd : Nat , acc : Acceptor , vrnd : Nat , vval : ValType] ∪
[type : {“2a”}, rnd : Nat , val : ValType] ∪
[type : {“2b”}, rnd : Nat , acc : Acceptor , val : ValType]

Initialization

ClientInit ∆=
∧ cthist = [c ∈ Client 7→ [t ∈ Tid 7→ 〈〉]]
∧ cq = [c ∈ Client 7→ [t ∈ Tid 7→ NoReq]]
∧ cdreq = [c ∈ Client 7→ [t ∈ Tid 7→ NoReq]]
∧ cpdec = [c ∈ Client 7→ [t ∈ Tid 7→ Unknown]]
∧ cproposed = [c ∈ Client 7→ {}]
∧ cgdec = [c ∈ Client 7→ [t ∈ Tid 7→ Unknown]]

DatabaseInit ∆=

172 CHAPTER 4. OPTIMIZED ALGORITHMS

∧ ddreply = [d ∈ Database 7→ [t ∈ Tid 7→ NoRep]]
∧ dcnt = [d ∈ Database 7→ [t ∈ Tid 7→ 0]]
∧ vers = [d ∈ Database 7→ [t ∈ Tid 7→ 0]]
∧ dcom = [d ∈ Database 7→ [t ∈ Tid 7→ FALSE]]
∧ dlearnedSeq = [d ∈ Database 7→ 〈〉]
∧ ∀ d ∈ Database : DBS (d)!AOPInit

LeaderInit ∆=
∧ lrnd = [l ∈ Leader 7→ 0]
∧ lval = [l ∈ Leader 7→ IF l = LeaderOf (0)

THEN [seq 7→ 〈〉, aborted 7→ {}]
ELSE none]

AcceptorInit ∆=
∧ arnd = [a ∈ Acceptor 7→ 0]
∧ ahist = [a ∈ Acceptor 7→

[r ∈ Nat 7→ IF r = 0
THEN [seq 7→ 〈〉, aborted 7→ {}]
ELSE none

]
]

OtherInit ∆=
∧msgs = {}
∧ amLeader ∈ amLeaderType

Init ∆= ∧ InitInterface
∧ ClientInit
∧DatabaseInit
∧ LeaderInit
∧AcceptorInit
∧OtherInit

Auxiliary actions and operators

The algorithm below compares whether a value, a record containing both a sequence of committed transactions
(with their active histories) and a set of aborted transactions, precedes another value or not, that is, whether the
contents of the second value extend those of the first value. Since only compatible values are checked unsing
this operator, it suffices to compare the length of both sequences and the cardinality of their sets.

a � b ∆= ∧ Len(a.seq) ≤ Len(b.seq)
∧ Cardinality(a.aborted) ≤ Cardinality(b.aborted)

a ≺ b ∆= a � b ∧ a 6= b

ActHist(c, t) returns the current history of transaction t with some of its passive operations taken out of the
sequence (according to operator StripPassive).

4.3. TLA+ SPECIFICATIONS 173

ActHist(c, t) ∆= StripPassive(cthist [c][t])

OpSeq(h) returns a sequence containing only the operations of a history (without the operations’ results).

OpSeq(h) ∆= [i ∈ DOMAIN h 7→ h[i].op]

Send(m) sends message m

Send(m) ∆= msgs ′ = msgs ∪m

DBvars(d) returns the internal variables of database d .

DBvars(d) ∆= 〈ldinter [d], dthist [d], dtdec[d], dq [d], dserialSeq [d]〉

OtherDBsStutter(d) is an action that forces all databases but d to execute a stuttering step, that is, a step in
which their internal variables do not change values. For simplicity, our specification does not allow interleaving
of database actions. In fact, as we explain in the following, it does not allow interleaving at all.

OtherDBsStutter(d) ∆=
LET dbfn ∆= [nd ∈ (Database \ {d}) 7→ DBvars(nd)]
IN dbfn ′ = dbfn

If B is a set of round numbers that contains a maximum element, then Max (B) is defined to equal that maxi-
mum. Otherwise, its value is unspecified.

Max (B) ∆= CHOOSE i ∈ B : ∀ j ∈ B : j ≤ i

Atomic Actions

These are the atomic actions of the algorithm, not including the internal database actions. In order to model
check this specification, we had to make it noninterleaving, that is, we had to specify it in terms of actions that
cannot occur concurrently (even considering that they are executed by different specification components). This
prevented us from using the DBRequest and DBResponse primitives to interact with the internal databases.
Instead, we used the ReceiveReq and ReplyReq actions directly to submit an operation and get a response from
a database.

The ReceiveReq action.

ReceiveReq(c, t , req) ∆=
∧ c = ClientOf (t)
∧DBRequest(t , req)
∧ cq [c][t] /∈ Request
∧ cq ′ = [cq EXCEPT ![c][t] = req]
∧ IF t /∈ cproposed [c] ∧ cpdec[c][t] /∈ Decided

THEN ∨ ∧ req = Commit
∧ Len(ActHist(c, t)) > 0
∧ cproposed ′ = [cproposed EXCEPT ![c] = @ ∪ t]
∧ Send([type 7→ “propose”, trans 7→ t ,

hist 7→ cthist [c][t]])
∧ UNCHANGED cdreq

∨ ∧ req = Commit ⇒ Len(ActHist(c, t)) = 0
∧ cdreq ′ = [cdreq EXCEPT ![c][t] = req]

174 CHAPTER 4. OPTIMIZED ALGORITHMS

∧ Send([type 7→ “dreq”, trans 7→ t ,
dreq 7→ req , len 7→ Len(cthist [c][t])])

∧ UNCHANGED cproposed
ELSE UNCHANGED 〈cdreq , cproposed , msgs〉

∧ UNCHANGED 〈cthist , cpdec, cgdec, lvars, dvars, avars, amLeader〉

Action ReplyReq below uses the following definition for ctdec(c, t), which calculates tdec[t] based only on
variables kept at client c.

ctdec(c, t) ∆= IF t /∈ cproposed [c]
THEN cpdec[c][t]
ELSE cgdec[c][t]

The ReplyReq action.

ReplyReq(c, t , rep) ∆=
∧ c = ClientOf (t)
∧ cq [c][t] ∈ Request
∧DBResponse(t , rep)
∧ cq ′ = [cq EXCEPT ![c][t] = NoReq]
∧ IF ctdec(c, t) ∈ Decided

THEN ∧ rep = ctdec(c, t)
∧ UNCHANGED 〈cthist , cdreq〉

ELSE ∧ cq [c][t] ∈ Op
∧ rep ∈ Result
∧ ∃m ∈ msgs :
∧m.type = “drep”
∧m.trans = t
∧m.dreply = rep
∧m.cnt > Len(cthist [t])
∧ cthist ′ = [cthist EXCEPT ![c][t] = Append(@, [op 7→ cq [c][t],

res 7→ rep])]
∧ cdreq ′ = [cdreq EXCEPT ![c][t] = NoReq]

∧ UNCHANGED 〈cproposed , cpdec, cgdec, lvars, dvars, avars, msgs, amLeader〉

The PrematureAbort action.

PrematureAbort(c, t) ∆=
∧ c = ClientOf (t)
∧ t /∈ cproposed [c]
∧ cpdec[c][t] /∈ Decided
∧ cpdec′ = [cpdec EXCEPT ![c][t] = Aborted]
∧ UNCHANGED 〈cthist , cq , cdreq , cproposed , cgdec, lvars,

dvars, avars, msgs, DBinter , amLeader〉

The PassiveCommit action.

PassiveCommit(c, t) ∆=
∧ c = ClientOf (t)

4.3. TLA+ SPECIFICATIONS 175

∧ t /∈ cproposed [c]
∧ cpdec[t] /∈ Decided
∧ ∃m ∈ msgs :
∧m.type = “drep”
∧m.trans = t
∧m.dreply = Committed
∧ cpdec′ = [cpdec EXCEPT ![c][t] = Committed]
∧ UNCHANGED 〈cthist , cq , cdreq , cproposed , cgdec, dvars,

lvars, avars, msgs, DBinter , amLeader〉

The DBReq action with its three enabling conditions.

DBReq(d , t , req) ∆=
∧ ∨ ∧ d = DBof (t) Condition 1

∧ vers[d][t] = 0
∧ ∃m ∈ msgs :
∧m.type = “dreq”
∧m.trans = t
∧m.dreq = req
∧ dcnt [d][t] = m.len

∨ ∃ i ∈ DOMAIN dlearnedSeq [d] : Condition 2

∧ dlearnedSeq [d][i].trans = t
∧ dcnt [d][t] < Len(dlearnedSeq [d][i].acthist)
∧ req = dlearnedSeq [d][i].acthist [dcnt [d][t] + 1]

∨ ∧ req = Commit Condition 3

∧ ∃ i ∈ 1 . . Len(dlearnedSeq [d]) :
∧ dlearnedSeq [d][i].trans = t
∧ ∀ j ∈ 1 . . i − 1 : dcom[d][dlearnedSeq [d][j].trans]
∧ ∨ d = DBof (t) ∧ vers[d][t] = 0
∨ dcnt [d][t] = Len(dlearnedSeq [d][i].acthist)

∧ DBS (d)!ReceiveReq(〈t , vers[d][t]〉, req)
∧ OtherDBsStutter(d)
∧ UNCHANGED 〈cvars, ddreply , dcnt , vers, dcom, dlearnedSeq , lvars, avars,

DBinter , msgs, amLeader〉

The DBRep action.

DBRep(d , t , rep) ∆=
∧ DBS (d)!ReplyReq(〈t , vers[d][t]〉, rep)
∧ OtherDBsStutter(d)
∧ IF d = DBof (t)

THEN ∧ ddreply ′ = [ddreply EXCEPT ![d][t] = rep]
∧ ∨ ∧ ¬∃ i ∈ DOMAIN dlearnedSeq [d] :

dlearnedSeq [d][i].trans = t
∧ rep ∈ Result
∧ Send([type 7→ “drep”, trans 7→ t ,

176 CHAPTER 4. OPTIMIZED ALGORITHMS

cnt 7→ dcnt [d][t] + 1, dreply 7→ rep])
∨ ∧ ¬∃ i ∈ DOMAIN dlearnedSeq [d] :

dlearnedSeq [d][i].trans = t
∧ rep ∈ Decided
∧ Send([type 7→ “drep”, trans 7→ t , dreply 7→ rep])

∨ ∧ ∃ i ∈ DOMAIN dlearnedSeq [d] :
dlearnedSeq [d][i].trans = t

∧ UNCHANGED 〈msgs〉
ELSE UNCHANGED 〈ddreply , msgs〉

∧ IF ∧ rep = Aborted
∧ ∃ i ∈ DOMAIN dlearnedSeq [d] :

dlearnedSeq [d][i].trans = t
THEN ∧ vers ′ = [vers EXCEPT ![d][t] = @ + 1]

∧ dcnt ′ = [dcnt EXCEPT ![d][t] = 0]
∧ UNCHANGED dcom

ELSE IF rep ∈ Result
THEN ∧ dcnt ′ = [dcnt EXCEPT ![d][t] = @ + 1]

∧ UNCHANGED 〈dcom, vers〉
ELSE ∧ dcom ′ = [dcom EXCEPT ![d][t] = (rep = Committed)]

∧ UNCHANGED 〈dcnt , vers〉
∧ UNCHANGED 〈cvars, dlearnedSeq , lvars, avars, DBinter , amLeader〉

Action Phase1a(p, r) is executed by the leader l of round r as specified in the thesis. For progress, l can only
execute this action if it believes to be the leader and either l has received a message related to a round between
lrnd [l] and r .

Phase1a(l , r) ∆=
∧ amLeader [l]
∧ l = LeaderOf (r)
∧ lrnd [l] < r
∧ ∃msg ∈ {m ∈ msgs : m.type ∈ {“1a”, “1b”, “2a”, “2b”}} :

∧ lrnd [l] < msg .rnd
∧msg .rnd < r

∧ lrnd ′ = [lrnd EXCEPT ![l] = r]
∧ lval ′ = [lval EXCEPT ![l] = none]
∧ Send([type 7→ “1a”, rnd 7→ r])
∧ UNCHANGED 〈cvars, dvars, avars, DBinter , amLeader〉

Action Phase1b(a, r) is executed by acceptor a, for round r .

Phase1b(a, r) ∆=
∧ [type 7→ “1a”, rnd 7→ r] ∈ msgs
∧ arnd [a] < r
∧ arnd ′ = [arnd EXCEPT ![a] = r]
∧ LET vrnd ∆= CHOOSE i ∈ Nat :

∧ ahist [a][i] 6= none
∧ ∀ j ∈ {k ∈ Nat : k > i} : ahist [a][j] = none

4.3. TLA+ SPECIFICATIONS 177

IN Send([type 7→ “1b”, rnd 7→ r , acc 7→ a, vrnd 7→ vrnd , vval 7→ ahist [a][vrnd]])
∧ UNCHANGED 〈cvars, dvars, lvars, ahist , DBinter , amLeader〉

DistProvedSafe(Q , r , 1bMsg) below returns a possibly chosen value (extending all chosen ones) based only
on the “1b” messages sent by acceptors in Q for round r .

DistProvedSafe(Q , r , 1bMsg) ∆=
LET k ∆= Max ({1bMsg [a].vrnd : a ∈ Q})

AS ∆= {a ∈ Q : ∧ 1bMsg [a].vrnd = k}
S ∆= {1bMsg [a].vval : a ∈ AS}

IN CHOOSE v ∈ S : ∀ u ∈ S : u � v

Action Phase2Start(l , r) for leader l and round r .

Phase2Start(l , r) ∆=
∧ amLeader [l]
∧ lrnd [l] = r
∧ lval [l] = none
∧ ∃Q ∈ Quorum :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .rnd = r
∧msg .acc = a

∧ LET 1bMsg ∆= [a ∈ Q 7→ CHOOSE msg ∈ msgs :
∧msg .type = “1b”
∧msg .rnd = r
∧msg .acc = a]

v ∆= DistProvedSafe(Q , r , 1bMsg)
IN ∧ lval ′ = [lval EXCEPT ![l] = v]

∧ Send([type 7→ “2a”, rnd 7→ r , val 7→ v])
∧ UNCHANGED 〈cvars, dvars, lrnd , avars, DBinter , amLeader〉

The certification test just tests if the transaction history is atomically correct with respect to the current database
state calculated by the leader and some final database state.

CertificationTest(st1, h) ∆= ∃ st2 ∈ DBState : CorrectAtomicHist [h, st1, st2]

Function FinalState below calculates the final state achieved by a sequence of active transactions.

FinalState[seq ∈ Seq([trans : Tid , acthist : Seq(Op)]), initst ∈ DBState] ∆=
IF seq = 〈〉

THEN initst
ELSE IF Head(seq) = 〈〉

THEN FinalState[Tail(seq), initst]
ELSE LET st ∆= CHOOSE st ∈ DBState :

∃ res ∈ Result :
CorrectOp(Head(Head(seq)), res, initst , st)

IN FinalState[〈Tail(Head(seq))〉 ◦ Tail(seq), st]

Action Phase2a(l , r) executed by leader l for round r when it wants to certify and propagate a proposed
transaction.

178 CHAPTER 4. OPTIMIZED ALGORITHMS

Phase2a(l , r) ∆=
∧ amLeader [l]
∧ lrnd [r] = r
∧ lval [l] 6= none
∧ LET txSet ∆= {lval [l].seq [i].trans : i ∈ DOMAIN lval [l].seq}

indexof (t) ∆= CHOOSE i ∈ DOMAIN lval [l].seq : lval [l].seq [i].trans = t
xthist ∆= [t ∈ Tid 7→ IF t ∈ txSet

THEN lval [l].seq [indexof (t)].acthist
ELSE 〈〉]

xseq ∆= [i ∈ DOMAIN lval [l].seq 7→ lval [l].seq [i].acthist]
FSTATE ∆= FinalState[xseq , InitialDBState]

IN ∃msg ∈ msgs :
∧msg .type = “propose”
∧msg .trans /∈ (txSet ∪ lval [l].aborted)
∧ ∨ ∧ CertificationTest(FSTATE , msg .hist)

∧ lval ′ = [lval EXCEPT !.seq =
Append(@, [trans 7→ msg .trans,

acthist 7→ OpSeq(StripPassive(msg .hist))
]

)
]

∨ lval ′ = [lval EXCEPT !.aborted = @ ∪msg .trans]
∧ Send([type 7→ “2a”, rnd 7→ r , val 7→ lval ′])

∧ UNCHANGED 〈cvars, dvars, lrnd , avars, DBinter , amLeader〉

Action Phase2b

Phase2b(a, r) ∆=
∧ arnd [a] ≤ r
∧ ∃m ∈ msgs :

∧m.type = “2a”
∧m.rnd = r
∧ ahist [r] = none ∨ ahist [r] ≺ m.val
∧ ahist ′ = [ahist EXCEPT ![a][r] = m.val]
∧ Send([type 7→ “2b”, rnd 7→ r , acc 7→ a, val 7→ m.val])

∧ arnd ′ = [arnd EXCEPT ![a] = r]
∧ UNCHANGED 〈cvars, dvars, lvars, DBinter , amLeader〉

Action ClientLearn(c)

ClientLearn(c) ∆=
∧ ∃Q ∈ Quorum, r ∈ Nat :
∧ ∀ a ∈ Q : ∃m ∈ msgs : ∧m.type = “2b”

∧m.rnd = r
∧m.acc = a

∧ LET 2bmsgs ∆= {m ∈ msgs : ∧m.type = “2b”

4.3. TLA+ SPECIFICATIONS 179

∧m.rnd = r
∧m.acc ∈ Q}

S ∆= {m.val : m ∈ 2bmsgs}
v ∆= CHOOSE v ∈ S : ∀ u ∈ S : v � u
txSet ∆= ({v .seq [i].trans : i ∈ DOMAIN v .seq} ∪ v .aborted)

∩ {t ∈ Tid : ClientOf (t) = c}
IN ∧ ∃ t ∈ txSet : cgdec[c][t] = Unknown

∧ cgdec′ = [cgdec EXCEPT ![c] =
[t ∈ Tid 7→ IF t ∈ txSet

THEN IF t ∈ v .aborted
THEN Aborted
ELSE Committed

ELSE cgdec[c][t]
]

]
∧ UNCHANGED 〈cthist , cq , cdreq , cpdec, cproposed , dvars, lvars, avars,

DBinter , msgs, amLeader〉

Action DatabaseLearn

DatabaseLearn(d) ∆=
∧ ∃Q ∈ Quorum, r ∈ Nat :
∧ ∀ a ∈ Q : ∃m ∈ msgs : ∧m.type = “2b”

∧m.rnd = r
∧m.acc = a

∧ LET 2bmsgs ∆= {m ∈ msgs : ∧m.type = “2b”
∧m.rnd = r
∧m.acc ∈ Q}

S ∆= {m.val : m ∈ 2bmsgs}
v ∆= CHOOSE v ∈ S : ∀ u ∈ S : v � u

IN ∧ Len(dlearnedSeq [d]) < Len(v .seq)
∧ dlearnedSeq ′ = [dlearnedSeq EXCEPT ![d] = v .seq]

∧ UNCHANGED 〈cvars, ldvars, ddreply , dcnt , vers, dcom, lvars, avars, DBinter ,
msgs, amLeader〉

Final Specification

The next-state action in terms of the noninterleaving actions.

ClientAction ∆=
∃ c ∈ Client , t ∈ Tid :
∨ ∃ req ∈ Request : ReceiveReq(c, t , req)
∨ ∃ rep ∈ Reply : ReplyReq(c, t , rep)
∨ PrematureAbort(c, t)
∨ PassiveCommit(c, t)

180 CHAPTER 4. OPTIMIZED ALGORITHMS

∨ ClientLearn(c)

DatabaseAction ∆=
∃ d ∈ Database :
∨ ∃ t ∈ Tid : ∨ ∃ req ∈ Request : DBReq(d , t , req)

∨ ∃ rep ∈ Reply : DBRep(d , t , rep)
∨DatabaseLearn(d)
∨ ∧ UNCHANGED ldinter [d] ∧DBS (d)!AOPNext replica’s internal action

∧OtherDBsStutter(d)
∧ UNCHANGED 〈cvars, gdvars, lvars, avars, DBinter , msgs, amLeader〉

LeaderAction ∆=
∃ l ∈ Leader , r ∈ Nat :
∨ Phase1a(l , r)
∨ Phase2Start(l , r)
∨ Phase2a(l , r)

AcceptorAction ∆=
∃ a ∈ Acceptor , r ∈ Nat :
∨ Phase1b(a, r)
∨ Phase2b(a, r)

ChangeLeader ∆=
∧ amLeader ∈ amLeaderType
∧ UNCHANGED 〈cvars, dvars, lvars, avars, DBinter , msgs〉

Next ∆= ∨ ClientAction
∨DatabaseAction
∨ LeaderAction
∨AcceptorAction
∨ ChangeLeader

The final specification

Spec ∆= Init ∧2[Next]〈cvars, dvars, lvars, avars, DBinter , msgs, amLeader〉

Theorems

Our specification preserves the following Type Invariant

TypeInvariant ∆=
∧ cthist ∈ cthistType
∧ cq ∈ cqdreqType
∧ cdreq ∈ cqdreqType
∧ cpdec ∈ cdecType
∧ cproposed ∈ cproposedType
∧ cgdec ∈ cdecType

4.3. TLA+ SPECIFICATIONS 181

∧ ddreply ∈ ddreplyType
∧ dcnt ∈ dcntversType
∧ vers ∈ dcntversType
∧ dcom ∈ dcomType
∧ dlearnedSeq ∈ dlearnedSeqType
∧ lrnd ∈ lrndType
∧ lval ∈ lvalType
∧ arnd ∈ arndType
∧ ahist ∈ ahistType
∧ amLeader ∈ amLeaderType
∧msgs ∈ msgsType

THEOREM Spec ⇒ 2TypeInvariant

It also satisfies Serializability based on the following refinement mapping

thist ∆= [t ∈ Tid 7→ cthist [ClientOf (t)][t]]
q ∆= [t ∈ Tid 7→ cq [ClientOf (t)][t]]
dreq ∆= [t ∈ Tid 7→ cdreq [ClientOf (t)][t]]
pdec ∆= [t ∈ Tid 7→ cpdec[ClientOf (t)][t]]

dreply ∆= [t ∈ Tid 7→ ddreply [DBof (t)][t]]

proposed ∆= UNION {cproposed [c] : c ∈ Client}

learnedSeq ∆= [d ∈ Database 7→
[i ∈ DOMAIN dlearnedSeq [d] 7→

dlearnedSeq [d].trans
]

]

IsCommitted(t) ∆=
∃Q ∈ Quorum, r ∈ Nat :
∀ a ∈ Q :
∧ ahist [a][r] 6= none
∧ t ∈ {ahist [a][r].seq [i] : i ∈ DOMAIN ahist [a][r].seq}

IsAborted(t) ∆=
∃Q ∈ Quorum, r ∈ Nat :
∀ a ∈ Q :
∧ ahist [a][r] 6= none
∧ t ∈ ahist [a][r].aborted

gdec ∆= [t ∈ Tid 7→ IF IsCommitted(t)
THEN Committed
ELSE IF IsAborted(t)

THEN Aborted

182 CHAPTER 4. OPTIMIZED ALGORITHMS

ELSE Unknown
]

Ser ∆= INSTANCE GeneralDeferredUpdate

THEOREM Spec ⇒ Ser !Safety

4.3.2 Module SOPSerializable

This module specifies our consistency assumptions about in-memory database replicas in
Section 4.2.

MODULE SOPSerializableDB
EXTENDS OPSerializableDB

Set of all running but undecided transactions

undecidedSet ∆= {t ∈ Tid : tdec[t] = Unknown ∧ thist [t] 6= 〈〉}

SOPReplyReq(t , rep) substitutes ReplyReq

SOPReplyReq(t , rep) ∆=
∧ q [t] ∈ Request
∧DBResponse(t , rep)
∧ q ′ = [q EXCEPT ![t] = NoReq]
∧ IF tdec[t] ∈ Decided

THEN ∧ rep = tdec[t]
∧ UNCHANGED 〈thist , tdec〉

ELSE ∧ q [t] ∈ Op
∧ rep ∈ Result
∧ thist ′ = [thist EXCEPT ![t] = Append(@, [op 7→ q [t],

res 7→ rep])]
∧ ∀ sufix ∈ Perm(undecidedSet ∪ t) :
∃ st ∈ DBState :

CorrectSerialization[serialSeq ◦ sufix ,
thist ′, InitialDBState, st]

∧ UNCHANGED 〈tdec〉

SOPDoCommit substitutes OPDoCommit

SOPDoCommit(t) ∆= ∧ tdec[t] = Unknown
∧ q [t] = Commit
∧ tdec′ = [tdec EXCEPT ![t] = Committed]
∧ serialSeq ′ = Append(serialSeq , t)
∧ UNCHANGED 〈thist , q , DBinter〉

4.3. TLA+ SPECIFICATIONS 183

SOPDoAbort substitutes DoAbort

SOPDoAbort(t) ∆= ∧DoAbort(t)
∧ q [t] ∈ Op

Specification

Next defines the possible “next” steps in a correct execution.

SOPNext ∆= ∃ t ∈ Tid :
∨ ∧ ∨ ∃ req ∈ Request : ReceiveReq(t , req)

∨ ∃ rep ∈ Reply : SOPReplyReq(t , rep)
∨ SOPDoAbort(t)

∧ UNCHANGED serialSeq
∨ SOPDoCommit(t)

Final specification.

SOPSpec ∆= OPInit ∧2[SOPNext]〈thist , tdec, q, DBinter , serialSeq〉

4.3.3 Module PrimaryBackup

This module specifies our in-memory primary-backup replication algorithm from Section 4.2.
MODULE PrimaryBackup

EXTENDS DatabaseConstants, DBInterface

CONSTANTS Client , Database, Acceptor , Quorum, PrimaryOf (), DBof (),
ClientOf (), StripPassive()

Required Assumptions

We assume state-deterministic operations

ASSUME ∀ op ∈ Op, res1, res2 ∈ Result , st , st1, st2 ∈ DBState :
∧ CorrectOp(op, res1, st , st1)
∧ CorrectOp(op, res2, st , st2)
⇒ st1 = st2

Histories that go through the StripPassive operation generate the same final state as the original history.

ASSUME ∀ hist ∈ THist , st1, st2 ∈ DBState :
∧ StripPassive(hist) ∈ THist
∧ CorrectAtomicHist [hist , st1, st2]⇒

CorrectAtomicHist [StripPassive(hist), st1, st2]

184 CHAPTER 4. OPTIMIZED ALGORITHMS

Every transaction has a single client and a single database replica associated with.

ASSUME ∀ t ∈ Tid : ∧DBof (t) ∈ Database
∧ ClientOf (t) ∈ Client

Every round r has a single primary, and every database is the primary of a round greater than r .

ASSUME ∀ r ∈ Nat : ∧ PrimaryOf (r) ∈ Database
∧ ∀ d ∈ Database : ∃ r2 ∈ Nat : ∧ r < r2

∧ d = PrimaryOf (r2)

We assume that quorums are finite subsets of the acceptors and every pair of quorums has a non-empty inter-
section.
ASSUME ∀ i ∈ Nat :

∧Quorum ⊆ SUBSET Acceptor
∧ ∀Q ∈ Quorum : IsFiniteSet(Q)
∧ ∀ j ∈ Nat :
∀Q ∈ Quorum, R ∈ Quorum : Q ∩ R 6= {}

Variables

VARIABLES cthist , cq , cdreq , cpdec, cproposed , Client variables

crndof , cinstof , clearned ,
ddreply , dcnt , vers, dcom, dlearned , Database variables

prnd , pfproposal , drnd , dfreeinsts, dinstof ,
ldinter , dthist , dtdec, dq , dserialSeq , Internal database variables

arnd , vrnd , vval , Acceptor variables

msgs, amPrimary , dactivec Extra variables

Auxiliary definitions to help dealing with the declared variables.

cvars ∆= 〈cthist , cq , cdreq , cpdec, cproposed ,
crndof , cinstof , clearned〉

ldvars ∆= 〈ldinter , dthist , dtdec, dq , dserialSeq〉
gdvars ∆= 〈ddreply , dcnt , vers, dcom, dlearned ,

prnd , pfproposal , drnd , dfreeinsts, dinstof 〉
dvars ∆= 〈gdvars, ldvars〉
avars ∆= 〈arnd , vrnd , vval〉

Definitiosn regarding internal database variables and database replicas

Each database accepts transactions with ids in the form 〈tid , version〉 where tid is an element of Tid and
version is a Natural. This allows “a single” transaction to be submitted to a database multiple times.
LocalTid ∆= Tid ×Nat

The definition below instantiates each local database used by the general algorithm.

4.3. TLA+ SPECIFICATIONS 185

DBS (d) ∆= INSTANCE SOPSerializableDB WITH Tid ← LocalTid ,
DBinter ← ldinter [d],
thist ← dthist [d],
tdec ← dtdec[d],
q ← dq [d],
serialSeq ← dserialSeq [d]

External variables’ Types

Bottom ∆= CHOOSE v : v /∈ Tid
NoTrans ∆= CHOOSE v : v /∈ Tid ∪ {Bottom}
TidExt ∆= Tid ∪ {Bottom, NoTrans}

Client variables

cthistType ∆= [Client → THistVector]
cqdreqType ∆= [Client → [Tid → Request ∪ {NoReq}]]
cdecType ∆= [Client → [Tid → Decided ∪ {Unknown}]]
cproposedType ∆= [Client → SUBSET Tid]
crndinstofType ∆= [Client → [Tid → Nat]]
clearnedType ∆= [Client → [Nat → TidExt]]

Updates accepted by acceptors and learned by databases

UpdatesType ∆= [trans : TidExt , acthist : FSeq(Op)]
none ∆= [trans 7→ NoTrans, acthist 7→ 〈〉]
bottom ∆= [trans 7→ Bottom, acthist 7→ 〈〉]

Database variables

NoRep ∆= CHOOSE v : v /∈ Reply Not a valid reply

ddreplyType ∆= [Database → [Tid → Reply ∪ {NoRep}]]
dcntversType ∆= [Database → [Tid → Nat]]
dcomType ∆= [Database → [Tid → BOOLEAN]]
dlearnedType ∆= [Database → [Nat → UpdatesType ∪ {none}]]
dprndType ∆= [Database → Nat]
pfproposalType ∆= [Database → UNION {[0 . . i → UpdatesType] : i ∈ Nat}]
dfreeinstsType ∆= [Database → SUBSET Nat]
dinstofType ∆= [Database → [Tid → {{}} ∪ {{i} : i ∈ Nat}]]

Acceptor variables

arndType ∆= [Acceptor → Nat]
vrndType ∆= [Acceptor → Nat]
vvalType ∆= [Acceptor → [Nat → UpdatesType]]

Other variables

amPrimaryType ∆= [Database → BOOLEAN]

186 CHAPTER 4. OPTIMIZED ALGORITHMS

dactivecType ∆= [Database → SUBSET Client]
msgsType ∆=

[type : {“dreq”}, trans : Tid , dreq : Request , len : Nat] ∪
[type : {“drep”}, trans : Tid , cnt : Nat , dreply : Result , rnd : Nat , inst : Nat] ∪
[type : {“drep”}, trans : Tid , dreply : Decided] ∪
[type : {“1a”}, rnd : Nat] ∪
[type : {“1b”}, rnd : Nat , acc : Acceptor , vrnd : Nat , vval : [Nat → UpdatesType]] ∪
[type : {“2aS”}, rnd : Nat , val : UNION {[0 . . i → UpdatesType] : i ∈ Nat}] ∪
[type : {“2a”}, inst : Nat , rnd : Nat , trans : Tid , acthist : Seq(Op)] ∪
[type : {“2bS”}, rnd : Nat , acc : Acceptor ,

val : UNION {[0 . . i → UpdatesType] : i ∈ Nat}] ∪
[type : {“2b”}, rnd : Nat , acc : Acceptor , inst : Nat , trans : Tid , acthist : Seq(Op)]

Initialization

ClientInit ∆=
∧ cthist = [c ∈ Client 7→ [t ∈ Tid 7→ 〈〉]]
∧ cq = [c ∈ Client 7→ [t ∈ Tid 7→ NoReq]]
∧ cdreq = [c ∈ Client 7→ [t ∈ Tid 7→ NoReq]]
∧ cpdec = [c ∈ Client 7→ [t ∈ Tid 7→ Unknown]]
∧ cproposed = [c ∈ Client 7→ {}]
∧ crndof ∈ crndinstofType
∧ cinstof ∈ crndinstofType
∧ clearned = [c ∈ Client 7→ [i ∈ Nat 7→ NoTrans]]

DatabaseInit ∆=
∧ ddreply = [d ∈ Database 7→ [t ∈ Tid 7→ NoRep]]
∧ dcnt = [d ∈ Database 7→ [t ∈ Tid 7→ 0]]
∧ vers = [d ∈ Database 7→ [t ∈ Tid 7→ 0]]
∧ dcom = [d ∈ Database 7→ [t ∈ Tid 7→ FALSE]]
∧ dlearned = [d ∈ Database 7→ [i ∈ Nat 7→ IF i = 0

THEN bottom
ELSE none]]

∧ prnd = [d ∈ Database 7→ 0]
∧ drnd = [d ∈ Database 7→ 0]
∧ pfproposal = [d ∈ Database 7→ [i ∈ {0} 7→ bottom]]
∧ dfreeinsts = [d ∈ Database 7→ Nat \ {0}]
∧ dinstof = [d ∈ Database 7→ [t ∈ Tid 7→ {}]]
∧ ∀ d ∈ Database : DBS (d)!OPInit

AcceptorInit ∆=
∧ arnd = [a ∈ Acceptor 7→ 0]
∧ vrnd = [a ∈ Acceptor 7→ 0]
∧ vval = [a ∈ Acceptor 7→ [i ∈ Nat 7→ IF i = 0 THEN bottom

4.3. TLA+ SPECIFICATIONS 187

ELSE none]]

OtherInit ∆=
∧msgs = {}
∧ amPrimary ∈ amPrimaryType
∧ dactivec ∈ dactivecType

Init ∆= ∧ InitInterface
∧ ClientInit
∧DatabaseInit
∧AcceptorInit
∧OtherInit

Auxiliary actions and operators

ActHist(c, t) returns the current history of transaction t with some of its passive operations taken out of the
sequence (according to operator StripPassive).

ActHist(c, t) ∆= StripPassive(cthist [c][t])

OpSeq(h) returns a sequence containing only the operations of a history (without the operations’ results).

OpSeq(h) ∆= [i ∈ DOMAIN h 7→ h[i].op]

Send(m) sends message m

Send(m) ∆= msgs ′ = msgs ∪m

DBvars(d) returns the internal variables of database d .

DBvars(d) ∆= 〈ldinter [d], dthist [d], dtdec[d], dq [d], dserialSeq [d]〉

OtherDBsStutter(d) is an action that forces all databases but d to execute a stuttering step, that is, a step in
which their internal variables do not change values. For simplicity, our specification does not allow interleaving
of database actions. In fact, as we explain in the following, it does not allow interleaving at all.

OtherDBsStutter(d) ∆=
LET dbfn ∆= [nd ∈ (Database \ {d}) 7→ DBvars(nd)]
IN dbfn ′ = dbfn

If B is a set of round numbers that contains a maximum element, then Max (B) is defined to equal that maxi-
mum. Otherwise, its value is unspecified.

Max (B) ∆= CHOOSE i ∈ B : ∀ j ∈ B : j ≤ i

Atomic Actions

These are the atomic actions of the algorithm, not including the internal database actions. In order to model
check this specification, we had to make it noninterleaving, that is, we had to specify it in terms of actions that
cannot occur concurrently (even considering that they are executed by different specification components). This
prevented us from using the DBRequest and DBResponse primitives to interact with the internal databases.
Instead, we used the ReceiveReq and ReplyReq actions directly to submit an operation and get a response from
a database.

188 CHAPTER 4. OPTIMIZED ALGORITHMS

The ReceiveReq action.

ReceiveReq(c, t , req) ∆=
∧ c = ClientOf (t)
∧DBRequest(t , req)
∧ cq [c][t] /∈ Request
∧ cq ′ = [cq EXCEPT ![c][t] = req]
∧ IF t /∈ cproposed [c] ∧ cpdec[c][t] /∈ Decided

THEN ∨ ∧ req = Commit
∧ Len(ActHist(c, t)) > 0
∧DBof (t) = PrimaryOf (crndof [c][t])
∧ cproposed ′ = [cproposed EXCEPT ![c] = @ ∪ t]
∧ Send([type 7→ “2a”, inst 7→ cinstof [c][t],

rnd 7→ crndof [c][t], trans 7→ t ,
acthist 7→ OpSeq(ActHist(c, t))])

∧ UNCHANGED cdreq
∨ ∧ req = Commit ⇒ Len(ActHist(c, t)) = 0
∧ cdreq ′ = [cdreq EXCEPT ![c][t] = req]
∧ Send([type 7→ “dreq”, trans 7→ t ,

dreq 7→ req , len 7→ Len(cthist [c][t])])
∧ UNCHANGED cproposed

ELSE UNCHANGED 〈cdreq , cproposed , msgs〉
∧ UNCHANGED 〈cthist , cpdec, crndof , cinstof , clearned , dvars,

avars, amPrimary , dactivec〉

Action ReplyReq below uses the following definition for ctdec(c, t), which calculates tdec[t] based only on
variables kept at client c.

ctdec(c, t) ∆= IF t /∈ cproposed [c]
THEN cpdec[c][t]
ELSE IF clearned [c][cinstof [c][t]] = NoTrans

THEN Unknown
ELSE IF clearned [c][cinstof [c][t]] = t

THEN Committed
ELSE Aborted

The ReplyReq action.

ReplyReq(c, t , rep) ∆=
∧ c = ClientOf (t)
∧ cq [c][t] ∈ Request
∧DBResponse(t , rep)
∧ cq ′ = [cq EXCEPT ![c][t] = NoReq]
∧ IF ctdec(c, t) ∈ Decided

THEN ∧ rep = ctdec(c, t)
∧ UNCHANGED 〈cthist , cdreq , crndof , cinstof 〉

ELSE ∧ cq [c][t] ∈ Op

4.3. TLA+ SPECIFICATIONS 189

∧ rep ∈ Result
∧ ∃m ∈ msgs :
∧m.type = “drep”
∧m.trans = t
∧m.dreply = rep
∧m.cnt > Len(cthist [t])
∧ cthist ′ = [cthist EXCEPT ![c][t] = Append(@, [op 7→ cq [c][t],

res 7→ rep])]
∧ cdreq ′ = [cdreq EXCEPT ![c][t] = NoReq]
∧ crndof ′ = [crndof EXCEPT ![c][t] = m.rnd]
∧ cinstof ′ = [cinstof EXCEPT ![c][t] = m.inst]

∧ UNCHANGED 〈cproposed , clearned , cpdec, dvars, avars, msgs, amPrimary , dactivec〉

The PrematureAbort action.

PrematureAbort(c, t) ∆=
∧ c = ClientOf (t)
∧ t /∈ cproposed [c]
∧ cpdec[c][t] /∈ Decided
∧ ∃m ∈ msgs :
∧m.type = “drep”
∧m.trans = t
∧m.dreply = Aborted
∧ cpdec′ = [cpdec EXCEPT ![c][t] = Aborted]
∧ UNCHANGED 〈cthist , cq , cdreq , cproposed , crndof , cinstof , clearned ,

dvars, avars, msgs, DBinter , amPrimary , dactivec〉

The PassiveCommit action.

PassiveCommit(c, t) ∆=
∧ c = ClientOf (t)
∧ t /∈ cproposed [c]
∧ cpdec[t] /∈ Decided
∧ ∃m ∈ msgs :
∧m.type = “drep”
∧m.trans = t
∧m.dreply = Committed
∧ cpdec′ = [cpdec EXCEPT ![c][t] = Committed]
∧ UNCHANGED 〈cthist , cq , cdreq , cproposed , crndof , cinstof , clearned ,

dvars, avars, msgs, DBinter , amPrimary , dactivec〉

learnedSeq ∆=

LET recgenseq [d ∈ Database, i ∈ Nat , s ∈ Seq(Tid)] ∆=
IF dlearned [d][i] = none
THEN s end of recursion

ELSE IF dlearned [d][i] = bottom

190 CHAPTER 4. OPTIMIZED ALGORITHMS

THEN recgenseq [d , i + 1, s] skip this instance

ELSE recgenseq [d , i + 1, Append(s, dlearned [d][i].trans)] adds t

IN [d ∈ Database 7→ recgenseq [d , 0, 〈〉]]

The DBReq action with its three enabling conditions.

DBReq(d , t , req) ∆=
∧ ∨ ∧ d = DBof (t) Condition 1

∧ vers[d][t] = 0
∧ ∃m ∈ msgs :
∧m.type = “dreq”
∧m.trans = t
∧m.dreq = req
∧ dcnt [d][t] = m.len Condition 2

∨ ∧ ∃ i ∈ 1 . . Len(learnedSeq [d]) :
∧ learnedSeq [d][i] = t
∧ ∀ j ∈ 1 . . i − 1 : dcom[d][learnedSeq [d][j]]

∧ LET i ∆= CHOOSE i ∈ Nat : dlearned [d][i].trans = t
IN ∧ dcnt [d][t] < Len(dlearned [d][i].acthist)

∧ req = dlearned [d][i].acthist [dcnt [d][t] + 1]
∨ ∧ req = Commit Condition 3

∧ ∃ i ∈ 1 . . Len(learnedSeq [d]) :
∧ learnedSeq [d][i] = t
∧ ∀ j ∈ 1 . . i − 1 : dcom[d][learnedSeq [d][j]]

∧ ∨ d = DBof (t) ∧ vers[d][t] = 0
∨ LET i ∆= CHOOSE i ∈ Nat : dlearned [d][i].trans = t

IN dcnt [d][t] = Len(dlearned [d][i].acthist)
∧ dfreeinsts ′ = [dfreeinsts EXCEPT ![d] = @ ∪ dinstof [d][t]]
∧ dinstof ′ = [dinstof EXCEPT ![d][t] = {}]
∧ DBS (d)!ReceiveReq(〈t , vers[d][t]〉, req)
∧ OtherDBsStutter(d)
∧ UNCHANGED 〈cvars, ddreply , dcnt , vers, dcom, dlearned , drnd , prnd ,

pfproposal , avars, DBinter , msgs, amPrimary , dactivec〉

The DBRep action.

DBRep(d , t , rep) ∆=
∧ DBS (d)!ReplyReq(〈t , vers[d][t]〉, rep)
∧ OtherDBsStutter(d)
∧ IF d = DBof (t)

THEN ∧ ddreply ′ = [ddreply EXCEPT ![d][t] = rep]
∧ ∨ ∧ ¬∃ i ∈ Nat :

dlearned [d][i].trans = t
∧ rep ∈ Result
∧ ∃ i ∈ dfreeinsts[d] :

4.3. TLA+ SPECIFICATIONS 191

∧ Send([type 7→ “drep”, trans 7→ t ,
cnt 7→ dcnt [d][t] + 1, dreply 7→ rep,
rnd 7→ drnd [d], inst 7→ i])

∧ dfreeinsts ′ = [dfreeinsts EXCEPT ![d] = @ \ {i}]
∧ dinstof ′ = [dinstof EXCEPT ![d][t] = {i}]

∨ ∧ ¬∃ i ∈ Nat :
dlearned [d][i].trans = t

∧ rep ∈ Decided
∧ Send([type 7→ “drep”, trans 7→ t , dreply 7→ rep])
∧ UNCHANGED 〈dfreeinsts, dinstof 〉

∨ ∧ ∃ i ∈ Nat :
dlearned [d][i].trans = t

∧ UNCHANGED 〈msgs, dfreeinsts, dinstof 〉
ELSE UNCHANGED 〈ddreply , msgs, dfreeinsts, dinstof 〉

∧ IF ∧ rep = Aborted
∧ ∃ i ∈ Nat :

dlearned [d][i].trans = t
THEN ∧ vers ′ = [vers EXCEPT ![d][t] = @ + 1]

∧ dcnt ′ = [dcnt EXCEPT ![d][t] = 0]
∧ UNCHANGED dcom

ELSE IF rep ∈ Result
THEN ∧ dcnt ′ = [dcnt EXCEPT ![d][t] = @ + 1]

∧ UNCHANGED 〈dcom, vers〉
ELSE ∧ dcom ′ = [dcom EXCEPT ![d][t] = (rep = Committed)]

∧ UNCHANGED 〈dcnt , vers〉
∧ UNCHANGED 〈cvars, dlearned , drnd , prnd , pfproposal , avars,

DBinter , amPrimary , dactivec〉

Action Phase1a(p, r) is executed by the primary p of round r . To ensure Liveness, p can only execute this
action if it believes to be the primary and either p has received a message related to a round between prnd [p]
and r , or it suspects one of the clients currently running transactions to have failed.

Phase1a(p, r) ∆=
∧ amPrimary [p]
∧ p = PrimaryOf (r)
∧ prnd [p] < r
∧ ∨ ∃msg ∈ {m ∈ msgs : m.type ∈ {“1a”, “1b”, “2a”, “2aS”, “2b”, “2bs”}} :

∧ prnd [p] < msg .rnd
∧msg .rnd < r

∨ ∃ c ∈ Client :
∧ c /∈ dactivec[p]
∧ ∃ t ∈ Tid :
∧ p = DBof (t)
∧ c = ClientOf (t)
∧ dinstof [p][t] 6= {}

192 CHAPTER 4. OPTIMIZED ALGORITHMS

∧ prnd ′ = [drnd EXCEPT ![p] = r]
∧ pfproposal ′ = [pfproposal EXCEPT ![p] = [i ∈ Nat 7→ none]]
∧ Send([type 7→ “1a”, rnd 7→ r])
∧ UNCHANGED 〈cvars, ldvars, ddreply , dcnt , vers, dcom, dlearned , drnd ,

dfreeinsts, dinstof , avars, DBinter , amPrimary , dactivec〉

Action Phase1b(a, r) is executed by acceptor a, for round r .

Phase1b(a, r) ∆=
∧ [type 7→ “1a”, rnd 7→ r] ∈ msgs
∧ arnd [a] < r
∧ arnd ′ = [arnd EXCEPT ![a] = r]
∧ Send([type 7→ “1b”, rnd 7→ r , acc 7→ a, vrnd 7→ vrnd [a], vval 7→ vval [a]])
∧ UNCHANGED 〈cvars, dvars, vrnd , vval , DBinter , amPrimary , dactivec〉

Let MaxN be the maximum instance with some value different from none accepted based on the “1b” messages
received from a quorum Q for round r . DistProvedSafe(Q , r , 1bMsg) below returns a mapping from the
integers in 0 . . MaxN to a value that might have been chosen in that instance for rounds lower than r . If no
transaction might have been chosen for some instance in this interval, DistProvedSafe maps it to bottom.

DistProvedSafe(Q , r , 1bMsg) ∆=
LET MaxN ∆= CHOOSE MaxN ∈ Nat :

∧ ∃ a ∈ Q : 1bMsg [a].vval [MaxN] 6= none
∧ ∀ a ∈ Q , j ∈ {k ∈ Nat : k > MaxN } :

1bMsg [a].vval [j] 6= none
IN [i ∈ 0 . . MaxN 7→

IF ∀ a ∈ Q : 1bMsg [a].vval [i] = none
THEN bottom
ELSE LET k ∆= Max ({1bMsg [a].vrnd : a ∈ Q})

AS ∆= {a ∈ Q : ∧ 1bMsg [a].vrnd = k
∧ 1bMsg [a].vval [i] 6= none}

S ∆= {1bMsg [a].vval [i] : a ∈ AS}
IN CHOOSE v : v ∈ S]

Action Phase2Start(p, r) executed by primary p of round r when it wants to start a round based on “1b”
messages received from a quorum of acceptors.

Phase2Start(p, r) ∆=
∧ amPrimary [p]
∧ prnd [p] = r
∧ DOMAIN pfproposal [p] = Nat
∧ ∃Q ∈ Quorum :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .rnd = r
∧msg .acc = a

∧ LET 1bMsg ∆= [a ∈ Q 7→ CHOOSE msg ∈ msgs :
∧msg .type = “1b”
∧msg .rnd = r

4.3. TLA+ SPECIFICATIONS 193

∧msg .acc = a]
v ∆= DistProvedSafe(Q , r , 1bMsg)

IN ∧ pfproposal ′ = [pfproposal EXCEPT ![p] = v]
∧ Send([type 7→ “2aS”, rnd 7→ r , val 7→ v])

∧ UNCHANGED 〈cvars, ldvars, ddreply , dcnt , vers, dcom, dlearned , prnd ,
drnd , dfreeinsts, dinstof , avars, DBinter , amPrimary , dactivec〉

Action Phase2b

Phase2b(a, r) ∆=
∧ arnd [a] ≤ r
∧ ∨ ∃m ∈ msgs :

∧m.type = “2aS”
∧m.rnd = r
∧ vrnd [a] < r
∧ vval ′ = [vval EXCEPT ![a] =

[i ∈ Nat 7→ IF i ∈ DOMAIN m.val
THEN m.val [i]
ELSE none

]
]

∧ Send([type 7→ “2bS”, rnd 7→ r , acc 7→ a, val 7→ m.val])
∨ ∃m ∈ msgs :

∧m.type = “2a”
∧m.rnd = r
∧ vrnd [a] = r ∧ vval [a][m.inst] = none
∧ vval ′ = [vval EXCEPT ![a][m.inst] = [trans 7→ m.trans,

acthist 7→ m.acthist]]
∧ Send([type 7→ “2b”, rnd 7→ r , acc 7→ a, inst 7→ m.inst ,

trans 7→ m.trans, acthist 7→ m.acthist])
∧ arnd ′ = [arnd EXCEPT ![a] = r]
∧ vrnd ′ = [vrnd EXCEPT ![a] = r]
∧ UNCHANGED 〈cvars, dvars, DBinter , amPrimary , dactivec〉

Action Phase2Start(p, r) executed by primary p of round r when it wants to activate a round for independent
proposals coming from clients.

ActivateRound(p, r) ∆=
∧ amPrimary [p]
∧ prnd [p] = r
∧ drnd [p] < prnd [p]
∧ DOMAIN pfproposal [p] 6= Nat
∧ ∀ i ∈ DOMAIN pfproposal [p] : dlearned [p][i] = pfproposal [p][i]
∧ ∀ t ∈ {pfproposal [p][i].trans : i ∈ DOMAIN pfproposal [p]} \ {Bottom} :

dcom[p][t]
∧ ∃Q ∈ Quorum :

194 CHAPTER 4. OPTIMIZED ALGORITHMS

∧ ∀ a ∈ Q : ∃m ∈ msgs : ∧m.type = “2bS”
∧m.rnd = r
∧m.acc = a

∧ drnd ′ = [drnd EXCEPT ![p] = prnd [p]]
∧ dfreeinsts ′ = [dfreeinsts EXCEPT ![p] = Nat \ DOMAIN pfproposal [p]]
∧ dinstof ′ = [dinstof EXCEPT ![p] = [t ∈ Tid 7→ {}]]
∧ UNCHANGED 〈cvars, ldvars, ddreply , dcnt , vers, dcom, dlearned , prnd , pfproposal ,

avars, DBinter , msgs, amPrimary , dactivec〉

Action ClientLearn(c)

ClientLearn(c) ∆=
∧ ∃Q ∈ Quorum, r ∈ Nat :
∨ ∧ ∀ a ∈ Q : ∃m ∈ msgs : ∧m.type = “2bS”

∧m.rnd = r
∧m.acc = a

∧ LET 2bSmsgs ∆= {m ∈ msgs : ∧m.type = “2bS”
∧m.rnd = r
∧m.acc ∈ Q}

val ∆= CHOOSE val ∈ {m.val : m ∈ 2bSmsgs} : TRUE

IN ∧ ∃ i ∈ DOMAIN val : clearned [c][i] = NoTrans
∧ clearned ′ = [clearned EXCEPT ![c] =

[i ∈ Nat 7→ IF ∧ clearned [c][i] = NoTrans
∧ i ∈ DOMAIN val
THEN val [i].trans
ELSE clearned [c][i]

]
]

∨ ∃ inst ∈ Nat :
∧ clearned [c][inst] = NoTrans
∧ ∀ a ∈ Q : ∃m ∈ msgs : ∧m.type = “2b”

∧m.rnd = r
∧m.acc = a
∧m.inst = inst

∧ LET 2bmsgs ∆= {m ∈ msgs : ∧m.type = “2b”
∧m.rnd = r
∧m.acc ∈ Q
∧m.inst = inst}

trans ∆= CHOOSE trans ∈ {m.trans : m ∈ 2bmsgs} : TRUE

IN clearned ′ = [clearned EXCEPT ![c][inst] = trans]
∧ UNCHANGED 〈cthist , cq , cdreq , cpdec, cproposed , crndof , cinstof ,

dvars, avars, DBinter , msgs, amPrimary , dactivec〉

Action DatabaseLearn(d)

DatabaseLearn(d) ∆=

4.3. TLA+ SPECIFICATIONS 195

∧ ∃Q ∈ Quorum, r ∈ Nat :
∨ ∧ ∀ a ∈ Q : ∃m ∈ msgs : ∧m.type = “2bS”

∧m.rnd = r
∧m.acc = a

∧ LET 2bSmsgs ∆= {m ∈ msgs : ∧m.type = “2bS”
∧m.rnd = r
∧m.acc ∈ Q}

val ∆= CHOOSE val ∈ {m.val : m ∈ 2bSmsgs} : TRUE

IN ∧ ∃ i ∈ DOMAIN val : dlearned [d][i] = none
∧ dlearned ′ = [dlearned EXCEPT ![d] =

[i ∈ Nat 7→ IF ∧ dlearned [d][i] = none
∧ i ∈ DOMAIN val
THEN val [i]
ELSE dlearned [d][i]

]
]

∨ ∃ inst ∈ Nat :
∧ dlearned [d][inst] = none
∧ ∀ a ∈ Q : ∃m ∈ msgs : ∧m.type = “2b”

∧m.rnd = r
∧m.acc = a
∧m.inst = inst

∧ LET 2bmsgs ∆= {m ∈ msgs : ∧m.type = “2b”
∧m.rnd = r
∧m.acc ∈ Q
∧m.inst = inst}

msg ∆= CHOOSE msg ∈ 2bmsgs : TRUE

IN dlearned ′ = [dlearned EXCEPT ![d][inst] =
[trans 7→ msg .trans,
acthist 7→ msg .acthist
]

]
∧ UNCHANGED 〈cvars, ldvars, ddreply , dcnt , vers, dcom, prnd , pfproposal , drnd ,

dfreeinsts, dinstof , avars, DBinter , msgs, amPrimary , dactivec〉

DBAbortT (d , t) allows the database to abort transactions that are blocking liveness.

DBAbortT (d , t) ∆=
∧ d = DBof (t)
∧ vers[d][t] = 0
∧ dcnt [d][t] > 0
∧ ∨ ∧ d 6= PrimaryOf (drnd [d]) read-only transaction

∧ dinstof [d][t] 6= {}
∧ dinstof ′ = [dinstof EXCEPT ![d][t] = {}]

∨ ∧ dinstof [d][t] = {} will be aborted, if proposed

196 CHAPTER 4. OPTIMIZED ALGORITHMS

∧ dtdec[d][t] = Unknown and has not been locally decided yet

∧ UNCHANGED 〈dinstof 〉
∧DBS (d)!ReceiveReq(〈t , 0〉, Abort)
∧OtherDBsStutter(d)
∧ UNCHANGED 〈cvars, ddreply , dcnt , vers, dcom, dlearned , prnd , pfproposal ,

drnd , dfreeinsts, avars, DBinter , msgs, amPrimary , dactivec〉

DBChaneRound(d , r) is an extra action that allows databases to advance their round numbers. This can be
used in practice for databases to know more easily if they are the current primary or not. A database in a round
it is not the primary of is necessarily a replica responsible for passive transactions only.

DBChangeRound(d , r) ∆=
∧ ¬amPrimary [d]
∧ prnd [d] < r
∧ ∨ ∃msg ∈ {m ∈ msgs : m.type ∈ {“1a”, “1b”, “2a”, “2aS”, “2b”, “2bs”}} :

∧ prnd [d] < msg .rnd
∧msg .rnd = r

∧ prnd ′ = [prnd EXCEPT ![d] = r]
∧ drnd ′ = [drnd EXCEPT ![d] = r]
∧ pfproposal ′ = [pfproposal EXCEPT ![d] = [i ∈ {} 7→ none]]
∧ dfreeinsts ′ = [dfreeinsts EXCEPT ![d] = Nat]
∧ dinstof ′ = [dinstof EXCEPT ![d] = [t ∈ Tid 7→ {}]]
∧ UNCHANGED 〈cvars, ldvars, ddreply , dcnt , vers, dcom, dlearned ,

avars, DBinter , msgs, amPrimary , dactivec〉

Final Specification

The next-state action in terms of the noninterleaving actions.

ClientAction ∆=
∃ c ∈ Client , t ∈ Tid :
∨ ∃ req ∈ Request : ReceiveReq(c, t , req)
∨ ∃ rep ∈ Reply : ReplyReq(c, t , rep)
∨ PrematureAbort(c, t)
∨ PassiveCommit(c, t)
∨ ClientLearn(c)

DatabaseAction ∆=
∃ d ∈ Database :
∨ ∃ t ∈ Tid : ∨ ∃ req ∈ Request : DBReq(d , t , req)

∨ ∃ rep ∈ Reply : DBRep(d , t , rep)
∨DBAbortT (d , t)

∨DatabaseLearn(d)
∨ ∧ UNCHANGED ldinter [d] ∧DBS (d)!SOPNext replica’s internal action

∧OtherDBsStutter(d)
∧ UNCHANGED 〈cvars, gdvars, avars, DBinter , msgs, amPrimary , dactivec〉

4.4. RELATED WORK AND FINAL REMARKS 197

∨ ∃ r ∈ Nat : ∨ Phase1a(d , r)
∨ Phase2Start(d , r)
∨ActivateRound(d , r)

AcceptorAction ∆=
∃ a ∈ Acceptor , r ∈ Nat :
∨ Phase1b(a, r)
∨ Phase2b(a, r)

ChangeOtherVariables ∆=
∧ amPrimary ∈ amPrimaryType
∧ dactivec ∈ dactivecType
∧ UNCHANGED 〈cvars, dvars, avars, DBinter , msgs〉

Next ∆= ∨ ClientAction
∨DatabaseAction
∨AcceptorAction
∨ ChangeOtherVariables

The final specification

Spec ∆= Init ∧2[Next]〈cvars, dvars, avars, DBinter , msgs, amPrimary, dactivec〉

4.4 Related Work and Final Remarks

The algorithm presented in Section 4.1.4 is inspired by the certified termination of the
Database State Machine (DBSM) protocol described in [PGS03]. However, we use our
understanding of the termination abstraction to improve performance. If we look at the
termination properties stated in Section 2.2.3, there is nothing forcing certification to hap-
pen after totally ordering transactions. In fact, what the consistency property states is that
committed transactions must be submitted to replicas at the same order, implying that cer-
tification should actually happen before propagation. This rationale allowed us to come up
with an algorithm that reduces to burden of certification to a single process and manages to
propagate only update operations to replicas, without increasing the termination latency or
reducing the degree of fault tolerance. Since the idea behind the certification test remains
the same as in the original DBSM protocol, optimizations like reordering [PGS97] or the
use of version numbers [ZP05, ZP08] can still be made.

Interestingly, some deferred-update algorithms do not use any direct implementation
of sequence agreement or atomic broadcast for active transaction termination. Instead,
they use some variant of two-phase-commit [AAS97]. One might wonder if this contra-
dicts our result that termination implies sequence agreement. The answer is no, it does

198 CHAPTER 4. OPTIMIZED ALGORITHMS

not. These algorithms use two-phase-commit as an optimistic implementation of atomic
broadcast[PS03, PSUC02]. When two-phase-commit starts, each database votes for its lo-
cal ordering of transactions. If all orderings are the same, transactions commit; otherwise,
transactions simply abort. In the end, transactions are only committed if all database repli-
cas agreed on the same commit order.

Our second algorithm, presented in Section 4.2 optimizes certification further by having
it done by one of the replicas. A similar approach is taken in [PF00]. However, ours
manages to get a significant lower latency for termination (3 communication steps less) due
to the use of a tailor-made propagation protocol.

The idea of disabling disk writes at database replicas to obtain better performance has
also been explored in the context of database replication protocols with weaker consistency
guarantees [EDP06]. As one can easily imagine, performance gains due to this technique
are significant.

Chapter 5

Conclusion

A whole is that which has beginning, middle, and end.
Aristotle

Replication is a good way to improve both performance and dependability of database
systems. If several database replicas are available, performance can be improved by dis-
tributing the load among them. Moreover, if one of the replicas cannot be accessed due to
failures, users can still rely on the other ones. However, providing a consistent database
interface out of several replicas is not an easy task and requires replica synchronization.
Although we would like to have replicas as independent of each other as possible for per-
formance and dependability reasons, we must keep them synchronized if we want to provide
a consistent interface to users. In this work, we studied how we can balance this trade-off
to provide good performance and fault-tolerance without compromising consistency. Our
basis is a widely used technique for database replication known as the deferred update tech-
nique. In this technique, transactions are initially executed in a single replica. After this
initial execution, passive transactions, which do not change the state of the database, can
commit locally to the replica they execute. Active transactions, which change the database
state, must be synchronized with the transactions running on other replicas.

This thesis discusses the details involved in the design of deferred-update database repli-
cation protocols, and proposes a new model to design and analyze such protocols as well as
novel algorithms of practical motivation and application.

5.1 Research Assessment

This thesis research has led to four major contributions, summarized below.

199

200 CHAPTER 5. CONCLUSION

Abstraction of the Deferred Update Technique. We have presented a formal abstrac-
tion of the deferred update technique for database replication. Although this replication
technique has been widely used in practical and theoretical works, there was no formaliza-
tion of it up to now, forcing the design, analysis, and correctness proof of such protocols to
be done by non-standard mechanisms, adapted from the analysis of centralized databases.
Our abstraction allows one to come up with general results concerning this family of proto-
cols (lower and upper bounds), prove their correctness, and easily design novel correct-by-
construction protocols. As an example of the usefulness of our abstraction we have shown
that, contrary to the assumptions made by previous works on deferred-update replication,
the technique can cope with a concurrency control mechanism weaker than strict order-
preserving serializability on database replicas. In fact, this motivated us to introduce the
concept of active order-preserving serializability, which generalizes the behavior of some
optimistic concurrency control algorithms and can be safely employed on general deferred-
update algorithms. We have also used our abstraction to prove some limitations regarding
the termination protocol for committing and propagating active transactions. Specifically,
we have shown that it necessarily solves a sequence agreement problem among databases.

M-Consensus and Collision-fast Paxos. Using consensus to solve sequence agreement
can lead to collisions, that is, concurrent proposals made to the same instance will con-
flict and, therefore, prevent at least one of them from being learned at that instance. Even
collision-fast consensus protocols do not implement collision-fast sequence agreement us-
ing the standard implementation of atomic broadcast based on consensus. We introduced a
variant of consensus called M-Consensus, more general than the original problem and more
suitable as a building block for efficient sequence agreement implementations. Collision-
fast Paxos, our solution to M-Consensus, allows for a very efficient and fault-tolerant solu-
tion to the problem of sequence agreement. Our latency-optimal algorithm, derived from the
Paxos consensus protocol [Lam98], is very dynamic and can quickly reconfigure and adapt
to failures, which distinguishes it from previous approaches achieving similar bounds. Our
extensive correctness proofs not only increase our confidence in the algorithm, but they also
carry some general structure that can be used to prove similar algorithms.

Certification-based Deferred-Update Algorithm. Our novel certification-based deferred-
update algorithm has very little overhead associated with the termination of active transac-
tions, even though it requires no extra assumptions about the database engines. Its most
important feature is that it propagates only strictly necessary information to replicas. It also
does not incur any extra work on the database replicas besides running local transactions
and applying the required updates. Our termination protocol borrows from Paxos, ensuring
the same latency and degree of fault tolerance as the original algorithm. It can certify and
propagate active transactions to replicas within three communication steps as seen from the
client. To the best of our knowledge, no previous protocol can ensure this latency without
propagating certification information to replicas and requiring them to perform the certifi-
cation test.

5.2. FUTURE DIRECTIONS AND OPEN QUESTIONS 201

In-memory Primary-Backup Replication Algorithm. The previous algorithm has ter-
mination certification performed by a single agent, the current termination leader, and the
test simply verifies the serializability of proposed active transactions. Therefore, one might
think of using a database engine to perform this test. This is possible, in principle, but it
does not guarantee that this database engine will be synchronized with the other replicas,
which prevents it from being used to handle passive transactions and invalidates its state
on the event of a leader change. A transaction that passes such a certification test will be
internally committed at the leader’s database even though it has not yet been chosen by
acceptors and propagated to the other replicas. A failure suspicion can trigger a new round
and a leader change that could certify this transaction differently and propagate a different
outcome to the replicas, making them diverge from the state in the database of the previ-
ous leader. In order to allow the certification to be done by one of the database replicas,
one has to assume stronger properties from the concurrency control mechanism they pro-
vide. Our in-memory primary-backup replication algorithm uses strong assumptions found
in in-memory databases to reduce even more the latency and the burden associated with
transaction termination, requiring only two communication steps and no extra certification
procedure to commit proposed transactions. This algorithm can be nicely coupled with
in-memory databases to provide very good performance in practice. Besides its practical
relevance, it also shows how our deferred-update abstraction can help the design and analy-
sis of protocols even if termination depends on stronger assumptions about the consistency
guarantees of database replicas.

5.2 Future Directions and Open Questions

Weak Consistency. We have studied the context of deferred-update replication algorithms
ensuring Serializability. The search for good performance has made many researchers
exploit weaker consistency guarantees in replicated settings (e.g., [EZP05, LKMPJP05,
EDP06]). Many of these algorithms rely on the main principle of deferred-update replica-
tion, that is, initially executing transactions on a single replica and proposing active trans-
actions for termination. We conjecture that our deferred-update abstraction can be adapted
to weaker consistency guarantees by just weakening the Consistency termination property
and the assumptions about the replicas’ concurrency control mechanism.

Strong Consistency. Some people might argue that Serializability is too weak as a database
consistency guarantee [Lam92]. The main criticism against Serializability is that it can de-
lay the serialization of write-only transactions forever. Nothing forces such transactions
to be applied to the internal database state. Stronger properties might, for example, force a
new transaction to always see the result of the last committed transactions. It would be inter-
esting to analyze which modifications would be necessary to make our abstraction provide
consistency guarantees stronger than serializability.

202 CHAPTER 5. CONCLUSION

Transactional Memories. Our deferred-update abstraction is very general and could be
possibly applied to shared memory systems as well as distributed settings. In shared mem-
ory systems, software transactional memories [ST97] have become an active research area
and one could think of using our abstraction to design and analyze high-performance fault-
tolerant transactional memory interfaces.

Wide-area Group Communication. In the classic Paxos algorithm, only a single leader
is allowed to have its proposals accepted and learned in two communication steps. If the
protocol is applied to a wide-area setting where clusters of machines are separated by long
distances with large communication delays, proposals originated in a cluster different from
the leader’s will take three wide-area communication delays to be learned. Collision-fast
Paxos allows a set of proposers to have their proposals learned in two communication steps
and seems to be a good algorithm for wide area networks.

Collision-fast Paxos and Generic Broadcast. A good characteristic of Collision-fast
Paxos, inherited from M-Consensus, is that it allows incomplete mappings to be learned.
Gaps in the mapping would prevent learned values to be delivered through a sequence
agreement interface. Applying Collision-fast Paxos to solve Generic Broadcast [PS02,
ADGFT00] can allow values after the gap to be delivered if the learner knows that the
proposer responsible for the gap has fast-proposed a value that does not conflict with the
value after the gap. Recall that it takes two communication steps to have a proposed value
learned, but the collision-fast proposer can send this notification directly to learners just
to allow them to learn other values faster. Whether this optimization can have a practical
application seems to be an interesting problem.

Partial Replication. Our deferred-update abstraction copes with full replication only. It
can be used in the design and analysis of simple partial replication protocols such as [SSP06],
but we do not know to what extent it can be applied or what modifications would be neces-
sary to deal with more complicated algorithms.

Certification-free Termination. Some deferred-update protocols such as [KA00b] allow
active transactions to execute on any database site and manage to use database replicas to
perform termination certification, without propagating more information about the transac-
tion history than the active history. These protocols, however, have strong failure detection
assumptions and do not allow wrong failure suspicions. We think we can use some of the
ideas of the algorithms presented in Chapter 4 to create a protocol that achieves such a
certification-free termination and can cope with false failure suspicions.

Bibliography

[AAAS97] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic
broadcast in replicated databases. In Proceedings of EuroPar (EuroPar’97),
Passau (Germany), September 1997.

[AAS97] D. Agrawal, A. E. Abbadi, and R. Steinke. Epidemic algorithms in replicated
databases. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Tucson (USA), May 1997.

[ADGFT00] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty
generic broadcast. In Proc. of the 14th Intl. Conference on Distributed Com-
puting, pages 268–282, Toledo, Spain, 2000.

[Agu04] M. K. Aguilera. A pleasant stroll through the land of infinitely many crea-
tures. SIGACT News, 35(2):36–59, 2004.

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theoreti-
cal Computer Science, 82(2):253–284, May 1991.

[AT02] Y. Amir and C. Tutu. From total order to database replication. In Interna-
tional Conference on Distributed Computing Systems (ICDCS), July 2002.

[BBG89] C. Beeri, P. A. Bernstein, and N. Goodman. A model for concurrency in
nested transaction systems. Journal of the ACM, 36(2):230–269, April 1989.

[BBG+95] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. SIGMOD Record (ACM Special
Interest Group on Management of Data), 24(2):1–10, June 1995.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[BK02] S. Blott and H. F. Korth. An almost-serial protocol for transaction execution
in main-memory database systems. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB), pages 706–717, 2002.

[BN97] P. Bernstein and E. Newcomer. Principles of Transaction Processing. Mor-
gan Kaufmann Publishers, 1997.

203

http://portal.acm.org/citation.cfm?id=758424
http://portal.acm.org/citation.cfm?id=758424

204 BIBLIOGRAPHY

[Bro92] M. Broy. Algebraic and functional specification of an interactive serializable
database interface. Distributed Computing, 6(1):5–18, 1992.

[CBS06] B. Charron-Bost and A. Schiper. Improving fast paxos: being optimistic
with no overhead. prdc, 0:287–295, 2006.

[CPS06] L. Camargos, F. Pedone, and R. Schmidt. A Primary-Backup Protocol for
In-Memory Database Replication. In 5th IEEE International Symposium on
Network Computing and Applications (NCA’2006), pages 204–211, 2006.

[CSP06] L. Camargos, R. Schmidt, and F. Pedone. Multicoordinated paxos. Technical
report, EPFL, 2006.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Communications of the ACM, 43(2):225–267, 1996.

[DSU04] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421,
2004.

[EDP06] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: uniting durability with
transaction ordering for high-performance scalable database replication. In
EuroSys ’06: Proceedings of the ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2006, pages 117–130, New York, NY, USA,
2006. ACM.

[EZP05] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database replication using gen-
eralized snapshot isolation. In SRDS ’05: Proceedings of the 24th IEEE
Symposium on Reliable Distributed Systems (SRDS’05), pages 73–84, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[FLP85] M. J. Fischer, N. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382,
1985.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal (Canada), June 1996.

[Gif79] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th
Symposium on Operating System Principles SOSP 7, pages 150–162, Pacific
Grove (USA), December 1979.

[GL03] E. Gafni and L. Lamport. Disk paxos. Distrib. Comput., 16(1):1–20, 2003.

[GL06] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transac-
tions on Database Systems, 31(1):133–160, 2006.

http://www.acm.org/pubs/toc/Abstracts/jacm/226647.html
http://www.acm.org/pubs/toc/Abstracts/jacm/226647.html

BIBLIOGRAPHY 205

[GMS92] H. Garcia-Molina and K. Salem. Main memory database systems: An
overview. IEEE Transactions on Knowledge and Data Engineering,
4(6):509–516, 1992.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[HAA99] J. Holliday, D. Agrawal, and A. E. Abbadi. The performance of database
replication with group multicast. In Proceedings of International Symposium
on Fault Tolerant Computing (FTCS29), pages 158–165. IEEE Computer
Society, 1999.

[HT93] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems,
pages 97–145. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2 edition, 1993.

[KA00a] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new
way to implement database replication. In Proceedings of 26th International
Conference on Very Large Data Bases, September 2000.

[KA00b] B. Kemme and G. Alonso. A new approach to developing and implement-
ing eager database replication protocols. ACM Transactions on Database
Systems, 25(3):333–379, 2000.

[KD96] I. Keidar and D. Dolev. Efficient message ordering in dynamic networks. In
PODC ’96: Proceedings of the fifteenth annual ACM symposium on Prin-
ciples of distributed computing, pages 68–76, New York, NY, USA, 1996.
ACM.

[KS92] R. Kurki-Suonio. Operational specification with joint actions: serializable
databases. Distributed Computing, 6(1):19–37, 1992.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[Lam89] L. Lamport. A simple approach to specifying concurrent systems. Commu-
nications of the ACM, 32(1):32–45, January 1989.

[Lam92] L. Lamport. Critique of the lake arrowhead three. Distributed Computing,
6(1):65–71, 1992.

[Lam95] L. Lamport. How to write a proof. American Mathematical Monthly,
102(7):600–608, 1995.

[Lam98] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

http://portal.acm.org/citation.cfm?id=302435
http://portal.acm.org/citation.cfm?id=359563
http://portal.acm.org/citation.cfm?id=279227.279229

206 BIBLIOGRAPHY

[Lam02] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[Lam04] L. Lamport. Generalized consensus and paxos. Technical Report MSR-TR-
2005-33, Microsoft Research, 2004.

[Lam06a] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–103, October
2006.

[Lam06b] L. Lamport. Lower bounds for asynchronous consensus. Distributed Com-
puting, 19(2):104–125, 2006.

[LKMPJP05] Y. Lin, B. Kemme, n.-M. Marta Pati and R. Jiménez-Peris. Middleware
based data replication providing snapshot isolation. In SIGMOD ’05: Pro-
ceedings of the 2005 ACM SIGMOD international conference on Manage-
ment of data, pages 419–430, New York, NY, USA, 2005. ACM.

[LLOR99] P. Ladkin, L. Lamport, B. Olivier, and D. Roegel. Lazy caching in tla. Dis-
tributed Computing, 12(2/3):151–174, 1999.

[LMWF94] N. Lynch, M. Merrit, W. Weihl, and A. Fekete. Atomic Transactions. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, USA, 1994.

[LS92] S. S. Lam and A. U. Shankar. Specifying modules to satisfy interfaces: a
state transition system approach. Distrib. Comput., 6(1):39–63, 1992.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San
Mateo, CA, USA, 1996.

[ML04] M. Massa and L. Lamport. Cheap paxos. In Proc. of the 2004 Intl. Confer-
ence on Dependable Systems and Networks, June 2004.

[MLP79] R. A. D. Millo, R. J. Lipton, and A. J. Perlis. Social processes and proofs
of theorems and programs. Communications of the ACM, 22(5):271–280,
1979.

[Pap79] C. H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM, 26(4):631–653, October 1979.

[PF00] F. Pedone and S. Frølund. Pronto: A fast failover protocol for off-the-shelf
commercial databases. In Proceedings of the 19th IEEE Symposium on Re-
liable Distributed Systems (SRDS’2000), pages 176–185, 2000.

[Pfi98] G. F. Pfister. In search of clusters. Prentice Hall, 1998.

[PGS97] F. Pedone, R. Guerraoui, and A. Schiper. Transaction reordering in repli-
cated databases. In Proceedings of the 16th IEEE Symposium on Reliable
Distributed Systems, Durham (USA), October 1997.

BIBLIOGRAPHY 207

[PGS03] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine ap-
proach. Journal of Distributed and Parallel Databases and Technology,
14(1):71–98, 2003.

[PMJPKA00] M. Patino-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable
replication in database clusters. In Proc. of the 14th International Symposium
on Distributed Computing (DISC’2000), 2000.

[PS02] F. Pedone and A. Schiper. Handling message semantics with generic broad-
cast protocols. Distributed Computing, 15(2):97–107, April 2002.

[PS03] F. Pedone and A. Schiper. Optimistic atomic broadcast: a pragmatic view-
point. Theoretical Computer Science, 291(1):79–101, January 2003.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, 1980.

[PSUC02] F. Pedone, A. Schiper, P. Urban, and D. Cavin. Solving agreement prob-
lems with weak ordering oracles. In Proc. of the 4th European Dependable
Computing Conference, pages 44–61, 2002.

[RMA+02] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong
replication in the GLOBDATA middleware. In Workshop on Dependable
Middleware-Based Systems, 2002.

[SS99] D. F. Savarese and T. Sterling. Beowulf. In High Performance Cluster Com-
puting, volume 1, Architectures and Systems, pages 625–645. Prentice Hall
PTR, 1999.

[SSP06] N. Schiper, R. Schmidt, and F. Pedone. Optimistic algorithms for partial
database replication. In Proceedings of the 10th International Conference
on Principles of Distributed Systems (OPODIS’2006), pages 81–93, 2006.

[ST97] N. Shavit and D. Touitou. Software transactional memory. Distributed Com-
puting, 2(2):99–116, 1997.

[Sto79] M. Stonebraker. Concurrency control and consistency of multiple copies
of data in distributed Ingres. IEEE Transactions on Software Engineering,
SE-5:188–194, May 1979.

[Tho79] R. H. Thomas. A majority consensus approach to concurrency control for
multiple copy databases. ACM Transactions on Database Systems, 4(2):180–
209, June 1979.

[VBLM07] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating byzan-
tine faults in database systems using commit barrier scheduling. In Proceed-
ings of the 21st ACM Symposium on Operating Systems Principles (SOSP),
Stevenson, Washington, USA, October 2007.

http://dx.doi.org/10.1007/s004460100061
http://dx.doi.org/10.1007/s004460100061
http://portal.acm.org/citation.cfm?id=795644
http://portal.acm.org/citation.cfm?id=795644

208 BIBLIOGRAPHY

[VR02] P. Vicente and L. Rodrigues. An indulgent uniform total order algorithm with
optimistic delivery. In Proc. of the 21th IEEE Symp. on Reliable Distributed
Systems (SRDS’02), pages 92–101, Osaka, Japan, October 2002.

[WPS+00a] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database
replication techniques: a three parameter classification. In Proceedings of
19th Symposium on Reliable Distributed Systems (SRDS’2000), pages 206–
215, Nürnberg, Germany, 2000. IEEE Computer Society.

[WPS+00b] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Un-
derstanding replication in databases and distributed systems. In Proceed-
ings of 20th International Conference on Distributed Computing Systems
(ICDCS’2000), pages 264–274, Taipei, Taiwan, April 2000.

[Zie06] P. Zielinski. Low-latency atomic broadcast in the presence of contention.
In Proc. of the 20th Intl. Symposium on Distributed Computing, DISC’2006,
pages 505–519, 2006.

[ZP05] V. Zuikeviciute and F. Pedone. Revisiting the database state machine. In
VLDB Workshop on Design, Implementation and Deployment of Database
Replication, 2005.

[ZP08] V. Zuikeviciute and F. Pedone. Conflict-aware load-balancing techniques for
database replication. In Proceedings of the 23rd ACM Symposium on Applied
Computing, 2008.

http://ddsg.jaist.ac.jp/en/pub/WPS+00b.html
http://ddsg.jaist.ac.jp/en/pub/WPS+00b.html

Curriculum Vitae

I was born in Rio Grande, Rio Grande do Sul, south of Brazil, in 1978. From 1983 to 1992
I attended primary school. By the end of it, I was starting to get interested in computer
systems and wanted to understand better how they worked. From 1993 to 1996 I attended
a technical high school in Rio Grande called Colégio Técnico Industrial (CTI). There, I
received regular secondary education together with technical courses in Computer Science.
I do not know exactly when it happened, but by the time I graduated from CTI, I was already
in love with Computer Science. From 1996 to 2000 I studied Computer Engineering at the
University of Rio Grande (FURG).

From 2001 to 2003 I moved to Campinas, in the state of São Paulo, to do Masters
in Computer Science at the University of Campinas (Unicamp). In my last semester at
Unicamp, I taught Computer Science at the Catholic University of Campinas. By the end of
2003, I moved to Lausanne, Switzerland, to start my PhD studies at EPFL. I started as a pre-
doctoral student at the Computer Networking Laboratory, and later moved to the Laboratory
of Operating Systems. During the summer of 2005, I spent three months in an internship at
HP Labs in Bristol, England. In the context of my PhD, a collaboration between EPFL and
the University of Lugano, I had the opportunity to work with several people, give research
talks, and interact with industrial partners.

209

	Front Matter
	Abstract
	Resume
	Preface

	Introduction
	Database Replication
	Distributed Locking Approach
	Deferred-Update Replication
	Consensus and Paxos

	Research Contributions
	Methodology
	Refinement Mappings
	Formal Specifications

	Thesis Organization

	Formal Analysis of the Deferred Update Technique
	Serializability
	The Deferred Update Technique
	Preliminaries
	Abstract Algorithm
	Termination Protocol

	A Simple Implementation
	Theorem Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.3
	Proof of Theorem 2.4

	TLA+ Specifications
	Module DatabaseConstants
	Module SerializableDB
	Module OPSerializableDB
	Module AOPSerializableDB
	Module GeneralDeferredUpdate
	Module GeneralTermination

	Related Work and Final Remarks

	Collision-fast Sequence Agreement and Paxos
	Sequence Agreement and Consensus
	Model and Definitions
	Model
	Sequence Agreement
	Algorithms

	M-Consensus
	Value Mapping Sets
	Problem Definition

	Collision-fast Paxos
	Basic Algorithm
	Ensuring Liveness
	Runtime Reconfiguration

	Solving Sequence Agreement
	General Approach
	Collision-fast Paxos Approach

	Correctness of Collision-fast Paxos
	Preliminaries
	Abstract Collision-fast Paxos
	Distributed Abstract Collision-fast Paxos
	Collision-fast Paxos
	The Liveness of Collision-fast Paxos

	Correctness of the Sequence Agreement Algorithm
	Complete Algorithm Specification
	Safety
	Liveness

	TLA+ Specifications
	Module SAgreement
	Module VMapping
	Module MConsensus
	Module PaxosConstants
	Module AbstractCFPaxos
	Module DistAbsCFPaxos
	Module DistCFPaxosLiv
	Module CFPaxosSAgreement

	Related Work and Final Remarks

	Optimized Algorithms
	Certification-based Algorithm
	Model and Definitions
	General Idea and Data Structures
	Atomic Actions
	Correctness and Optimizations

	In-memory Primary-Backup Replication
	Motivation
	Concurrency Control Mechanism
	The Algorithm
	Correctness and Optimizations

	TLA+ Specifications
	Module CertificationBased
	Module SOPSerializable
	Module PrimaryBackup

	Related Work and Final Remarks

	Conclusion
	Research Assessment
	Future Directions and Open Questions

	Bibliography

