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Résumé

Les protocoles cryptographiques forment un ingrédient essentiel des communi-
cations réseau. S’ils semblent de prime abord relativement simples en comparai-
son d’autres algorithmes distribués, ils sont néanmoins réputés pour être diffi-
cile à élaborer. Cette difficulté s’explique par le fait qu’ils doivent garantir des
propriétés de sécurité dans n’importe quel environnement, incluant potentielle-
ment des intrus hostiles. Durant les dernières décennies sont apparus plusieurs
modèles ainsi que des outils permettant d’étudier la correction des protocoles
cryptographiques. Parmi ces modèles figure le spi calcul : un calcul de processus
dérivé du pi calcul incorporant des primitives cryptographiques. Les calculs de
processus tels que le spi calcul permettent de décrire de façon claire et concise
des algorithmes distribués tels que les protocoles cryptographiques. De plus, le
spi calcul permet de modéliser de manière élégante certaines propriétés de sécu-
rité via des équivalences observationnelles.
Quand cette thèse a commencé, cette approchemanquait cruellement d’outils.

Inspirés par la situation existante dans le pi calcul, nous proposons une nouvelle
notion d’équivalence observationnelle qui est proche de pouvoir être implémen-
tée. En outre, nous proposons une formalisation en coq de nos travaux qui non
seulement valide notre étude théorique mais constituera aussi à terme la base
d’un outil certifié qui automatisera les tests d’équivalence dans le spi calcul.
Pour compléter la suite d’outils, nous proposons également une sémantique

formelle pour une notation informelle utilisée couramment pour décrire les pro-
tocoles cryptographiques : les narrations de protocole. Nous donnons finalement
une manière rigoureuse de traduire les narrations de protocole en spi calcul,
constituant ainsi les fondements de notre outil automatique de traduction spyer.

Mots-clef : protocoles cryptographiques, calculs de processus, spi calcul, bisimu-
lations, assistants de preuve.





Abstract

Cryptographic protocols are an essential component of network communications.
Despite their relatively small size compared to other distributed algorithms, they
are known to be error-prone. This is due to the obligation to behave robustly
in the context of unknown hostile attackers who might want to act against the
security objectives of the jointly interacting entities. The need for techniques to
verify the correctness of cryptographic protocols has stimulated the development
of new frameworks and tools during the last decades. Among the various models
is the spi calculus: a process calculus which is an extension of the pi calculus that
incorporates cryptographic primitives. Process calculi such as the spi calculus of-
fer the possibility to describe in a precise and concise way distributed algorithms
such as cryptographic protocols. Moreover, spi calculus offers an elegant way
to formalise some security properties of cryptographic protocols via behavioural
equivalences.
At the time this thesis began, this approach lacked tool support. Inspired by

the situation in the pi calculus, we propose a new notion of behavioural equiv-
alence for the spi calculus that is close to an algorithm. Besides, we propose a
coq formalisation of our results that not only validates our theoretical develop-
ments but also will eventually be the basis of a certified tool that would automate
equivalence checking of spi calculus terms.
To complete the toolchain, we propose a formal semantics for an informal

notation to describe cryptographic protocols, so called protocol narrations. We
give a rigorous procedure to translate protocol narrations into spi calculus terms;
this constitutes the foundations of our automatic translation tool spyer.

Keywords: cryptographic protocols, process calculi, spi calculus, bisimulations,
proof assistants.
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Chapter 1

Introduction

In this chapter, we explicate the practical motivations of this thesis and
give an overview of related works. Based on this exposition, we explain
the approach chosen here, and give an outline of the thesis.

1.1 Cryptographic protocols

The democratisation of the Internet has deeply changed the nature of hu-
man interactions. For instance, e-commerce offers the ability to buy almost
anything while staying at home, with a simple mouse click. These new
ways of interacting, through computers over an insecure network, require
some technological support in order to guarantee security of communi-
cations; this is precisely the raison d’être of cryptographic protocols, also
called security protocols.
According to [95], a cryptographic protocol is “a distributed algorithm

defined by a sequence of steps precisely specifying the actions required of
two or more entities to achieve a specific security objective”.

1.1.1 Security goals

The security objectives that are usually emphasised in the use of crypto-
graphic protocols are the following:

1. Confidentiality or secrecy or privacy. It requires the content of mes-
sages or other information to be accessible only to the authorised
parties.

2. Data integrity ensures that data has not been corrupted or altered, e.g.
by an unauthorised party.
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3. Authentication is related to identification. It is usually subdivided
into two major classes: entity authentication and data origin authen-
tication. Entity authentication means that one entity, often called a
principal, is indeed who it claims to be. Data origin authentication
means that the source of information is corroborated; it implicitly
provides data integrity.

4. Non-repudiation prevents an entity from denying previous commit-
ments or actions. When an entity denies having taken certain ac-
tions, a dispute arises. A procedure involving a trusted third party
is needed to resolve it.

A more comprehensive overview of security goals can be found in
[124]. The formal meaning of these goals is not always completely clear;
modal logics have thus emerged to express them in a rigorous way [89].

1.1.2 Cryptographic primitives

Cryptographic protocols make use of cryptographic primitives in order to
reach their security goals. We will have a very abstract view of cryptog-
raphy and cryptographic primitives, nonetheless we discuss quickly the
toolbox usable by a protocol designer.

Cipher algorithms

Cryptography has a long and fascinating history [88]. Greece and ancient
Rome already made use of it for military or diplomatic purposes. More
recently, one also remembers that it played a crucial role in the outcome of
both world wars. It is only during the 1970s that the use of cryptography
was extended to the civil field with the elaboration of the Data Encryption
Standard [107]. In 1976, cryptography made its revolution with the intro-
duction of the notion of public-key cryptography by Diffie and Hellman
[66].
A cipher algorithm is a reversible cryptographic primitive. The encryp-

tion function is usually parametrised by an encryption key and it takes a
message —the plaintext— to produce the ciphertext (see Table 1.1). To get
back the plaintext, a decryption function, which is parametrised by a decryp-
tion key, is used.
We speak of symmetric key cryptography if for each pair (d, e) of de-

cryption key and encryption key, it is easy to determine d knowing only e
and to determine e from d,
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encryption key k

plaintext M encryption function EnckM ciphertext

Table 1.1: Encryption function

In most practical symmetric-key encryption schemes, we have e = d.
In this case, two parties which want to communicate have to share the
same key k; we thus sometimes speak of shared key cryptography (see Ta-
ble 1.2). One of the major issues with symmetric-key systems is to find an
efficient method to agree upon and exchange keys securely: this is the key
distribution problem.

Alice

secret key k
message M

Bob

secret key k
EncskM

Table 1.2: Alice communicates M to Bob via their shared symmetric key k

In contrast, if for each pair (d, e), given an encryption key e and a ran-
dom cyphertext c it is computationally infeasible to find a plaintextm such
that its encryption with e is c then we speak of public key cryptography.
This implies that computing e from d or d from e is computationally infea-
sible.
In this setting, a two-party communication between Alice and Bob has

the following form. Bob selects a key pair (d, e) and sends the encryp-
tion key e (called the public key) to Alice but keeps the decryption key d
secure and secret. Alice may then send a message to Bob by applying the
encryption function determined by Bob’s public key. Bob can decrypt the
cyphertext c by applying the decryption function using its private key d
(see Table 1.3).
In public-key systems, it is needed to have a mean to authenticate

public keys because otherwise an intruder may impersonate an honest
principal and defeat the system without breaking the encryption scheme.
Authentication is usually provided by a public key infrastructure (PKI)
through certificates.
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Alice

message M

Bob

public key pub(kB)
private key priv(kB)

Enca
pub(kB)

M

public list of certificates
...

Bob’s public key is pub(kB)
...

Table 1.3: Alice communicates M to Bob via Bob’s public key pub(kB)

We will not enter into the details of implementation of cipher algo-
rithms or cipher modes of operation since it is beyond the scope of this
thesis. A comprehensive and technical account of cipher algorithms can
be found in [95]. We just mention as examples of shared-key cryptosys-
tems the one-time pad (which ensure perfect secrecy), the data encryption
standard [107] and its successor the advanced encryption standard [108]. In-
stances of public-key cryptosystems are for example RSA (named after its
inventors Rivest-Shamir-Adleman) [119] or ElGamal [73].

Cryptographic hash functions

Quoting [95], a hash function “is a computationally efficient function map-
ping binary strings of arbitrary length to binary strings of some fixed
length, called hash values”. Hash functions can be used to detect data cor-
ruption. Indeed, assume that the hash value of a data M is H(M) and that
M happens to be corrupted intoM′, then the hash value H(M′)will almost
certainly be different from H(M) and thus we will detect the corruption.
Of course, we are assuming that the range of the hash function is large
enough so that collisions are rare. It is also desirable that a small change
to a data results in a large change of the hash value so that data corruption
can be detected even if the hash value has also been corrupted.
To detect accidental corruption of data, a hash function such as a Cyclic

Redundancy Check [117] is sufficient. However, to avoid malicious alter-
ation of data, the choice of the hash function should be more careful. In-
deed, if the hash function is simple, it can be fairly easy for someone to
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choose an alteration of the data that have the same hash value. To prevent
this, it is required that cryptographic hash functions have the following
properties:

• Knowing H and given a hash value y, it is extremely difficult to find
a data x such that H(x) = y.

• Knowing H and given an input x and its hash value H(x), it is ex-
tremely difficult to find another input x′ 6= x such that H(x′) = H(x).

• Knowing H, it is extremely difficult to find two distinct inputs x, x′

such that H(x) = H(x′).

Again, we will not enter into the details of cryptographic hash func-
tions and will refer the reader to [95]. As candidates for cryptographic
hash functions, we just mention MD5 [118] or preferably SHA-1 [109] or
RIPEMD [67].

Digital signatures

Digital signatures are supposed to prove the origin and the authenticity of
the data to which they are bound. They are the digital counterpart of hand-
written signatures or seals. Digital signatures are usually implemented
using public-key cryptography. A signature algorithm takes a document
and a private key and produces a signed document. A signature verifi-
cation algorithm takes a signed document and a public key and answers
“yes” or “no”. If the answer is “yes”, we are entitled to conclude that the
message has been signed with the matching private key and that the data
has not been corrupted.
A digital signature scheme is the following:

• Signature generationAssume an entity A has private key priv(kA) and
public key pub(kA). To sign a message M, it produces the concatena-
tion of its identity A, the message M and the encryption of the hash
value H(M) of M with its own private key. In short, the signature is

A,M,Enca
priv(kA)H(M)

• Signature verification To check a signed message, an entity B should
read A’s identity, compute the hash value of the second part of the
signature and accept the signature only if this hash value is equal
to the decryption with A’s authentic public key pub(kA) of the third
part of the signature.
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This method of authentication relies on the assumption that the secret
private key priv(kA) of A is never compromised to avoid that someone else
sign a document with A’s private key.
Once again, we refer to [95] for a more comprehensive overview of

digital signature algorithms.

Nonces and timestamps

To provide uniqueness or timeliness guarantees, time-variant parameters
such as nonces or timestamps may be used in the elaboration of crypto-
graphic protocols.
A nonce can be understood in the context of cryptographic protocols

as a fresh random value. They are usually used to establish causal rela-
tionships between messages; typically in challenge-response protocols to
ensure freshness of data. Nonces can be constrained by a timeout period to
fix a relative point in time for the parties involved.
Another approach is to agree on a global notion of time and use times-

tamps instead. A timestamp is simply a way of attaching the current value
of time to a message. It can be used as an alternative to nonces: the fresh-
ness of a message is simply given by the subtraction of the timestamp to
the current time. As noted in [95], usage of timestamps result generally in
simpler protocols. The main drawback is the requirement of maintaining
secure, synchronised distributed timeclocks. Thus timestamps are typi-
cally replaced in protocols by a nonce challenge plus a return message.

1.1.3 A malicious agent: the intruder

Although surprisingly small in extent compared to other distributed algo-
rithms, cryptographic protocols are known to be error-prone, and “bugs
are routinely found in well-known protocols years after they were first
published” [14]. This is due to the obligation to behave robustly in pres-
ence of a hostile opponent who might want to act against the security ob-
jectives of the jointly interacting entities.

An example of attack

An example that illustrates the difficulty of designing and analysing cryp-
tographic protocols is certainly the Needham-Schroeder protocol [105]. It
was believed to be secure during 17 years until Gavin Lowe found a flaw
with an automatic tool [92, 93]. We now discuss briefly this historical ex-
ample following Gavin Lowe’s articles.



1.1. CRYPTOGRAPHIC PROTOCOLS 13

A cryptographic protocol is defined by the sequence of messages ex-
changed between the involved entities. It is usually [58] expressed as a
linear scenario of message exchanges , called protocol narrations [2] or nar-
rations in short, that can be interpreted as the intended trace of ideal exe-
cution of the protocol.
The Needham-Schoeder protocol can be represented as follows:

1. A→ S : A, B
2. S→ A : Enca

priv(kS)
(pub(kB), B)

3. A→ B : Enca
pub(kB)

(nA, A)

4. B→ S : B, A
5. S→ B : Enca

priv(kS)
(pub(kA), A)

6. B→ A : Enca
pub(kA)(nA, nB)

7. A→ B : Enca
pub(kB)

nB

This protocol involves three entities (A, B and S), called participants or
principals or agents. Each line of the narration represents a message ex-
change between two participants: A → B : M should be read as “A sends
the message M to B”. Messages are either atomic (like A, nA, ...) or can
be constructed by concatenation (like (A, B), (nA, A), ...) or by ciphering
(like Enca

pub(kB)
(nA, A), ...). The cipher algorithm used in this protocol is a

public-key cryptography algorithm (the a in EncakM stands for “asymmet-
ric”). A pair (d, e) of public/private key is represented by a key k whose
public part is pub(k) and private part is priv(k). The meaning of certain
part of the messages is implicit. For instance, nA is meant to be a nonce
freshly generated by A. Likewise, kA represents the pair of public/private
key of A.
This protocol describes how an initiator Amay establish a session with

a responder B with the help of a trusted key server S. In step 1, A sends a
message to the server S, requesting B’s public key. In step 2, S delivers
the B’s public key along with B’s identity, encrypted using S’s private key
(to assure authenticity of this message). In step 3, A seeks to establish
a connection with B by selecting a nonce nA and sending it along with its
identity to B, encryptedwith B’s public key. When B receives this message,
it requests A’s public key to the server S (step 4) who delivers it in step
5. At step 6, B returns the nonce nA along with a new nonce nB to A,
encrypted with A’s public key. When A receives this message, he returns
the nonce nB to B, encrypted with B’s public key. When receiving message
6, A should be assured he is talking to B since only B can decrypt message



14 CHAPTER 1. INTRODUCTION

3. Likewise, when B receives message 7, he should be assured that he is
talking to A since only A can decrypt message 6.
As pointed out by Lowe, this protocol has a flaw [92]. To explain the

attack, we assume that each agent initially knows each other’s public key.
We thus make abstraction of the key distribution machinery implemented
by steps 1, 2, 4 and 5 and focus our attention on the following protocol
narration:

3. A→ B : Enca
pub(kB)

(nA, A)

6. B→ A : Enca
pub(kA)(nA, nB)

7. A→ B : Enca
pub(kB)

nB

The attack on the protocol allows an intruder I to impersonate another
agent A to set up a false session with B. The attack involves two simulta-
neous runs of the protocol: in run 1, A establishes a valid session with I;
in run 2, I impersonates A to establish a fake session with B. In the attack
below, we write I(A) for I impersonating A. We also write for instance 1.3
to mean step 3 of run 1. The attack works as follows:

1.3. A→ I : Enca
pub(k I)

(nA, A)

2.3. I(A)→ B : Enca
pub(kB)

(nA, A)

2.6. B→ I(A) : Enca
pub(kA)(nA, nB)

1.6. I → A : Enca
pub(kA)(nA, nB)

1.7. A→ I : Enca
pub(k I)

nB
2.7. I(A)→ B : Enca

pub(kB)
nB

In step 1.3, A starts to establish a normal session with I, sending a nonce
nA. In step 2.3, I impersonates A and starts a fake session with B by for-
warding the nonce nA learnt in the previous message. In response, B cre-
ates a new nonce nB and tries to return it to A along with nA. The intruder
intercepts this message and forwards it to A (it cannot decrypt this mes-
sage since it is encrypted with A’s public key) in step 1.6. Then A decrypts
this message to obtain nB and since it is of the expected form, it returns nB
to I in step 1.7. The intruder I can then decrypt this message to get nB and
returns it to B. Hence B believes that A has correctly established a session
with it. The consequences are that I may continue to impersonate A to
send messages to B during the session, which is bad.
Gavin Lowe proposed a fix to the Needham-Schroeder protocol, which

is now known to be the Needham-Schroeder-Lowe protocol. The fix con-
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sists in changing step 6 of the protocol into:

6. B→ A : Enca
pub(kA)(B, nA, nB)

This fix prevents the intruder from replaying this message in another run
of the protocol.

Adversaries

In order to study security properties of cryptographic protocols, we as-
sume the presence of an unauthorised “third” party which is given many
names such as adversary, intruder, attacker, opponent, ... Thus, it is typically
assumed that protocol messages are transmitted over an unprotected net-
work.
The first considered intruders were passive: they were only able to

record communications on the network and analyse the messages to find
a breach (for instance decrypt a message with a compromised key).
Nowadays, the attackers considered are active. They are able to inter-

cept any message on the network, analyse messages, construct new mes-
sages and inject messages.
Classical attacks on protocols include man-in-the-middle attack where

the intruder imposes himself between the communications between two
principals, replay attackwhere information from a previous run of a proto-
col is used, oracle where the intruder tricks an honest agent into inadver-
tently revealing some information, interleave exemplified by Lowe’s attack
on Needham-Schroeder protocol.

1.2 Models and techniques

Even if it is possible to devise some prudent engineering practises [10] for
designing cryptographic protocols, there is a need of rigorous techniques
to verify their correctness. We give below a brief (and thus necessarily not
comprehensive) overview of the different approaches and techniques that
have been developed during the last decades.

1.2.1 Two views of cryptography

There exist basically two ways to model cryptographic primitives that are
used in security protocols:
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• The formal (or symbolic) approach models cryptographic messages
with a term algebra (an algebraic datatype in a programming lan-
guage). For instance, the language of cryptographic messages we
have used so far is defined by:

M,N ::= a|pub(M)|priv(M)|H(M)|EncsNM|EncaNM

The security properties of cryptographic primitives are also formally
modeled. It is typically assumed that the cryptographic primitives
are perfect; a ciphered message cannot be decrypted, it may only be
deciphered with the appropriate decryption key.

Algebraic properties of cryptographic primitives may be simply ig-
nored or might be modelled within an equational theory.

For instance, for the RSA cryptosystem, we have the following prop-
erty:

Enca
priv(k)Enca

pub(k)M = M = Enca
pub(k)Enca

priv(k)M

• The computational approach opens the “black-boxes” of the formal
approach. Cryptographic messages are modelled by string of bits
and cryptographic primitives are simply functions handling string
of bits.

Security properties are defined in terms of the probability and com-
putational complexity of successful attacks.

The gap between these two views of cryptography is being bridged. In
[11], it is shown, under some conditions, that secrecy in the formal model
implies secrecy in the computational model. [18] provides a secure im-
plementation of the formal model as an abstract library of cryptographic
primitives.
However one should keep in mind that the more abstract the model

is, the more flaws go undetected. For instance, [113] shows that a certain
protocol [52] is correct whereas [125] shows that this same protocol is in-
correct when exclusive or is used to cipher messages. The counterpart can
be roughly summarised by the slogan: the more abstract the model is, the
easier the proofs are.
In the sequel, we adopt the formal view of cryptography.

1.2.2 The Dolev-Yao model

The 1983 paper of Dolev and Yao [68] is probably one of the most influen-
tial work in the domain.
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• Cryptographic primitives are idealised and assumed to be perfect.

• A basic model for the intruder, which is still very popular, was intro-
duced. The intruder has the control over the network: it can listen,
replay, fake, delete, redirect, ... messages limited only by the crypto-
graphic constraints.

• Security of protocols is expressed as a word problem.

1.2.3 BAN logic

The BAN logic [53] is a logic of authentication based on the notion of be-
liefs. The basic idea is to reason about the state of beliefs of the honest
principals. BAN logic defines a deduction system that models how the
beliefs evolve as new information is received. It has been very successful
for finding bugs in protocols but has also its own limit. Thus, as the name
of the article suggests, it only deals with authentication properties. This
notion of authentication is not well defined and it has appeared that it was
actually a rather weak form of authentication as suggests the example of
Lowe’s attack on the Needham-Schroeder public key protocol. The prob-
lem of such logics is that they adopt the point of view of honest principals
and the goal is often to show that a certain property holds for a security
protocol. We tend to think that the opposite point of view, where instead
it is tried to show that there is a flaw in a protocol (and thus adopting the
point of view of a dishonest principal), is better suited in the context of
security protocols.
Nevertheless, BAN-like logics are interesting because reasoning is usu-

ally simple enough to be carried out by hand for small examples. These
are also often decidable [104].

1.2.4 Model checking

The model checking approach consists in checking whether a given finite
model satisfies a given logical formula.
For instance, Gavin Lowe’s approach [93] can be summarised as fol-

lows:

• Model a protocol in CSP [83];

• Model the most general intruder that can interact with the system;

• Model the specification of the protocol as a (set of) formula in a tem-
poral logic;
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• Check with FDR [122] whether the CSP system satisfies the formula.
The result is either yes or an attack of the protocol.

1.2.5 The inductive approach

Paulson’s inductive method [114, 112] is a typical illustration of how the-
orem provers can help conduct study of cryptographic protocols. Rea-
soning takes place in the general purpose tool Isabelle [136] and involve
inductive definitions and classical proofs by induction. At the core of this
study is the history, which is roughly the set of emitted messages. A pro-
tocol is simply composed of steps that makes evolve the history. Two op-
erators Synth, resp. Analz compute, given a set of messages, the set of
messages obtained by synthesis, resp. analysis. For instance, if X ∈ H and
K ∈ H then EncKM ∈ SynthH. This approach features several important
analysis of protocols like Kerberos [23] and SSL/TLS [115] for instance.
Compared to model checking, theorem proving provides a finer anal-

ysis, but at a greater cost, because it requires substantial human assistance
and effort. Nevertheless, it is viewed as a good complement to model
checking, also because it is not restricted by the requirement of a finite-
state model.

1.2.6 Rewrite systems, Horn clauses

Several models represent protocols and the attacker as a set of rewrite rules
[56, 123]. An interesting variant of this model is Horn clauses, used for in-
stance in [27, 60]. The advantage of the latter is that classical resolution
methods can be applied. One difficulty with these two models is the han-
dling of nonces.

1.2.7 Process calculi

Process calculi offer the possibility to describe protocols in a precise al-
gebraic way close to an implementation. For instance, pi calculus [101]
has been successfully used to model and study several communication
protocols such as the GSM protocols [110]. In the field of security proto-
cols, this approach has first proven its worth with Gavin Lowe’s attack
on Needham-Schroeder Public Key protocol using CSP for encoding and
analysing this protocol [93]. Since then, numerous other calculi have been
used for modelling and analysing security protocols. Among them is the
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spi calculus [9] which is an extension of the pi calculus including crypto-
graphic primitives.
The spi calculus is a particularly attractive candidate for modelling

cryptographic protocols:

1. the underlying pi calculus provides the essence of what is needed to
formulate distributed algorithms in a compact form;

2. the restriction operator inherited from the pi calculus can be used to
model the creation of fresh, unguessable cryptographic keys and can
also be used to model the creation of fresh nonces. Moreover, com-
munication of secrets is conveniently modelled by scope extrusion,
contrasting from CSP;

3. contrary to CSP, unwantedmanipulations of cryptographic terms are
semantically impossible;

4. there is no need to explicitly model the attacker, contrary to, for in-
stance, the CSP/FDR approach. In the spi calculus approach, the
attacker is implicitly present as any environment that can be formu-
lated in the spi calculus;

5. important security objectives can be formulated as equivalences on
spi calculus terms, but also standard programming language tech-
nology can be exploited, e.g., through the use of static analysis and
reachability analysis.

Behavioural equivalences are an essential ingredient of process calculi
theory. In [9], Abadi and Gordon suggest to formulate secrecy or authen-
ticity properties as equations between spi calculus terms.
Thus a protocol P maintains secrecy if two instantiations of this pro-

tocol, one with a value M and the other with a value M′, are indistin-
guishable to the environment, i.e. P(M) ∼ P(M′) for a certain notion of
equivalence ∼.
As for authentication, it is asserted that a protocol satisfies the authenti-

cation property if P ∼ Pspec where Pspec is a specification process in which
the receiver magically knows what message to receive from the transmitter
process.
Spi calculus has some derivatives such as, for instance, the pattern-

matching spi calculus [78] or LYSA [30]. The underlying idea has been
generalised: the applied pi calculus [6] is essentially the pi calculus plus a
general notion of terms. The term algebra is equipped with an equational
theory to describe the interdependency of various function symbols; it it
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thus possible to model “exclusive or” or RSA algebraic properties. The spi
calculus can be seen as a fragment of the applied pi calculus that focuses
on a particular choice of cryptographic primitives. “Hard-wiring” the con-
structs and the meaning of terms in the calculus (as in the spi calculus)
leads, of course, to a less general framework but this has the advantage to
simplify the analysis of the calculus.

1.3 Outline of the thesis

In this thesis, we have chosen the spi calculus framework to model and
study cryptographic protocols because we found this approach rather ele-
gant and general as explained previously. We address basically two prob-
lems.

Translation of cryptographic protocols The cryptographic protocols are
usually described using the informal notation of protocol narrations (see
Section 1.1.3). One problem that arises when modelling protocols is to
be sure that the model corresponds closely to the studied protocol. Since
protocol narrations have no formal meanings (or semantics), it is difficult
to make the link between the informal notation and the formal model (in
spi calculus for instance). To overcome this difficulty, we have defined an
explicit operational semantics for protocol narrations and given a rigorous
way to translate protocol narrations into spi calculus.

Behavioural equivalences The suggested notion of equivalence for for-
mulating security properties is usually testing equivalence because it in-
tuitively requires the two sides of the equation to behave indifferent in
any —potentially hostile— context. However, its verification is rather
difficult due to the use of an universal quantification over arbitrary pro-
cesses. Thus, several bisimulationmethods [8, 36, 40] have been developed
to prove testing equivalence. Although they remove a universal quantifi-
cation over arbitrary processes and thus are in principle easier to employ
than testing equivalence, there is no way to automate proofs using these
notions of bisimulation because they are still defined using several levels
of quantification over infinite domains. Inspired by the pi calculus frame-
work, where several tools exist to automatically check bisimulation, we
propose a new notion of bisimulation for the spi calculus which we argue
will be easier to mechanise. This new notion of bisimulation is an exten-
sion of open bisimulation [127] of the pi calculus and reuses some ideas of
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hedged bisimulation [40] of the spi calculus. The involved definitions and
theorems being rather technical and subtle, we have validated part of our
work within the coq proof assistant.

1.3.1 Contributions

The major contributions of this thesis are listed below.

• We have given a formal semantics for protocol narrations and have
defined a rigorous translation of protocol narrations into spi calcu-
lus. This procedure has been implemented in the tool spyer [44].

• We have proposed two alternative definitions of open bisimulation
in the pi calculus that have helped to formulate more precise con-
gruence properties than the ones that were first stated by Sangiorgi
in [127].

• Based on our pi calculus alternative definitions of open bisimulation,
we have proposed an open-style definition of bisimulation for the
spi calculus named open hedged bisimulation. We have shown that this
notion is an extension of open bisimulation of the pi calculus and that
it is a sound proof technique for showing late hedged bisimilarity.
We have also given a symbolic characterisation of this new notion of
bisimulation, which is a promising step towards its mechanisation.

• We have formalised in the coq proof assistant the pi calculus and the
spi calculus. We have formalised the theory of hedges, which are an
essential data structure to reason about the knowledge of the attacker
in hedged bisimulations. We have also validated the main results
about the various labelled transitions systems involved in our defi-
nitions. This provides a framework to reason formally about hedged
bisimulations in coq.

1.3.2 Overview

We now give a brief overview of the work presented in this thesis.

Chapter 2. We present the pi calculus of Milner, Parrow and Walker. We
present its syntax, its semantics and four very popular notions of bisimu-
lation used in the pi calculus: ground, early, late and open bisimulation.
We then focus on open bisimulation and argue that it is an attractive can-
didate notion of bisimulation for the pi calculus. We revisit this notion of



22 CHAPTER 1. INTRODUCTION

bisimulation and propose two alternative definitions that are better suited
for being smoothly extended to the spi calculus framework. Thanks to the
more precise structure involved in these alternative definitions, we formu-
late —and show— more precise congruence properties than the ones that
were first stated by Sangiorgi.

This work is a revised version of the workshop paper [48].

Chapter 3. We present a variant of the spi calculus of Abadi and Gor-
don, which includes shared-key cryptography, public-key cryptography
and hashing. We present its syntax and semantics. We discuss how be-
havioural equivalences can be used to formulate security properties and
we motivate the notion of environment-sensitive bisimulation.

Chapter 4. We present the structure of hedges, which is a central notion
used in hedged bisimulation of Borgström and Nestmann to represent the
knowledge of the attacker. We present the basic notions (such as synthesis,
analysis, ...) and results. This part is a generalisation of the result of [40]
for a rich language of cryptographic messages.

All the results of this chapter have been formalised in the coq proof as-
sistant. A first version of the formalisation has been released as an official
coq contribution [43]. An improved version is part of our spi formalisa-
tion [45].

Chapter 5. We recall the definition of late hedged bisimulation as defined
by Borgström and Nestmann. We present our proposal for an open-style
definition of bisimulation for the spi calculus: open hedged bisimulation.
We show that it is an extension of open bisimulation of the pi calculus. We
show that it is a sound proof technique for showing late hedged bisimi-
larity. We then define a symbolic semantics for the spi calculus and state
the symbolic characterisation theorem. We then briefly discuss why it is
an important step towards mechanisation of open hedged bisimilarity.

Part of this work is a revised version of the journal paper [50] and the
working paper [46]. The symbolic semantics has been inspired by our
conference paper [39].
In collaboration with Borgström, we have written a prototype tool [38]

for another notion of bisimulation in the spi calculus. The proof of cor-
rectness of this tool is still ongoing work but some of the results should be
reusable for open hedged bisimulation.
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Chapter 6. We quickly sketch the underlying ideas of our coq formali-
sation of the pi and the spi calculus. We discuss in particular the repre-
sentation of binders. We also discuss the abstractions we have found to
limit the amount of work required when defining a new semantics. We
then conclude by giving the proof sketches of the most important results
of Chapter 3 and Chapter 5.
We have recently made public this formalisation. The details can be

found in [45]. The goal of this formalisation is not only to validate our the-
oretical results but also to be able to eventually extract a certified bisimu-
lation checker.

Chapter 7. We make the formal link between security protocols and the
spi calculus in this last chapter. We thus present a formal semantics for
protocol narrations and give a precise and rigorous procedure to translate
a protocol narration into a spi calculus term.
This work is a revised version of the workshop paper [47] and the jour-

nal paper [49].
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Chapter 2

The Pi Calculus

We present in this chapter the pi calculus of Milner, Parrow and Walker
[101]. We describe its syntax, its labelled late transitions system and sev-
eral popular notions of bisimilarity; for a more gentle or detailed introduc-
tion to the pi calculus, we refer the reader to [101], [100], [111] and [129].
Then, we focus on open bisimilarity and give two alternate definitions,
following [48].

2.1 Introduction to the pi calculus

The pi calculus is a mathematical model of communicating and mobile
systems. In the late 1970’s, Robin Milner introduced CCS (Calculus of
Communicating Systems [98]) in order to model concurrent systems. In
CCS, a concurrent system is characterised by the communications that can
happen between its components. Then, in the late 1980’s, Milner, Parrow
and Walker introduced the pi calculus, an extension of CCS, as a model
for concurrent and mobile systems. In the pi calculus, the notion of link
is essential: the location of a process is characterised by the neighbours it
is linked to. Since communication links can be transferred between two
processes, the neighbourhood of a process, i.e. its location, may change
over time.

2.1.1 Syntax

In the pi calculus, links are represented by names. Names are used by
processes to interact. A name can be passed by a process to one another;
the receiver may use this passed name for further interactions. We shall
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assume to have a countably-infinite set of names N ranged over by lower-
case letters a, b, c, . . . , x, y, z, . . ..
Processes of the pi calculus are built upon names. Informally, they are

composed of:

• An empty process 0 that can do nothing.

• A silent prefix τ.P. It can evolve invisibly to P.

• An input prefix a(x).P. It can receive a name z along the communica-
tion channel a and then continue as P where x is substituted by z.

• An output prefix a〈z〉.P. It can send the name z along the channel a
and then continue as P.

• A match [ x=y ]P. It can continue as P if and only if the two names x
and y are equal. Otherwise, it is stuck.

• A parallel composition P |Q. The processes P and Q can evolve inde-
pendently or may interact via shared communication channels.

• A sum P+Q. It can behave either as P or Q. The choice is triggered
by the environment or by internal computations of P or Q.

• A restriction (νz) P. A new fresh name z is created, whose scope is
restricted to P. It can then evolve as P. The components of P can
use the name z for interacting together but not for interacting with
other processes: the channel z is private to P. However, since links
can be transferred between two processes, the scope of z may vary
over time as a result of an interaction between processes: the channel
zmay become public for some other processes.

• A replication ! P. It can be thought as an infinite parallel composition
P | P | · · · .

The syntax of the pi calculus processes P is summarised in Table 2.1.
We have included a sum (or choice) operator as it is sometimes useful

for specification purpose.
Some presentations requires that operands of a summation are guarded

processes (as e.g. in [129, 99]); we have chosen here to allow arbitrary pro-
cesses to be sum operands as in the original presentation of the pi calculus
[102]. This has the advantage of simplifying the syntax (as noted in [111])
but care should be taken when dealing with weak equivalences.
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P,Q ::= 0 inactive process
| τ.P silent prefix
| a(x).P input prefix
| a〈z〉.P output prefix
| [ x=y ]P match
| P |Q parallel composition
| P+Q sum
| (νz) P restriction
| ! P replication

Table 2.1: The processes of the pi calculus

We have preferred the replication operator instead of allowing recur-
sive definitions because it is technically simpler.
Finally, we have not included a mismatch [ x 6=y ]P which can behave

like P if and only if the two names x and y are different. The main reason is
that it breaks the following monotonicity property: application of a name
substitution to a process does not diminish its capabilities for action. This
property is useful for reasoning with open bisimilarity.
In the sequel, we will refer to this particular calculus as the pi calculus.

As alreadymentioned, it is essentially the same calculus as the one of [102].
We adopt the following precedence among the syntactic forms:

Restriction
Silent prefix
Input prefix
Output prefix
Match

Replication































> Parallel composition > Sum

Thus (νx) P | a(x).Q + R means (((νx) P) | (a(x).Q)) + R.
In the following, we use metavariables P, Q or parametrised metavari-

ables A(x), B(y, z) for designing pi calculus processes.

Bound names, free names

In a(x).P or (νx) P, the name x is said to be binding with scope P. An oc-
currence of a name in a process is said to be bound if it is, or it lies within
the scope of, a binding occurrence of a name. Otherwise, it is said to be
free. More precisely, the bound names bn(P) and the free names fn(P) of a
process P are defined inductively as stated in Table 2.2 and Table 2.3.
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bn(0) := ∅

bn(τ.P) := bn(P)
bn(a(x).P) := {x} ∪ bn(P)
bn(a〈z〉.P) := bn(P)
bn([ x=y ]P) := bn(P)
bn(P |Q) := bn(P) ∪ bn(Q)
bn(P+Q) := bn(P) ∪ bn(Q)
bn((νz) P) := {z} ∪ bn(P)
bn(! P) := bn(P)

Table 2.2: The bound names of a process

fn(0) := ∅

fn(τ.P) := fn(P)
fn(a(x).P) := {a} ∪ (fn(P) \ {z})
fn(a〈z〉.P) := {a, z} ∪ fn(P)
fn([ x=y ]P) := {x, y} ∪ fn(P)
fn(P |Q) := fn(P) ∪ fn(Q)
fn(P+Q) := fn(P) ∪ fn(Q)
fn((νz) P) := fn(P) \ {z}
fn(! P) := fn(P)

Table 2.3: The free names of a process



2.1. INTRODUCTION TO THE PI CALCULUS 29

For example, with P := a(x).(νb) x〈b〉.c〈y〉. 0, the bound names of P
are bn(P) = {x, b} and its free names are fn(P) = {a, c, y}.
We introduce the notion of substitution to express that a process can

use names it receives.
Definition 1 (substitution).
A substitution σ is a function on names that is the identity except on a finite
set.

If σ : N → N is a substitution, the finite set supp(σ) := {x | σ(x) 6= x}
is the support of σ and the finite set cosupp(σ) := {σ(x) | x ∈ supp(σ)} is
the co-support of σ. The names of σ are n(σ) := supp(σ) ∪ cosupp(σ).
We generally use the postfix notation and write xσ for σ applied to x.

Thus xσ means σ(x). We write [y1/x1 , . . . ,
yn/xn ] for the substitution σ such

that xiσ = yi for 1 ≤ i ≤ n and xσ = x otherwise (i.e. x 6∈ {x1, . . . , xn},
where x1, . . . , xn are assumed to be pairwise distincts). If X is a set of
names, we write Xσ for {xσ | x ∈ X}. We sometimes use ǫ for the substi-
tution that has an empty support.
The next thing to define is the effect of applying a substitution σ to a

process P. Intuitively, it replaces each free occurrence of each name x in
P by xσ. However, some care must be taken to avoid unintended name
captures by a binder.
To avoid name captures, we identify processes that are said α-equivalent

(or α-convertible). Two processes P and Q are α-convertible, P =α Q, if
they only differ by a change of bound names.
For example, a(x).(νb) x〈b〉.c〈y〉. 0 =α a(x).(νz) x〈z〉.c〈y〉. 0.
In the following, we identify α-equivalent processes. In particular, we

assume that in a process bound names are different from each other and
from the free names.
We can now define application of a substitution to a process:

Definition 2 (application of substitution).
Substitutions are applied to processes according to the following inductive
definition:

(0)σ := 0
(τ.P)σ := τ.(Pσ)

(a(x).P)σ := aσ(x).Pσ if x 6∈ n(σ)
(a〈z〉.P)σ := aσ〈zσ〉.Pσ

([ x=y ]P)σ := [ xσ =yσ ]Pσ
((νz) P)σ := (νz) Pσ if z 6∈ n(σ)
(P |Q)σ := Pσ |Qσ

(P+Q)σ := Pσ +Qσ
(! P)σ := ! Pσ
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µ fn(µ) bn(µ) n(µ) µσ

τ ∅ ∅ ∅ τ
a u {a, u} ∅ {a, u} aσ uσ
a(x) {a} {x} {a, x} aσ(x)
a νx {a} {x} {a, x} aσ νx

Table 2.4: Notation for actions

To satisfy the side conditions for input prefix or restriction, we might first
need to rename the bound names of P. This is possible because we have
identified α-equivalent processes.

For example, consider P := a(x).(νb) x〈b〉.c〈y〉. 0 and σ := {b/y}.
Then Pσ = a(x).(νz) x〈z〉.c〈b〉. 0. Note in particular the change of the

bound name b to the name z so to avoid the capture of the free name b,
resulting from the application of σ to y, by the restriction operator.

2.1.2 Labelled transition system

The observable behaviours of processes are described by a labelled transi-

tion system. Labelled transitions take the form of P
µ
−→ P′ for some set of

actions ranged over by µ. In the pi calculus, there are four kinds of actions:

• the internal action τ.

• the (free) output action a u

• the input action a(x)

• the bound output action a νx

An input transition P
a(x)
−−→ Q means that P can receive some name u

along the channel a and then evolve to Q{u/x}.

A bound output transition P a νx
−−→ Q (where x 6= a) means that P can

emit a fresh local name x along the channel a and then evolve to Q.
If µ is an action, we define the set of its free names, its bound names, its

names and the effect of applying a substitution to it. This is summarised
in Table 2.4.
The labelled transition semantics is given by the rules of Table 2.5 en-

riched by the symmetric variants of COMM-L, CLOSE-L and SUM-L.
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For instance, the symmetric variant of COMM-L is obtained by swap-
ping the roles of P and Q. This gives:

COMM-R
P
a u
−→ P′ Q

a(x)
−−→ Q′

P |Q
τ
−→ P′ |Q′{u/x}

Note that for the reasons explained in [129], we have chosen to have
three rules dealing with replication instead of the single rule

REP
P | ! P

µ
−→ P′

! P
µ
−→ P′

The rule ALPHA allows to α-rename processes so that the side condi-
tions of the CLOSE rules and the PAR rules can be satisfied.
Note also that the bound names of µ when P

µ
−→ Q are binding occur-

rences in Q, thus yielding a notion of α-equivalence for transitions.

An example of a transition derivation

Consider P := (νz) (a〈z〉. 0 | z(y). 0) | a(x).x〈b〉. 0
P can evolve silently to Q := (νz) ((0 | z(y). 0) | z〈b〉. 0), i.e. we have

P
τ
−→ Q according to the following derivation:

a〈z〉. 0 a z−→ 0

a〈z〉. 0 | z(y). 0 a z−→ 0 | z(y). 0

(νz) (a〈z〉. 0 | z(y). 0) a νz
−−→ 0 | z(y). 0 a(x).x〈b〉. 0

a(x)
−−→ x〈b〉. 0

P
τ
−→ (νz) ((0 | z(y). 0) | z〈b〉. 0)

In this example, the transition (νz) (a〈z〉. 0 | z(y). 0) a νz
−−→ 0 | z(y). 0 is

derived. Since (νz) (a〈z〉. 0 | z(y). 0) =α (νu) (a〈u〉. 0 | u(y). 0, this transi-

tion is α-equivalent to (νz) (a〈z〉. 0 | z(y). 0) a νu
−−→ 0 | u(y). 0.

Substitutions and labelled transitions

It is important to understand the link between substitutions and transi-
tions, since behaviour is described with the help of substitutions.
As we announced in the prelude, application of a substitution to a pro-

cess does not diminish its capabilities for action.
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SILENT
τ.P τ
−→ P

INPUT
a(x).P

a(x)
−−→ P

OUTPUT
a〈u〉.P a u−→ P

RES
P

µ
−→ P′

(νz) P
µ
−→ (νz) P′

z 6∈ n(µ) OPEN
P
a z
−→ P′

(νz) P
a νz
−−→ P′

z 6= a

COMM-L
P
a(x)
−−→ P′ Q

a u
−→ Q′

P |Q
τ
−→ P′{u/x} |Q′

CLOSE-L
P
a(x)
−−→ P′ Q

a νz
−−→ Q′

P |Q
τ
−→ (νz) (P′{z/x} |Q′)

z 6∈ fn(P) MATCH
P

µ
−→ P′

[ x= x ]P
µ
−→ P′

PAR-L
P

µ
−→ P′

P |Q
µ
−→ P′ |Q

bn(µ) ∩ fn(Q) = ∅ SUM-L
P

µ
−→ P′

P+Q
µ
−→ P′

REP-ACT
P

µ
−→ P′

! P
µ
−→ P′ | ! P

REP-COMM
P
a(x)
−−→ P′ P

a u
−→ P′′

! P τ
−→ (P′{u/x} | P′′) | ! P

REP-CLOSE
P
a(x)
−−→ P′ P

a νz
−−→ P′′

! P τ
−→ ((νz) (P′{z/x} | P′′)) | ! P

z 6∈ fn(P)

ALPHA
P =α Q Q

µ
−→ Q′ Q′ =α P

′

P
µ
−→ P′

Table 2.5: The late semantics of the pi calculus
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Lemma 1:
If P

µ
−→ P′ and n(σ) ∩ bn(µ) = ∅ then Pσ

µσ
−→ P′σ. �

There is a converse result when considering injective substitutions on
fn(P).

Lemma 2:
If σ is injective on fn(P), there exists a bijective substitution θ that agrees
with σ on fn(P) (and so Pσ = Pθ) and for any such θ, we have that if

Pθ
µ′

−→ Q then P
µ
−→ P′ with µθ = µ′ and P′θ = Q. �

Alternative presentation in terms of abstractions and concretions

When dealing with the spi calculus, we use another presentation for the
labelled transition system that was introduced by Milner for the polyadic
pi calculus [99].
This alternative presentation has the advantage to not mix binders be-

tween actions and derivatives of transition.
Thus an input transition P

a(x)
−−→ P′ is written P a

−→ (x)P′, where (x)P′

is called an abstraction and is seen as a function from name to process, an

output transition P a z
−→ P′ is written P a

−→ 〈z〉P′ , a bound output action

P
a νz
−−→ P′ is written P a

−→ (νz) 〈z〉P′ where 〈z〉P′ and (νz) 〈z〉P′ are called
concretions and are the counterpart of abstractions.
The administrative work of renaming required by the rules CLOSE and

PAR can be separated from the semantics, simplifying greatly its presenta-
tion.
Thus the rule CLOSE-L becomes

CLOSE-L
P
a
−→ F Q

a
−→ C

P |Q
τ
−→ F • C

The cost of this alternative presentation is that several auxiliary opera-
tions have to be defined like the pseudo application F • C of an abstraction F
and a concretion C.
For the monadic pi calculus, we think that this alternative presentation

was too heavy and prefer to use the classic presentation.

Early semantics

The labelled transition system we have given previously defines the late
semantics of the pi calculus. It is qualified to be late in the sense that the
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transmitted name is substituted at the moment of a communication (rules
COMM and CLOSE).
However, there is an alternative way to treat the semantics for input.

The early semantics replaces the rule INPUT by

INPUT
u ∈ N

a(x).P a u−→ P{u/x}

A new kind of action a u, called free input action, is used. The input tran-
sition P a u

−→ Q means that P receives the name u along the channel a and
continue as Q.
The rules for communication need to bemodified since the input action

in the premise’s prefix refers to the transmitted name. For example, the
rule COMM-L becomes

COMM-E
P
a u
−→ P′ Q

a u
−→ Q′

P |Q
τ
−→ P′ |Q′

This semantics is early is the sense that the transmitted name is substi-
tuted at the moment of an input action.
One can show that there is an early input transition P a u

−→ P′ if and

only if there is a late input transition P
a(x)
−−→ P′′ such that P′ = P′′{u/x}.

For the other kind of transitions, it can be shown that the two semantics
are equivalent; if µ is a non-input action then there is an early transition

P
µ
−→ P′ if and only if there is a late transition P

µ
−→ P′.

As noted by Parrow in [111], “it could be argued that the early seman-
tics more closely follows an operational intuition since, after all, a [process]
performs an input action onlywhen it actually receives a particular value”.
However, the choice of the late semantics allows a wider spectrum of be-
havioural equivalences as we shall see in Section 2.2. The late semantics is
also better suited for writing automatic tools because of its more symbolic
nature.

2.1.3 Structural congruence

Structural congruence is an equivalence relation between processes that al-
lows to manipulate the structure of terms. It aims at identifying processes
that intuitively represent the same entity by just looking at their structure.
The use of such a relation has been suggested by the Chemical Abstract
Machine of Berry and Boudol [25].
We first define the notions of context and congruence.
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Definition 3 (process contexts).
A process context C[·] is a process with a hole somewhere. The contexts are
described by the grammar of Table 2.6.

C[·] ::= [·]
| τ.C[·]
| a(x).C[·] | a〈u〉.C[·]
| [ x=y ]C[·]
| C[·] + P | P+ C[·]
| C[·] | P | P |C[·]
| (νz)C[·]
| !C[·]

Table 2.6: The process contexts of the pi calculus

If C[·] is a context and P is a process, we write C[P] for the process
obtained by replacing the hole [·] in C[·] by P. Note that some occurrences
of free names of Pmay be bound in C[P].
For example let C[·] := a(x).[·] and P := x(z). 0 | y〈y〉. 0. Then C[P] =

a(x).(x(z). 0 | y〈y〉. 0). The name x has been captured by the input prefix
of the context C[·].

Definition 4 (congruence).
An equivalence relation R on processes is a congruence if (P,Q) ∈ R im-
plies (C[P],C[Q]) ∈ R for every context C[·].

We can now define the notion of structural congruence.

Definition 5 (structural congruence).
Structural congruence, ≡, is the smallest congruence on processes that sat-
isfies the axioms of Table 2.7.

For example, we have that P := (νz) (a〈z〉. 0 | z(y). 0) | a(x).x〈b〉. 0 is
structurally congruent to Q := (νz) ((a〈z〉. 0 | a(x).x〈b〉. 0) | z(y). 0). Note
how the scope of z has been extended so that the communicants a〈z〉. 0
and a(x).x〈b〉. 0 are now in juxtaposition.
An important result about structural congruence is that it is preserved

by the labelled transition system, i.e. the following theorem holds:

Theorem 1:
If P ≡ Q and P

µ
−→ P′ then there exists Q′ such that Q

µ
−→ Q′ and P′ ≡ Q′.♦
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ALPHA
P =α Q

P ≡ Q
SUM-ZERO

P+ 0 ≡ P
SUM-COMM

P+Q ≡ Q+ P

SUM-ASSOC
(P+Q) + R ≡ P+ (Q+ R)

PAR-ZERO
P | 0 ≡ P

PAR-COMM
P |Q ≡ Q | P

PAR-ASSOC
(P |Q) | R ≡ P | (Q | R)

NEW-SWAP
(νx) (νy) P ≡ (νy) (νx) P

NEW-ZERO
(νx) 0 ≡ 0

NEW-SCOPE
((νx) P) |Q ≡ (νx) (P |Q)

x 6∈ fn(Q) BANG
! P ≡ P | ! P

MATCH-EQUAL
[ x= x ]P ≡ P

Table 2.7: Axioms of structural congruence

The above theorem can be diagrammatically represented by

P P′

Q Q′
≡ ≡

µ

µ

The plain arrow represents a universal quantification over labelled transi-
tions and the dashed arrow represents an existential quantification.

2.2 Several notions of bisimilarity

Hitherto we have given the pi calculus syntax and its labelled late seman-
tics. We have defined structural congruence which identifies processes
that intuitively represent the same entity by just looking at their struc-
ture. Structural congruence is an interesting notion of equivalence but it
is too fine-grained to study the behaviour of terms. To achieve this goal,
we define several notions of behavioural equivalence based on the notion of
bisimulation.
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2.2.1 Ground bisimulation

A bisimulation can be thought of as a game. It is composed of two play-
ers (two processes) P and Q and an external observer who tries to find a
difference between P and Q. The observer proceeds as follows: if P is able

to perform a move P
µ
−→ P′ (resp. Q is able to perform a move Q

µ
−→ Q′)

then Q should be able to perform an equivalent move Q
µ
−→ Q′ (resp. P

should be able to perform an equivalent move) so that P′ and Q′ can also
play the game. If at some point in the game, one of the two players cannot
play a responding move, then P and Q are declared to not have the same
behaviour.
This game can be diagrammatically represented by:

P P′

Q Q′
R R

µ

µ

Q Q′

P P′
R R

µ

µ

This leads to the following formal definition:

Definition 6 (ground bisimulation).
A symmetric relation R ⊂ P× P is a ground bisimulation if for all (P,Q) ∈

R, whenever P
µ
−→ P′ and bn(µ)∩ fn(P+Q) = ∅, there exists Q′ such that

Q
µ
−→ Q′ and (P′,Q′) ∈ R.

The condition on bn(µ) ensures that the bound names of µ are fresh.
We say that P and Q are ground bisimilar, and write P ∼g Q, if there

exists a ground bisimulation R such that (P,Q) ∈ R.
In other words, ground bisimilarity ∼g is the union of all the ground

bisimulations. It is itself a ground bisimulation. One can show that ∼g is
an equivalence relation (see [129]).
Ground bisimilarity arguably does not discriminate enough.
Thus, for instance we have

x(z).(z〈z〉. 0 | a(x). 0) ∼g x(z).(z〈z〉.a(x). 0+a(x).z〈z〉. 0)

However, the process x(z).(z〈z〉. 0 | a(x). 0) may receive the name a
along the channel x and evolves to a〈a〉. 0 | a(x). 0 which can then per-
form an internal communication whereas the other process would evolve
to (a〈a〉.a(x). 0+a(x).a〈a〉. 0) where no internal communication can hap-
pen.
Hence, ground bisimilarity can not be considered as an interesting no-

tion of behavioural equivalence in the pi calculus.
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2.2.2 Early bisimulation

The definition of ground bisimulation has been obtained directly by apply-
ing the idea of the bisimulation game with the late semantics. However,
with the early semantics, this yields a different notion of bisimulation.

Definition 7 (early bisimulation).
A symmetric relation R ⊂ P× P is an early bisimulation if for all (P,Q) ∈

R, whenever P
µ
−→ P′ and bn(µ) ∩ fn(P+Q) = ∅ we have

• if µ is not an input action then there exists Q′ such that Q
µ
−→ Q′ and

(P′,Q′) ∈ R.

• if µ is an input action a(x) then for all u ∈ N, there exists Q′ such

that Q
µ
−→ Q′ and (P′{u/x},Q′{u/x}) ∈ R.

As before, we define the corresponding notion of bisimilarity. Two pro-
cesses P and Q are early bisimilar, written P ∼e Q, if there exists an early
bisimulation R such that (P,Q) ∈ R.
Note that it is possible to define an equivalent notion of early bisim-

ulation but using the early labelled transition system. In this case, the
definition looks the same as the definition of ground bisimulation given
above.
Early bisimilarity is known to be an interesting notion of behavioural

equivalence.
For instance,

x(z).(z〈z〉. 0 | a(x). 0) 6∼e x(z).(z〈z〉.a(x). 0+a(x).z〈z〉. 0)

This equivalence does not hold essentially for the reason explained pre-
viously.
However, we have that

z〈z〉. 0 | a(x). 0 ∼e z〈z〉.a(x). 0+a(x).z〈z〉. 0

This example illustrates the interleaving nature of the concurrency in
the pi calculus.
It also shows that ∼e is not closed under input prefix. However, one

can show that ∼e is preserved by all the other operators of the pi calculus.
Early bisimilarity is a non-input congruence: it is preserved by every process
context in which the hole [·] does not occur under an input prefix.
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2.2.3 Late bisimulation

In the definition of early bisimulation, the responding move for an input
transition depends on the name u chosen in the universal quantification.
It is possible to strengthen this definition by requiring that the move is the
same for each name u.
This yields to the following definition of bisimulation, which is ob-

tained from the one of early bisimulation by swapping the universal and
existential quantification for the input clause.

Definition 8 (late bisimulation).
A symmetric relationR ⊂ P×P is a late bisimulation if for all (P,Q) ∈ R,

whenever P
µ
−→ P′ and bn(µ) ∩ fn(P+Q) = ∅ we have

• if µ is not an input action then there exists Q′ such that Q
µ
−→ Q′ and

(P′,Q′) ∈ R.

• if µ is an input action a(x) then there exists Q′ such that Q
µ
−→ Q′ and

for all u ∈ N, we have (P′{u/x},Q′{u/x}) ∈ R.

The corresponding notion of bisimilarity is defined as previously. P
and Q are late bisimilar, written P ∼l Q, if there exists a late bisimulation
R such that (P,Q) ∈ R.
Clearly, late bisimilarity is a stronger notion of bisimilarity than early

bisimilarity because of the logical implication:

∃y∀x : P(x, y) =⇒ ∀x∃y : P(x, y)

However, late and early bisimilarity do not coincide. Indeed, let

P := x(z). 0+x(z).z〈z〉. 0
Q := x(z). 0+x(z).z〈z〉. 0+x(z).[z= y ]z〈z〉. 0

One can show that P and Q are early bisimilar, i.e. P ∼e Q.
However, P andQ are not late bisimilar. The reason is that P should re-

spond to the move Q
x(z)
−−→ [z=y ]z〈z〉. 0. If the chosen response is P

x(z)
−−→ 0

then the substitution {y/z} allows us to distinguish the two processes be-

cause [z= z ]z〈z〉. 0 z z−→ 0 whereas 0{z/y} is stuck. Otherwise, if the chosen

response is P
x(z)
−−→ z〈z〉. 0, then the substitution ǫ allow to distinguish the

two processes because z〈z〉. 0 z z−→ 0 whereas [z=y ]z〈z〉. 0 is stuck.
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Like early bisimilarity, late bisimilarity is a non-input congruence. The
example we used to show that early bisimilarity is not closed under input
prefix works also to show that late bisimilarity is not closed under input
prefix.

2.2.4 Open bisimulation

We have seen that neither early bisimilarity nor late bisimilarity are full
congruences. Instead, they are only non-input congruences. However,
the notion of congruence is important because it says that two processes
that are related by a congruence can be plugged interchangeably in any
environment without being able to tell the difference.
To remedy this, one can define on top of early (resp. late) bisimilarity

the notion of early (resp. late) congruence.

Definition 9 (early congruence, late congruence).
P and Q are early congruent, written P ∼Ce Q, if for every substitution σ we
have Pσ ∼e Qσ.
P and Q are late congruent, written P ∼Cl Q, if for every substitution σ

we have Pσ ∼l Qσ.

Early congruence (resp. late congruence) is the largest congruence con-
tained in early bisimilarity (resp. late bisimilarity) (see e.g. [111]).
We have seen previously that

z〈z〉. 0 | a(x). 0 ∼e z〈z〉.a(x). 0+a(x).z〈z〉. 0

However these two processes are not early congruent because the sub-
stitution {a/z} makes them non bisimilar.
Instead, we have that

z〈z〉. 0 | a(x). 0 ∼Ce z〈z〉.a(x). 0+a(x).z〈z〉. 0+[z= a ]τ. 0

This equation shows the crucial role played by the match operator in
an expansion law that reduces a parallel composition to a sum.

The question that arises now is: is it possible to define a congruence
directly through bisimulations instead of requiring bisimilarity under all
substitutions of names?
The answer is yes: open bisimulation of Sangiorgi [127] fulfils this re-

quirement.
In open bisimulation, the quantification over all substitutions is incor-

porated in the bisimulation clause, obeying basically to the following dia-
gram:
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∀σ :
Pσ P′

Qσ Q′
R R

µ

µ ∀σ :
Qσ Q′

Pσ P′
R R

µ

µ

However, a quantification over all substitutions would be too discrim-
inating. To understand why, consider

P := (νz) a〈z〉.[ a= z ]τ. 0
Q := (νz) a〈z〉. 0

Since z is a freshly created name, the match [ a= z ] can not be satisfied.
Thus it is reasonable to equate P and Q.
However, if we stick to the above scheme for defining open bisimilarity,

the bound output transition P a νz
−−→ [ a= z ]τ. 0 cannot be simulated by Q

because [ a= z ]τ. 0 and 0 are not bisimilar for the substitution {z/a}.
After the bound output transition, the name z has become free in the

derivative; thus being vulnerable to substitutions. But intuitively, the sub-
stitutions that are to be considered should not allow to fuse a and z.

Distinctions

One way to restrict the set of substitutions considered is to use the auxil-
iary concept of distinctions [102], whose goal is to keep track of inequalities
such as a 6= z above. Formally, a distinction is defined as follows.

Definition 10 (distinction).
Adistinction D is a finite irreflexive and symmetric relation on names. The
set of distinctions is D.

The names of a distinction D are n(D) = {a, b | (a, b) ∈ D}

A substitution σ is said to respect a distinction D if it does not fuse any
pair of D.

Definition 11 (respectful substitution).
Let D be a distinction and σ a substitution. We say that σ respects D, and
write σ ⊲ D, if ∀(x, y) ∈ D : xσ 6= yσ.

When D is a distinction and σ is a substitution, we write Dσ for the set
{(xσ, yσ) | (x, y) ∈ D}. Clearly, if σ respects D then Dσ is a distinction.

We introduce some further notations for dealing with distinctions.
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When A and B are two finite sets of names, we write A ⊗ B for the
distinction defined by {(a, b), (b, a) | a ∈ A∧ b ∈ B∧ a 6= b}.
When C is a finite set of names, we write C 6= for C⊗ C.
When D is a distinction, we write D− x for D \ ({x} ×N ∪N × {x});

it removes in D all the pairs containing x.
When D is distinction and M is a set of names, we write D⌈M for D ∩

(M×M) = D ∩M2.

Open bisimulation

An open bisimulation is a distinction-indexed family of binary relations on
processes. Instead of using the classical formulation in terms of indexed
family, we introduce the notion of D-relation.
A D-relation is a relation on D × P× P. We say that a D-relation R is

symmetric if for all (D, P,Q) ∈ R we have (D,Q, P) ∈ R.
We now define formally what an open bisimulation is.

Definition 12 (open bisimulation).
A symmetric D-relation R is an open bisimulation if for all (D, P,Q) ∈ R

and for every substitution σ that respects D, whenever Pσ
µ
−→ P′ and

bn(µ) ∩ (fn(P+Q) ∪ n(D) ∪ n(σ)) = ∅ we have

• if µ is not a bound output action then there exists Q′ such that Qσ
µ
−→

Q′ and (Dσ, P′,Q′) ∈ R.

• if µ is a bound output action a νz then there exists Q′ such that Qσ
µ
−→

Q′ and (Dσ ∪ ({z} ⊗ (fn(Pσ +Qσ) ∪ n(Dσ))), P′ ,Q′) ∈ R.

P and Q are open D-bisimilar, written P ∼Do Q, if there exists an open
bisimulationR such that (D, P,Q) ∈ R. When D = ∅, we simply say that
P and Q are open bisimilar and write P ∼o Q.
In the definition of open bisimulation, observe that after any action

but a bound output, the updated distinction requires that the substituted
names remain distinct. In addition, after a bound output, the fresh name z
is required to be distinct from every other free name currently mentioned.
Open D-bisimilarities can be related by the following lemma [127].

Lemma 3:
If D′ ⊆ D, then P ∼D

′

o Q implies P ∼Do Q. �

Since substitutions affects only the free names of a process, we also
have that P ∼Do Q implies P ∼

D⌈fn(P+Q)
o Q (see [141]).
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As a useful proof technique, we give an alternative notion of open
bisimulation that induces the same notion of bisimilarity. It explicates the
fact that the only names that are important in the distinctions are the free
names of the process, as noted in [129].

Definition 13.
A symmetric D-relation R is an open’ bisimulation if for all (D, P,Q) ∈

R and for every substitution σ that respects D, whenever Pσ
µ
−→ P′ and

bn(µ) ∩ (fn(P+Q) ∪ n(D) ∪ n(σ)) = ∅ we have

• if µ is not a bound output action then there exists Q′ such that Qσ
µ
−→

Q′ and (Dσ, P′,Q′) ∈ R.

• if µ is a bound output action a νz then there exist Q′ and a finite

set X such that Qσ
µ
−→ Q′ and (Dσ ∪ ({z} ⊗ Xσ), P′,Q′) ∈ R with

fn(P+Q) ⊆ X.

P and Q are open’ D-bisimilar, written P ∼Do’ Q if there exists an open’
bisimulation R such that (D, P,Q) ∈ R.

Lemma 4:
We have P ∼Do’ Q ⇐⇒ P ∼Do Q.

PROOF
Clearly P ∼Do Q implies P ∼

D
o’ Q since an open bisimulation is also an

open’ bisimulation.
The other implication involves further work. The sketch of the proof is

the following:

• ∼Do’ is closed under bijective substitutions, i.e. if P ∼
D
o’ Q and θ is

bijective then Pθ ∼Dθ
o’ Qθ.

• If A ⊆ N is finite, D⌈A ⊆ D′ and σ′ ⊲ D′ then there exists σ that
agrees with σ′ on A such that σ ⊲ D and xσ ∈ Aσ′ ⇐⇒ x ∈ A.
Moreover, for all such σ, we have Dσ⌈Aσ ⊆ D′σ′.

Let X := (n(D) ∪ Aσ′) \ A.

Since X is finite, there exists Y and a bijective substitution θ : X → Y
such that Y ∩ Aσ′ = ∅.

Define σ by xσ = xσ′ if x ∈ A, xσ = xθ if x ∈ X and otherwise, if
x 6∈ A ∪ n(D) ∪ Aσ′, xσ = x.

Clearly, σ agrees with σ′ on A.
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Moreover, we have σ ⊲ D. Indeed, let (x, y) ∈ D. If x ∈ A and y ∈ A,
then (x, y) ∈ D′, xσ = xσ′ and yσ = yσ′. Since σ′ ⊲ D′, we have
xσ 6= yσ. If x ∈ A and y 6∈ A, then by definition yσ = yθ ∈ Y and
Y ∩ Aσ = ∅ so yσ 6= xσ. If x 6∈ A and y 6∈ A, then xσ = xθ and
yσ = yθ. Since θ is bijective and x 6= y, we have xσ 6= yσ.

Let x such that xσ ∈ Aσ′. By definition, necessarily, x ∈ A. Con-
versely, if x ∈ A, then xσ ∈ Aσ = Aσ′.

We now show that Dσ⌈Aσ ⊆ D′σ′.

Let (x, y) ∈ Dσ⌈Aσ. There exists (u, v) ∈ D such that (x, y) =
(uσ, vσ). Moreover, x ∈ Aσ and y ∈ Aσ. Thus uσ ∈ Aσ and
vσ ∈ Aσ. So u ∈ A and v ∈ A because Aσ = Aσ′ and by defini-
tion of σ. So (u, v) ∈ D⌈A. Since D⌈A ⊆ D′, we have (u, v) ∈ D′.
Since u ∈ A and σ and σ′ agrees on A, we have uσ = uσ′. Similarly
vσ = vσ′. Hence (x, y) ∈ D′σ′.

Then, it is easy to show that
{

(D′, P,Q) | P ∼Do’ Q and D⌈fn(P+Q) ⊆ D′
}

is an open bisimulation.

Congruence properties of open bisimulation

As announced, open bisimilarity is a full congruence. More precisely, open
D-bisimilarity is a D-congruence; that is a relation that is preserved by ev-
ery context that respects the distinction D. A context C[·] respects a dis-
tinction D if the occurrence of the hole is not underneath an input prefix
binding a name in D.
For example, for D := {(x, y), (y, x)}, the context C[·] := a(x).C[·] does

not respect D because the name x is bound in the hole by an input prefix
whereas the context C′[·] := a(z).[·] respects D.
Actually, the following proposition summarises the congruence prop-

erties of open D-bisimilarity [127].

Proposition 1:
If P ∼Do Q then

1. τ.P ∼Do τ.Q

2. P | R ∼Do Q | R and R | P ∼
D
o R |Q
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3. P+ R ∼Do Q+ R and R+ P ∼Do R+Q

4. ! P ∼Do !Q

5. [ x=y ]P ∼Do [ x=y ]Q

6. a〈z〉.P ∼Do a〈z〉.Q

7. (νz) P ∼D−zo (νz)Q

8. if x 6∈ n(D) then a(x).P ∼Do a(x).Q ♦

The lazy flavour of open bisimulation

Open bisimilarity implies late congruence, i.e. we have

P ∼o Q =⇒ P ∼Cl Q

However, this inclusion is strict. To see why, consider P and Q (taken
from [127]) defined by

P := c(x).(τ. 0+τ.τ. 0)
Q := c(x).(τ. 0+τ.τ. 0+τ.[ x=y ]τ. 0)

Then P ∼Cl Q. Indeed, for every substitution σ, after the initial input
action, Qσ’s third summand becomes equal to Pσ’s first summand or Pσ’s
second summand.
On the contrary, we have P 6∼o Q. Indeed, the instantiation of x can

be delayed until it is used in the match [ x=y ], reminiscent to a call-by-

need style. Thus, the action Q
a(x)
−−→

τ
−→ [ x=y ]τ. 0 can be mimicked neither

by P
a(x)
−−→

τ
−→ 0 nor by P

a(x)
−−→

τ
−→ τ. 0 because in the first case we have

([ x=y ]τ. 0){y/x}
τ
−→ 0 whereas 0{y/x} 6−→ and in the second case we have

[ x=y ]τ. 0 6−→ whereas τ. 0 τ
−→ 0.

We recapitulate in Table 2.8 the relationships among the several notions
of equivalence we have seen so far. An arrow means strict inclusion and
when it goes from left to right it also means “largest congruence in”.
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∼o

∼Cl

∼l

∼Ce

∼e

∼g

Table 2.8: Relationships among equivalences

An efficient symbolic characterisation

Open bisimilarity is attractive because it enjoys properties of congruence.
However, the definition of open bisimulation may seem difficult to check
in practise because of the infinite quantification over all respectful substi-
tutions. This potential complexity actually exists only seemingly because
it is possible to give an alternative definition of open bisimulation that
removes this quantification. This alternative definition, called symbolic
characterisation, has been proven useful for automating open bisimulation
[141, 142, 42] on finite control pi calculus.
The symbolic characterisation relies on the definition of an alterna-

tive labelled transition system called the symbolic open transition system.
The idea is to collect matches along the derivation rules so that it charac-
terises the minimal substitution to be investigated for each transition. The
essence of the symbolic open transition system is captured by the follow-
ing communication rule, where M and N stand for match sequences.

O-COMM-L
P
a(x)
−−→
M
P′ Q

b u
−→
N
Q′

P |Q
τ

−−−−−→
MN[ a= b ]

P′{u/x} |Q′

Then, a symbolic open bisimulation is defined in terms of the symbolic
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open transition system. It resembles the definition of open bisimulation
but instead of quantifying over all substitutions, it checks only for themost

general unifier of each symbolic open transition P
µ
−→
M
P′. The proof of

correspondence uses the result of Lemma 1.
We refer the reader to [127] for a more detailed presentation of the sym-

bolic characterisation.

2.2.5 A word on weak equivalences

Hitherto, we have dealt with behavioural equivalences that treat visible
actions and internal actions equally. These notions of equivalences are
usually called strong equivalences in contrast to weak equivalences that ab-
stract on internal actions, which is of practical use for applying pi calculus.
Weak bisimilarities use a different notion of moves, that essentially ig-

nores τ transitions.
Definition 14 (weak transition relations).
1. =⇒ is the reflexive and transitive closure of τ

−→.

2. If µ is an action,
µ

==⇒ is =⇒
µ
−→=⇒.

We write
µ̂

==⇒ for
µ

==⇒ if µ 6= τ and for =⇒ if µ = τ.

The intention is then to replace
µ
−→ by

µ̂
==⇒ in the definitions of bisimu-

lation.
However, a special treatment is required for τ transitions because they

cannot be simply ignored. The reason is, as noted in [129], that τ actions
can preempt other actions. For instance, the two processes x(z). 0+y(z). 0
and τ.x(z). 0+τ.y(z). 0 are not behaviourally equivalent.
Moreover, it is not necessary that the first player’s moves involve more

than single transitions due to the recursive nature of bisimulation. This
observation make easier proofs of weak equivalences.
Hence, a weak ground bisimulation is defined as follows.

Definition 15 (weak ground bisimulation).
A symmetric relation R ⊂ P × P is a weak ground bisimulation if for all

(P,Q) ∈ R, whenever P
µ
−→ P′ and bn(µ) ∩ fn(P+Q) = ∅, there exists Q′

such that Q
µ̂

==⇒ Q′ and (P′,Q′) ∈ R.

The formulation of weak early bisimulation is similar to the previous
definition when using early semantics. With late semantics, input actions
need a special treatment.
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Definition 16 (weak early bisimulation).
A symmetric relation R ⊂ P × P is a weak early bisimulation if for all

(P,Q) ∈ R, whenever P
µ
−→ P′ and bn(µ) ∩ fn(P+Q) = ∅ we have

• if µ is not an input action then there exists Q′ such that Q
µ̂

==⇒ Q′ and
(P′,Q′) ∈ R.

• if µ is an input action a(x) then for all u ∈ N, there exists Q′ and Q′′

such that Q =⇒
µ
−→ Q′, Q′{u/x} =⇒ Q′′ and (P′{u/x},Q′′) ∈ R.

There are two plausible definitions for weak late bisimulation, as noted
in [129], the most reasonable being the following.

Definition 17 (weak late bisimulation).
A symmetric relationR ⊂ P×P is aweak late bisimulation if for all (P,Q) ∈

R, whenever P
µ
−→ P′ and bn(µ) ∩ fn(P+Q) = ∅ we have

• if µ is not an input action then there exists Q′ such that Q
µ̂

==⇒ Q′ and
(P′,Q′) ∈ R.

• if µ is an input action a(x) then there exists Q′ such that Q =⇒
µ
−→ Q′

and for all u ∈ N, there exists Q′′ such that Q′{u/x} =⇒ Q′′ and
(P′{u/x},Q′′) ∈ R.

In contrast, the definition of weak open bisimulation is more regular.

Definition 18 (weak open bisimulation).
A symmetric D-relation R is a weak open bisimulation if for all (D, P,Q) ∈

R and for every substitution σ that respects D, whenever Pσ
µ
−→ P′ and

bn(µ) ∩ (fn(P+Q) ∪ n(D) ∪ n(σ)) = ∅ we have

• if µ is not a bound output action then there isQ′ such that Qσ
µ̂

==⇒ Q′

and (Dσ, P′,Q′) ∈ R.

• if µ is a bound output action a νz then there isQ′ such thatQσ
µ̂

==⇒ Q′

and (Dσ ∪ ({z} ⊗ (fn(Pσ +Qσ) ∪ Dσ)), P′,Q′) ∈ R.

In the rest of this document, we mainly focus on strong equivalences
because (1) the theory is generally simpler for the strong case, (2) the the-
ory can be smoothly adapted to the weak case because in many respects,
strong and weak cases only differ in details, and (3) they are often a useful
proof technique for weak equivalences. However, it is important to note
that the goal is weak equivalence.
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2.3 Open bisimulation, revisited

As the previous section suggests, our favourite notion of behavioural equiv-
alence for the pi calculus is open bisimulation because of its congruence
properties and its easy implementability. For this reason, we are interested
in generalising this notion to the case of the spi calculus, which is an ex-
tension of the pi calculus presented in the next chapter. To make this gen-
eralisation possible, we had to revisit open bisimulation of the pi calculus.
The following developments were discussed in details in [48, 50].

2.3.1 A type-aware variant of open bisimulation

As we saw, substitutions are at the core of many notions of bisimulations
for the pi calculus. This is due to the different treatments of simulated
symbolic input transitions, e.g., when

simulating P
a(x)
−−→ P′ by Q

a(x)
−−→ Q′.

The problem is that after the execution of a symbolic input on channel a,
the “input variable” name x becomes free in the resulting continuation
processes P′ and Q′. Considering all possible instantiations of this name x
by received name messages can be done either not at all (as in ground), or
(as in early) before the simulating transition is chosen, or (as in late) right
afterwards—or (as in open) considering all possible substitutions (not only
affecting the just freed input variable) even before starting any bisimula-
tion game. As we previously noticed, the latter case can also be seen as
“very late” or “lazy” since all possible instantiations of the input variable
will be checked the next time we try to continue with the bisimulation
game with P′ and Q′.
For the sake of clarity, when talking about a substitution {M/x}, let us

use the terms substitution subject for x and substitution object for M.
What do we actually mean when we require all possible instantiations in

a bisimulation game? More precisely: which set of substitutions shall be
considered, and how do we characterise it? In other words: which entities
are admissible as substitution subjects and objects, respectively?
By definition, only free names can ever be affected as substitution sub-

jects. In a process, there are three kinds of free names. A free name may
be free because:

1. either it was already initially free,
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2. or it has become free after having done an input (or been substi-
tuted),

3. or it has become free after having been created as a local name, and
afterwards output to some observing process.

In contrast to Sangiorgi [127], we argue that names of the latter kind are
constant, i.e., they should not be considered as substitution subjects, be-
cause they were created freshly and thus appropriately chosen. In con-
trast, the first two kinds shall be considered.
This idea is implemented in the following notion of F-open bisimula-

tion, which we qualify as type-aware. In our context, the word type does
not refer to the type of names of some typed pi calculus but rather to the
type of the substitution function. In lack of a better word, we may also
have used the term syntax-aware.
The simple idea of F-open bisimulation is to prevent names that were

previously (in the course of a bisimulation game) created freshly from be-
ing considered as permissible substitution subjects.
The knowledgeable reader may be reminded of the notion of quasi-

open bisimulation, proposed by Sangiorgi and Walker [126], and later on
revisited by Fu [72]. There, the use of distinctions as environments was
adapted to the use of a simple set of names that were once freshly cre-
ated and therefore deemed to remain constant. The resulting quasi-open
bisimulation was recognised as being strictly weaker than open bisimula-
tion. Sangiorgi and Walker intuitively summarised this difference as: “In
open bisimilarity, when a name z is sent in a bound-output action, the distinction
is enlarged to ensure that z is never identified with any name that is free in the
processes that send it. In quasi-open bisimilarity, in contrast, at no point after the
scope of z is extruded can a substitution be applied that identifies z with any other
name.” [126].
Like quasi-open bisimulation, the following definition also explicitly

keeps track of previously freshly created names. However, it does not use
this information to prevent the fusion of such fresh names like quasi-open
bisimulation does. It only uses this information to implement the idea
that fresh names can be considered as constant names once chosen, such
that they should afterwards never be used as substitution subjects. In fact,
Lemma 6 and Lemma 7 show that this change still faithfully retains the
equational power of open bisimulation.

Definition 19 (F-environment).
The pair (D,C) where D is a distinction and C is a finite subset of names
is a F-environment if C 6= ⊆ D. The set of all F-environments is written F .
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The distinction D plays the same role as in open bisimulation, while
the set C indicates which names can be considered as constant names. It is
used to refine the notion of respectfulness, as follows.

Definition 20 (respectful substitution).
A substitution σ respects a F-environment (D,C), written σ ◮ (D,C), if
σ ⊲ D and supp(σ) ∩ C = ∅.

The following lemma states the link between the two previously seen
notions of respectfulness.

Lemma 5:
Let (D,C) a F-environment and σ a substitution such that σ ⊲ D.
Then there exists a substitution σ′ and a bijective substitution θ such

that σ′ ◮ (D,C), σ = σ′θ and n(θ) ⊆ C ∪ Cσ.

PROOF
We first prove that σ is injective on the finite set C.
Indeed, let x, y ∈ C such that x 6= y. Since C 6= ⊆ D, we have (x, y) ∈ D.

Moreover, we have σ ⊲ D, so we have xσ 6= yσ. This proves that σ is
injective on C.
According to Lemma 1.4.11 of [129], there exists a bijective substitution

θ such that σ and θ agree on C. By construction, we also have that n(θ) ⊆
C ∪ Cσ.
Let σ′ = σθ−1. Then σ′ is a substitution such that σ = σ′θ.
We now show that σ′ ◮ (D,C).
We have that σ′ ⊲ D. Indeed, let x, y ∈ D. Since σ ⊲D, we have that

xσ 6= yσ. Now, since θ−1 is bijective, we get xσθ−1 6= yσθ−1, hence xσ′ 6=
yσ′ and σ′ ⊲ D.
Moreover, we have supp(σ′) ∩ C = ∅. Indeed, let x ∈ C. Since σ

and θ agree on C, we have xσ = xθ. So xσ′ = xσθ−1 = xθθ−1 = x and
x 6∈ supp(σ′). Hence supp(σ′) ∩ C = ∅.
So σ′ ◮ (D,C).

Definition 21 (F-relation).
A F-relationR is a subset of F × P× P.
It is symmetric if for all ((D,C), P,Q) ∈ R, we have ((D,C),Q, P) ∈ R.

Definition 22 (F-open bisimulation).
A symmetric F-relation R is a F-open bisimulation if for all ((D,C), P,Q) ∈

R and for every substitution σ that respects (D,C), whenever Pσ
µ
−→ P′

and bn(µ) ∩ (fn(P+Q) ∪ n(D) ∪ n(σ)) = ∅ we have
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• if µ is not a bound output action then there exists Q′ such that Qσ
µ
−→

Q′ and ((Dσ,C), P′,Q′) ∈ R.

• if µ is a bound output action a νz then there exists Q′ such that Qσ
µ
−→

Q′ and ((Dσ ∪ ({z} ⊗ (fn(Pσ +Qσ) ∪ Dσ)),C ∪ {z}), P′,Q′) ∈ R.

The only two differences compared to open bisimulation are, first, that
the notion of respectfulness is slightly modified such that it takes into ac-
count the constant names of a F-environment and, second, that the ex-
truded names are being accumulated in the pool of constant names of F-
environments.
Note that in the above definition, since C 6= ⊆ D and supp(σ) ∩ C = ∅,

we have C 6= ⊆ Dσ. Moreover, on bound actions, since C ⊆ n(Dσ), we
have (C ∪ {z}) 6= ⊆ Dσ ∪ ({z} ⊗ (fn(Pσ + Qσ) ∪ Dσ). Note also that the
freshness condition does not mention C because by assumption C ⊆ n(D).

P and Q are F-open (D,C)-bisimilar, written P ∼(D,C)
F Q, if there is a

F-open bisimulation R such that ((D,C), P,Q) ∈ R.
In the same spirit as Lemma 4, it is possible to define a F−open′ bisim-

ulation that yields the same notion of bisimilarity. In this case, X should
include C ∪ fn(P+Q).
Open and F-open bisimilarity are equivalent in the following sense,

as expressed by the combination of the statements of the Lemma 6 and
Lemma 7.

Lemma 6:
If P ∼(D,C)

F Q, then P ∼Do Q.

PROOF
LetR be a F-open bisimulation such that ((D,C), P,Q) ∈ R.
LetR′ := {(D, P,Q) | ((D,C), P,Q) ∈ R}.
ThenR′ is an open bisimulation up to bijective substitutions (see [128]

for more details about up to techniques).
Indeed, let (D, P,Q) ∈ R′. There is C such that ((D,C), P,Q) ∈ R.
Let σ such that σ ⊲D.
By Lemma 5, there exists a substitution σ′ and a bijective substitution

θ such that σ = σ′θ and σ′ ◮ (D,C) with n(θ) ⊆ C ∪ Cσ.
We only show how bound output actions are mimicked since the other

cases are similar but simpler.

Assume that Pσ
a νz
−−→ P′ with z 6∈ (fn(P+Q) ∪ n(D) ∪ n(σ)).

Since σ = σ′θ, we have Pσ′θ
a νz
−−→ P′. Since z 6∈ n(D), we have z 6∈ C.

Moreover we have z 6∈ n(σ). So z 6∈ C ∪ Cσ. Thus z 6∈ n(θ).
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Hence, we have Pσ′
aθ−1 νz
−−−−→ P′′ := P′θ−1 because θ is bijective.

Since R is a F-open bisimulation, σ′ ◮ (D,C) and z 6∈ (fn(P + Q) ∪

n(D) ∪ n(σ)), there exists Q′′ such that Qσ′
aθ−1 νz
−−−−→ Q′′ and ((D′′,C ∪

{z}), P′′,Q′′) ∈ R, with, by definition, D′′ := Dσ′ ∪ ({z} ⊗ (fn(Pσ′ +
Qσ′) ∪ Dσ′)). Thus (D′′, P′′,Q′′) ∈ R′.

Since θ is bijective, we have Qσ = Qσ′θ
a νz
−−→ Q′ := Q′′θ.

Let D′ = Dσ∪ ({z} ⊗ (fn(Pσ +Qσ)∪Dσ)). Clearly, since σ = σ′θ and
θ is bijective, we have D′ = D′′θ.
Thus, we have (D′θ−1, P′θ−1,Q′θ−1) = (D′′, P′′,Q′′) ∈ R′ with θ−1

being a bijective substitution.
So R′ is an open bisimulation up to bijective substitutions.
Hence the result.

Lemma 7:
If P ∼Do Q and C

6= ⊆ D then P ∼(D,C)
F Q.

PROOF
Since σ ◮ (D,C) implies σ ⊲ D.

2.3.2 A knowledge-aware variant of open bisimulation

We have argued that not all substitution subjects shall be considered and
defined on this idea a type-aware variant of open bisimulation. On the
other hand, also not all substitution objects may be acceptable. More pre-
cisely: depending on the history of the ongoing bisimulation game, certain
instantiations may sometimes be forbidden. There may be two different
reasons for this.
The first reason concerns names of kind (1) or (2) (see p.49), say a,

that were free in a process before another name, say b, got freshly cre-
ated and extruded. Due to the freshness property, any subsequent sub-
stitution for subject a must not mention b as substitution object, so not
to retrospectively invalidate this freshness property. In Sangiorgi’s open
bisimulation, distinctions precisely keep track of inequalities like a 6= b,
as required above. In analogy to type-awareness, we may use the term
freshness-awareness to characterise bisimulations using this sort of substi-
tutions.
The second reason concerns only names of kind (2) and resides on

the intuition that substitution objects represent messages that may be sent
from the observer to the observed process. In the pi calculus, there is no
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limitation beyond distinctions: the observer may send any name that it
may have received earlier, or it may simply invent names on its own.
We implement this latter idea by defining a bisimulation that makes

explicit an observer who plays against the two players P and Q involved
in the bisimulation game. The knowledge of the observer is stored in K-
environments of the form (O,V,≺). The set of names V represents all the
substitutable free names (i.e. names of kind (1) or (2)). The set of names O
contains all the messages that were emitted by P and Q, except the names
of V. Finally, the relation ≺ indicates for each substitutable name x the
available knowledge { n ∈ O | n ≺ x } that had possibly been acquired by
the observer at the moment the name x was input. Thus, the relation ≺
constrains the messages that may possibly be or have been received at a
particular moment from the observer.

Definition 23 (K-environment).
A K-environment is a triple (O,V,≺) such that O ∪ V is a finite subset of
N, O ∩V = ∅ and ≺⊆ O×V. The set of all K-environments is K.

If pe = (O,V,≺)1 is a K-environment, the names n(pe) of pe areO∪V.
If pe is a K-environment, and n ∈ N, it is possible to extend pe with n

in two ways. Either n is meant to be an emitted name and it is added to the
constant part of pe, or n is meant to be a received name and it is added to
the variable part of pe and put in relation with all already emitted names.
If n is already contained in pe, its addition to pe has no effect.

Definition 24 (extension of a K-environment).
Let pe = (O,V,≺) be a K-environment and n ∈ N. We define

1. pe +o n := (O′,V,≺) where O′ := O ∪ {n} if n 6∈ V and O′ := O
otherwise.

2. if n 6∈ O ∪ V, pe +i n := (O,V ∪ {n} ,≺′) where ≺′:=≺ ∪(O× {n})
and otherwise, pe +i n := pe.

Since the knowledge of the observer only grows with time, an interest-
ing class of K-environments is the class of growing K-environments.

Definition 25 (growing K-environment).
Let pe = (O,V,≺) be a K-environment. We say that pe is growing if there
exists an injective mapping z : [[1, n]] → V (where n = card(v)) such that
forall 1 ≤ i < n, we have Oi ⊆ Oi+1 where Oi := {n ∈ O | n ≺ z(i)}.

1pe stands for pi environment
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Intuitively, a growing K-environment pe = (O,V,≺) can be written
O1x1O2x2 · · ·OnxnOn+1 where V = {x1, . . . , xn}, Oi ⊆ Oi+1, On+1 = O
and n ≺ xi ⇐⇒ n ∈ Oi.
By definition, if pe is growing, then pe +o n is growing and pe +i n is

growing.

Growing K-environment are tightly related to quantifier prefixes of [139].
In this setting, a quantifier prefix is a list Q1x1Q2x2 . . .Qnxn for some n ≥ 0
and where Qi is either ∇ or ∀, where ∇ is roughly a quantifier for fresh
names and ∀ is a quantifier for variable names.
Intuitively, a quantifier prefix corresponds to the growing K-environ-

ment (O,V,≺) defined by O := {xi | Qi = ∇}, V := {xi | Qi = ∀} and
for xi ∈ O and xj ∈ V, xi ≺ xj ⇐⇒ i < j.
Conversely, a growing K-environment pe = (O,V,≺) corresponds

to several quantifier prefixes. If pe is growing, then pe can be written
O1x1O2x2 · · ·OnxnOn+1 where V = {x1, . . . , xn}, Oi ⊆ Oi+1, On+1 = O
and n ≺ xi ⇐⇒ n ∈ Oi. The corresponding quantifier prefixes are of
the form∇O1∀x1∇(O2 \O1)∀x2 · · · ∇(On \On−1)∀xn∇(On+1 \On)where
∇{y1, . . . , yn} stands for∇y1∇y2 . . .∇yn. Note that it is almost always the
case that ∇ quantifiers can be interchanged in FOλ∇∆ [97].

Keeping in mind that a substitution represents the potential inputs the
observer could have generated, we define the set of respectful substitu-
tions. A substitution σ respects a K-environment pe = (O,V,≺) if it af-
fects only substitutable names (those in V) and if for each x ∈ V, it takes
only values that were possible to generate at the moment when x was
input. This means that such a name x can use any name in V (this corre-
sponds to fusing two substitutable names), or use any name inO that was
known by the observer when x was input (this is indicated by the relation
≺) or use any new fresh name not contained in pe (this corresponds to the
creation of free names by the observer).

Definition 26 (respectful substitution).
We say that a substitution σ respects a K-environment pe = (O,V,≺), and
write σ ◮◮ pe, if:

1. supp(σ) ⊆ V

2. ∀x ∈ V : xσ ∈ O =⇒ xσ ≺ x

Any K-environment pe = (O,V,≺) may, under the impact of some
respectful substitution σ, be straightforwardly updated to peσ. In general,
the knowledge contained in O should be updated to Oσ. However, in the
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pi calculus, substitution deals only with names, and since O ∩V = ∅ and
supp(σ) ⊆ V we have Oσ = O. The set V of substitutable names should
keep all the names that were not affected by σ, and in addition list all the
new names that were created by the observer, as visible in the substitution
objects. The fact that we put the names created by the environment in the
substitutable part gives a “lazy” flavour to our definition, because it allows
the observer to uncover itself gradually. Particular care must be taken
when computing the new relation≺′ because of the possibility that σ fuses
two names of V. Fusing two names x and y (by xσ = yσ) corresponds to
a voluntary loss of power of the observer: the only admissible values for
the fused name are those that were admissible for both x and y.

Definition 27 (K-environment updating).
Let pe = (O,V,≺) be a K-environment and σ a substitution such that
σ ◮◮ pe. The updated environment of pe by σ is peσ := (O,V ′,≺′) where

V ′ := (V \ supp(σ)) ∪ { xσ | x ∈ supp(σ) ∧ xσ 6∈ O }
≺′ := { (n, x′) | ∀x ∈ V : x′ ∈ n(xσ) =⇒ n ≺ x }

Growth of K-environments is preserved by updating.

Lemma 8:
Let pe = (O,V,≺) be a growing K-environment and σ a substitution such
that σ ◮◮ pe. Then peσ is growing.

PROOF
Wewrite V = {x1, . . . , xn} andOi = {n ∈ O | n ≺ xi}. We assume that for
1 ≤ i < n, we have Oi ⊆ Oi+1.
By definition, peσ = (O,V ′,≺′) where

V ′ := (V \ supp(σ)) ∪ { xσ | x ∈ supp(σ) ∧ xσ 6∈ O }

and for n ∈ O and x′ ∈ V ′

n ≺′ x′ ⇐⇒ (∀x ∈ V : x′ ∈ n(xσ) =⇒ n ≺ x)

If x′ ∈ V ′, there exists x ∈ V such that x′ ∈ n(xσ) (by case distinction
on x′ ∈ V ′). Thus, if x′ ∈ V, the set Ax′ := {1 ≤ i ≤ n | x′ ∈ n(xiσ)} is not
empty. For x′ ∈ V ′, we note idx(x′) the minimal element of Ax′ .
Since Oi ⊆ Oi+1 for 1 ≤ i < n, we have Oi ⊆ Oj when i ≤ j. Hence for

all n ∈ O and i ≤ j, we have n ≺ xi implies n ≺ xj.
If n ∈ O and x′ ∈ V ′, we thus have n ≺′ x′ ⇐⇒ n ≺ xidx(x′).
We thus sort in ascending order the elements x′ of V ′ according to

idx(x′). Such an ordering proves that peσ is growing.



2.3. OPEN BISIMULATION, REVISITED 57

Definition 28 (K-relation).
A K-relation R is a subset of K × P× P such that for all (pe, P,Q) ∈ R,
we have that pe is growing and fn(P+ Q) ⊆ n(pe). R is symmetric if for
all (pe, P,Q) ∈ R, we have (pe,Q, P) ∈ R.

The new variant of open bisimulation is now defined. It simply keeps
track of whether dynamically freed names are substitutable or not. If they
are, then we explicitly state that previously created names may be used in
future substitutions. Names that will be created later on—by the process
itself—will not be permitted.

Definition 29 (K-open bisimulation).
A symmetric K-relation R is a K-open bisimulation, if for all (pe, P,Q) ∈

R and for each substitution σ that respects pe, whenever Pσ
µ
−→ P′ with

bn(µ) ∩ (n(pe) ∪ n(σ)) = ∅, there exists Q′ such that Qσ
µ
−→ Q′ and

• if µ = τ, then (peσ, P′,Q′) ∈ R

• if µ = a(x) then (peσ +i x, P′,Q′) ∈ R

• if µ = a νz or µ = a z then (peσ +o z, P′,Q′) ∈ R

We see in this definition thatO collects all themessages emitted by P andQ
(but the addition peσ +o z has only effect when µ = a νz since pe contains
all the free names of P and Q) and V collects all substitutable names.

P and Q are K-open pe-bisimilar, written P ∼pe
K Q, if there is a K-open

bisimulation R such that (pe, P,Q) ∈ R.

It is possible to represent any K-environment by some F-environment.
The idea is that all names inO should be kept pairwise distinct (they were
fresh names) and for all (n, x) ∈ O×V, if n cannot be used to generate x
(i.e. ¬(n ≺ x)), then n and x should be distinct (n 6= x).

Definition 30 (F-environment of a K-environment).
Let pe = (O,V,≺) be a K-environment. The F-environment induced by
pe is distF(pe) := (D,O) where

D := O 6= ∪
⋃

n∈O∧ x∈V ∧¬(n≺x)

{(n, x), (x, n)}

Note that if pe ∈ K, then distF(pe) ∈ F .
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Let us come back to the analogy between growing K-environments and
quantifier prefixes. A quantifier prefix Qx1Qx2 . . .Qxn generates the fol-
lowing distinction [139]:

{

(xi, xj), (xj, xi) | i 6= j,Qi = Qj = ∇ or i < j,Qi = ∀,Qj = ∇
}

We show that this distinction is the same as the one generated by the
K-environment (O,V,≺) where O = {xi | Qi = ∇}, V = {xi | Qi = ∀}
and for xi ∈ O, xj ∈ V, xi ≺ xj ⇐⇒ i < j.
By definition, the generated distinction is

O 6= ∪ {(n, x), (x, n) | n ∈ O, x ∈ V,¬(n ≺ x)}

Clearly, O 6= =
{

(xi, xj), (xj, xi) | i 6= j,Qi = Qj = ∇
}

.
Moreover, if xi ∈ O and xj ∈ V, then ¬(xi ≺ xj) ⇐⇒ i > j so

{(n, x), (x, n) | n ∈ O, x ∈ V,¬(n ≺ x)} =
{

(xi, xj), (xj, xi) | i < j,Qi = ∀,Qj = ∇
}

Hence the two distinctions are the same.
Conversely, if pe = (O,V,≺) is written O1x1O2x2 · · ·OnxnOn+1 where

V = {x1, . . . , xn}, Oi ⊆ Oi+1, On+1 = O and n ≺ xi ⇐⇒ n ∈ Oi.
Let Q1y1 . . .Qpyp a quantifier prefix corresponding to pe. By defini-

tion, it is of the form∇O1∀x1∇(O2 \O1)∀x2 . . .∇(On \On−1)∀xn∇(On+1 \
On).
The distinction generated by the quantifier prefix is
{

(yi, yj), (yj, yi) | i 6= j,Qi = Qj = ∇ or i < j,Qi = ∀,Qj = ∇
}

By definition, we have Qi = ∇ if and only if yi ∈ O so
{

(yi, yj), (yj, yi) | i 6= j,Qi = Qj = ∇
}

= O 6=

Moreover we have i < j, Qi = ∀, Qj = ∇ if and only if yi ∈ V, yj ∈ O
and yj ∈ (On+1 \Oi) = O \Oi, i.e. ¬(yj ≺ yi). So
{

(xi, xj), (xj, xi) | i < j,Qi = ∀,Qj = ∇
}

= {(n, x), (x, n) | n ∈ O, x ∈ V,¬(n ≺ x)}

Hence the two distinctions are the same.

The next lemma gives a precise correspondence between respectfulness
of a F-environment and respectfulness of a K-environment.

Lemma 9:
Let pe = (O,V,≺) be a K-environment and σ a substitution. Then

σ ◮◮ pe ⇐⇒ supp(σ) ⊆ V ∧ σ ◮ distF(pe)
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PROOF
Let D such that distF(pe) = (D,O).

• First assume that σ ◮◮ pe.

By definition, we have supp(σ) ⊆ V and ∀x ∈ V : xσ ∈ O =⇒
xσ ≺ x.

Since supp(σ) ⊆ V andO ∩V = ∅, we have supp(σ) ∩O = ∅.

Let (x, y) ∈ D. We have to show that xσ 6= yσ. There are four cases
(according to the definition of D): either x, y ∈ O with x 6= y, or
x ∈ O, y ∈ V and ¬(x ≺ y) or the two other symmetric cases.

By case distinction, assume that x, y ∈ O and x 6= y. Since supp(σ)∩
O = ∅, we have xσ = x, yσ = y, hence xσ 6= yσ.

Now assume that x ∈ O, y ∈ V and ¬(x ≺ y). Since supp(σ) ∩O =
∅, we have xσ = x. Assume by contradiction that yσ = xσ = x, then
we have yσ ∈ O. Thus, we have yσ ≺ y which is equivalent to x ≺ y
and thus leading to a contradiction. So xσ 6= yσ.

The two other symmetric cases are treated in the same way.

Hence σ ◮ distF(pe).

• Assume now that supp(σ) ⊆ V ∧ σ ◮ distF(pe).

We have then that σ ⊲ D.

By hypothesis, supp(σ) ⊆ V.

Let x ∈ V and assume that xσ ∈ O. We have to show that xσ ≺ x.
Assume by contradiction that ¬(xσ ≺ x). Then, by definition of D,
we have that (xσ, x) ∈ D. Since σ respects D, we have xσσ 6= xσ, but
since xσ ∈ O and supp(σ) ∩O = ∅, we have xσσ = xσ, obtaining a
contradiction.

Hence σ ◮◮ pe.

The next lemma studies the updating of a K-environment.

Lemma 10:
Let pe = (O,V,≺) be a K-environment, D such that distF(pe) = (D,O)
and σ a substitution such that σ ◮◮ pe. Then distF(peσ) = (Dσ,O). �

PROOF
Let (D′,O) = distF(peσ). We have to show that D′ = Dσ.
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By definition, D′ = O 6= ∪
⋃

n∈O∧ x′∈V ′ ∧¬(n≺′x′) {(n, x
′), (x′, n)} where

V ′ = (V \ supp(σ)) ∪ {xσ | x ∈ supp(σ) ∧ xσ 6∈ O} and ≺′ is defined by

n ≺′ x′ ⇐⇒
∧

x∈V ∧ x′∈n(xσ)

n ≺ x

Let (x′, y′) ∈ D′. If (x′, y′) ∈ O 6= then (x′, y′) ∈ Dσ since supp(σ)∩O = ∅.
So, assume that x′ ∈ O, y′ ∈ V ′ and ¬(x′ ≺′ y′). By definition, we have
that there exists in y ∈ V such that y′ ∈ n(yσ) and ¬(x′ ≺ y). So, we have,
by definition of D, (x′, y) ∈ D and since x′σ = x′ and yσ = y′, we have
thus (x′, y′) ∈ Dσ. So D′ ⊆ Dσ.
Let (x′, y′) ∈ Dσ. By definition, there exists (x, y) ∈ D such that x′ =

xσ and y′ = yσ. If (x, y) ∈ O 6=, then x′ = x and y′ = y and thus (x′, y′) ∈
D′. Now assume that x ∈ O, y ∈ V and ¬(x ≺ y). Since supp(σ)∩O = ∅,
we have x′ = x. If y′ ∈ O then (x′, y′) ∈ O 6= and (x′, y′) ∈ D′. Assume
that y′ 6∈ O. Then, by definition of V ′, y′ ∈ V ′. We have, since y′ = yσ,
y′ ∈ n(yσ) and since ¬(x′ ≺ y), we have, by definition of ≺′, ¬(x′ ≺′ y′)
and thus (x′, y′) ∈ D′. So Dσ ⊆ D′.

Finally, the following lemma studies how the distinction correspond-
ing to an environment evolves when a fresh name is added to the constant
part.

Lemma 11:
Let pe = (O,V,≺) be a K−environment and z a fresh name (i.e. neither in
O, nor in V) and let (D,O) = distF(pe).
Then distF(pe +o z) = (D ∪ {z} ⊗ (O ∪V),O ∪ {z}). �

PROOF
Since z is fresh, we have pe +o z = (O ∪ {z} ,V,≺).
So, by definition, we have distF(pe +o z) = (D′,O ∪ {z}) where the

distinction D′ has been defined to be

D′ := (O ∪ {z}) 6= ∪
⋃

n∈O∪{z} ∧ x∈V ∧¬(n≺x)

{(n, x), (x, n)}

Thus

D′ = O 6= ∪ {z} ⊗O

∪
⋃

n∈O∧ x∈V ∧¬(n≺x)

{(n, x), (x, n)}

∪
⋃

x∈V

{(z, x), (x, z)}
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because z does not appear in ≺ and so for every x ∈ V we have ¬(z ≺ x).
Hence D′ = D ∪ {z} ⊗ (O ∪V).

From this, it follows that K-open bisimilarity is sound with respect to
F-open bisimilarity.

Lemma 12:
If P ∼pe

K Q then P ∼
distF(pe)
F Q.

PROOF
LetR =

{

(distF(pe), P,Q) | P ∼pe
K Q

}

.
R is a F-open’ bisimulation.
Let ((D,C), P,Q) ∈ R and σ such that σ ◮ (D,C).

Assume that Pσ
µ
−→ P′ with bn(µ) ∩ (n(D) ∪ fn(P+Q) ∪ n(σ)) = ∅.

There exists pe = (C,V,≺) such that (D,C) = distF(pe) and bn(µ) ∩
n(pe) = ∅ and P ∼pe

K Q (because it is closed under bijective substitutions).
Let σ′ the restriction of σ to V. Clearly, σ ◮ (D,C) because n(D) ⊆

C ∪V and C⊆ 6=D. Moreover, since fn(P+Q) ⊆ C ∪V, σ and σ′ agrees on
fn(P+Q). Note also that since n(D) ⊆ C ∪V, we have Dσ = Dσ′.

So by Lemma 9, we have σ′ ◮◮ pe. Since Pσ′
µ
−→ P′ and bn(µ) ∩

(n(pe) ∪ n(σ′)) = ∅, there exists Q′ such that Qσ′
µ
−→ Q′.

If µ is not a bound output, it is easy to see that ((Dσ,C), P′ ,Q′) ∈ R,
thanks in particular to Lemma 10.
If µ = a νz, then P′ ∼peσ +o z

K Q′. By Lemma 11 and Lemma 10, there
is a finite set X that contains C ∪ fn(P + Q) such that distF(peσ +o z) =
Dσ ∪ ({z} ⊗ Xσ) = D′ and then (D′, P′,Q′) ∈ R.
HenceR is a F-open’ bisimulation.

Under the condition that the F-environment (D,C) is representable by
a K-environment pe, F-open (D,C)-bisimilarity is sound with respect to
K-open pe-bisimilarity.

Lemma 13:
If P ∼(D,C)

F Q and (D,C) = distF(pe) for some growing K-environment pe
with fn(P+Q) ⊆ n(pe) then P ∼pe

K Q.

PROOF
LetR =

{

(pe, P,Q) | P ∼
distF(pe)
F Q∧ fn(P+Q) ⊆ n(pe)

}

.
We show that R is a K−open bisimulation.
Let (pe, P,Q) ∈ R and σ such that σ ◮◮ pe.

Assume that Pσ
µ
−→ P′ with bn(µ) ∩ (n(pe) ∪ n(σ)) = ∅.
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We have P ∼distF(pe)
F Q. By Lemma 9, we have σ ◮ distF(pe).

Let (D,C) = distF(pe). By definition, we have n(D) ⊆ n(pe) and
fn(P+Q) ⊆ n(pe), so bn(µ) ∩ (fn(P+Q) ∪ n(D) ∪ n(σ)) = ∅.

So there exists Q′ such that Qσ
µ
−→ Q′.

If µ is not a bound output, we have P′ ∼(Dσ,C)
F Q′.

So, if µ = τ, we have by Lemma 10 (peσ, P′,Q′) ∈ R.
If µ = a(x), we have distF(peσ +i x) = distF(peσ), so by Lemma 10,

(peσ +i x, P′,Q′) ∈ R.
If µ = a z, we have peσ +o z = peσ since z is already in peσ, so by

Lemma 10, (peσ +o z, P′,Q′) ∈ R.

If µ is a bound output a νz, we have P′ ∼D
′,C∪{z}
F Q′ with D′ := (Dσ ∪

({z} ⊗ (fn(Pσ +Qσ) ∪ n(Dσ))),C ∪ {z}).
So by Lemma 10 and Lemma 11, we have (peσ +o z, P′,Q′) ∈ R be-

cause the only difference between the updated distinction above and the
distinction of distF(peσ +o z) is the presence of some irrelevant names for
the bisimilarity; the important fact is that fn(P+Q) ⊆ n(pe).
HenceR is a K−open bisimulation.

2.3.3 About congruence properties

Due to its richer underlying information structures, we may formulate
stronger congruence properties for K-open bisimilarity than for the orig-
inal open bisimilarity. The following results were conjectured in [48] and
proved in [50].
We prove with the help of K-open bisimilarity that, under some con-

ditions, open D-bisimilarity is a congruence for a bigger class of contexts
than just D-respectful contexts.
The idea is, if (D,O) = distF(O,V,≺), (1) to admit contexts that are

D-respectful, and furthermore (2) to admit contexts where the hole occurs
underneath an input prefix that binds a name x of V, but only if, in addi-
tion, every name of { n ∈ O | ¬(n ≺ x) } appears underneath a respective
restriction on the “path” from the hole-binding input prefix for x to the
hole. This corresponds to the fact that, in the bisimulation, a name n in O
comes from a restriction and a name x from V comes from an input prefix
and we have n ≺ x if n was disclosed before x was input. Before going
deeper into the formal details, let us understand the intuition by means of
a simple example.
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Example 1
Let P = x〈x〉. 0 | y(z). 0 and Q = x〈x〉.y(z). 0+y(z).x〈x〉. 0.
It is known and easily verifiable that P ∼Do Q with D = {(x, y), (y, x)}.
Let C = {y} and V = {x}, and note that (D,C) = distF((C,V,∅)).

Observe that P ∼(C,V,∅)
K Q.

Now, consider the context X[·] = a(x).(νy) [·].
Then X[P] ∼∅

o X[Q], although X[·] is not considered by D-congruence.
However, X[·] follows our above informal rule of admissible contexts.
Finally, just note in passing that also X[P] ∼

(∅,{a},∅)
K X[Q]. ∗

Definition 31.
Let pe = (O,V,≺) ∈ K and n ∈ N.
We define pe− n := (O \ {n} ,V \ {n} ,≺ \ ({n} ×N ∪N × {n}))

Note that if pe is a K-environment, then pe− n is also a K-environment.
Note also that, in addition, if pe is growing, so is pe− n.
The following lemma states that, as for open bisimulation, only free

names of processes are relevant in the sense that their consideration in
environments matters.
Lemma 14:
Assume that P ∼pe

K Q and n 6∈ fn(P+Q). Then P ∼pe−n
K Q.

PROOF
Assume that P ∼pe

K Q with pe = (O,V,≺).

By Lemma 12, we have P ∼distF(pe)
F Q where distF(pe) = (D,O) and

D = O 6= ∪
⋃

(n,x)∈O×V
{(n, x), (x, n) | ¬(n ≺ x)}.

By Lemma 6, we have that P ∼Do Q.
Since n 6∈ fn(P+Q), we have that P ∼D−no Q.
By definition, D− n = D \ ({n} ×N ∪N × {n}).
Let O′ = O \ {n}, V ′ = V \ {n} and ≺′ = ≺ \ ({n} ×N ∪N × {n}).
We then have that

D− n = O′
6=
∪

⋃

(n,x)∈O′×V ′

{

(n, x), (x, n) | ¬(n ≺′ x)
}

Thus, by Lemma 7, we have that P ∼(D−n,O′)
F Q.

Moreover, since (D − n,O′) = distF(pe− n), we have by Lemma 13
that P ∼pe−n

K Q. Hence the result.

Conversely, it is possible to add some fresh variables to a K-environ-
ment.
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Lemma 15:
Assume that P ∼pe

K Q. Then P ∼
pe +i n
K Q.

PROOF
If n ∈ n(pe), then pe +i n = pe and the result is obvious.
Otherwise, this follows from distF(pe) = distF(pe +i n).

Before rephrasing the congruence properties of open bisimilarity, as
stated in Proposition 1, in terms of K-open bisimilarity, we extend the sec-
ond part of Definition 24 to a finite set of names (this is because K-open
bisimilarity requires the initial environment to mention every free name).

Definition 32.
Let pe = (O,V,≺) be a K-environment and N = {n1, . . . , nk} a finite set
of names.
We define pe +i N to be pek where

• pe0 = pe

• pej+1 = pej+i nj

Note that the previous definition does not depend on the order in which
we add the elements of N.
The following result is obviously true:

Lemma 16:
Let pe = (O,V,≺) be aK-environment, (D,O) := distF(pe) and N a finite
set of names. Then distF(pe +i N) = (D,O). �

In analogy with congruence results for standard open bisimilarity as of
Proposition 1, we state one for K-open bisimilarity.

Proposition 2:
Let P,Q two processes and pe = (O,V,≺) aK-environment with P ∼pe

K Q.
Then,

1. τ.P ∼pe
K τ.Q

2. ∀R : R | P ∼pe +i fn(R)
K R |Q and P | R ∼pe +i fn(R)

K Q | R

3. ∀R : R+ P ∼
pe +i fn(R)
K R+Q and P+ R ∼

pe +i fn(R)
K Q+ R

4. ! P ∼pe
K !Q

5. [ x=y ]P ∼
pe +i{x,y}
K [ x=y ]Q
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6. a〈z〉.P ∼pe +i{a,z}
K a〈z〉.Q

7. (νz) P ∼pe−z
K (νz)Q

8. if x 6∈ O ∪V then a(x).P ∼pe +i a
K a(x).Q

9. if O = {x} and {y ∈ V | ¬(x ≺ y)} = ∅ then a(x).P ∼pe +i a
K a(x).Q

10. if x ∈ V and {n ∈ O | ¬(n ≺ x)} = ∅ then a(x).P ∼pe +i a
K a(x).Q

PROOF
Let (D,O) = distF(pe). Since P ∼pe

K Q, by Lemma 12, we have P ∼
(D,O)
F

Q. So by Lemma 6, we have P ∼Do Q.
By Proposition 1, we have P | R ∼Do Q | R. So by Lemma 7, we have

P | R ∼
(D,O)
F Q | R.

Since (D,O) = distF(pe) = distF(pe +i fn(R)) by Lemma 16 and by
Lemma 13 we have that P | R ∼pe +i fn(R)

K Q | R.
A similar reasoning applies to the summation operator, the replication

operator, the match prefix, the silent prefix and the output prefix.
For the restriction operator, we have (νz) P ∼D−zo (νz)Q. So, since

(O \ {z}) 6= ⊆ D− z, we have (νz) P ∼
(D−z,O\{z})
F (νz)Q. Moreover, since

(D− z,O \ {z}) = distF(pe− z), we thus have (νz) P ∼pe−z
K (νz)Q.

For the input prefix, if x 6∈ n(D), then a(x).P ∼Do a(x).Q.
By definition, we have

D := O 6= ∪
⋃

n∈O∧ x∈V ∧¬(n≺x)

{(n, x), (x, n)}

So n(D) ⊆ O ∪ V. Thus, if x 6∈ O ∪ V, then x 6∈ n(D). So a(x).P ∼Do
a(x).Q and finally a(x). ∼pe +i a

K a(x).Q.
Similarly, if x ∈ V and {n ∈ O | ¬(n ≺ x)} = ∅, then x 6∈ n(D). Thus

a(x). ∼pe +i a
K a(x).Q.

Finally, if O = {x} and {y ∈ V | ¬(x ≺ y)} = ∅ then x 6∈ n(D) and
thus a(x). ∼pe +i a

K a(x).Q. Note that the only case where O 6= is empty is
when cardO < 2 .

From the previous proposition, we can deduce a set of contexts that are
safe concerning K-open bisimilarity; for such contexts C[·] we have that if
P ∼pe

K Q, then there exists pe′ such that C[P] ∼pe′

K C[Q].
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Definition 33.
Let pe = (O,V,≺) be a K-environment. We define the set of pe-respectful
contexts as the language generated by the grammar defined as follows.
For each subset N ⊆ O ∪ V, we define a non-terminal symbol CN[·]. The
start symbol is C∅[·]. The production rules are of the form:

CN[·] ::= [·] if N = ∅

| τ.CN[·]
| P |CN[·]
| CN[·] | P
| P+ CN[·]
| CN[·] + P
| !CN[·]
| [ x=y ]CN [·]
| (νz)CN\{z}[·]
| a〈z〉.CN [·]
| a(x).CN [·] if x 6∈ O ∪V
| a(x).CN∪N′ [·] if x ∈ V and N′ = {n ∈ O | ¬(n ≺ x)}
| a(x).CN∪N′ [·] if O = {x} and N′ = {y ∈ V | ¬(x ≺ y)}

The idea is simply that when a name x ofV is bound by an input prefix,
then according to Proposition 2, it is sufficient that every name n ∈ O
such that ¬(n ≺ x) is removed from the environment, which is done via
restrictions. The index N of each non-terminal CN[·] simply remembers all
such names.

Example 2
Back to Example 1, we have in this case pe = ({y} , {x} ,∅).
The context X[·] = a(x).(νy) [·] is obtained by applying the second rule

for adding an input prefix (since x ∈ {x}) and at this point the name y is
pushed in the set of names N. Then the rule for the restriction is used to
remove y from the set N. Finally the hole is placed.
The derivation path for obtaining X[·] via the grammar of Definition 33

is
C∅[·]→ a(x).C{y}[·]→ a(x).(νy)C∅ [·]→ a(x).(νy) [·]

From the previous developments, we deduce the following proposi-
tion.

Proposition 3:
If P ∼pe

K Q and C[·] is a pe-respectful context then there exists a K-en-

vironment pe′ such that C[P] ∼pe′

K C[Q] (and pe′ is built according to
rules given in Proposition 2).
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PROOF
The proof is by induction on C[·].
More precisely, we prove that if P ∼pe

K Q with pe = (O,V,≺) then
for all context C[·], for all N ⊆ n(pe), if C[·] = CN[·] for some context
CN[·] built according to formation rules of Definition 33 then there exists
pe′ = (O′,V ′,≺′) such that C[P] ∼pe′

K C[Q] and

• O′ ⊆ O

• O′ ∩ N = ∅

• ∀x ∈ V ′ : (x ∈ V =⇒ {n ∈ O′ | ¬(n ≺′ x)} ⊆ {n ∈ O | ¬(n ≺ x)})

• ∀x ∈ V ′ : (x 6∈ V =⇒ {n ∈ O′ | ¬(n ≺′ x)} = ∅

• ∀n ∈ O′ : {y ∈ V ′ | ¬(n ≺′ y)} ⊆ {y ∈ V | ¬(n ≺ y)})

• ∀n ∈ O′ : {y ∈ V ′ | ¬(n ≺′ y)} ∩ N = ∅

We first show that if pe′ satisfies the above condition then so do pe′− z
and pe′+i z for any name z.
The result is obvious for pe′ − z since it removes some more informa-

tion. Moreover, it satisfies also the property for N∪{z} since z is removed.
If z ∈ n(pe′) then pe′+i z = pe′ so the result is trivial.
If z 6∈ n(pe′), then pe′+i z = (O′,V ′ ∪ {z} ,≺′ ∪O′ × {z}).
So {n ∈ O′ | ¬(n ≺′′ z)} = ∅. Thus it is clear that the result holds.

We can now show the corollary by induction on C[·].
If C[·] = [·], then necessarily N = ∅ and pe′ = pe satisfies the property.
If C[·] = C′[·] | R for some C′[·] and R. Assume that C[·] = CN[·] for

some N ⊆ n(pe) and CN [·]. Then necessarily C′[·] = C′N[·] for some C′N[·].

By induction, there is pe′ such that C′[P] ∼pe′

K C
′[Q]. Then by Proposi-

tion 2, we have C′[P] | R ∼pe′ +i fn(R)
K C′[Q] | R. Clearly pe′′ = pe′+i fn(R)

satisfies the property.
We now treat the non trivial cases.
If C[·] = (νz)C′[·] = CN [·]. Then C′[·] = CN\{z}[·].

By induction, we have C′[P] ∼pe′

K C
′[Q] for pe′ satisfying the condition

for N \ {z}. So by Proposition 2, we have (νz)C′[P] ∼pe′−z
K (νz)C′[Q] and

pe′′ = pe′ − z satisfies the property for N (by case distinction on z ∈ N or
not).
If C[·] = a(x).C′ [·] = CN[·]. There are three cases:
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1. if x 6∈ O ∪V and C′[·] = C′N [·]

By induction, we have C′[P] ∼pe′

K C
′[Q].

We write pe′ = (O′,V ′,≺′).

Since x 6∈ O ∪V then x 6∈ O so x 6∈ O′.

If x ∈ V ′. Then since x 6∈ V then {n ∈ O′ | ¬(n ≺′ x)} = ∅. So by

Proposition 2, we have a(x).C′ [P] ∼pe′+i{a}
K a(x).C′ [Q] and pe′′ =

pe′+i {a} satisfies the property.

If x 6∈ V ′ then x 6∈ O′ ∪V ′.

By Proposition 2, we have a(x).C′ [P] ∼pe′ +i{a}
K a(x).C′[Q] and pe′′ =

pe′+i {a} satisfies the property.

2. if x ∈ V and C′[·] = C′N∪N′ [·] for N
′ = {n ∈ O | ¬(n ≺ x)}.

By induction we have C′[P] ∼pe′

K C
′[Q] with pe′ = (O′,V ′,≺′) satis-

fying the property for N ∪ N′.

Since x ∈ V and O ∩V = ∅, we have x 6∈ O so x 6∈ O′.

If x ∈ V ′, then {n ∈ O′ | ¬(n ≺′ x)} ⊆ N′. Since O′ ∩ (N ∪ N′) = ∅,
we have {n ∈ O′ | ¬(n ≺′ x)} = ∅.

So by Proposition 2, a(x).C′[P] ∼pe′ +i{a}
K a(x).C′ [Q]. And we have

that pe′′ = pe′+i {a} satisfies the property for N.

If x 6∈ V ′, then by Proposition 2, a(x).C′ [P] ∼pe′+i{a}
K a(x).C′ [Q] and

pe′+i {a} satisfies the property for N.

3. if O = {x} and C′[·] = C′N∪N′ [·] for N
′ = {y ∈ V | ¬(x ≺ y)}.

By induction, we have C′[P] ∼pe′

K C
′[Q] with pe′ = (O′,V ′,≺′) satis-

fying the property for N ∪ N′.

Since x ∈ O and O ∩V = ∅, we have x 6∈ V.

If x ∈ O′ then since O′ ⊆ O = {x}, we have O′ = {x}.

By hypothesis, we have {y ∈ V ′ | ¬(x ≺′ y)} ⊆ N′ and also that
{y ∈ V ′ | ¬(x ≺′ y)} ∩ (N ∪ N′) = ∅. Thus {y ∈ V ′ | ¬(x ≺′ y)} =
∅.

So by Proposition 2, a(x).C′ [P] ∼pe′ +i{a}
K a(x).C′ [Q] and pe′+i {a}

satisfies the property for N.

If x 6∈ O′ then O′ = ∅. So by Proposition 2, a(x).C′[P] ∼pe′ +i{a}
K

a(x).C′[Q] and pe′+i {a} satisfies the property for N.
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Definition 34.
Let pe be a K-environment.
A relation R ⊆ P× P is a pe-congruence if for all (P,Q) ∈ R and for all
pe-respectful contexts C[·] we have (C[P],C[Q]) ∈ R.

Lemma 17:
Let pe be a K-environment and (D,O) = distF(pe).
Then, every pe-congruence is also a D-congruence.

PROOF
We show that any D-respectful context is also pe-respectful.
We write pe = (O,V,≺).
More precisely, we show that if C[·] respects D then C[·] = C∅[·] for

some C∅[·] built according to rules of Definition 33.
Without loss of generality, we can assume that the bound names of C[·]

are pairwise distinct.
The only non trivial case is C[·] = a(x).C′[·].
Since C[·] respects D, we have x 6∈ n(D) and C′[·] also respects D.
By induction, C′[·] = C′∅[·] for some context C′∅[·] satisfying the rules

of Definition 33.
There are three (disjoint) cases: x ∈ O, x ∈ V or x 6∈ O ∪V.
Recall first that

D = O 6= ∪
⋃

n∈O∧ x∈V ∧¬(n≺x)

{(n, x), (x, n)}

If x ∈ O, then necessarily O = {x} otherwise there is y ∈ O with y 6= x
and (x, y) ∈ O 6=. Since x 6∈ n(D), we also have that {y ∈ V | ¬(x ≺ y)} =
∅, otherwise x is in the second part of the union defining D. So C[·] =
C∅[·] with C∅[·] = a(x).C′∅ [·] satisfies the rules of Definition 33.
If x ∈ V, then necessarily {n ∈ O | ¬(n ≺ x)} = ∅ since otherwise

x is in the second part of the union defining D. So C[·] = C∅[·] with
C∅[·] = a(x).C′∅ [·] satisfies the rules of Definition 33.
Finally, if x 6∈ O ∪ V, then clearly C[·] = C∅[·] with C∅[·] = a(x).C′∅[·]

satisfies the rules of Definition 33.

The following theorem states that open D-bisimilarity has better con-
gruence properties than those expressed by D-congruence.

Theorem 2:
Let pe be a K-environment and (D,O) = distF(pe).
Then, open D-bisimilarity is a pe-congruence.

PROOF
This follows from the previous observations.
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Conclusion

In this chapter, we have presented the pi calculus, a process calculus of
concurrent and mobile systems. We have described the behaviour of pro-
cesses with the help of a labelled transition system. We then have pre-
sented several notions of behavioural equivalence, expressed in terms of
bisimulation. In particular, we have explained that open bisimulation of
Sangiorgi is an attractive candidate notion of bisimulation for the pi cal-
culus, due to its congruence properties and its easy implementability. In
a second part, we have revisited open bisimulation and defined two vari-
ants of open bisimulation that are more precise concerning their manage-
ment of names than Sangiorgi’s open bisimulation, where every name is
potentially considered as a variable. In a certain way, F-open bisimula-
tion, by making some kind of dynamic typing of names, reconciles two
different presentations of the pi calculus: the standard one where there is
only one kind of names and the presentation where two different syntac-
tic categories are used for names and variables, as by Honda and Yoshida
[84] or by Hennessy and Rathke [80]. We have been able to exploit the ad-
ditional information contained in K-environments to improve the congru-
ence properties of open bisimulation. Wewill see in the following chapters
that the definition of K-open bisimilarity has other benefits, since it can be
smoothly lifted to the spi calculus, a cryptographic extension of the pi cal-
culus.



Chapter 3

The Spi Calculus

We present in this chapter the spi calculus of Abadi and Gordon [9]. We
describe its syntax and its labelled late transitions system. We then define
an alternative labelled transitions system that keeps track of some addi-
tional information. Finally, we discuss about process equivalences in the
spi calculus and how they can be used to express security properties.

3.1 Syntax

The spi calculus is an extension of the pi calculus that permits the trans-
mission of cryptographic messages. It was designed to formalise and
study cryptographic protocols [9]. Contrary to the original presentation
of Abadi and Gordon where the cryptographic primitives are embedded
in the process syntax, we present a spi calculus which is parametrised by
the language of cryptographic messages as e.g. in [61, 40, 39]. The result-
ing spi calculus is thus more easily extensible and resembles applied pi
calculus [6] in this respect.

3.1.1 The language of messages

The messages we will consider are built according to the grammar of Ta-
ble 3.1. The basic components of message are names. The set of messages
is writtenM.
Given a message M, it is possible:

• to compute its hashing H(M),

• to retrieve its associated public key pub(M),
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M,N ::= a name
| H(M) hashing
| pub(M) public key
| priv(M) private key
| (M .N) pair
| EncsNM shared-key encryption
| EncaNM asymmetric encryption

Table 3.1: The messages of the spi calculus

• to retrieve its associated private key priv(M).

We will denote by the meta-variable op operators in {pub, priv,H}.
Given two messages M and N, it is possible:

• to construct the pairing of M and N yielding (M .N),

• to encrypt with a shared-key cryptography algorithm the message M
with the key N yielding EncsNM,

• to encrypt with a public-key cryptography algorithm the message M
with the key N yielding EncaNM.

We assume that the decryption of the cyphertext EncsNM succeeds and
yields M if and only if the message N is given as decryption key.
We assume that the decryption of the cyphertext EncaNM succeeds and

yields M if and only if either

• N = pub(N′) for some message N′ and priv(N′) is given as decryp-
tion key, or

• N = priv(N′) for some message N′ and pub(N′) is given as decryp-
tion key.

To refer to the inverse key in case of asymmetric cryptography, we de-
fine a function inv(·) : M → M ∪ {⊥} such that for every message M ∈ M,
we have inv(pub(M)) := priv(M), inv(priv(M)) := pub(M) and otherwise
(i.e. M is not of the form pub(M′) or priv(M′)) inv(M) := ⊥. This function
is (almost) involutive.

Lemma 18:
Let M,N ∈ M. If inv(M) = N then inv(N) = M. �
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E, F ::= a name
| H(E) hashing
| pub(E) public key
| priv(E) private key
| π1 (E) first projection
| π2 (E) second projection
| (E . F) pair
| EncsFE shared-key encryption
| EncaFE asymmetric encryption
| DecsFE shared-key decryption
| DecaFE asymmetric decryption

Table 3.2: The expressions of the spi calculus

3.1.2 Expressions

Syntax

To dynamically manipulate messages, we introduce the set of expressions
E. Expressions are built according to the grammar of Table 3.2.
As for messages, expressions are built from names.
Given an expression E, it is possible:

• to compute the hashing H(E) of the message represented by expres-
sion E,

• to retrieve the public key pub(E) associated to the message repre-
sented by E,

• to retrieve the private key priv(E) associated to the message repre-
sented by E,

• to try to obtain the first projection π1 (E) of the message represented
by E,

• to try to obtain the second projection π2 (E) of the message repre-
sented by E.

Given two expressions E and F, it is possible:

• to construct the pairing (E . F) of the messages represented by E and
F,
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• to construct the shared-key encryption EncsFE of the message repre-
sented by E with the message represented by F as encryption key,

• to construct the asymmetric encryption EncaFE of the message repre-
sented by E with the message represented by F as encryption key,

• to try to obtain the decryption DecsFE of the message represented
by E with the message represented by F as decryption key with the
shared-key decryption algorithm,

• to try to obtain the decryption DecaFE of the message represented
by E with the message represented by F as decryption key with the
public-key decryption algorithm.

Concrete Evaluation

According to previous developments, it is possible to form arbitrary ex-
pressions. However, it might be the case that the computation of some
expressions fails. For example, this is the case when one tries to decrypt
a cyphertext with the wrong decryption key. We formalise the notion of
computation of an expression —or concrete evaluation— with the function
ec(·) : E → M ∪ {⊥}. If the concrete evaluation of an expression E is a
messageM, we say that the (concrete) evaluation of E succeeds and equals
M; otherwise, we say that it fails (and ec(E) = ⊥).
The definition of ec(·) is given in Table 3.3. The case of failure clearly

originates from the incorrect application of a deconstructor to a term.
Indeed, the concrete evaluation of an expression that does not contain

any deconstructors (i.e. a message) always succeeds:

Lemma 19:
For all M ∈ M, we have ec(M) = M.

PROOF
By induction on M.

However, there are expressions with deconstructors whose evaluation
succeeds. For example E = π1 ((a . b)). Then ec(E) = a.

3.1.3 Processes

We give a brief and informal interpretation of the processes of the spi cal-
culus which are composed of:

• An empty process 0. It can do nothing.
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ec(a) := a if a ∈ N
ec((E1 . E2)) := (M1 .M2) if ec(E1) = M1 ∈ M

and ec(E2) = M2 ∈ M
ec(EncsFE) := EncsM2M1 if ec(E) = M1 ∈ M

and ec(F) = M2 ∈ M
ec(EncaFE) := EncaM2M1 if ec(E) = M1 ∈ M

and ec(F) = M2 ∈ M
ec(op(E)) := op(M) if ec(E) = M ∈ M

and op ∈ {pub, priv,H}
ec(π1 (E)) := M1 if ec(E) = (M1 .M2) ∈ M
ec(π2 (E)) := M2 if ec(E) = (M1 .M2) ∈ M
ec(DecsFE) := M1 if ec(E) = EncsM2M1 ∈ M

and ec(F) = M2
ec(DecaFE) := M1 if ec(E) = EncaM2M1 ∈ M

and ec(F) = inv(M2) ∈ M
ec(E) := ⊥ in all other cases

Table 3.3: Concrete evaluation of expressions

• A silent prefix τ.P. It can evolve invisibly to P.

• An input prefix E(x).P. If the evaluation of E succeeds and equals a ∈
N then it can receive a message M along the channel a and continue
as P with M substituted for x. Otherwise, it can do nothing.

• An output prefix E〈F〉.P. If the evaluation of E succeeds and equals
a ∈ N and the evaluation of F succeeds and equalsM then it can send
the message M along the channel a and continue as P. Otherwise, it
can do nothing.

• A guard φP. If the guard φ is true then it can evolve as P. Otherwise,
it can do nothing.

• A parallel composition P |Q. The processes P and Q can evolve inde-
pendently or may interact via shared communication channels.

• A sum P+Q. It can behave either as P or Q.

• A restriction (νz) P. A fresh name z, whose scope is restricted to P, is
created and then it behaves like P.
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• A replication ! P. It can be thought as an infinite parallel composition
P | P | · · · of the process P.

The syntax of the spi calculus processes P is summarised in Table 3.4.

P,Q ::= 0 inactive process
| τ.P silent prefix
| E(x).P input prefix
| E〈F〉.P output prefix
| φP guard
| P |Q parallel composition
| P+Q sum
| (νz) P restriction
| ! P replication

Table 3.4: The processes of the spi calculus

The language of guards F is described by Table 3.5. A guard is either

• the matching [E=F ] of two expressions E and Fwhich is true if both
the evaluations of E and F succeed and equal the same message M,
or

• the test of the predicate [E :N ] which is true if the evaluation of the
expression E succeeds and equals a name. The presence of this capa-
bility is motivated by the fact that since communication channels are
required to be names, it gives a mean to test whether an expression
evaluates to a name by attempting to transmit on it. This ability is
thus expressed by this guard.

φ ::= [E=F ] matching
| [E :N ] is a name

Table 3.5: The guards of the spi calculus

The evaluation function e(·) : F → {true, false}, which is given in
Table 3.6, defines the notion of truth for guards.
It is convenient to define a short cut —written [E :M ]— for the guard

[E=E ]. Note that e([E :M ]) = true if and only if the evaluation of E
succeeds.
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e([E=F ]) := true if ec(E) = ec(F) = M ∈ M
e([E :N ]) := true if ec(E) = a ∈ N

e(φ) := false in all other cases

Table 3.6: Evaluation of guards

3.1.4 Example

We consider a simple cryptographic protocol consisting of two principals
A and B taken from [9]. We assume that A and B share the key kAB. The
protocol is that A sends the message M encrypted with kAB to B.
The corresponding protocol narration would be:

A→ B : EncskAB
M

In spi calculus, this gives the process P(M) where

A(M) := cB〈EncskAB
M〉. 0

B := cB(x).[DecskAB
x :M ]F(DecskAB

x)

P(M) := (νkAB) (A(M) | B)

B is parametrised by its continuation F(y). The parameter y is intended
to represent the clear text of the transmission. Before performing this con-
tinuation, B checks whether the received message is indeed a cyphertext
that has been encrypted with the key kAB thanks to the guard [DecskAB

x :M ]
(recall that x will be substituted by the input message).

3.2 Labelled Transitions System

As in the pi calculus, the behaviour of processes is described by a labelled
transitions system. Before giving the late semantics of the spi calculus, we
briefly define auxiliary notions such as free names, bound names and sub-
stitutions. We then give an alternative labelled transitions system that col-
lects some additional information about processes.

3.2.1 Names, free names, bound names, α-conversion

Definition 35 (n(M), n(E), n(φ)).
The names n(M) of a message M are the set of names that appear in M. It
is defined inductively by:
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n(a) := {a}
n((M1 .M2)) := n(M1) ∪ n(M2)
n(EncsM2M1) := n(M1) ∪ n(M2)
n(EncaM2M1) := n(M1) ∪ n(M2)
n(op(M)) := n(M) with op ∈ {pub, priv,H}

The names n(E) of an expression E are the set of names that appear in
E. It is defined inductively by:

n(a) := {a}
n((E1 . E2)) := n(E1) ∪ n(E2)
n(EncsE2E1) := n(E1) ∪ n(E2)
n(EncaE2E1) := n(E1) ∪ n(E2)
n(op(E)) := n(E) with op ∈ {pub, priv,H}
n(π1 (E)) := n(E)
n(π2 (E)) := n(E)
n(DecsE2E1) := n(E1) ∪ n(E2)
n(DecaE2E1) := n(E1) ∪ n(E2)

The names n(φ) of a guard φ are the set of names that appear in φ. It is
defined inductively by:

n([E=F ]) := n(E) ∪ n(F)
n([E :N ]) := n(E)

We extend this definition to set of messages, expressions, guards in
the obvious way. We also write n(E1, . . . , En,M1, . . . ,Ml, φ1, . . . , φk) as a
shortcut for

⋃

1≤i≤n
n(Ei) ∪

⋃

1≤i≤l
n(Mi) ∪

⋃

1≤i≤k
n(φi).

It is obvious that if the evaluation of an expression E succeeds and
equals M then the names of M are also names of E.

Lemma 20:
Let E ∈ E. If ec(E) = M ∈ M then n(M) ⊆ n(E). �

The converse result is not true. For instance, consider E = π1 ((a . b)).
Then ec(E) = a, n(E) = {a, b} and n(ec(E)) = {a}. So n(E) 6⊆ n(ec(E)).

Definition 36 (bn(P), fn(P)).
The bound names bn(P) of a process P are defined inductively by:
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bn(0) := ∅

bn(τ.P) := bn(P)
bn(E(x).P) := bn(P) ∪ {x}
bn(E〈F〉.P) := bn(P)
bn(φP) := bn(P)
bn(P |Q) := bn(P) ∪ bn(Q)
bn(P+Q) := bn(P) ∪ bn(Q)
bn((νx) P) := bn(P) ∪ {x}
bn(! P) := bn(P)

The free names fn(P) of a process P are defined inductively by:

fn(0) := ∅

fn(τ.P) := fn(P)
fn(E(x).P) := n(E) ∪ (fn(P) \ {x})
fn(E〈F〉.P) := n(E) ∪ n(F) ∪ fn(P)
fn(φP) := n(φ) ∪ fn(P)
fn(P |Q) := fn(P) ∪ fn(Q)
fn(P+Q) := fn(P) ∪ fn(Q)
fn((νx) P) := fn(P) \ {x}
fn(! P) := fn(P)

As above, we extend these definitions to set of processes and extend
the notation for finite sequence of processes.
We say that P and Q are α-equivalent and write P =α Q, if P and Q only

differ by a change of bound names.
In the following, we identify α-equivalent processes. In particular, we

assume that in a process bound names are different from each other and
from the free names.

3.2.2 Substitutions

Definition 37 (substitution, supp(σ), cosupp(σ), n(σ)).
A substitution is a function σ : N → M such that its support supp(σ) :=
{x ∈ N | σ(x) 6= x} is finite.
If σ is a substitution, the co-support cosupp(σ) of σ is cosupp(σ) :=

{σ(x) | x ∈ supp(σ)}.
The names n(σ) of σ are n(σ) := supp(σ) ∪ n(cosupp(σ)).

We use the notation
[

M1/x1 , . . . ,
Mn/xn

]

when we enumerate a substitu-
tion σ. As previously, we use the postfix notation for applying substitu-
tions.
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Definition 38 (application of a substitution).
Substitutions are applied to messages according to the following inductive
definition:

(a)σ := σ(a)
((M1 .M2))σ := (M1σ .M2σ)
(EncsM2M1)σ := EncsM2σM1σ

(EncaM2M1)σ := EncaM2σM1σ

(op(M))σ := op(Mσ) with op ∈ {pub, priv,H}

Substitutions are applied to expressions according to the following in-
ductive definition:

(a)σ := σ(a)
((E1 . E2))σ := (E1σ . E2σ)
(EncsE2E1)σ := EncsE2σE1σ

(EncaE2E1)σ := EncaE2σE1σ

(op(E))σ := op(Eσ) with op ∈ {pub, priv,H}
(π1 (E))σ := π1 (Eσ)
(π2 (E))σ := π2 (Eσ)

(DecsE2E1)σ := DecsE2σE1σ

(DecaE2E1)σ := DecaE2σE1σ

Substitutions are applied to guards according to the following induc-
tive definition:

([E=F ])σ := [Eσ =Fσ ]
([E :N ])σ := [Eσ :N ]

Substitutions are applied to processes according to the following in-
ductive definition:

(0)σ := 0
(τ.P)σ := τ.(Pσ)

(E(x).P)σ := Eσ(x).Pσ if x 6∈ n(σ)
(E〈F〉.P)σ := Eσ〈Fσ〉.Pσ

(φP)σ := φσPσ
((νz) P)σ := (νz) Pσ if z 6∈ n(σ)
(P |Q)σ := Pσ |Qσ

(P+Q)σ := Pσ +Qσ
(! P)σ := ! Pσ

To satisfy the side conditions for input prefix or restriction, we might first
need to rename the bound names of P. This is possible because we have
identified α-equivalent processes.
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We extend the application of a substitution to sets: if X is a set (of expres-
sions, messages, processes, ...), Xσ := {xσ | x ∈ X}.
The inverse key relation is preserved by substitutions.

Lemma 21:
Let M,N ∈ M and σ : N → M a substitution. If inv(M) = N then
inv(Mσ) = Nσ. �

If the evaluation of E succeeds and equalsM, then the evaluation of Eσ
succeeds and equals Mσ.

Lemma 22:
Let E ∈ E and σ : N→ M a substitution. If ec(E) = M ∈ M then ec(Eσ) =
ec(E)σ = Mσ.

PROOF
By induction on E and by Lemma 19.

If we see E as an approximation of Eσ and M as an approximation of Mσ,
the previous lemma says that the themore precise the expression, the more
precise the evaluation.
The converse result is not true. For example, take E = π1 (x) and

σ = {(a . b)/x}. Then ec(Eσ) = a but ec(E) = ⊥.

3.2.3 Late Semantics

As we briefly mentioned in the chapter devoted to the pi calculus (see
Page 33), we adopt a different presentation for the labelled transitions sys-
tem. Thus, the late semantics of the spi calculus relates processes with
agents.

Definition 39 (agent).
An agent A is either a process P or an abstraction F = (x)P (where P ∈ P)
or a concretion C = (νz̃) 〈M〉P (where M ∈ M, z̃ is a finite set of names
such that {z̃} ⊆ n(M) and P ∈ P). When z̃ is empty, we simply write
〈M〉P instead of (ν∅) 〈M〉P.
The bound names bn(A) of an agent are defined by:

bn(A) := bn(P) if A = P ∈ P
bn(A) := {x} ∪ bn(P) if A = (x)P
bn(A) := {z̃} ∪ bn(P) if A = (νz̃) 〈M〉P

The free names fn(A) of an agent are defined by:
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fn(A) := fn(P) if A = P ∈ P
fn(A) := fn(P) \ {x} if A = (x)P
fn(A) := fn(P) \ {z̃} if A = (νz̃) 〈M〉P

As for processes, we define α-equivalence for agents. In the following,
we identify α-equivalent agents.
Substitutions are applied to agents according to the following defini-

tion:

(A)σ := Pσ if A = P ∈ P
(A)σ := (x)Pσ if A = (x)P and x 6∈ n(σ)
(A)σ := (νz̃) 〈Mσ〉Pσ if A = (νz̃) 〈M〉P and {z̃} ∩ n(σ) = ∅

To simplify the presentation of the semantics, we define the composi-
tion of agents and processes.

Definition 40 (composition of agents and processes).
We define composition between agents and processes as follows:

(νννx) P := (νx) P
(νννy) ((x)P) := (x)(νy) P if y 6= x

(νννy) ((νz̃) 〈M〉P) := (νyz̃) 〈M〉P if y 6∈ {z̃} and y ∈ n(M)
(νννy) ((νz̃) 〈M〉P) := (νz̃) 〈M〉(νy) P if y 6∈ {z̃} and y 6∈ n(M)

((x)P) |Q := (x)(P |Q) if x 6∈ fn(Q)
((νz̃) 〈M〉P) |Q := (νz̃) 〈M〉(P |Q) if {z̃} ∩ fn(Q) = ∅

Q | ((x)P) := (x)(Q | P) if x 6∈ fn(Q)
Q | ((νz̃) 〈M〉P) := (νz̃) 〈M〉(Q | P) if {z̃} ∩ fn(Q) = ∅

The pseudo-application defines how abstractions and concretions may
interact.

Definition 41 (pseudo-application).
Let F = (x)P an abstraction and C = (νz̃) 〈M〉Q a concretion with {z̃} ∩
fn(P) = ∅. The pseudo-application of F and C—written F • C— is defined
by:

F • C := (νz̃) (P{M/x} |Q)

Likewise, the pseudo-application of C and F is defined by:

C • F := (νz̃) (Q | P{M/x})
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µ n(µ) µσ

τ ∅ τ
a {a} if aσ ∈ N then aσ otherwise undefined
a {a} if aσ ∈ N then aσ otherwise undefined

Table 3.7: Notation for actions.

Labelled transitions take the form of P
µ
−→ A where P is a process, µ is

an action and A is an agent. An action is the silent action τ or a barb. A barb
is either a name a (representing input) or a co-name a (representing output).
We define several operations on actions, as summarised in Table 3.7. Note
that in contrast to pi calculus actions, there is no notion of bound names
on spi calculus actions, thanks to the presentation in terms of abstractions
and concretions.
Definition 42 (late semantics of the spi calculus).
The labelled late semantics of the spi calculus is given by the derivation
rules of Table 3.8 enriched by the symmetric variants of CLOSE-L, PAR-L
and SUM-L.

Example 3
Consider the processes A(M), B and P(M) defined previously.
The following late transitions can be derived.

A(M)
cB−→ 〈EncskAB

M〉 0

B
cB−→ (x)[DecskAB

x :M ]F(DecskAB
x)

P(M)
cB−→ (νkAB) 〈EncskAB

M〉(0 | cB(x).[DecskAB
x :M ]F(DecskAB

x))

P(M)
cB−→ (x)(cB〈EncskAB

M〉. 0 | [DecskAB
x :M ]F(DecskAB

x))

P(M)
τ
−→ (νkAB) (0 | [DecskAB

EncskAB
M :M ]F(DecskAB

EncskAB
M))

∗

The reaction relation is defined by P −→ Q if and only if P τ
−→ Q. It

expresses that P can evolve to Q as an effect of an internal action. We note
=⇒ the reflexive and transitive closure of −→.

3.2.4 Semantics with Constraints

In the pi calculus, application of a substitution to a process does not di-

minish its capabilities, i.e. if P
µ
−→ A then Pσ

µσ
−→ Aσ. This result does not
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SILENT
τ.P τ
−→ P

INPUT
ec(E) = a ∈ N

E(x).P a
−→ (x)P

OUTPUT
ec(E) = a ∈ N ec(F) = M ∈ M

E〈F〉.P a
−→ 〈M〉P

CLOSE-L
P
a
−→ F Q

a
−→ C

P |Q
τ
−→ F • C

RES
P

µ
−→ A

(νz) P
µ
−→ (νννz) A

z 6∈ n(µ)

IFTHEN
P

µ
−→ P′

φP
µ
−→ P′

e(φ) = true PAR-L
P

µ
−→ A

P |Q
µ
−→ A |Q

SUM-L
P

µ
−→ A

P+Q
µ
−→ A

REP-ACT
P

µ
−→ A

! P
µ
−→ A | ! P

REP-CLOSE
P
a
−→ F P

a
−→ C

! P τ
−→ (F • C) | ! P

ALPHA
P =α Q Q

µ
−→ B B =α A

P
µ
−→ A

Table 3.8: The late semantics of the spi calculus

hold in the spi calculus. A simple reason is that communication channels
are required to be names. However, when applying a substitution, a name
that was used as a communication channel may suddenly become a more
complex message. Think for example about P := a(x). 0 | a〈b〉. 0. Then P
can perform the transition P τ

−→ 0 | 0. But if we consider the substitution
σ := {(a . a)/a} then Pσ cannot perform any transition.
Nevertheless, it is possible to give a simple condition on substitutions

for this result to be true. To explicate this condition, we first need to define
another labelled transitions system which accumulates type constraints
along the derivation. The type constraints are simply (finite) sets of names
S; the names that cannot be substituted by anything else than a name for
the transition to take place. They come from the initial application of rules
INPUT, OUTPUT or IFTHEN. Indeed, the simple guard [E :N ] constrain the
evaluation of E to be a name.
So, we first define the type constraint nc(φ) induced by a guard φ.
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Definition 43 (nc(φ)).
If E ∈ E, we define nc([E :N ]) := {ec(E)}.
If E, F ∈ E, we define nc([E= F ]) := ∅.

It is clear that if e(φ) = true then nc(φ) ⊆ N.

Labelled transitions with type constraints take the form of P
µ
−֒→
S
A

where µ is an action (see above) and S is a (finite) set of names.

Definition 44.
The labelled late semantics (with name constraints) of the spi calculus is
given by the derivation rules of Table 3.9 enriched by the symmetric vari-
ants of NC-CLOSE-L, NC-PAR-L and NC-SUM-L.

As announced, the rules NC-INPUT, NC-OUTPUT and NC-IFTHEN
add new type constraints. On the contrary, rule NC-RES may remove the
restricted name z from the derived constraint; the reason being that only
free names are of interests.
Example 4
With this new transition system, the transitions of Example 3 become:

A(M)
cB
−֒−→
{cB}
〈EncskAB

M〉 0

B
cB
−֒−→
{cB}

(x)[DecskAB
x :M ]F(DecskAB

x)

P(M)
cB
−֒−→
{cB}

(νkAB) 〈EncskAB
M〉(0 | cB(x).[DecskAB

x :M ]F(DecskAB
x))

P(M)
cB
−֒−→
{cB}

(x)(cB〈EncskAB
M〉. 0 | [DecskAB

x :M ]F(DecskAB
x))

P(M)
τ
−֒−→
{cB}

(νkAB) (0 | [DecskAB
EncskAB

M :M ]F(DecskAB
EncskAB

M))

∗

The two semantics are equivalent:

Theorem 3:
1. If P

µ
−→ A there exists S ⊆ N such that P

µ
−֒→
S
A.

2. If P
µ
−֒→
S
A then P

µ
−→ A.

PROOF
By rule induction.
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NC-SILENT
τ.P

τ
−֒→
∅
P

NC-INPUT
ec(E) = a ∈ N

E(x).P
a
−֒→
{a}

(x)P

NC-OUTPUT
ec(E) = a ∈ N ec(F) = M ∈ M

E〈F〉.P
a
−֒→
{a}
〈M〉P

NC-CLOSE-L
P
a
−֒→
S
F Q

a
−֒→
S′
C

P |Q
τ
−֒−→
S∪S′

F • C

NC-RES
P

µ
−֒→
S
A

(νz) P
µ
−֒−−→
S\{z}

(νννz) A
z 6∈ n(µ)

NC-IFTHEN
P

µ
−֒→
S
A

φP
µ

−֒−−−→
S∪nc(φ)

A
e(φ) = true NC-PAR-L

P
µ
−֒→
S
A

P |Q
µ
−֒→
S
A |Q

NC-SUM-L
P

µ
−֒→
S
A

P+Q
µ
−֒→
S
A

NC-REP-ACT
P

µ
−֒→
S
A

! P
µ
−֒→
S
A | ! P

NC-REP-CLOSE
P
a
−֒→
S
F P

a
−֒→
S′
C

! P
τ
−֒−→
S∪S′

(F • C) | ! P

NC-ALPHA
P =α Q Q

µ
−֒→
S
B B =α A

P
µ
−֒→
S
A

Table 3.9: The late semantics of the spi calculus (with constraints)
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We can now show that if P
µ
−֒→
S
A and σ is a substitution such that

Sσ ⊆ N, then Pσ
µσ
−֒→
Sσ
Aσ. We first need the following lemma.

Lemma 23:
Let φ ∈ F and σ : N→ M. If e(φ) = true then

e(φσ) = true ⇐⇒ ∀x ∈ nc(φ) : xσ ∈ N

Moreover, if e(φσ) = true then nc(φσ) = nc(φ)σ.

PROOF
By induction on φ and thanks to Lemma 22.

Lemma 24:
Let P ∈ P. Assume that P

µ
−֒→
S
A and let σ : N → M a substitution such

that Sσ ⊆ N. Then Pσ
µσ
−֒→
Sσ
Aσ.

PROOF
By induction on P

µ
−֒→
S
A.

3.3 Equivalences

As in the pi calculus, structural congruence is defined to identify terms
that “obviously” represent the same entity. In contrast, the notions of
bisimulation of the pi calculus are not very relevant for reasoning about
cryptographic protocols. Before explaining why, we introduce two new
notions of behavioural equivalences, namely may testing equivalence and
barbed equivalence, that were shown to be relevant for formulating se-
curity properties. We then motivate the notion of environment-sensitive
bisimulation.

3.3.1 Structural congruence

Structural congruence enablesmanipulation of term structure. Before defin-
ing this notion, we first define the notion of contexts and congruence.

Definition 45 (process contexts).
A process context C[·] is a process with a hole somewhere. The contexts are
described by the grammar of Table 3.10.
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C[·] ::= [·]
| E(x).C[·] | E〈F〉.C[·]
| φC[·]
| C[·] + P | P+ C[·]
| C[·] | P | P |C[·]
| (νz)C[·]
| !C[·]

Table 3.10: The process contexts of the spi calculus

ALPHA
P =α Q

P ≡ Q
SUM-ZERO

P+ 0 ≡ P
SUM-COMM

P+Q ≡ Q+ P

SUM-ASSOC
(P+Q) + R ≡ P+ (Q+ R)

PAR-ZERO
P | 0 ≡ P

PAR-COMM
P |Q ≡ Q | P

PAR-ASSOC
(P |Q) | R ≡ P | (Q | R)

NEW-SWAP
(νx) (νy) P ≡ (νy) (νx) P

NEW-ZERO
(νx) 0 ≡ 0

NEW-SCOPE
((νx) P) |Q ≡ (νx) (P |Q)

x 6∈ fn(Q) BANG
! P ≡ P | ! P

Table 3.11: Axioms of structural congruence

If C[·] is a context and P is a process, we write C[P] for the process
obtained by replacing the hole [·] in C[·] by P. Note that some free names
of Pmay be bound in C[P].

Definition 46 (congruence).
An equivalence relation R on processes is a congruence if (P,Q) ∈ R im-
plies (C[P],C[Q]) ∈ R for every context C[·].

We can now define the notion of structural congruence.

Definition 47 (structural congruence).
Structural congruence, ≡, is the smallest congruence on processes that sat-
isfies the axioms of Table 3.11.

We extend the notion of structural congruence to agents. It is the small-
est equivalence relation on agents that contains ≡ and that satisfies:
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1. If A =α B then A ≡ B

2. If P ≡ Q then (x)P ≡ (x)Q

3. If P ≡ Q then (νz̃) 〈M〉P ≡ (νz̃) 〈M〉Q provided that {z̃} ⊆ n(M)

Structural congruence is preserved by the reduction relation, i.e.

Theorem 4:
1. If P ≡ Q and P

µ
−→ A then there exists B such that A ≡ B andQ

µ
−→ B.

2. If P ≡ Q and P
µ
−֒→
S
A then there exists B such that A ≡ B and

Q
µ
−֒→
S
B. ♦

3.3.2 Testing equivalence, barbed equivalence

Testing equivalence relates processes that reveal the same information to
observers. This notion of equivalencewas first defined in [106] and adapted
to mobile processes in [34]. As in [9], we do not consider a distinct “suc-
cess” action ω for tests. As it was argued, this is only a superficial dif-
ference and it can be shown that the following definition is a version of
De Nicola and Hennessy’s may-testing equivalence. A more faithful in-
stantiation of may-testing equivalence to the spi calculus can be found in
[36].
We say that a process P exhibits a barb β, and write P ↓β, if there exists

an agent A such that P
β
−→ A. The process P may eventually exhibit a barb β,

written P ⇓β, if there exists P′ such that P =⇒ P′ and P′ ↓β.
A test is a pair (R, β) where R is a process and β a barb. A process P

passes the test (R, β) if P | R ⇓β. We may interpret this as “P reveals a piece
of information to an observer R”.

Definition 48 (testing equivalence).
Two processes P and Q are testing equivalent, written P ≃ Q, if they pass
exactly the same tests, i.e. for all tests (R, β), P | R ⇓β if and only ifQ | R ⇓β.

Hence, two processes that are testing equivalent may reveal the same
information to observers. From a security point of view, they should then
be considered equivalent.
Indeed, testing equivalence has been used in several works (e.g. [7,

9, 8]) to define secrecy properties. The basic idea is to say that P keeps
message x secret if P{M/x} ≃ P{N/x} for any message M and N.
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The use of testing equivalence however entails serious difficulties in
verification. Indeed, the naive way to prove that two processes are testing
equivalent is to consider an arbitrary attacker R and arbitrary sequences
of interactions with R.
A notion of equivalence which is easier to work with is barbed equiva-

lence [103]. The idea is the same as for testing equivalence but is based on
a notion of step-by-step simulation between processes.

Definition 49 (weak barbed equivalence).
A symmetric relation R ⊆ P × P is a weak barbed bisimulation if for all
(P,Q) ∈ R we have

1. for each P′, if P −→ P′ then there exists Q′ such that Q =⇒ Q′ and
(P′,Q′) ∈ R, and

2. for each β, if P ↓β then Q ⇓β.

Weak barbed bisimilarity, written ∼̇=, is the largest weak barbed bisimu-
lation relation, i.e. P ∼̇= Q if and only if there exists a weak barbed bisimu-
lationR such that (P,Q) ∈ R.
Two processes P and Q are weak barbed equivalent, written P ∼= Q, if for

all R we have P | R ∼̇= Q | R.

Observe that the definition of weak barbed bisimilarity does not re-
quire to investigate arbitrary reduction sequences. One has instead to con-
sider single transitions.
Barbed equivalence is a sound proof technique for showing testing

equivalence. Indeed,

Lemma 25:
If P ∼= Q then P ≃ Q.

PROOF
Let (R, β) a test that P passes.
We have P | R = P0 −→ P1 −→ · · · −→ Pn ↓β.
Since P0 = P | R ∼̇= Q | R = Q0, there exists Q1 such that Q0 =⇒ Q1 and

P1 ∼̇= Q1.
By induction on n, we show the existence of Q1, . . . ,Qn such that for

0 ≤ i < n we have Qi =⇒ Qi+1 and for 0 ≤ i ≤ n, Pi ∼̇= Qi.
Since Pn ∼̇= Qn and Pn ↓β, we have Qn ⇓β.
So we have Q | R = Q0 =⇒ Q1 =⇒ · · · =⇒ Qn ⇓β.
Hence Q passes the test (R, β).
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We can reformulate the notion of total secrecy using barbed equiva-
lence: P keeps message x as totally secret if P{M/x} ∼= P{N/x} for any
messagesM andN. This yields to a stronger notion of secrecy since barbed
equivalence is stronger than testing equivalence. Eijiro Sumii even argued
in [131] that testing equivalence was too weak to define total secrecy and
that barbed equivalence should be preferred.
It is also possible to define a stronger version of barbed bisimulation

and barbed equivalence that takes into account the number of internal
steps of computation:

Definition 50 (strong barbed equivalence).
A symmetric relation R ⊆ P × P is a strong barbed bisimulation if for all
(P,Q) ∈ R we have

1. for each P′, if P −→ P′ then there exists Q′ such that Q −→ Q′ and
(P′,Q′) ∈ R, and

2. for each β, if P ↓β then Q ↓β.

Strong barbed bisimilarity, written ∼̇, is the largest strong barbed bisim-
ulation relation, i.e. P ∼̇ Q if and only if there exists a strong barbed bisim-
ulation R such that (P,Q) ∈ R.
Two processes P and Q are strong barbed equivalent, written P ∼ Q, if

for all R we have P | R ∼̇ Q | R.

Clearly we have that P ∼̇ Q implies P ∼̇= Q and that P ∼ Q implies P ∼= Q.
For the reasons already given in Chapter 2, we will mainly focus our

attention on strong versions of equivalences. In the sequel, we omit the
qualifier “strong” when referring to strong barbed bisimulation or strong
barbed equivalence.

3.3.3 Bisimulations

Even if a quantification over arbitrary sequences of interactions has been
removed in the definition of barbed bisimulation, it is difficult to prove
directly barbed equivalence because of the infinite quantification over ar-
bitrary observers R.
The idea of the bisimulation proof technique is to make this explicit

quantification over arbitrary observers implicit and to simulate step-by-
step not only internal transitions but also observable actions (e.g. inputs
and outputs).
If we rephrase in the context of the spi calculus the definition of early

bisimulation of the pi calculus, this gives:
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Definition 51 (early bisimulation).
A symmetric relationR ⊆ P×P is an early bisimulation if for all (P,Q) ∈ R

1. whenever P −→ P′ then there exists Q′ such that Q −→ Q′ and
(P′,Q′) ∈ R

2. whenever P a
−→ (x)P′ then then for all M ∈ M, there exists Q′ such

that Q a
−→ (x)Q′ and (P′{M/x},Q′{M/x}) ∈ R

3. whenever P a
−→ (νz̃) 〈M〉P′ (with z̃ ∩ fn(P,Q) = ∅) then there exists

Q′ such that Q a
−→ (νz̃) 〈M〉Q′ and (P′,Q′) ∈ R.

Early bisimilarity, written ∼e, is the largest early bisimulation.

If, in the pi calculus, we have that P ∼e Q if and only if P ∼ Q (see
Theorem 2.2.9 of [129]), this result does not hold anymore in the spi calcu-
lus. Indeed, we only have that P ∼e Q implies P ∼ Q (as stated in [7] for
example).
The other direction does not hold because ∼e is a rather fine-grained

equivalence for the spi calculus. For instance, it discriminates between
the processes P(M) and P(N) (where P(M) := (νk) c〈EncskM〉. 0) whereas
one would wish to equate these processes since they send a message en-
crypted under keys that are never disclosed. It was indeed shown in [7]
that P(M) ∼ P(N) suggesting that barbed equivalence is coarse-grained
enough for interesting cryptographic applications.
This example suggests that a relevant notion of bisimulation for rea-

soning about cryptographic protocols should consider some pair of mes-
sages (resulting from output actions) indistinguishable. Indeed, in the
above example, the two messages EncskM and EncskN should be consid-
ered as indistinguishable since the key k is never disclosed to the environ-
ment. However, if we imagine a similar protocol that acts first like P but
then discloses the secret key k to the environment (for example Q where
Q(M) := (νk) c〈EncskM〉.c〈k〉. 0), thenwe note that twomessages that were
first indistinguishable might suddenly become distinguishable. Thus the
two messages EncskM and EncskN become distinguishable at the moment
the secret key k is disclosed. In short, the notion of indistinguishability is
sensitive to future events.
If we now think about input actions, the values that are to be consid-

ered are not arbitrary; they are generated by the environment with the
knowledge that has been acquired until a certain point. Thus, if we think
about R(M) := (νk) c〈EncskM〉.c(x).c〈k〉.c(y). 0, then the possible values
for the first input action exclude any message that contains k in another
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form than EncskM (thus EncskM is allowed whereas k is forbidden) whereas
the possible values for the second input action are not restricted. We note
here that the set of possible input values grows with time as the envi-
ronment intercepts messages and discovers values that were previously
secret.
Based on these observations, Abadi and Gordon devised in [8] that “a

definition of bisimulation for cryptographic protocols should explain what
outputs are indistinguishable for the environment, and what inputs the
environment can generate at any point in time” and introduced the notion
of environment-sensitive bisimulation. This idea has been implemented in
the spi calculus in different styles:

• Abadi and Gordon proposed framed bisimulation [8]. The environ-
ment knowledge is represented by a frame-theory pair that accompa-
nies every bisimulation pair. The frame is the set of names (chan-
nels, keys) that the environment has learnt so far, while the theory is
the set of non-name data items received from the pair of processes
during the bisimulation game that the environment must consider
indistinguishable, because it has no means (yet) to tell the difference.
It was shown that framed bisimilarity is strictly finer than barbed
equivalence when pairing is in the language.

• Boreale, De Nicola and Pugliese proposed another notion of bisimu-
lation that they call environment-sensitive bisimulation [36]. In this
variant, each process of a bisimulation pair comes with an environ-
ment which roughly lists the messages the process has received in
the past. An explicit condition of equivalence on environments is im-
posed to implement the indistinguishability relation. They proved
that this notion of bisimilarity is sound w.r.t. barbed equivalence
and also complete for a large class of processes (the class of struc-
turally image finite processes). This notion of bisimulation is some-
times known as alley bisimulation, following Borgström and Nest-
mann naming.

• Elkjaer, Höhle, Hüttel and Overgaard introduced fenced bisimulation
as an approximation of framed bisimulation by removing one of its
infinitary quantification [70].

• Borgström and Nestmann compared the above notions of bisimilar-
ity in [40, 41]. They pointed out that fenced bisimulation was not
complete w.r.t. framed bisimulation. To remedy incompleteness of
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framed bisimilarity, they also proposed a new notion of bisimula-
tion called hedged bisimulation that is defined in the style of framed
bisimulation. They have shown that this new proposal coincides
with alley bisimilarity and thus also with barbed equivalence.

Thus the two notions of bisimilarity to be preferred are alley bisimi-
larity and hedged bisimilarity. Since these two definitions are equivalent,
it is mainly a matter of taste to chose between them. As we consider that
hedges are more intuitive to represent the environment knowledge, we are
going to work with hedged bisimilarity in the following.

Conclusion

We have reviewed the syntax and the operational semantics of the spi
calculus, an extension of the pi calculus with cryptographic primitives.
We have defined an alternative labelled transitions system that collects
the name constraints for the transitions to take place. We have presented
two notions of equivalence — may testing and barbed equivalence — and
shown how one can express security properties with them. We have dis-
cussed on the notion of bisimulation and explained why standard notion
of bisimulations inherited from the pi calculus are not very relevant when
dealing with security protocols. This has lead us to present informally
the notion of environment-sensitive bisimulation which has been imple-
mented in several ways in the spi calculus.
Apart from the equational style, cryptographic protocols in the spi cal-

culus are analysed by control flow analysis, trace analysis, reachability
analysis and type systems. [1, 3] define type systems for the spi calcu-
lus to guarantee secrecy properties. A generalisation of this approach is
presented in [4, 5] and a simple protocol checker based on Prolog rules
is given. In [13, 12], a mini spi calculus is presented. Within this setting,
the task of verifying secrecy and authenticity properties of cryptographic
protocols relying on symmetric shared keys is expressed as a reachability
problem and a decision procedure is given for finite terms. It is possible
to verify authentication and secrecy properties of a protocol by analysing
the traces generated by the corresponding spi calculus system. Based on
this approach, [33] develops symbolic techniques to avoid state explosion
inherent to this method. A method, which is shown to be complete for
the considered class of properties, is given to carry out trace analysis di-
rectly on the symbolic model. In [32, 30], static analysis technology and
control flow analysis is applied to variants of the spi calculus (LYSA, νSPI)
to verify certain security properties of security protocols.



Chapter 4

Representing environment
knowledge as hedges

As we have seen, the classical notion of bisimulation used in the pi cal-
culus is too fine-grained for the spi calculus. The reason is that requiring
an exact match between observable actions is too strong in a cryptographic
context where, for example, EncskM and EncskN need to be identified as long
as k is unknown to the observer. To be able to have a cryptographic aware
equivalence between actions, bisimulations are extended with structures
(e.g. frame-theory pairs, hedges, ...) that explicitly keep track of the identi-
ties between messages. In this chapter, we focus on the structure of hedges
to represent the environment knowledge about processes.
Definition 52 (Hedge).
A hedge is a finite subset ofM×M. The set of hedges is denoted H.

The results presented afterwards are a generalisation of the hedge the-
ory presented in [40, 41] to themessage language defined previously (which
thus includes non atomic keys, asymmetric cryptography and hashing).
We have formalised all the following definitions and results in the proof
assistant coq [135, 26]. The formalisation uses the finite set library [71]
and the CoLoR library [29].

4.1 Synthesis

4.1.1 Definition

The synthesis of a hedge h is the set of message pairs that can be constructed
from the knowledge of h. For example, if, on one hand M and N are iden-
tified (i.e. (M,N) ∈ h), and on the other hand K and L are identified (i.e.
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(K, L) ∈ h) then EncsKM and EncsLN are also identified (by applying the
shared-key encryption algorithm component-wise).

Definition 53 (S(h)).
If h is a hedge, the synthesis S(h) of h is the smallest subset of M ×M
satisfying the following rules:

SYN-INC
(M,N) ∈ h

(M,N) ∈ S(h)

SYN-ENC-S
(M1,N1) ∈ S(h) (M2,N2) ∈ S(h)

(EncsM2M1,EncsN2N1) ∈ S(h)

SYN-ENC-A
(M1,N1) ∈ S(h) (M2,N2) ∈ S(h)

(EncaM2M1,EncaN2N1) ∈ S(h)

SYN-PAIR
(M1,N1) ∈ S(h) (M2,N2) ∈ S(h)

((M1 .M2), (N1 .N2)) ∈ S(h)

SYN-OP
(M,N) ∈ S(h)

(op(M), op(N)) ∈ S(h)
op ∈ {pub, priv,H}

Example 5
Let h := {(a, b), (k, k), (Encskl,Encskl), (Encsl c,Encsl d)}.
Then we have (Encska,Encskb) ∈ S(h). ∗

The following lemma is a simple but useful result.

Lemma 26:
Let h ∈ H, a ∈ N and N ∈ M. Then

(a,N) ∈ h ⇐⇒ (a,N) ∈ S(h) �

In the general case, the synthesis of a hedge is not a hedge since it is
infinite.

Lemma 27:
If h 6= ∅, then S(h) is infinite. �
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4.1.2 Comparing hedges power

To compare the knowledge of two hedges, we define the following pre-
order and the induced equivalence relation.

Definition 54 (<H , ≷H).
Let g, h be two hedges. We say that

• g is less powerful than h—written g <H h— if S(g) ⊆ S(h).

• g is as powerful as h—written g ≷H h— if S(g) = S(h).

Example 6
Let g1 := {(a, a)} and h1 := {(a, a), (b, b)}. Then g1 <H h1.
Let g2 := {(a, a), (H(a),H(a))} and h2 := {(a, a)}. Then g2 ≷H h2. ∗

Lemma 28:
1. <H is a partial preorder on H.

2. ≷H is the equivalence relation on H induced by <H. �

The next lemma gives a characterisation of <H .

Lemma 29:
Let g, h ∈ H. Then

g <H h ⇐⇒ g ⊆ S(h)

PROOF
⇒ Since g ⊆ S(g) ⊆ S(h).

⇐ By rule induction on (M,N) ∈ S(h).

Corollary 1:
Let g, g′, h, h′ ∈ H.

1. If g ⊆ h then g <H h.

2. If g <H h and g′ <H h then g ∪ g′ <H h.

3. If g <H h and g′ <H h′ then g ∪ g′ <H h ∪ h′. ♠
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4.2 Analysis

4.2.1 Weak analysis

The analysis of a hedge h is the set of message pairs that can be decon-
structed from the knowledge of h. For example, if, on one hand EncsKM
and EncsLN are identified, and on the other hand K and L are identified,
then M and N are also identified (by applying the shared key decryption
algorithm component-wise). Unfortunately, the analysis can not be de-
fined directly (see Section 4.2.2) so we introduce an intermediate notion
called weak analysis that will help us define the analysis.

Definition 55 (analz(h)).
If h is a hedge, the weak analysis analz(h) of h is the smallest subset of
M×M satisfying the following rules:

ANA-INC
(M,N) ∈ h

(M,N) ∈ analz(h)

ANA-DEC-S
(EncsM2M1,EncsN2N1) ∈ analz(h) (M2,N2) ∈ S(h)

(M1,N1) ∈ analz(h)

ANA-DEC-A

(EncaM2M1,EncaN2N1) ∈ analz(h)
inv(M2) = M′2 ∈ M inv(N2) = N′2 ∈ M

(M′2,N
′
2) ∈ S(h)

(M1,N1) ∈ analz(h)

ANA-FST
((M1 .M2), (N1 .N2)) ∈ analz(h)

(M1,N1) ∈ analz(h)

ANA-SND
((M1 .M2), (N1 .N2)) ∈ analz(h)

(M2,N2) ∈ analz(h)

Example 7
Let h := {(a, b), (k, k), (Encskl,Encskl), (Encsl c,Encsl d)}.
Then we have analz(h) = h ∪ {(l, l)}. ∗

The weak analysis of a hedge is a hedge.

Lemma 30:
If h is a hedge, then analz(h) is finite (and thus is a hedge). �
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The weak analysis of a hedge is more powerful than the hedge itself.

Lemma 31:
Let h ∈ H. Then h <H analz(h).

PROOF
By Corollary 1 since h ⊆ analz(h).

The function h 7→ analz(h) is compatible with ⊆ and <H .

Lemma 32:
Let g, h ∈ H.

1. If g ⊆ h then analz(g) ⊆ analz(h).

2. If g <H h then analz(g) <H analz(h).

PROOF
1. By rule induction on (M,N) ∈ analz(g) and thanks to Corollary 1.

2. We prove that if (M,N) ∈ analz(g) then (M,N) ∈ S(analz(h)) by
rule induction on (M,N) ∈ analz(g). Then, by Lemma 29, we get
analz(g) <H analz(h).

4.2.2 Analysis

In rules ANA-DEC-S and ANA-DEC-A, it is checked whether the decryp-
tion keys can be constructed from the original hedge. Intuitively, one
would want instead to check whether they can be constructed from the
hedge analysed so far; i.e. one would want to replace in the premise of
these two rules S(h) by S(analz(h)). Unfortunately, the resulting defini-
tion would not be well-founded. So, we instead define the analysis of h
as being the smallest set that contains h and which is closed under weak
analysis.

Definition 56.
Let h, h′ ∈ H. We define the two following predicates:

• AnaCond(h, h′) := h ⊆ h′ ∧ analz(h′) ⊆ h′

• IsAna(h, h′) :=
{

AnaCond(h, h′)
∀h′′ ∈ H : AnaCond(h, h′′) =⇒ h′ ⊆ h′′
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Example 8
Let h := {(k, k), (Encska,Encskb)} and h

′ := h ∪ {(a, b)}.
Then we have h ⊆ h′ and analz(h′) = h′ ⊆ h′.
So we have AnaCond(h, h′). ∗

The remaining of this section is devoted to show the following theo-
rem.

Theorem 5 (existence and uniqueness of analysis):
Let h ∈ H. Then there exists a unique A(h) ∈ H—called the analysis of
h— such that IsAna(h,A(h)). ♦

If this theorem holds, it is obvious that h is less powerful than A(h).

Lemma 33:
Let h ∈ H. Then h <H A(h).

PROOF
Since h ⊆ A(h) and by Corollary 1.

The uniqueness of the analysis, in case of existence, is obvious.

PROOF (THEOREM 5, UNIQUENESS IN CASE OF EXISTENCE)
Let h1 and h2 such that IsAna(h, h1) and IsAna(h, h2).
Since AnaCond(h, h2), we have h1 ⊆ h2.
Symmetrically, we have h2 ⊆ h1.
Thus h1 = h2.

The constructive proof of the existence of the analysis relies on the fol-
lowing lemma.

Lemma 34:
Let h, h′ ∈ H.

1. If analz(h) = h, then IsAna(h, h).

2. If IsAna(analz(h), h′), then IsAna(h, h′).

PROOF
1. Assume that analz(h) = h.

We have AnaCond(h, h) since h ⊆ h and analz(h) ⊆ h.

Assume that there is h′ such that AnaCond(h, h′).

By definition, we have h ⊆ h′.

Thus IsAna(h, h).
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2. Assume that IsAna(analz(h), h′).

We have h ⊆ analz(h) ⊆ h′.

Moreover, we have analz(h′) ⊆ h′.

So AnaCond(h, h′).

Let h′′ such that AnaCond(h, h′′).

We have to show that h′ ⊆ h′′.

It suffices to show that AnaCond(analz(h), h′′).

We have by hypothesis analz(h′′) ⊆ h′′.

Moreover, h ⊆ h′′.

By Lemma 32, we have thus analz(h) ⊆ analz(h′′) ⊆ h′′.

So AnaCond(analz(h), h′′) and h′ ⊆ h′′.

Example 9
Let h := {(k, k), (Encska,Encskb)} and h

′ := h ∪ {(a, b)}.
Since analz(h′) = h′, we have IsAna(h′, h′).
Since analz(h) = h′, we have IsAna(h, h′). ∗

The previous lemma suggests that for computing the analysis of h, it is
sufficient to iterate the weak analysis until reaching a fixpoint. The main
difficulty is to show that a finite number of iterations is sufficient. In other
words, we are going to show that:

Lemma 35:
Let h ∈ H. Then there exists n0 ∈ N such that A(h) = analzn0(h), where
analzn(h) is defined by induction on n as

analz0(h) := h

analzn+1(h) := analz(analzn(h))
�

To show this result, we first give an alternative definition of analz(h)

that will ease the study of the sequence
(

analzi(h)
)

i∈N

. We are going to

show that this sequence is decreasing w.r.t. to a well-founded order. So
necessarily it reaches a fixpoint.
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Definition 57.
Let h ∈ H and M,N ∈ M. We say that the pair (M′,N′) results from the
analysis of (M,N) against h—written (M,N) ⊢hA (M′,N′)— if a proof of
(M,N) ⊢hA (M′,N′) can be derived from the following deduction system:

A1
((M1 .M2), (N1 .N2)) ⊢hA (M1,N1)

A2
((M1 .M2), (N1 .N2)) ⊢hA (M2,N2)

A3
(M1,N1) ⊢hA (M,N)

((M1 .M2), (N1 .N2)) ⊢hA (M,N)

A4
(M2,N2) ⊢hA (M,N)

((M1 .M2), (N1 .N2)) ⊢
h
A (M,N)

A5
(M2,N2) ∈ S(h)

(EncsM2M1,EncsN2N1) ⊢
h
A (M1,N1)

A6
(M2,N2) ∈ S(h) (M1,N1) ⊢hA (M,N)

(EncsM2M1,EncsN2N1) ⊢
h
A (M,N)

A7
M′2 = inv(M2) ∈ M N′2 = inv(N2) ∈ M (M′2,N

′
2) ∈ S(h)

(EncaM2M1,EncaN2N1) ⊢
h
A (M1,N1)

A8

M′2 = inv(M2) ∈ M N′2 = inv(N2) ∈ M

(M′2,N
′
2) ∈ S(h) (M1,N1) ⊢hA (M,N)

(EncaM2M1,EncaN2N1) ⊢
h
A (M,N)

From the above definition, it is clear that the set of pairs (M′,N′) such that
(M,N) ⊢hA (M′,N′) is decidable.

Example 10
Let h := {(a, b), (k, k), (Encskl,Encskl), (Encsl c,Encsl d)}.
Then we have (Encskl,Encskl) ⊢

h
A (l, l) since (k, k) ∈ S(h).

But there is no (M,N) such that (Encsl c,Encsl d) ⊢
h
A (M,N) since (l, l) 6∈

S(h). ∗

The next lemma gives an alternative definition of the weak analysis.
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Lemma 36:
Let h ∈ H. Then analz(h) = h ∪

⋃

(M,N)∈h

{

(M′,N′) | (M,N) ⊢hA (M′,N′)
}

.

PROOF
We first show by a simple induction on M that if (M,N) ∈ analz(h) and
(M,N) ⊢hA (M′,N′) then (M′,N′) ∈ analz(h).
Thus, since h ⊆ analz(h), we have

h ∪
⋃

(M,N)∈h

{

(M′,N′) | (M,N) ⊢hA (M′,N′)
}

⊆ analz(h)

Then, let (M,N) ∈ analz(h).
We show that (M,N) ∈ h ∪

⋃

(M,N)∈h

{

(M′,N′) | (M,N) ⊢hA (M′,N′)
}

by rule induction on (M,N) ∈ analz(h).
Hence the equality.

The strategy is now to simplify the formula of Lemma 36. First, we can
notice from Definition 57 that some message pairs (M,N) are such that
there is no (M′,N′) such that (M,N) ⊢hA (M′,N′).
We characterise precisely these pairs with the following definition.

Definition 58.
Let h ∈ H and M,N ∈ M. We define the predicate analysable(h, (M,N))
—read (M,N) is analysable in h—with the following deduction rules:

AA1
analysable(h, ((M1 .M2), (N1 .N2)))

AA2
(M2,N2) ∈ S(h)

analysable(h, (EncsM2M1,EncsN2N1))

AA3
M′2 = inv(M2) ∈ M N′2 = inv(N2) ∈ M (M′2,N

′
2) ∈ S(h)

analysable(h, (EncaM2M1,EncaN2N1))

Example 11
Let h := {(a, b), (k, k), (Encskl,Encskl), (Encsl c,Encsld)}.
Then, since (k, k) ∈ S(h), we have analysable(h, (Encskl,Encskl)) and

since (l, l) 6∈ S(h), we do not have analysable(h, (Encsl c,Encsl d)). ∗

The next lemma justifies the name of the predicate.
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Lemma 37:
Let h ∈ H and M,N ∈ M. Then
{

(M′,N′) | (M,N) ⊢hA (M′,N′)
}

= ∅ ⇐⇒ ¬ analysable(h, (M,N))

PROOF
By case analysis on M and N.

Corollary 2:
Let h ∈ H and h′ := {(M,N) ∈ h | analysable(h, (M,N))}. Then

⋃

(M,N)∈h

{

(M′,N′) | (M,N) ⊢hA (M′,N′)
}

=
⋃

(M,N)∈h′

{

(M′,N′) | (M,N) ⊢hA (M′,N′)
}

♠

The previous corollary gives us a first simplification. Another possible
simplification is to remove from the big union of Lemma 36 the pairs that
are already analysed in the sense that their contribution to this equality is
not relevant.

Definition 59.
Let h ∈ H and M,N ∈ M. We define the predicate analysed(h, (M,N))
—read (M,N) is analysed in h—with the following deduction rules:

AD1
(M1,N1) ∈ h (M2,N2) ∈ h
analysed(h, ((M1 .M2), (N1 .N2)))

AD2
(M2,N2) ∈ S(h) (M1,N1) ∈ h
analysed(h, (EncsM2M1,EncsN2N1))

AD3

M′2 = inv(M2) ∈ M N′2 = inv(N2) ∈ M
(M′2,N

′
2) ∈ S(h) (M1,N1) ∈ h

analysed(h, (EncaM2M1,EncaN2N1))

Example 12
Let h := {(a, b), (k, k), (l, l), (Encskl,Encskl), (Encsl c,Encsl d)}.
Then analysed(h, (Encskl,Encskl)) holds since we have (k, k) ∈ S(h) and

(l, l) ∈ S(h).
Since (l, l) ∈ S(h), we have analysable(h, (Encsl c,Encsl d)). However

since (c, d) 6∈ S(h), we do not have analysed(h, (Encsl c,Encsl d)). ∗



4.2. ANALYSIS 105

The next lemma justifies a new simplification:

Lemma 38:
Let h ∈ H.

1. Let M,N such that analysed(h, (M,N)).

Let M′,N′ such that (M,N) ⊢hA (M′,N′).

Then either (M′,N′) ∈ h or there exists (M0,N0) ∈ h such that
(M0,N0) ⊢hA (M′,N′) and ¬ analysed(h, (M0,N0)).

2. Let h′ := {(M,N) ∈ h | ¬ analysed(h, (M,N))}. Then

analz(h) = h ∪
⋃

(M,N)∈h′

{

(M′,N′) | (M,N) ⊢hA (M′,N′)
}

PROOF
1. By induction on M.

2. Follows from previous point.

Corollary 3:
Let h ∈ H. Let h′ :=

{

(M,N) ∈ h |

{

analysable(h, (M,N))
¬ analysed(h, (M,N))

}

. Then

analz(h) = h ∪
⋃

(M,N)∈h′

{

(M′,N′) | (M,N) ⊢hA (M′,N′)
}

We now define a measure on hedges.
We first define (in the obvious way) the size size((M,N)) of a message

pair (M,N) as being the maximal number of constructors in M (depth of
the term M seen as a tree) or in N.
If h ∈ H, we define w(h) the weight of h as being the finite multiset of

the sizes of those pairs of messages in h that are not analysed in h, i.e.

w(h) := {{size((M,N)) | ¬ analysed(h, (M,N))}}

We consider on the finite multiset of elements ofN the multiset order-
ing< induced by the order< onN: it is a well-founded order on the finite
multisets of elements ofN (see [17] for example).
We have the following results:

Lemma 39:
Let h ∈ H. Let h′ :=

{

(M,N) ∈ h |

{

analysable(h, (M,N))
¬ analysed(h, (M,N))

}

. Then
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1. If h′ = ∅, then analz(h) = h.

2. If h′ 6= ∅, then w(analz(h)) < w(h).

PROOF
1. Trivial according to Corollary 3.

2. It follows from Corollary 3 and the three following results:

(a) If (M,N) ⊢hA (M′,N′) then size((M′,N′)) < size((M,N)).

(b) If analysable(h, (M,N)) and (M,N) ∈ h then
analysed(analz(h), (M,N)).

(c) If h ⊆ h′ and analysed(h, (M,N)) then analysed(h′, (M,N)).

We are now ready to prove the existence of the analysis.

PROOF (THEOREM 5, EXISTENCE)
We proceed by induction on w(h).
Let h ∈ H.

Let h′ :=
{

(M,N) ∈ h |

{

analysable(h, (M,N))
¬ analysed(h, (M,N))

}

. Then

• If h′ = ∅, then by Lemma 39 and Lemma 34, we have IsAna(h, h) so
h is a candidate.

• If h′ 6= ∅, then since w(analz(h)) < w(h), by induction there exists
h′ such that IsAna(analz(h), h′). By Lemma 34, we have IsAna(h, h′)
so h′ is a candidate.

Example 13
Let h := {(a, b), (k, k), (Encskl,Encskl), (Encsl c,Encsl d)}.
Then

analz0(h) = h

analz1(h) = h ∪ {(l, l)}

analz2(h) = h ∪ {(l, l), (c, d)}

analz3(h) = analz2(h)

So A(h) = analz2(h) = h ∪ {(l, l), (c, d)}. ∗
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4.3 Irreducible hedges

4.3.1 Reducing hedges

A hedge h may contain redundant information. The hedge reduce(h) is
obtained from h by removing all the pairs that can also be constructed
from h in another way than by immediate membership.

Definition 60 (reduce(h)).
Let h ∈ H.
If M,N ∈ M, we define the predicate h ⊢S (M,N) —read (M,N) is

strictly synthesisable by h— by the rules:

S1
(M′,N′) ∈ S(h)

h ⊢S (op(M′), op(N′))
op ∈ {pub, priv,H}

S2
(M1,N1) ∈ S(h) (M2,N2) ∈ S(h)

h ⊢S ((M1 .M2), (N1 .N2))

S3
(M1,N1) ∈ S(h) (M2,N2) ∈ S(h)

h ⊢S (EncsM2M1,EncsN2N1)

S4
(M1,N1) ∈ S(h) (M2,N2) ∈ S(h)

h ⊢S (EncaM2M1,EncsN2N1)

We define reduce(h) := {(M,N) ∈ h | h 6⊢S (M,N)}.

Example 14
Let h := {(a, b), (k, k), (Encskl,Encskl), (Encsl c,Encsld), (l, l)}.
Then reduce(h) = {(a, b), (k, k), (l, l), (Encsl c,Encsld)}. ∗

Reducing hedges does not diminish their power.

Lemma 40:
Let h ∈ H. Then h ≷H reduce(h).

PROOF
• reduce(h) <H h because reduce(h) ⊆ h and thanks to Corollary 1.

• Let (M,N) ∈ S(h).

We show by induction on M that (M,N) ∈ S(reduce(h)).

Thus h <H reduce(h).
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The following lemma gives two methods for showing that reduce(g) is
included in reduce(h).

Lemma 41:
Let g, h ∈ H.

1. If g ⊆ h and h <H g, then reduce(g) ⊆ reduce(h).

2. If reduce(g) ⊆ h and h <H reduce(g) then reduce(g) ⊆ reduce(h).

PROOF
1. We show that if (M,N) ∈ reduce(g) then (M,N) ∈ reduce(h) by case
analysis on M.

2. We show that if (M,N) ∈ reduce(g) then (M,N) ∈ reduce(h) by case
analysis on M. We also use the fact that reduce(g) <H g.

The function h 7→ reduce(h) is idempotent.

Lemma 42:
Let h ∈ H. Then reduce(reduce(h)) = reduce(h).

PROOF
We have reduce(reduce(h)) ⊆ reduce(h) by definition.
Since reduce(h) ⊆ reduce(h) and reduce(h) <H reduce(h) then thanks

to Lemma 41, we get reduce(h) ⊆ reduce(reduce(h)).

The following lemma gives a method for showing that reduce(g) is in-
cluded in h.
Lemma 43:
Let g, h ∈ H. If reduce(g) ≷H reduce(h) then reduce(g) ⊆ h.

PROOF
By Lemma 40, we have g ≷H reduce(g) ≷H reduce(h) ≷H h.
Since reduce(g) <H h, we have, by Lemma 29, reduce(g) ⊆ S(h).
Let (M,N) ∈ reduce(g). Then (M,N) ∈ S(h). By case analysis on

(M,N) ∈ S(h) and since h <H g, we show that (M,N) ∈ h.

The function h 7→ reduce(h) is compatible with <H .

Lemma 44:
Let g, h ∈ H. If g <H h then reduce(g) <H reduce(h).

PROOF
Since reduce(g) ⊆ g, we have by Corollary 1 that reduce(g) <H g.
By Lemma 40, we have h <H reduce(h).
So reduce(g) <H reduce(h).
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4.3.2 Irreducible hedges

The irreducible part of h is a compact representation of A(h). We are going
to show that it is the smallest hedge which is as powerful as A(h).

Definition 61 (I(h)).
Let h ∈ H. We define the irreducible part I(h) of h as I(h) := reduce(A(h)).

Example 15
Let h := {(a, b), (k, k), (Encskl,Encskl), (Encsl c,Encsld)}.
Then A(h) = h ∪ {(l, l), (c, d)}.
So I(h) = {(a, b), (k, k), (l, l), (c, d)}. ∗

I(h) andA(h) have the same power which is greater than the one of h.

Lemma 45:
Let h ∈ H. We have h <H A(h) ≷H I(h).

PROOF
By Lemma 40 and Lemma 33.

The analysis of I(h) is included in the analysis of h.

Lemma 46:
Let h ∈ H. Then A(I(h)) ⊆ A(h).

PROOF
By definition, we have I(h) = reduce(A(h)) ⊆ A(h).
Then, by definition of A(h), we have analz(A(h)) ⊆ A(h).
So AnaCond(I(h),A(h)).
Thus, by definition of A(I(h)) we get A(I(h)) ⊆ A(h).

Definition 62.
A hedge h is irreducible if I(h) = h.

The irreducible part of a hedge is irreducible.

Theorem 6:
Let h ∈ H. Then I(I(h)) = I(h), i.e. I(h) is irreducible.

PROOF
By Lemma 46, we have A(I(h)) ⊆ A(h).
By Lemma 45, we have A(h) ≷H I(h) <H A(I(h)).
So by Lemma 41, reduce(A(I(h))) ⊆ reduce(A(h)), i.e. I(I(h)) ⊆

I(h).
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We have I(h) = reduce(A(h)) ⊆ A(reduce(A(h))) = A(I(h)) by
definition of A(I(h)).
By Lemma 46, we have A(I(h)) ⊆ A(h) so by Corollary 1, we have

A(I(h)) <H A(h).
But, by Lemma 45, we have A(h) ≷H I(h).
So A(I(h)) <H I(h).
Hence, by Lemma 41, we have I(h) ⊆ reduce(A(I(h))) = I(I(h)).
Finally, I(I(h)) = I(h).

If g is irreducible and is as powerful as h then g is included in h. This
proves that I(h) is the smallest hedge such that S(I(h)) = S(A(h)).

Lemma 47:
Let g, h ∈ H. If g ≷H h and g is irreducible then g ⊆ h.

PROOF
We have g ⊆ I(g) = reduce(A(g)).
By Lemma 40, we have h ≷H reduce(h).
Since g = I(g), we have g ≷H I(g) = reduce(A(g)).
So reduce(A(g)) ≷H reduce(h).
So by Lemma 43, we have reduce(A(g)) ⊆ h, i.e. g = I(g) ⊆ h.

I(h) is the minimal seed for S(A(h)).

Corollary 4:
Let g, h ∈ H. If g ≷H A(h) then I(h) ⊆ g.

PROOF
Because I(h) ≷H A(h) ≷H g and I(h) is irreducible.

Corollary 5:
. Let g, h ∈ H. If g ≷H h and g and h are both irreducibles then g = h. ♠

The function h 7→ A(h) is compatible with <H .

Lemma 48:
Let g, h ∈ H. If g <H h then A(g) <H A(h).

PROOF
By Lemma 45, we have I(h) ≷H A(h).
We show by induction on i ∈ N that ∀i ∈ N : analzi(g) <H I(h). Then

thanks to Lemma 35, we will get A(g) <H I(h).
If i = 0, then we have by Lemma 45 that h <H I(h).
So analz0(g) = g <H h <H I(h).
To show the inductive case, we need the following result:
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Lemma:
If g <H h, then analz(g) <H I(h).

PROOF
We show that if (M,N) ∈ analz(g) then (M,N) ∈ S(I(h)) by rule induc-
tion on (M,N) ∈ analz(g). So by Lemma 29, we get analz(g) <H I(h).

So, for the inductive case, assume that analzi(g) <H I(h).
With the preceding result, we get analzi+1(g) <H I(I(h)). But by

Theorem 6, we have I(I(h)) = I(h).
Thus analzi+1(g) <H I(h).

The function h 7→ I(h) is compatible with <H .

Lemma 49:
Let g, h ∈ H. If g <H h then I(g) <H I(h).

PROOF
By Lemma 48 and Lemma 45.

Lemma 50:
Let g, h ∈ H. If g ≷H h then I(g) = I(h).

PROOF
If g ≷H h then by Lemma 49, we have I(g) ≷H I(h).
Since I(g) and I(h) are irreducibles, we conclude by Corollary 5 that

I(g) = I(h).

The following theorem gives a way to compute I(h ∪ g) from I(h) and
g.

Theorem 7:
Let g, h ∈ H. Then I(I(h) ∪ g) = I(h ∪ g).

PROOF
We first show that I(I(h) ∪ g) ≷H I(h ∪ g).
We have h <H h ∪ g so by Lemma 49, I(h) <H I(h ∪ g).
Similarly, I(g) <H I(h ∪ g). But since g <H I(g), we have g <H

I(h ∪ g).
So by Corollary 1, we have I(h) ∪ g <H I(h ∪ g).
So, by Lemma 49, I(I(h) ∪ g) <H I(I(h ∪ g)) = I(h ∪ g).
We have h <H I(h) and g <H g, so by Corollary 1, we have h ∪ g <H

I(h) ∪ g.
So by Lemma 49, I(h ∪ g) <H I(I(h) ∪ g).
Finally, I(I(h) ∪ g) ≷H I(h ∪ g). So by Corollary 5 and Theorem 6, we

conclude that I(I(h) ∪ g) = I(h ∪ g).
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4.3.3 Characterisation of irreducible hedges

We now give a characterisation of irreducible hedges. We introduce the
notion of reduced hedges and show that this notion coincides with irre-
ducible hedges. Wewill use this characterisation afterwards (in Section 4.4.2).

Definition 63.
A hedge h is reduced if it satisfies the following rules:

R1
(op(M′), op(N′)) ∈ h

(M′,N′) 6∈ S(h)
op ∈ {pub, priv,H}

R2
((M1 .M2), (N1 .N2)) 6∈ h

R3
(EncsM2M1,EncsN2N1) ∈ h

(M2,N2) 6∈ S(h)

R4
(EncaM2M1,EncaN2N1) ∈ h

(M1,N1) 6∈ S(h)∨ (M2,N2) 6∈ S(h)

R5

(EncaM2M1,EncaN2N1) ∈ h
(M′2,N

′
2) ∈ S(h) M′2 = inv(M2) N′2 = inv(N2)

(M1,N1) ∈ S(h)

Reducing a reduced hedge has no effect (hence the name).

Lemma 51:
Let h ∈ H. If h is reduced then h = reduce(h).

PROOF
We have that reduce(h) ⊂ h. We then show by a simple case analysis that
if (M,N) ∈ h, then (M,N) ∈ reduce(h).

The weak analysis of a reduced hedge is less powerful than the hedge
itself.
Lemma 52:
Let h ∈ H. If h is reduced then analz(h) <H h.

PROOF
We show that if (M,N) ∈ analz(h) then (M,N) ∈ S(h) by rule induction
on (M,N) ∈ analz(h). Then, by Lemma 29, we get analz(h) <H h.

The analysis of a reduced hedge is as powerful as the hedge itself.

Lemma 53:
Let h ∈ H. If h is reduced then A(h) ≷H h.
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PROOF
We have h <H A(h) by Lemma 33.
We show by induction on i ∈ N that for all i, analzi(h) <H h.
For i = 0, it is trivial.
For the inductive case, assume that analzi(h) <H h.
By Lemma 32, we have analzi+1(h) <H analz(h).
By Lemma 52, we have analz(h) <H h.
So analzi+1(h) <H h.
So by Lemma 35, we get A(h) <H h.

A reduced hedge is irreducible.

Lemma 54:
Let h ∈ H. If h is reduced then h is irreducible.

PROOF
Since h is reduced, we have h ≷H A(h) by Lemma 53.
So by Lemma 45, we have h ≷H I(h).
So by Lemma 47, we get I(h) ⊆ h since I(h) is irreducible.
By Lemma 51, we have h = reduce(h).
Since reduce(h) = h ≷H I(h), we have by Lemma 43 that h ⊆ I(h).
So I(h) = h.

A hedge is irreducible if and only if it is reduced.

Theorem 8:
Let h ∈ H. Then h is reduced if and only if h is irreducible.

PROOF
Lemma 54 gives one direction. The other direction is trivial.

4.4 Consistent hedges

4.4.1 Inversing hedges

The inverse of a hedge is obtained by swapping the two sides of a hedge.

Definition 64 (h−1).
Let h ∈ H. The inverse of h is h−1 := {(N,M) | (M,N) ∈ h}.

The following properties can be easily proven.

Lemma 55:
Let g, h ∈ H. We have
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• (N,M) ∈ S(h−1) ⇐⇒ (M,N) ∈ S(h)

• analz(h−1) = analz(h)−1

• A(h−1) = A(h)−1

• reduce(h−1) = reduce(h)−1

• I(h−1) = I(h)−1

• g <H h =⇒ g−1 <H h
−1

•
(

h−1
)−1

= h �

4.4.2 Consistency

Hedges are used to relate indistinguishable messages. However, it can
happen that the attacker finds a contradiction in its knowledge. For ex-
ample, if both (M,N1) and (M,N2) are in h and N1 6= N2. The notion of
consistency guarantees the absence of such contradictions and ensures also
irreducibility.

Definition 65 (consistency).
A hedge h is left consistent if it satisfies the following rules:

LC1
(M,N) ∈ h M ∈ N

N ∈ N

LC2
(M,N) ∈ h (M′,N′) ∈ h M′ = M

N′ = N

LC3
(M,N) ∈ h (M′,N′) ∈ h M′ = inv(M)

N′ = inv(N)

LC4
(op(M′),N) ∈ h

(M′,N′) 6∈ S(h)
op ∈ {pub, priv,H} LC5

((M1 .N1),N) 6∈ h

LC6
(EncsM2M1,N) ∈ h

(M2,N2) 6∈ S(h)
LC7

(EncaM2M1,N) ∈ h

(M1,N1) 6∈ S(h)∨ (M2,N2) 6∈ S(h)

LC8
(EncaM2M1,N) ∈ h (M′2,N

′
2) ∈ S(h) M′2 = inv(M2)

N′2 = inv(N2)∧N = EncaN2N1 ∧ (M1,N1) ∈ S(h)
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A hedge h is consistent if both h and h−1 are left consistent.

The above definition basically ensures that:

• names are identified with names (LC1).

• a message M is not identified with two different messages N and N′

(LC2).

• two inverse keys M and M′ are identified with inverse keys N and
N′ (LC3).

• if a message M is identified with N and M can be constructed from
the knowledge in an other manner, then N can also be constructed
in this same other manner (LC4, LC5, LC6, LC7; an irreducibility
condition is also encoded in these rules).

• the decryption power coincides on both sides (LC6, LC8; an irre-
ducibility condition is also encoded in these rules).

Example 16
1. h1 := {(a,Encskb)} is not left consistent (by LC1).

2. h2 := {(a, b), (a, c)} is not left consistent (by LC2).

3. h3 := {(pub(a), b), (priv(a), c)} is not left consistent (by LC3).

4. h4 := {(a, b), (H(a), c)} is not left consistent (by LC4).

5. h5 := {((a . b), c)} is not left consistent (by LC5).

6. h6 := {(Encska, b), (k, k)} is not left consistent (by LC6).

7. h7 := {(Encaka, b), (a, a), (k, k)} is not left consistent (by LC7).

8. h8 :=
{

(Enca
priv(k)a, b), (pub(k), pub(l))

}

is not left consistent (by LC8).

9. h9 :=
{

(a, b), (pub(k), priv(l)), (Enca
priv(k)a,Enca

pub(l)b)
}

is consistent.

10. h10 := {(priv(k), pub(l)), (pub(k), priv(l)), (a, b)} is consistent. ∗

As we have previously suggested, the definition of consistency con-
tains irreducibility conditions. Indeed, a consistent hedge is reduced.

Lemma 56:
Let h ∈ H.
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1. If h is left consistent then h is reduced.

2. If h is consistent then h is reduced. �

Hence, a consistent hedge is irreducible.

Theorem 9:
If h is consistent then h is irreducible.

PROOF
By Theorem 8 and Lemma 56.

So two consistent hedges that have the same power are equal.

Corollary 6:
Let g, h ∈ H. If g ≷H h and both g and h are consistent then g = h.

PROOF
By Theorem 9 and Corollary 5.

The following lemma gives a method for showing that an irreducible
hedge is left consistent.

Lemma 57:
Let g, h ∈ H. If g is irreducible, h is left consistent and g <H h then g is left
consistent. �

Hence the following method for showing that an irreducible hedge is
consistent.

Theorem 10:
Let g, h ∈ H. If g is irreducible, h is consistent and g <H h then g is
consistent.

PROOF
By Lemma 57 and Lemma 55.

Finally, an interesting subclass of hedges is those hedges h such that
h ⊆ N ×N. The consistency of such hedges can be simplified to

Lemma 58:
Let h ⊆ N×N be a hedge. Then h is left consistent if and only if it satisfies
LC2.
Hence h is consistent if and only if

∀(M,N), (M′ ,N′) ∈ h : M = M′ ⇐⇒ N = N′
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4.4.3 Properties

We state some properties of consistent hedges. To have a symmetric treat-
ment of shared-key cryptography and public key cryptography, we split
the rule LC6 in two rules LC6A and LC6B built in the spirit of LC7 and
LC8.

Definition 66.
Let h ∈ H. We define

LC6A
(EncsM2M1,N) ∈ h

(M1,N1) 6∈ S(h)∨ (M2,N2) 6∈ S(h)

LC6B
(EncsM2M1,N) ∈ h (M2,N2) ∈ S(h)

N = EncsN2N1 ∧ (M1,N1) ∈ S(h)

Lemma 59:
Let h ∈ H. Then h satisfies LC6 if and only if h satisfies LC6A and LC6B.�

Hence, we can replace in Definition 65 the rule LC6 by the rules LC6A
and LC6B.
If a hedge is left consistent, then S(h) satisfies LC2 and LC3. More

precisely

Lemma 60:
Let h ∈ H.

1. If h satisfies LC2, LC4, LC5, LC6A, LC7 then S(h) satisfies LC2, i.e.

∀(M,N), (M′ ,N′) ∈ S(h) : M′ = M =⇒ N′ = N

2. If h satisfies LC2, LC3, LC4, LC5, LC6A, LC7 then S(h) satisfies
LC3, i.e.

∀(M,N), (M′ ,N′) ∈ S(h) : M′ = inv(M) =⇒ N′ = inv(N)

If a hedge is left consistent, then the following properties hold for its
synthesis:

Lemma 61:
If h ∈ H is left consistent then for all (M,N) ∈ S(h),

1. ifM is a pair (M1 .M2) then N is a pair (N1 .N2) such that (M1,N1) ∈
S(h) and (M2,N2) ∈ S(h).



118 CHAPTER 4. REPRESENTING ENVIRONMENT KNOWLEDGE AS HEDGES

2. if M is a shared-key encrypted message EncsM2M1 and if there exists
N2 such that (M2,N2) ∈ S(h) (i.e. the shared-key M2 is known) then
N is a shared-key encrypted message EncsN2N1 such that (M1,N1) ∈
S(h).

3. if M is a public-key encrypted message EncaM2M1 with inv(M2) =

M′2 ∈ M and if there exists N
′2 such that (M′2,N

′
2) ∈ S(h) then N is

a public-key encrypted message EncaN2N1 with (M1,N1) ∈ S(h) and
inv(N2) = N′2. �

Conclusion

We have presented the notion of hedges which is used in hedged bisim-
ulations to represent the environment knowledge; it simply consists of a
finite set of pairs of indistinguishable messages. We have defined two ba-
sic operations on hedges: synthesis is the (infinite) set of indistinguishable
messages that can be constructed from a hedge and analysis is the finite
set of indistinguishable messages that can be deconstructed from a hedge.
For this last operation, we have described a constructive proof of existence.
We then have defined the concept of irreducible hedges and shown several
properties about them, one of which is that the irreducible part of a hedge
h is the minimal seed for generating the synthesis of A(h). Finally, we
have defined the notion of consistent hedges which are the hedges whose
knowledge is not considered contradictory.



Chapter 5

Open Bisimulation for the Spi
Calculus

In the previous chapters, we have presented the spi calculus and explained
why standard bisimulation definitions (i.e. inherited from the pi calculus)
are not well-suited when reasoning about security protocols. To be able
to apply the bisimulation proof technique to security protocols, we have
explained that bisimulation should be enriched with a data structure that
explicitly keeps track of indistinguishable messages. In this chapter, we
first present quickly the notion of late hedged bisimulation, which is one
environment-sensitive notion of bisimulation for the spi calculus that uses
the data structure of hedges (see Chapter 4). Secondly, we define a new no-
tion of bisimulation for the spi calculus called open hedged bisimulation; the
idea being to generalise Sangiorgi’s open bisimulation to the spi calculus
framework. We show that this definition is indeed an extension of K-open
bisimulation as defined in Chapter 2. We finally give a symbolic charac-
terisation of open hedged bisimulation and explain why it is an important
step towards mechanisation of this new notion of bisimulation.

5.1 Late hedged bisimulation

A hedged bisimulation [41] is a symmetric consistent hedged relation that
satisfies the bisimulation game.

Definition 67 (hedged relation).
A hedged relationR is a subset ofH×P×P such that whenever (h, P,Q) ∈
R, we have fn(P) ⊆ n(π1(h)) and fn(Q) ⊆ n(π2(h)).
A hedged relation R is symmetric if whenever (h, P,Q) ∈ R we have

(h−1,Q, P) ∈ R.
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A hedged relation R is consistent if whenever (h, P,Q) ∈ R, we have
that h is a consistent hedge.

Before giving the definition of hedged bisimulation, we define the sets
of input messages that an intruder is able to construct from a hedge h.
Basically, these messages come from the synthesis of h but the observer is
also allowed to use some fresh names.

Definition 68.
Let h ∈ H, (M,N) ∈ M×M
Let B ⊆ N ×N a consistent hedge such that

1. π1(B) ∩ n(π1(h)) = ∅

2. π2(B) ∩ n(π2(h)) = ∅

i.e. the names of B are fresh component-wise w.r.t. to those of h.
We write h ⊢B (M,N) if

1. ∀(b1, b2) ∈ B : b1 ∈ n(M)∨ b2 ∈ n(N)

2. (M,N) ∈ S(h ∪ B)

The first condition requires that the names of B are needed for constructing
the pair (M,N) and the second condition requires that M and N are two
indistinguishable messages that can be constructed from h ∪ B.
Note that in the first condition, it is equivalent to require that b1 ∈

n(M)∧ b2 ∈ n(N) or more simply π1(B) ⊆ n(M).

Definition 69 (late hedged bisimulation).
A symmetric and consistent hedged relation R is a (strong) late hedged
bisimulation if whenever (h, P,Q) ∈ R, we have that

1. if P τ
−→ P′ then

there exists Q′ such that Q τ
−→ Q′ and (h, P′,Q′) ∈ R

2. if P a
−→ (x)P′ (with x 6∈ n(π1(h)))

and (a, b) ∈ S(h) then

there exist y and Q′ such that Q b
−→ (y)Q′

(with y 6∈ n(π2(h)))
and for all B and (M,N) such that h ⊢B (M,N)
we have (h ∪ B, P′{M/x},Q′{N/y}) ∈ R.



5.2. OPEN HEDGED BISIMULATION 121

3. if P a
−→ (νc̃) 〈M〉P′ (with {c̃} ∩ n(π1(h)) = ∅)

and (a, b) ∈ S(h) then

there exist
{

d̃
}

, Q′ and N such that Q b
−→ (νd̃) 〈N〉Q′

(with
{

d̃
}

∩ n(π2(h)) = ∅)
and (I(h ∪ {(M,N)}), P′,Q′) ∈ R.

In the above definition, emitted messages are added to the indistinguisha-
bility relation encoded as a hedge yielding h ∪ {(M,N)} (clause 3). The
addition of this new pair to the indistinguishability relation may allow to
deconstruct some more pairs of the environment knowledge; this is done
by computing the irreducible elements of h ∪ {(M,N)}. The consistency
condition ensures that the resulting hedge is not contradictory. Finally, the
condition (a, b) ∈ S(h) of clauses 2 and 3 may be interpreted as "the envi-
ronment is able to detect an action on channel a". This can be equivalently
written (a, b) ∈ h thanks to Lemma 26.
Note also that since it is required that the free names of P and Q are

mentioned in h, this imposes that the names of B are distinct from every
free names of P and Q.
Given a hedge h and two processes P and Q, we say that P and Q are

late hedged bisimilar under h if there exists a late hedged bisimulation R
such that (h, P,Q) ∈ R and we write P ∼̇hLH Q.
As previously mentioned, late hedged bisimilarity is a sound proof

technique for showing barbed equivalence.

5.2 Open hedged bisimulation

Open bisimulation is an attractive notion of bisimulation for the pi calcu-
lus for a number of different reasons explained in Chapter 2. Based on
this observation, we have generalised this notion of bisimulation to the
spi calculus. Our proposal is presented afterwards, following [48, 50, 46].
Firstly, we present the notion of S-environment that is used to represent
the environment-knowledge and to characterise the set of respectful sub-
stitutions. Secondly, we give the definition of open hedged bisimulation
and the corresponding notion of bisimilarity. Thirdly, we show that open
hedged bisimilarity is sound w.r.t. late hedged bisimilarity.

5.2.1 S-environments

For defining open bisimulation in the spi calculus, we have to record on
each input, during the bisimulation game, every message the attacker can
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substitute to the input variable given its current knowledge. This infor-
mation is represented by S-environments which consist of a hedge h rep-
resenting the attacker’s current knowledge, v which are names used as
input names so far and ≺ which allows to recover the hedge the attacker
had when a given input name was input. Moreover, since we require that
communications can only occur on channel names, S-environments also
need to remember which input names can be substituted by names only,
this is stored in γl,γr.
The form of S-environments follows the form of K-environments we

have introduced in Chapter 2. Note however that it is not sufficient to
consider as S-environment a simple extension of K-environment by say-
ing that a S-environment is a triple (O,V,≺) where O would be a set of
messages, V a (finite) set of names, and ≺ a subset of O×V. One reason
is that it would not be possible to build up an indistinguishability relation
on top of this data. Thus, as with hedges, we split the sets O and V and
obtain respectively a set of message pairs h (i.e. a hedge) and a set of name
pairs v (i.e. a hedge containing only names). Another reason is that in the
spi calculus, unlike the pi calculus, we need to record that some names
that were at some moment considered as channels must not later on be
replaced by complex messages (see Lemma 24).

Definition 70 (S-environment).
A S-environment is a quadruple se = (h, v,≺, (γl ,γr)) where h ∈ H, v ⊆
N ×N is a consistent hedge, ≺⊆ h× v, γl ⊆ π1(v) and γr ⊆ π2(v). The
set of all S-environments is written SH.
The hedge available to (x, y) ∈ v according to ≺ is defined by se|(x,y) :=

{(M,N) ∈ h | (M,N) ≺ (x, y)}.
The concrete hedge of se is H(se) := h ∪ v.
The inverse of se is se−1 := (h−1, v−1,≺−1, (γr,γl))where (N,M) ≺−1

(y, x) iff (M,N) ≺ (x, y).

The intuition behind ≺ is that if (M,N) ≺ (x, y), the attacker knew
about (M,N)whenever (x, y)was used for input in the bisimulation game.
In that case, we need to require that x 6∈ n(M) and y 6∈ n(N) to avoid cir-
cularities, which is included in the following definition.

Definition 71 (well-formed S-environment).
A S-environment (h, v,≺, (γl ,γr) is well-formed if

1. π1(h) ∩ π1(v) = ∅

2. π2(h) ∩ π2(v) = ∅



5.2. OPEN HEDGED BISIMULATION 123

3. ∀(M,N) ∈ h : ∀(x, y) ∈ v : (M,N) ≺ (x, y) =⇒

{

x 6∈ n(M)
y 6∈ n(N)

There are three relevant ways to add information to a S-environment
se. We can add a pair of indistinguishable messages (M,N) to the hedge
h (on process outputs) —note that whenever (M,N) was produced by the
attacker, we don’t put it in h since it adds no information to the attacker’s
knowledge. We can add a fresh pair (x, y) of input variables to v and
update ≺ so that the hedge se|(x,y) corresponds to the current hedge h
(on process inputs). And finally, we can add new constraints in γl and
γr to reflect that some input names were used as channels (on process
transitions).
Definition 72.
Let se = (h, v,≺, (γl ,γr)) be a S-environment.
If (M,N) ∈ M×M, we define se +o(M,N) := (h′, v,≺, (γl,γr))where

h′ = h if (M,N) ∈ v and h′ = h ∪ {(M,N)} otherwise.
If (x, y) ∈ N ×N, we define se +i(x, y) := (h, v ∪ {(x, y)} ,≺′, (γl,γr))

where ≺′:=≺ ∪ (h× {(x, y)}).
If S1, S2 ⊆ N, we define se +c(S1, S2) := (h, v,≺, (γ′l ,γ

′
r)) where γ′l :=

γl ∪ (S1 ∩ π1(v)) and γ′r := γr ∪ (S2 ∩ π2(v)).

By adding information to particular S-environments as shown above,
hedges available to variables in v can be ordered in an increasing sequence
of hedges. This property is captured by the following definition.

Definition 73 (growing S-environment).
A S-environment se = (h, v,≺, (γl ,γr)) is growing if there exists an injec-
tive mapping z : [[1, n]] → v (where n = card(v)) such that forall 1 ≤ i < n,
we have hi ⊆ hi+1 where hi := se|z(i).

The part (h, v,≺) of a growing S-environment can be seen as a sequence
of hedges h1 · h2 · . . . · hn and a sequence of pairs of input names (x1, y1) ·
(x2, y2) · . . . · (xn−1, yn−1) with hi ⊆ hi+1 for 1 ≤ i < n, h = hn, v =
{(x1, y1), . . . , (xn−1, yn−1)} and (M,N) ≺ (xi, yi) iff (M,N) ∈ hi for 1 ≤
i < n.
Conceptually, a S-environment se is a concise representation of every

pair of substitutions resulting from plays performed by the attacker in the
bisimulation game. These pairs are said to respect se and are given by the
following definition.

Definition 74 (respectful substitutions).
Let (σ, ρ) be a pair of substitutions, B ⊆ N × N a consistent hedge and
se = (h, v,≺, (γl ,γr)) a S-environment. We say that (σ, ρ) respects se with
B—written (σ, ρ) ⊲B se— if
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1. supp(σ) ⊆ π1(v)

2. supp(ρ) ⊆ π2(v)

3. ∀(b1, b2) ∈ B : b1 ∈ n(σ(π1(v)))∨ b2 ∈ n(ρ(π2(v)))

4. π1(B) ∩ (n(π1(h)) \ π1(v)) = ∅

5. π2(B) ∩ (n(π2(h)) \ π2(v)) = ∅

6. ∀(x, y) ∈ v : (xσ, yρ) ∈ S(I(se|(x,y)(σ, ρ) ∪ B))

7. ∀x ∈ γl : xσ ∈ N

8. ∀y ∈ γr : yρ ∈ N

In this definition, substitutions affect only names in v (input names).
Given (x, y) ∈ v, these names can be replaced by any pair of messages
the attacker could have synthesised from se|(x,y) possibly adding fresh
names (B) and taking into account previous choices made by the attacker
for other input names. Moreover, input names used as communication
channels (mentioned in γl or γr) are prevented from being substituted by
something else than a name.
In a given S-environment se, choices made by the attacker during the

bisimulation game correspond to pairs (σ, ρ) of respectful substitutions.

These choices lead to an updated S-environment se(σ,ρ)
B .

Definition 75 (S-environment updating).
Let (σ, ρ) be a pair of substitutions, B ⊆ N × N a consistent hedge and
se = (h, v,≺, (γl ,γr)) a S-environment such that (σ, ρ) ⊲B se. The update

se(σ,ρ)
B = (h′, v′,≺′, (γ′l ,γ

′
r)) of se by (σ, ρ) is defined as follows:

• h′ = h(σ, ρ)

• v′ = B

• ≺′ is defined by

(Mσ,Nρ) ≺′ (x′, y′) ⇐⇒
∧

(x, y) ∈ v
x′ ∈ n(xσ)∨ y′ ∈ n(yρ)

(M,N) ≺ (x, y)

for (M,N) ∈ h and (x′, y′) ∈ v′.

• γ′l = σ(γl) ∩ π1(v
′)



5.2. OPEN HEDGED BISIMULATION 125

• γ′r = ρ(γr) ∩ π2(v
′)

Well-formedness of S-environments is preserved by updates.

Lemma 62 (well-formedness preservation):
Let (σ, ρ) be a pair of substitutions, B ⊆ N× N a consistent hedge and
se = (h, v,≺, (γl ,γr)) a S-environment such that (σ, ρ) ⊲B se. If se is well-
formed then se(σ,ρ)

B is well-formed.

PROOF
We note se(σ,ρ)

B = (h′, v′,≺′, (γ′l,γ
′
r)).

1. By contradiction, assume that x ∈ π1(h
′) ∩ π1(v

′).

By definition of h′, there is M ∈ π1(h) such that x = Mσ. Since
x ∈ N, necessarily M = a ∈ N.

Since π1(h) ∩ π1(v) = ∅ and supp(σ) ⊆ π1(v), we have x = Mσ =
aσ = a because a 6∈ supp(σ).

We have thus a ∈ n(π1(h)), a 6∈ π1(v) and a ∈ π1(B). This is a
contradiction. So π1(h

′) ∩ π1(v
′) = ∅.

2. Similarly π2(h
′) ∩ π2(v

′) = ∅.

3. Assume that (Mσ,Nρ) ≺′ (x′, y′) with (M,N) ∈ h and (x′, y′) ∈ v′.

By contradiction, assume that x′ ∈ n(Mσ). Necessarily, there exists
(x, y) ∈ v such that x ∈ n(M) and x′ ∈ n(xσ). So we have (M,N) ≺
(x, y). This is a contradiction with x 6∈ n(M). So x′ 6∈ n(Mσ).

Similarly, y′ 6∈ n(Nρ).

Growth of S-environments is preserved by updates.

Lemma 63 (growth preservation):
Let (σ, ρ) be a pair of substitutions, B ⊆ N×N a consistent hedge and se =
(h, v,≺, (γl ,γr)) a S-environment such that (σ, ρ) ⊲B se. If se is growing
then se(σ,ρ)

B is growing.

PROOF
Wewrite v = {(x1, y1), . . . , (xn, yn)} and hi = se|(xi,yi) and assume that for
all 1 ≤ i < n, we have hi ⊆ hi+1.
We note se(σ,ρ)

B = (h′, v′,≺′, (γ′l,γ
′
r)).

By definition, we have (M,N) ≺ (xi, yi) ⇐⇒ (M,N) ∈ hi for
(M,N) ∈ h and 1 ≤ i ≤ n.
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Let (x′, y′) ∈ v′ and (M′,N′) ∈ h′. We have M′ = Mσ and N′ = Nρ for
(M,N) ∈ h.
By definition, we have

(M′,N′) ≺′ (x′, y′) ⇐⇒
∧

(x, y) ∈ v
x′ ∈ n(xσ)∨ y′ ∈ n(yρ)

(M,N) ≺ (x, y)

⇐⇒
∧

1 ≤ i ≤ n
x′ ∈ n(xiσ)∨ y′ ∈ n(yiρ)

(M,N) ≺ (xi, yi)

⇐⇒
∧

1 ≤ i ≤ n
x′ ∈ n(xiσ)∨ y′ ∈ n(yiρ)

(M,N) ∈ hi

Moreover, we know that if (x′, y′) ∈ v′ = B, we have x′ ∈ n(σ(π1(v)))
or y′ ∈ n(σ(π2(v))), so

A(x′,y′) :=
{

1 ≤ i ≤ n | x′ ∈ n(xiσ)∨ y′ ∈ n(yiρ)
}

6= ∅

Since A(x′,y′) is a non empty subset ofN, its minimum element exists. We
thus define idx((x′, y′)) := min A(x′,y′).
Since we have h1 ⊆ h2 ⊆ · · · ⊆ hn, we have

(M′,N′) ≺′ (x′, y′) ⇐⇒ (M,N) ∈ hidx((x′,y′))

for every (M,N) ∈ h, (x′, y′) ∈ v′, M′ = Mσ and N′ = Nρ.
We sort the elements (x′, y′) ∈ v′ according to the value of idx((x′, y′)),

i.e. let z : [[1, k]] → v′ injective where k := card(v′) such that if i ≤ j then
idx(z(i)) ≤ idx(z(j)).
For 1 ≤ i ≤ k, we define

h′i := se(σ,ρ)
B |z(i) =

{

(M′,N′) ∈ h′ | (M′,N′) ≺′ z(i)
}

=
{

(Mσ,Nρ) | (M,N) ∈ h∧ (M,N) ∈ hidx(z(i))

}

= hidx(z(i))(σ, ρ)

Thus since h1 ⊆ h2 ⊆ · · · ⊆ hn, we have for 1 ≤ i < k that h′i ⊆ h
′
i+1.

Hence se(σ,ρ)
B is growing.
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We are now going to show that respectful substitutions compose, as
stated by Theorem 11 (page 130). We show some auxiliary results before
proving this theorem.
In case of well-formed and growing S-environments, the third con-

dition of Definition 74 can be strengthened according to the following
lemma.

Lemma 64:
Let (σ, ρ) be a pair of substitutions, B ⊆ N× N a consistent hedge and
se = (h, v,≺, (γl ,γr)) a S-environment such that (σ, ρ) ⊲B se. Then if se
is well-formed and growing we have

∀(b1, b2) ∈ B : b1 ∈ n(σ(π1(v)))∧ b2 ∈ n(ρ(π2(v)))

PROOF
We write v = {(x1, y1), . . . , (xn, yn)} such that if hi := se|(xi,yi) then hi ⊆
hi+1 for 1 ≤ i < n.
By contradiction, assume that there is (b1, b2) ∈ B such that b1 6∈

n(σ(π1(v))) or b2 6∈ n(ρ(π2(v))).
By symmetry, assume for example that b2 6∈ n(ρ(π2(v))). By hypothe-

sis, we have then that b1 ∈ n(σ(π1(v))).
Let i0 minimal such that b1 ∈ n(xi0σ). We have b2 6∈ n(yi0ρ).
By hypothesis, we have (xi0σ, yi0ρ) ∈ S(I(hi0(σ, ρ) ∪ B)).
Since b2 6∈ n(yi0ρ), SYN-INC have not been applied with (b1, b2) as

premise. So necessarily, there is (M,N) ∈ hi0 such that b1 ∈ n(Mσ). Since
π1(B) ∩ (n(π1(h)) \ π1(v)) = ∅, there exists j such that xj ∈ n(M) and
b1 ∈ n(xjσ). By choice of i0, we have i0 ≤ j so hi0 ⊆ hj.
Since (M,N) ∈ hi0 ⊆ hj, we have (M,N) ≺ (xj, yj).
Since se is well-formed, we have xj 6∈ n(M). This is a contradiction.
This even proves that if (b1, b2) ∈ B and i is minimal such that b1 ∈

n(xiσ) then necessarily b2 ∈ n(yiσ) (this result will be used afterwards).

Lemma 65:
Let h ∈ H and {(x1, y1), . . . , (xn, yn)} ⊆ N×N.
Let also (M1,N1), . . . , (Mn,Nn) ∈ M×M and B ⊆ N×N such that

∀1 ≤ i ≤ n : (Mi,Ni) ∈ S(A(h(σ, ρ) ∪ B))

where σ and ρ are defined such that

xσ :=

{

Mi if x = xi
x otherwise

yρ :=

{

Ni if y = yi
y otherwise
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Then

∀(M,N) ∈ S(A(h ∪ {(x1, y1), . . . , (xn, yn)})) :
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B))

PROOF
We use Lemma 35 and actually show that

∀i ∈ N : ∀(M,N) ∈ S(analzi(h ∪ {(x1, y1), . . . , (xn, yn)})) :
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B))

Before showing this result, we show some auxiliary results.

1.
Lemma:
Let h′ ∈ H such that

∀(M,N) ∈ h′ : (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B))

Then

∀(M,N) ∈ S(h′) : (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B))

PROOF
We show this result by rule induction on (M,N) ∈ S(h′). The hy-
pothesis gives the base case and the inductive cases are then obvi-
ous.

2.
Lemma:
Let h′ ∈ H such that

∀(M,N) ∈ h′ : (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B))

then

∀(M,N) ∈ analz(h′) : (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B))

PROOF
Again, we show this result by rule induction on (M,N) ∈ analz(h′).

• If (M,N) ∈ analz(h′) by ANA-INC. Then (M,N) ∈ h′ and the
hypothesis gives the result.
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• Assume that (M,N) ∈ analz(h′) by ANA-DEC-A. That means
that (EncaKM,EncaLN) ∈ analz(h′) with K′ = inv(K) ∈ M, L′ =
inv(L) ∈ M and (K′, L′) ∈ S(h′).
By induction, (EncaKσMσ,EncaLρNρ) ∈ S(A(h(σ, ρ) ∪ B)).

Either it was deduced by SYN-INC or by SYN-ENC-A.

(a) If it was by SYN-INC:
Then (EncaKσMσ,EncaLρNρ) ∈ A(h(σ, ρ) ∪ B).
Trivially, inv(Kσ) = K′σ ∈ M, inv(Lσ) = L′σ ∈ M.
According to the previous auxiliary result and since h′ sat-
isfies the premise, we have (K′σ, L′ρ) ∈ S(A(h(σ, ρ) ∪ B)).
By definition of analysis, we have analz(A(h(σ, ρ)∪ B)) =
A(h(σ, ρ) ∪ B).
So by ANA-DEC-A (Mσ,Nρ) ∈ A(h(σ, ρ) ∪ B).
Thus by SYN-INC, we have (Mσ,Nρ) ∈ S(A(h(σ, ρ)∪ B)).

(b) Otherwise, it was by SYN-ENC-A and then immediately,
we have (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B)).

We show now that

∀i ∈ N : ∀(M,N) ∈ analzi(h ∪ {(x1, y1), . . . , (xn, yn)}) :
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B))

By induction on i.

• i = 0

We have by definition

analz0(h ∪ {(x1, y1), . . . , (xn, yn)}) = h ∪ {(x1, y1), . . . , (xn, yn)}

If (M,N) ∈ h, then by definition, (Mσ,Nρ) ∈ h(σ, ρ). So by defini-
tion of the synthesis, (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B)).

If (M,N) = (xi, yi) for some 1 ≤ i ≤ n. Then (Mσ,Nρ) = (Mi,Ni) ∈
S(A(h(σ, ρ) ∪ B)) by hypothesis.

• Assume the result holds for some i ∈ N.

Then the second auxiliary lemma gives the result for i + 1 because
analz(analzi(h)) = analzi+1(h).



130 CHAPTER 5. OPEN BISIMULATION FOR THE SPI CALCULUS

Then by the first auxiliary result, we obtain

∀i ∈ N : ∀(M,N) ∈ S(analzi(h ∪ {(x1, y1), . . . , (xn, yn)})) :
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪ B))

This completes the proof.

We can now prove that for well-formed and growing S-environments,
respectful substitutions compose.

Theorem 11 (respectful substitutions composition):
Let se = (h, v,≺, (γl ,γr)) a S-environment. We assume that se is well-
formed and growing.
Let (σ1, ρ1) be a pair of substitutions and B1 ⊆ N×N a consistent hedge

such that (σ1, ρ1) ⊲B1 se. We note se1 := se(σ1,ρ1)
B1

.
Let (σ2, ρ2) be a pair of substitutions and B2 ⊆ N×N a consistent hedge

such that (σ2, ρ2) ⊲B2 se1. We note se2 := se1
(σ2,ρ2)
B2

.

Then (σ, ρ) ⊲B2 se and se(σ,ρ)
B2

= se2 where σ and ρ are defined such
that

xσ :=

{

xσ1σ2 if x ∈ π1(v)

x otherwise
yρ :=

{

yρ1ρ2 if y ∈ π2(v)

y otherwise

PROOF
First, by Lemma 62 and by Lemma 63, we know that both se1 and se2 are
well-formed and growing.

1. By definition, we have supp(σ) ⊆ π1(v).

2. Similarly, supp(ρ) ⊆ π2(v).

3. Let (b1, b2) ∈ B2. By Lemma 64, we have b1 ∈ n(σ2(π1(B1))). So,
there exists (a1, a2) ∈ B1 such that b1 ∈ n(a1σ2).

By Lemma 64, we have a1 ∈ n(σ1(π1(v))). So, there exists (x, y) ∈ v
such that a1 ∈ n(xσ1).

Then b1 ∈ n(xσ1σ2) = n(xσ).

4. By contradiction, assume that there exists b1 ∈ π1(B2) ∩ (n(π1(h)) \
π1(v)).

By hypothesis, we have b1 6∈ n(π1(h(σ1, ρ1))) or b1 ∈ π1(B1).

If b1 ∈ π1(B1) then b1 6∈ (n(π1(h)) \ π1(v)).
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So necessarily, b1 6∈ n(π1(h(σ1, ρ1))). But since b1 ∈ n(π1(h)) and
b1 6∈ π1(v) and supp(σ1) ⊆ π1(v), we have b1 ∈ n(π1(h(σ1, ρ1))).
This is a contradiction.

So π1(B2) ∩ (n(π1(h)) \ π1(v)) = ∅.

5. Similarly π2(B2) ∩ (n(π2(h)) \ π2(v)) = ∅.

6. We first prove that h(σ1, ρ1)(σ2, ρ2) = h(σ, ρ), i.e. we show that for
every (M,N) ∈ h, (Mσ1σ2,Nρ1ρ2) = (Mσ,Nρ).

Let (M,N) ∈ h. We show that Mσ1σ2 = Mσ.

Let x ∈ n(M). We have x ∈ π1(h). If x ∈ π1(v), then xσ1σ2 = xσ.
Otherwise, if x 6∈ π1(v), thenwe have by hypothesis that x 6∈ π1(B1).
Moreover, since supp(σ1) ⊆ π1(v), we have xσ1 = x. And since
supp(σ2) ⊆ π1(B1), we have xσ2 = x. Thus xσ1σ2 = x = xσ. So for
every name x of M, we have xσ1σ2 = xσ. So a simple induction on
M shows that Mσ1σ2 = Mσ.

Thus h(σ1, ρ1)(σ2, ρ2) = h(σ, ρ).

We write v = {(x1, y1), . . . , (xn, yn)} such that if hi = se|(xi,yi), then
for 1 ≤ i < n, we have hi ⊆ hi+1.

Let 1 ≤ i ≤ n.

We have by hypothesis (xiσ1, yiρ1) ∈ S(I(hi(σ1, ρ1) ∪ B1)).

Let Bi1 :=
{

(b1, b2) ∈ B1 | ∃j ≤ i : b1 ∈ n(xjσ1)∨ b2 ∈ n(yjρ1)
}

. We
have B1 = Bi1 ∪ (B1 \ B

i
1).

Let (b1, b2) ∈ B1 such that b1 ∈ n(π1(hi(σ1, ρ1))). By definition, there
exists (M,N) ∈ hi such that b1 ∈ n(Mσ1). This implies that there
exists j such that xj ∈ n(M) and b1 ∈ n(xjσ1). If j ≥ i, then since se is
growing, we have (M,N) ≺ (xj, yj). But since se is well-formed, we
have xj 6∈ n(M). This is a contradiction. Thus j < i and (b1, b2) ∈ Bi1.

Similarly if (b1, b2) ∈ B1 is such that b2 ∈ n(π2(hi(σ1, ρ1))) then
(b1, b2) ∈ Bi1.

This proves that the useful names of B1 to compute the analysis
A(hi(σ1, ρ1) ∪ B1) are included in Bi1.

In other words, we have just proven that S(I(hi(σ1, ρ1) ∪ B1)) =
S(I(hi(σ1, ρ1) ∪ Bi1) ∪ (B1 \ B

i
1)).

And by definition of Bi1, we have (xiσ1, yiρ1) ∈ S(I(hi(σ1, ρ1) ∪ Bi1))
(i.e. the names of B1 \ Bi1 are irrelevant to synthesise (xσ1, yρ1)).
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Let (b1, b2) ∈ Bi1. We have that (b1σ2, b2σ2) ∈ S(I(se1|(b1,b2)(σ2, ρ2) ∪
B2)).

Let (Mσ1,Nρ1) ∈ se1|(b1,b2) where (M,N) ∈ h. We have b1 ∈ n(xjσ)

or b2 ∈ n(yjσ) for some j ≤ i. So by definition, we have (M,N) ≺
(xj, yj). Since se is growing, we have also (M,N) ≺ (xi, yi). So
(M,N) ∈ se|(xi,yi) = hi.

Thus (b1σ2, b2σ2) ∈ S(A(hi(σ1, ρ1)(σ2, ρ2) ∪ B2)) for every (b1, b2) ∈
Bi1.

So by Lemma 65, we get (Mσ1σ2,Nσ1σ2) ∈ S(A(hi(σ1, ρ1)(σ2, ρ2) ∪
B2)), i.e. (Mσ,Nρ) ∈ S(A(hi(σ, ρ) ∪ B2)).

7. Let x ∈ γl. We have xσ1 ∈ N. If xσ1 ∈ π1(B1), then we have xσ1σ2 =
xσ ∈ N. If xσ1 6∈ π1(B1), then xσ1σ2 = xσ1 ∈ N.

8. Similarly, if y ∈ γr, then yρ ∈ N.

9. We note (h1, B1,≺1, (γ1l ,γ
1
r )) = se1, (h2, B2,≺2, (γ2l ,γ

2
r )) = se2 and

(h′, B2,≺′, (γ′l,γ
′
r)) = seσ,ρ

B2
= se′.

We have h1 = h(σ1, ρ1), h2 = h1(σ2, ρ2) = h(σ1, ρ1)(σ2, ρ2) and h′ =
h(σ, ρ). According to the previous results, we have h2 = h′.

If x2 ∈ γ2l then x2 = x1σ2 for some x1 ∈ γ1l . Since x1 ∈ γ1l , there
exists x ∈ γl such that x1 = xσ1. We have x2 = xσ1σ2 = xσ ∈ σ(γl).
Moreover x2 ∈ π1(B2) so x2 ∈ γ′l.

Conversely, if x2 ∈ γ′l, there is x ∈ γl such that x2 = xσ = xσ1σ2.
Since xσ1σ2 = x ∈ N, we have xσ1 ∈ N. Necessarily, xσ1 ∈ π1(B1)
otherwise xσ1σ2 6∈ π1(B2) which would be a contradiction. So x2 ∈
γ2l .

Hence γ′l = γ2l and γ′r = γ2r .

It remains to show that ≺′=≺2.

Since se is growing, we write v = {(x1, y1), . . . , (xn, yn)} such that if
hi := se|(xi ,yi) we have hi ⊆ hi+1 for 1 ≤ i < n.

Since se1 is growing, we write B1 =
{

(x′1, y
′
1), . . . , (x

′
p, y
′
p)
}

such that

if h′i := se1|(x′i ,y′i) we have h
′
i ⊆ h

′
i+1 for 1 ≤ i < p.

According to proof of Lemma 63, (Mσ1σ2,Nρ1ρ2) ≺2 (x′′, y′′) if and
only if (Mσ1,Nρ1) ≺1 (x′i , y

′
i) where i is the minimal index such that

x′′ ∈ n(x′iσ2) or y
′′ ∈ n(y′iρ2) (where (M,N) ∈ h and (x′′, y′′) ∈ B2.
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Similarly, (Mσ,Nρ) ≺′ (x′′, y′′) if and only if (M,N) ≺ (xi, yi)where
i is the minimal index such that x′′ ∈ n(xiσ) or y′′ ∈ n(yiρ) (where
(M,N) ∈ h and (x′′, y′′) ∈ B2.

Assume that (Mσ,Nρ) ≺′ (x′′, y′′). Let i minimal such that x′′ ∈
n(x′iσ2) or y

′′ ∈ n(y′iρ2). According to proof of Lemma 64, we have
that x′′ ∈ n(x′iσ2) and y

′′ ∈ n(y′iρ2) (because the S-environments are
well-formed and growing). Now let jminimal such that x′i ∈ n(xjσ1)
or y′i ∈ n(yjρ1). Similarly, we have that x

′
i ∈ n(xjσ1) and y

′
i ∈ n(yjρ1).

So x′′ ∈ n(xjσ) and y′′ ∈ n(yjρ). So we have (M,N) ≺ (xj, yj). Thus
(Mσ1,Nρ1) ≺1 (x′i , y

′
i) and finally (Mσ1σ2,Nρ1ρ2) ≺2 (x′′, y′′), i.e.

(Mσ,Nρ) ≺2 (x′′, y′′). We conclude that ≺′⊆≺2.

Assume now that (Mσ1σ2,Nρ1ρ2) ≺2 (x′′, y′′). Let i minimal such
that x′′ ∈ n(xiσ) or y′′ ∈ n(yiρ). We have x′′ ∈ n(xiσ) and y′′ ∈
n(yiρ). Necessarily, there is j such that x′j ∈ n(xiσ1) and x

′′ ∈ n(x′jσ2).
We then have (Mσ1,Nρ1) ≺1 (x′j, y

′
j). Hence (M,N) ≺ (xi, yi). So

(Mσ,Nρ) ≺′ (x′′, y′′). We conclude that ≺2⊆≺′.

Finally, we have shown that se′ = se2.

Finally, as for hedges, a notion of consistency for S-environments is
needed: under every possible substitution, the attacker is unable to get a
contradiction from its updated knowledge.

Definition 76 (consistency).
A S-environment se is consistent if it is well-formed, growing and for all
σ, ρ and B such that (σ, ρ) ⊲B se, we have

1. I(h′ ∪ v′) = I(H(se(σ,ρ)
B )) is a consistent hedge

2. ∀(x, y) ∈ v′ : x ∈ γ′l ⇐⇒ y ∈ γ′r

where (h′, v′,≺′, (γ′l ,γ
′
r)) = se(σ,ρ)

B .

For well-formed and growing S-environments, this can be slightly sim-
plified according to the following lemma.

Lemma 66 (consistency of well-formed and growing S-environments):
Let se = (h, v,≺, (γl ,γr)) be a S-environment. Then se is consistent if
and only if it is well-formed, growing and for all σ, ρ and B such that
(σ, ρ) ⊲B se, we have

1. I(h(σ, ρ) ∪ B) is a consistent hedge
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2. ∀(x, y) ∈ v : x ∈ γl ⇐⇒ y ∈ γr

PROOF
⇒ Trivial.

⇐ Let σ, ρ and B such that (σ, ρ) ⊲B se. Let (h′, v′,≺′, (γ′l ,γ
′
r)) = se(σ,ρ)

B .

By definition, h′ = h((σ, ρ)) and v′ = B. So I(h′ ∪ v′) is consistent.

Let (x′, y′) ∈ v′ = B. Assume that x′ ∈ γ′l. Since γ′l = σ(γl) ∩ π1(B),
there exists x ∈ γl such that x′ = xσ. Since x ∈ γl ⊆ π1(v), there is y
such that (x, y) ∈ v.

By hypothesis, we have (xσ, yρ) ∈ S(I(se|(x,y)((σ, ρ)) ∪ B)). Since
se|(x,y) ⊆ h, we have by Lemma 49 that (xσ, yρ) ∈ S(I(h((σ, ρ)) ∪

B)).

Since xσ = x′ ∈ N, we have (xσ, yρ) ∈ I(h((σ, ρ)) ∪ B). Since
I(h((σ, ρ)) ∪ B) is consistent and (x′, y′) ∈ B and xσ = x′, we have
yρ = y′. Moreover, since (x, y) ∈ v and x ∈ γl, we have y ∈ γr. Thus
y′ ∈ γ′r.

By symmetry, if y′ ∈ γ′r then x
′ ∈ γ′l.

So se is consistent.

5.2.2 Open hedged bisimulation

An open hedged relationR is a subset of SH×P×P such that for (se, P,Q) ∈
R, we have fn(P) ⊆ n(π1(H(se))) and fn(Q) ⊆ n(π2(H(se))). It is con-
sistent if, for every (se, P,Q) ∈ R, se is consistent. It is symmetric if for
every (se, P,Q) ∈ R we have (se−1,Q, P) ∈ R.

Definition 77 (open hedged bisimulation).
A symmetric consistent open hedged relation R is an open hedged bisimu-
lation if for all (se, P,Q) ∈ R, for all σ, ρ and B such that (σ, ρ) ⊲B se,

1. if Pσ
τ
−֒→
S1
P′ then

there exist Q′ and S2 such that Qρ
τ
−֒→
S2
Q′

and (se(σ,ρ)
B +c(S1, S2), P′,Q′) ∈ R
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2. if Pσ
a
−֒→
S1

(x)P′ (with x 6∈ n(π1(H(se(σ,ρ)
B ))))

and (a, b) ∈ S(I(H(se(σ,ρ)
B ))) then

there exist y, Q′ and S2 such that Qρ
b
−֒→
S2

(y)Q′

(with y 6∈ n(π2(H(se(σ,ρ)
B ))))

and (se(σ,ρ)
B +i(x, y) +c(S1, S2), P′,Q′) ∈ R

3. if Pσ
a
−֒→
S1

(νc̃) 〈M〉P′ (with {c̃} ∩ n(π1(H(se(σ,ρ)
B ))) = ∅)

and (a, b) ∈ S(I(H(se(σ,ρ)
B ))) then

there exist d̃, N, Q′ and S2 such that Qρ
b
−֒→
S2

(νd̃) 〈N〉Q′

(with
{

d̃
}

∩ n(π2(H(se(σ,ρ)
B ))) = ∅)

and (se(σ,ρ)
B +o(M,N) +c(S1, S2), P′,Q′) ∈ R

In any case, names used as channels (collected in S1, S2) are added to
the environment’s γl and γr. On inputs (clause 2), input names are added
to the environment’s v. On outputs (clause 3), messages are added to the
environment’s h.
Let se ∈ SH and P,Q ∈ P. We say that P and Q are open hedged bisimilar

under se—written P ∼̇se
OH Q— if there exists an open hedged bisimulation

R such that (se, P,Q) ∈ R.

5.2.3 Soundness of open hedged bisimulation

We are going to show that open hedged bisimulation is sound w.r.t. late
hedged bisimulation. Before proving this theorem, we show some auxil-
iary results.
Recall that ǫ denotes the substitution with an empty support.

Lemma 67:
Let se = (h, v,≺, (γl ,γr)) be a S-environment.

Then (ǫ, ǫ) ⊲v se and se(ǫ,ǫ)
v = se. �

Lemma 68:
Let se = (h, v∪{(x, y)} ,≺, (γl,γr)) be a well-formed S-environment such
that (x, y) 6∈ v, x 6∈ γl, y 6∈ γr and such that for all (M,N) ∈ h, we have
(M,N) ≺ (x, y).
Let M,N and B such that I(h ∪ v) ⊢B (M,N).

Then ({M/x}, {N/y}) ⊲B∪v se and I(H(se
({M/x},{N/y})
B∪v )) = I(h ∪ v) ∪ B.
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PROOF
1. Obviously supp({M/x}) ⊆ π1(v ∪ {(x, y)}).

2. Similarly, supp({N/y}) ⊆ π2(v ∪ {(x, y)}).

3. Let (b1, b2) ∈ B ∪ v.

If (b1, b2) ∈ v then b1 ∈ n({M/x}(π1(v))) = n(π1(v)) ⊆ n(π1(v ∪
{(x, y)})).

Otherwise, if (b1, b2) ∈ B, then we have by hypothesis b1 ∈ n(M)
and b2 ∈ n(N). So b1 ∈ n({M/x}(π1(v ∪ {(x, y)}))) = n(M) ∪
n(π1(v)).

4. By hypothesis, π1(B)∩n(π1(h∪ v)) = ∅. So π1(v∪ B)∩ (n(π1(h)) \
π1(v ∪ {(x, y)})) = ∅.

5. Similarly π2(v ∪ B) ∩ (n(π2(h)) \ π2(v ∪ {(x, y)})) = ∅.

6. Let (x′, y′) ∈ v ∪ {(x, y)}.

If (x′, y′) ∈ v then x′{M/x} = x′ and y′{N/y} = y′. Hence the condi-
tion on (x′{M/x}, y′{N/y}) is clearly satisfied.

Or (x′, y′) = (x, y). Then se|(x,y) = h. Since se is well-formed, we
have (*) h(({M/x}, {N/y})) = h. And by hypothesis, (M,N) ∈ S(h ∪
v ∪ B).

7. Since x 6∈ γl, {M/x} satisfies the condition for γl.

8. Similarly for {N/y} and γr.
Finally, ({M/x}, {N/y}) ⊲B∪v se.

Moreover, we have H(se
({M/x},{N/y})
B∪v ) = h ∪ B ∪ v because (*) holds.

So I(H(se
({M/x},{N/y})
B∪v )) = I(h ∪ v ∪ B).

By Theorem 7, I(h ∪ v ∪ B) = I(I(h ∪ v)∪ B). And since B is a consis-
tent hedge of fresh names, we have I(I(h ∪ v) ∪ B) = I(h ∪ v) ∪ B.

We can now show the soundness theorem. The following theorem thus
states that open hedged bisimulation is a sound proof technique for show-
ing that two processes are late hedged bisimilar.

Theorem 12:
Assume that P ∼̇se

OH Q and let σ, ρ and B such that (σ, ρ) ⊲B se.

Then Pσ ∼̇
I(H(se(σ,ρ)

B ))
LH Qρ.
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PROOF
LetR an open hedged bisimulation such that (se, P,Q) ∈ R.

DefineR′ =
{

(I(H(se(σ,ρ)
B )), Pσ,Qρ) | (se, P,Q) ∈ R∧ (σ, ρ) ⊲B se

}

ThenR′ is a late hedged bisimulation.
First R′ is clearly a symmetric consistent hedged relation becauseR is

a symmetric open hedged relation.

Let (I(H(se(σ,ρ)
B )), Pσ,Qρ) ∈ R′ with (se, P,Q) ∈ R and (σ, ρ) ⊲B se.

Assume that Pσ
τ
−→ P′. Then there exists S1 such that Pσ

τ
−֒→
S1
P′. So

there exist S2 and Q′ such that Qρ
τ
−֒→
S2
Q′ and (se(σ,ρ)

B +c(S1, S2), P′,Q′) ∈

R. Thus, by Lemma 67, we get that (I(H(se(σ,ρ)
B )), P′,Q′) ∈ R′ and we

have Qρ
τ
−→ Q′.

Assume that Pσ
a
−→ (x)P′ with x 6∈ n(π1(I(H(se(σ,ρ)

B )))) and that

(a, b) ∈ S(I(H(se(σ,ρ)
B ))). Then there exists S1 such that Pσ

a
−֒→
S1

(x)P′.

Since x 6∈ n(π1(I(H(se(σ,ρ)
B )))), we have x 6∈ n(π1(H(se(σ,ρ)

B ))). So there

exist y, Q′ and S2 such that Qρ
b
−֒→
S2

(y)Q′ with y 6∈ n(π2(H(se(σ,ρ)
B )))

and (se(σ,ρ)
B +i(x, y) +c(S1, S2), P′,Q′) ∈ R. So Qρ

b
−→ (y)Q′ with y 6∈

n(π2(I(H(se(σ,ρ)
B )))).

Let M,N and B′ such that I(H(se(σ,ρ)
B )) ⊢B′ (M,N).

We apply Lemma 68 with se(σ,ρ)
B +i(x, y) +c(S1, S2), (x, y), M, N and

B′. Note that by definition the pair (x, y) satisfies the required condition

and that H(se(σ,ρ)
B ) plays the role of h ∪ v.

Thus (I(H(se(σ,ρ)
B )) ∪ B′, P′{M/x},Q′{N/x}) ∈ R′.

Assume that Pσ
a
−→ (νc̃) 〈M〉P′ with {c̃} ∩ n(π1(I(H(se(σ,ρ)

B )))) = ∅

and that (a, b) ∈ S(I(H(se(σ,ρ)
B ))). Then there exists S1 such that Pσ

a
−֒→
S1

(νc̃) 〈M〉P′ . Since {c̃} ∩ n(π1(I(H(se(σ,ρ)
B )))) = ∅, we also have that

{c̃} ∩ n(π1(H(se(σ,ρ)
B ))) = ∅. So there exist d̃, N, Q′ and S2 such that

Qρ
b
−֒→
S2

(νd̃) 〈N〉Q′ with
{

d̃
}

∩ n(π2(H(se(σ,ρ)
B ))) = ∅ and we have that

(se(σ,ρ)
B +o(M,N) +c(S1, S2), P′,Q′) ∈ R.

So Qρ
b
−→ (νd̃) 〈N〉Q′ with

{

d̃
}

∩ n(π2(I(H(se(σ,ρ)
B )))) = ∅. And by

Lemma 67, we have (I(H(se(σ,ρ)
B ) ∪ {(M,N)}), P′,Q′) ∈ R′.
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So (I(I(H(se(σ,ρ)
B )) ∪ {(M,N)}), P′,Q′) ∈ R′ thanks to Theorem 7.

HenceR′ is a late hedged bisimulation.

5.3 Up to techniques

Up to techniques [128] are powerful proof techniques for showing bisimi-
larity results. These techniques have first been adapted to the spi calculus
in [36]. They rely on the notion of progress.

Definition 78 (progress).
LetR andR′ be two symmetric consistent open hedged relations. We say
that R progresses to R′, and write R  R′, if for all (se, P,Q) ∈ R, for all
σ, ρ and B such that (σ, ρ) ⊲B se,

1. if Pσ
τ
−֒→
S1
P′ then

there exist Q′ and S2 such that Qρ
τ
−֒→
S2
Q′

and (se(σ,ρ)
B +c(S1, S2), P′,Q′) ∈ R′

2. if Pσ
a
−֒→
S1

(x)P′ (with x 6∈ n(π1(H(se(σ,ρ)
B ))))

and (a, b) ∈ S(I(H(se(σ,ρ)
B ))) then

there exist y, Q′ and S2 such that Qρ
b
−֒→
S2

(y)Q′

(with y 6∈ n(π2(H(se(σ,ρ)
B ))))

and (se(σ,ρ)
B +i(x, y) +c(S1, S2), P′,Q′) ∈ R′

3. if Pσ
a
−֒→
S1

(νc̃) 〈M〉P′ (with {c̃} ∩ n(π1(H(se(σ,ρ)
B ))) = ∅)

and (a, b) ∈ S(I(H(se(σ,ρ)
B ))) then

there exist d̃, N, Q′ and S2 such that Qρ
b
−֒→
S2

(νd̃) 〈N〉Q′

(with
{

d̃
}

∩ n(π2(H(se(σ,ρ)
B ))) = ∅)

and (se(σ,ρ)
B +o(M,N) +c(S1, S2), P′,Q′) ∈ R′

Clearly,R is an open hedged bisimulation if and only if R R.

Moreover, it is obvious that ifR R′ andR′ ⊆ R′′ thenR R′′.
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Given a function F on open hedged relations, we say thatR is an open
hedged bisimulation up to F ifR F(R).
We say that an open hedged relation R is sound if there exists an open

hedged bisimulation that contains R. Observe then that ifR is sound, we
have for any (se, P,Q) ∈ R that P ∼̇se

OH Q.

Definition 79 (safeness).
A function F is safe if, for anyR,R F(R) implies thatR is sound.

Definition 80 (respectfulness).
A function F is respectful if whenever R ⊆ R′ and R  R′ holds then
F(R) ⊆ F(R′) and F(R) F(R′) also holds.

It is possible to adapt to our setting the following lemma taken from
[128, 129].

Lemma 69:
If F is respectful andR F(R) thenR and F(R) are sound. �

Hence respectful functions are safe.
Thus, if F is respectful, R  R (i.e. R is a bisimulation) and R ⊆ F(R)
then F(R) is sound.

5.3.1 Up to structural congruence

R is an open hedged bisimulation up to structural congruence if it is an
open hedged bisimulation up to F≡ where

F≡(R) :=
{

(se, P′,Q′) |
{

(se, P,Q) ∈ R
P ≡ P′ and Q ≡ Q′

}

Lemma 70:
1. forall R,R ⊆ F≡(R)

2. F≡ is respectful.

PROOF
1. Trivial.

2. Straightforward since structural congruence preserves one-step tran-
sitions. Note also that if P ≡ P′, we have fn(P) = fn(P′) and thus
F≡(R) is an open hedged relation ifR is one.
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5.3.2 Up to bijective renamings

Definition 81 (renaming of a S-environment).
Given a S-environment se = (h, v,≺, (γl ,γr)) and two bijective renamings
θ1 and θ2, we define

se(θ1, θ2) := (h(θ1, θ2), v(θ1, θ2),≺′, (γlθ1,γrθ2))

where ≺′ is defined by

(Mθ1,Nθ2) ≺
′ (xθ1, yθ2) ⇐⇒ (M,N) ≺ (x, y)

Clearly well-formedness, growth and consistency of S-environments
are preserved by renamings.
R is an open hedged bisimulation up to bijective renamings if it is an

open hedged bisimulation up to Fi where

Fi(R) :=







(se(θ1, θ2), Pθ1,Qθ2) |







(se, P,Q) ∈ R
θ1 is a bijective renaming
θ2 is a bijective renaming







Lemma 71:
1. forallR,R ⊆ Fi(R).

2. Fi is respectful.

PROOF
1. Trivial.

2. Straightforward since bijective renamings preserves one-step tran-
sitions and since if se = (h, v,≺, (γl ,γr)) and θ1, θ2 are bijective re-
namings we have that if (σ, ρ) ⊲B se(θ1, θ2) then (σ′, ρ′) ⊲B(θ−11 ,θ

−1
2 ) se

where

xσ′ =

{

xθ1σθ−11 if x ∈ π1(v)

x otherwise
and yρ′ =

{

yθ2ρθ−12 if y ∈ π2(v)

y otherwise

and then θ1σ = σ′θ1 and θ2ρ = ρ′θ2.
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5.3.3 Up to respectful substitutions

R is an open hedged bisimulation up to respectful substitutions if it is an
open hedged bisimulation up to Fs where

Fs(R) :=
{

(se(σ,ρ)
B , Pσ,Qρ) |

{

(se, P,Q) ∈ R
(σ, ρ) ⊲B se

}

Lemma 72:
1. forall R,R ⊆ Fs(R).

2. Fs is respectful.

PROOF
1. Trivial.

2. This follows from the fact that composition of respectful substitu-
tions yield respectful substitutions (see Theorem 11).

5.3.4 Open hedged bisimulation is an extension of K-open
bisimulation

As a direct application of up to techniques presented above, we shall show
that open hedged bisimulation is an extension of K-open bisimulation.
This answers the question: assume that P,Q ∈ P are pi calculus processes
that are open hedged bisimilar, are they also K-open bisimilar? The an-
swer is yes with some conditions that we detail now.

Definition 82.
Let pe = (O,V,≺) be a K-environment. It induces the following set of
S-environments.

〈pe〉 =
{

(h, v,≺′, (γ,γ)) | γ ⊆ V
}

where

h := {(n, n) | n ∈ O}
v := {(x, x) | x ∈ V}

≺′ := {((n, n), (x, x)) | (n, x) ∈≺}

Clearly, every member of 〈pe〉 is a S-environment. The next lemma
studies the well-formedness and growth of induced S-environments.
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Lemma 73:
Let pe be a K-environment. Let se ∈ 〈pe〉.

1. Then se is well-formed.

2. Moreover, pe is growing iff se is growing.

PROOF
Let (O,V,≺) = pe and (h, v,≺′, (γ,γ)) = se.

1. Since by hypothesis O ∩V = ∅.

2. Trivial.

A substitution that respects a K-environment induces a pair of substitu-
tions that respect any induced S-environments, as stated by the following
lemma.

Lemma 74:
Let pe be a K-environment. Let se ∈ 〈pe〉.
Let σ a substitution such that σ ◮◮ pe.
Then (σ, σ) ⊲B sewhere

B :=
{

(b, b) | b ∈ V ′
}

V ′ := (V \ supp(σ)) ∪ {xσ | x ∈ supp(σ) ∧ xσ 6∈ O}

Moreover se(σ,σ)
B ∈ 〈peσ〉.

PROOF
By hypothesis σ maps names to names, i.e. σ : N → N.
Let (O,V,≺) = pe and (h, v,≺′, (γ,γ)) = se.

1. By hypothesis, we have supp(σ) ⊆ V, so since π1 (v) = V, we have
supp(σ) ⊆ π1 (v).

2. Similarly, supp(σ) ⊆ π2 (v).

3. Let (b, b) ∈ B, i.e. let b ∈ V ′.

If b ∈ V \ supp(σ) then b ∈ V and bσ = b. Thus b ∈ n(σ(V)).

Otherwise, if b ∈ {xσ | x ∈ supp(σ) ∧ xσ 6∈ O}. Then clearly b ∈
n(σ(V)).

Thus, in both cases, we have b ∈ n(σ(π1 (v)))
(and also b ∈ n(σ(π2 (v)))).
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4. By contradiction, assume that π1 (B) ∩ (n(π1 (h)) \ π1 (v)) 6= ∅.

There exists b ∈ V ′ such that b ∈ O and b 6∈ V.

Since b ∈ V ′, we have two cases:

• b ∈ V \ supp(σ). This case is impossible since b 6∈ V.

• b ∈ {xσ | x ∈ supp(σ) ∧ xσ 6∈ O}. Then b = xσ 6∈ O. Contra-
diction.

Thus π1 (B) ∩ (n(π1 (h)) \ π1 (v)) = ∅.

5. Similarly π2 (B) ∩ (n(π2 (h)) \ π2 (v)) = ∅.

6. Let (x, x) ∈ v, i.e. let x ∈ V.

Clearly h(σ, σ) = h.

By hypothesis, we have that if xσ ∈ O then xσ ≺ x.

Otherwise, if xσ 6∈ O then xσ ∈ V ′.

Thus (xσ, xσ) ∈ S(I(se|(x,x)(σ, σ) ∪ B)).

7. Let x ∈ γ. Then since σ : N → N, we have xσ ∈ N.

8. Idem.

Hence (σ, σ) ⊲B se.

By definition, se(σ,σ)
B = (h′, B,≺2, (γ′l ,γ

′
r)) where

h′ := h(σ, σ) = h

γ′l := σ(γ) ∩ π1 (B) = σ(γ) ∩V ′ = γ′ ⊆ V ′

γ′r := σ(γ) ∩ π2 (B) = σ(γ) ∩V ′ = γ′

And ≺2 is defined for (n, n) ∈ h and (x′, x′) ∈ B by

(nσ, nσ) ≺2 (x′, x′) ⇐⇒
∧

x ∈ V
x′ ∈ n(xσ)

(M,M) ≺′ (x, x)

⇐⇒
∧

x ∈ V
x′ ∈ n(xσ)

n ≺ x

i.e. since nσ = n, we have

(n, n) ≺2 (x′, x′) ⇐⇒ ∀x ∈ V : x′ ∈ n(xσ) =⇒ n ≺ x

Hence se(σ,σ)
B ∈ 〈peσ〉.
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The following proposition states that open hedged bisimulation is an
extension of K-open bisimulation.

Proposition 4:
Let P,Q ∈ P two pi calculus processes such that P ∼̇se

OH Q.
If se ∈ 〈pe〉 for some K-environment pe then P ∼pe

K Q.

PROOF (SKETCH)
We define

R :=







(pe, P,Q) |







P ∼̇se
OH Q

P,Q are pi calculus processes
se ∈ 〈pe〉







We show thatR is a K-open bisimulation.
By Lemma 73,R is clearly a symmetric K-relation.
Let (pe, P,Q) ∈ R and σ such that σ ◮◮ pe.
By hypothesis, we have P ∼̇se

OH Q for some se ∈ 〈pe〉.

By Lemma 74, we have (σ, σ) ⊲B se for some B such that se(σ,σ)
B ∈

〈peσ〉.

Assume that Pσ
µ
−→ P′. with bn(µ) ∩ (n(pe) ∪ n(σ)) = ∅.

• if µ = τ. Then Pσ
τ
−֒→
S1
P′.

Since P ∼̇se
OH Q, we have Qσ

τ
−֒→
S2
Q′ and P′ ∼̇se′

OH Q
′ where se′ :=

se(σ,σ)
B +c(S1, S2).

Thus Qσ
τ
−→ Q′.

Moreover, since se′ is consistent, we clearly have that se′ ∈ 〈peσ〉.

So (peσ, P′,Q′) ∈ R.

• if µ = a(x). Then Pσ
a
−֒→
S1

(x)P′.

Clearly, we have x 6∈ n(π1(H(se(σ,σ)
B )))

and (a, a) ∈ S(I(H(se(σ,σ)
B ))).

Since P ∼̇se
OH Q, we have Qσ

a
−֒→
S2

(y)Q′ with P′ ∼̇se′
OH Q

′ where se′ :=

se(σ,σ)
B +i(x, y) +c(S1, S2).
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Since open hedged bisimilarity is preserved by bijective renamings,
we also have that P′ ∼̇se′′

OH Q
′{x/y} where

se′′ := se(σ,σ)
B +i(x, x) +c(S1, S2{x/y}).

So se′′ ∈ 〈peσ +i x〉.

Moreover Qσ
a(x)
−−→ Q′{x/y}.

So (peσ +i x, P′,Q′) ∈ R.

• if µ = a νz or µ = a z.

Similarly, we simulate the transition thanks to the hypothesis P ∼̇se
OH

Q and we use the fact that open hedged bisimilarity is preserved by
bijective renamings to have exactly the same transitions. Note that
since P and Q are pi calculus processes, there is exactly one extruded
name on bound output transitions.

We conjectured in [50] that a converse result was true, i.e. if P ∼pe
K Q

(in the pi calculus) then there is se ∈ 〈pe〉 such that P ∼̇se
OH Q.

Unfortunately, this converse result does not hold because we based our
conjecture on a result of [86], which afterwards appeared to be not exactly
what was stated in the article.
Roughly speaking, [86] explains that for deciding framed bisimilarity

in the spi calculus, it is sufficient to inspect on input clauses all the mes-
sages that are not deeper than a certain critical depth. For pi calculus pro-
cesses and induced environments, the critical depth would be 0.
Unfortunately, this result is wrong. For instance consider the expan-

sion law of the pi calculus. It is true that P ∼l Q (in the pi calculus) where

P := a(x).(x(z). 0 | x〈z〉. 0)
Q := a(x).(x(z).x〈z〉. 0+x〈z〉.x(z). 0+τ. 0

However, in spi calculus, these two processes are not bisimilar because
after the first input transition, depending on the message substituted for
the variable x, the process P may be stuck and thus unable to perform
a silent transition whereas Q will in any case be able to perform a silent
transition.
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5.4 Symbolic Characterisation

The purpose of the symbolic characterisation is to bring the definition of
open hedged bisimulation closer to an implementation. It relies on a sym-
bolic transition system similar to the one of [39] that permits to charac-
terise more precisely the pairs of respectful substitutions that are to be
examined.
For the full spi calculus, where complex messages including keys and

channel names pose new challenges, the only other symbolic semantics
that we are aware of was proposed by Durante et al. [69]. However, it is
rather complicated, mainly since it is tailored to capture trace semantics
and thus not easily reusable for working with bisimulation techniques.

5.4.1 Symbolic transition system

The idea behind the symbolic semantics is to record —without checking—
conditions needed to derive a transition. Restrictions are still handled by
side conditions in derivation rules. Every other constraint is simply col-
lected in transition constraints (or in short constraints).

Definition 83 (constraint).
A constraint c has the form (νz̃) Φ where Φ is a finite set of guards and z̃
is a finite set of (restricted) names that occur in Φ, i.e. {z̃} ⊆ n(Φ). When
z̃ is empty, we simply write Φ instead of (ν∅) Φ.
The bound names and the free names of a constraint are defined by:

bn((νz̃) Φ) := {z̃}
fn((νz̃) Φ) := n(Φ) \ {z̃}

We extend the notion of α-equivalence to constraints and will identify
α-equivalent constraints.
Substitutions σ are applied to constraints as follows:

((νz̃) Φ)σ := (νz̃) (Φσ) if n(σ) ∩ {z̃} = ∅

To simplify the presentation of the symbolic semantics, we define sev-
eral operations on constraints.

Definition 84 (operations on constraints).
If c1 = (νz̃1) Φ1 and c2 = (νz̃2) Φ2 and {z̃1} ∩ {z̃2} = ∅, we define the
conjunction of c1 and c2 as follows:

c1 & c2 := (νz̃1 z̃2) (Φ1 ∪Φ2) if {z̃1} ∩ fn(c2) = {z̃2} ∩ fn(c1) = ∅
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If c = (νz̃) Φ and x 6∈ {z̃}, we define the restriction as follows:

ν+(x, c) := (νxz̃) Φ if x ∈ fn(c)
:= c otherwise

Note that due to our conventions, the operation & is associative and com-
mutative.
Note that we also have (c1 & c2)σ = c1σ & c2σ and if x 6∈ n(σ),

(ν+(x, c))σ = ν+(x, cσ).
The symbolic semantics relates processes with symbolic agents. Sym-

bolic agents are simply a generalisation of agents where concretions are
now of the form C = (νz̃) 〈E〉P where E is an arbitrary expression and z̃ is
a finite set of names such that {z̃} ⊆ n(E).
In order to deal with symbolic agents, we extend the notion of substi-

tution to finite maps from names to expressions. We extend the notion of
support, co-support and names of substitutions to this more general no-
tion of substitution. We also extend the manner a substitution is applied
to terms (messages, expressions, guards, processes, symbolic agents, ...).
Finally, we extend straightforwardly the definition of pseudo-application
to deal with symbolic agents and the composition of symbolic agents with
processes.
The abstract evaluation ea(E) of an expression is the symbolic counter-

part of concrete evaluation. Intuitively, it can be seen as the reduction of
E without checking that encryption and decryption keys correspond and
thus it never fails. It is defined in Table 5.1.

Example 17
Consider E := DecslEncskπ1 (a) then ea(E) = π1 (a). ∗

Concrete evaluation and abstract evaluation coincide on expressions
whose concrete evaluation succeeds.

Lemma 75:
Let E ∈ E. If ec(E) = M ∈ M then ea(E) = ec(E).

PROOF
By induction on E.

However, the converse result is false: it is not true that if ea(E) = M ∈
M then ec(E) ∈ M. Indeed, think about E = DecscEncsba. Then ea(E) = a ∈
M whereas ec(E) = ⊥.

Symbolic late transitions take the form of P
µ
7−→
c
A where P is a pro-

cess, µ is a symbolic action, c is a constraint and A is a symbolic agent. A
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ea(a) := a if a ∈ N
ea(EncsFE) := Encsea(F)

ea(E)

ea(EncaFE) := Encaea(F)
ea(E)

ea((E . F)) := (ea(E) . ea(F))
ea(op(E)) := op(ea(E)) op ∈ {pub, priv,H}
ea(DecsFE) := E1 if ea(E) = EncsE2E1

Decsea(F)
ea(E) otherwise

ea(DecaFE) := E1 if ea(E) = EncaE2E1
Decaea(F)

ea(E) otherwise
ea(π1 (E)) := E1 if ea(E) = (E1 . E2)

π1 (ea(E)) otherwise
ea(π2 (E)) := E2 if ea(E) = (E1 . E2)

π2 (ea(E)) otherwise

Table 5.1: Abstract evaluation of expressions

symbolic action is the silent action τ or a symbolic barb. A symbolic barb is
either an expression E (representing input) or a co-expression E (represent-
ing output). The names n(µ) of an action are defined by n(τ) = ∅ and
n(E) = n(E) = n(E).

Definition 85.
The symbolic semantics of the spi calculus is given by the derivation rules
of Table 5.2 enriched by the symmetric variants of S-CLOSE-L and S-PAR-
L.

Example 18
Consider the process P := (νk) (π1 (a) (x).c〈x〉. 0 | b〈DecskEncslπ1 (m)〉. 0)
The following symbolic transitions can be derived.

P
π1(a)

7−−−−−−−→
{[π1(a) :N ]}

(x)((νk) (c〈x〉. 0 | b〈DecskEncslπ1 (m)〉. 0)

P
b

7−−−−−−−−−−−−−−−−−−−→
(νk){[b :N ],[DecskEncslπ1(m) :M ]}

〈π1 (m)〉((νk) (π1 (a) (x).c〈x〉. 0 | 0))

P
τ

7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(νk){[π1(a) :N ],[b :N ],[DecskEncslπ1(m) :M ],[π1(a)= b ]}

(νk) c〈π1 (m)〉. 0 ∗



5.4. SYMBOLIC CHARACTERISATION 149

S-SILENT
τ.P τ
7−→
∅
P

S-INPUT
E(x).P

ea(E)
7−−−−→
{[E :N ]}

(x)P

S-OUTPUT

E〈F〉.P
ea(E)

7−−−−−−−−→
{[E :N ],[F :M ]}

〈ea(F)〉P

S-CLOSE-L
P
E
7−→
c1
F Q

E′
7−→
c2
C

P |Q
τ

7−−−−−−−−−→
{[E=E′ ]}&c1&c2

F • C

S-RES
P

µ
7−→
c
A

(νz) P
µ

7−−−→
ν+(z,c)

(νννz) A
z 6∈ n(µ) S-GUARD

P
µ
7−→
c
A

φP
µ

7−−−→
c&{φ}

A

S-PAR-L
P

µ
7−→
c
A

P |Q
µ
7−→
c
A |Q

S-SUM-L
P

µ
7−→
c
A

P+Q
µ
7−→
c
A

S-REP-ACT
P

µ
7−→
c
A

! P
µ
7−→
c
A | ! P

S-REP-CLOSE
P
E
7−→
c1
F P

E′
7−→
c2
C

! P τ
7−−−−−−−−−→
{[E=E′ ]}&c1&c2

(F • C) | ! P

S-ALPHA
P =α Q c =α c

′ Q
µ
7−→
c′
B B =α A

P
µ
7−→
c
A

Table 5.2: The symbolic semantics of the spi calculus
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5.4.2 Properties of the symbolic transition system

We now study the link between the symbolic transition system and the
transition system with constraints. The basic idea is that the constraints
derived by the symbolic transition system characterise precisely the sub-
stitutions σ : N → M such that Pσ is able to perform a concrete action.
We extend the definition of concrete evaluation to symbolic actions ac-

cording to Table 5.3.

ec(τ) := τ
ec(E) := a if ec(E) = a ∈ N

:= ⊥ otherwise
ec(E) := a if ec(E) = a ∈ N

:= ⊥ otherwise

Table 5.3: Evaluation of symbolic actions

We extend the definition of evaluation to constraints according to Ta-
ble 5.4.

e((νz̃Φ) ) := true if ∀φ ∈ Φ : e(φ) = true
:= false otherwise

Table 5.4: Evaluation of constraints

We extend the definition of nc(·) to constraints according to Table 5.5.

nc((νz̃Φ) ) :=

(

⋃

φ∈Φ

nc(φ)

)

\ {z̃}

Table 5.5: Type constraints of constraints

If σ : N → M is a substitution and c = (νz̃) Φ is a constraint, we say
that σ satisfies c if e(cσ) = true.
To relate the symbolic transition systemwith the concrete one, we need

to define an auxiliary relation between agents.

Definition 86 (>o for expressions).
We let >o be the smallest reflexive and transitive relation on expressions
that satisfies:
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1. π1 ((E1 . E2)) >o E1 if ec(E2) 6= ⊥

2. π2 ((E1 . E2)) >o E2 if ec(E1) 6= ⊥

3. DecsE2EncsE2E1 >o E1 if ec(E2) 6= ⊥

4. Deca
priv(E2)

Enca
pub(E2)

E1 >o E1 if ec(E2) 6= ⊥

5. Deca
pub(E2)

Enca
priv(E2)

E1 >o E1 if ec(E2) 6= ⊥

6. EncsE2E1 >o EncsF2F1 if E1 >o F1 and E2 >o F2

7. DecsE2E1 >o DecsF2F1 if E1 >o F1 and E2 >o F2

8. EncaE2E1 >o EncaF2F1 if E1 >o F1 and E2 >o F2

9. DecaE2E1 >o DecaF2F1 if E1 >o F1 and E2 >o F2

10. (E1 . E2) >o (F1 . F2) if E1 >o F1 and E2 >o F2

11. π1 (E) >o π1 (F) if E >o F

12. π2 (E) >o π2 (F) if E >o F

13. op(E) >o op(F) if E >o F and op ∈ {pub, priv,H}

In other words, >o is the smallest precongruence on expressions that sat-
isfies the axioms 1-5.

Lemma 76:
Let E ∈ E. If ec(E) = M ∈ M, then E >o M. �

Lemma 77:
Let E, F ∈ E and assume that E >o F. Let M ∈ M. Then

ec(E) = M ⇐⇒ ec(F) = M �

Lemma 78:
Let E, F ∈ E and σ : N → M a substitution. Assume that E >o F. Then
Eσ >o Fσ. �

We extend the relation >o to guards and processes.

Definition 87 (>o for guards and processes).
We let >o be the smallest relation on guards such that
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1. [E :N ] >o [F :N ] if E >o F

2. [E1=E2 ] >o [F1=F2 ] if E1 >o F1 and E2 >o F2

We let >o be the smallest relation on guards such that

1. 0 >o 0

2. E(x).P >o F(x).Q if E >o F and P >o Q

3. E1〈E2〉.P >o F1〈F2〉.Q if E1 >o F1, E2 >o F2 and P >o Q

4. φP >o ψQ if φ >o ψ and P >o Q

5. P1 | P2 >o Q1 |Q2 if P1 >o Q1 and P2 >o Q2

6. P1 + P2 >o Q1 +Q2 if P1 >o Q1 and P2 >o Q2

7. (νx) P >o (νx)Q if P >o Q

8. ! P >o!Q if P >o Q

9. P >o Q if P =α P
′ >o Q

′ =α Q

Corollary 7 (of Lemma 77):
Let φ,ψ ∈ F and assume that φ >o ψ. Then

e(φ) = true ⇐⇒ e(ψ) = true

Moreover, if e(φ) = e(ψ) = true, then nc(φ) = nc(ψ). ♠

Finally, we extend the relation >o to agents and symbolic agents. This
yields two different relations which differs in the way concretions are re-
lated.

Definition 88 (>eo and>
=
o ).

We let >eo be the smallest relation on symbolic agents such that

1. P >eo Q if P >o Q

2. (x)P >eo (x)Q if P >o Q

3. (νz̃) 〈E〉P >eo (νz̃) 〈M〉Q if ec(E) = M ∈ M and P >o Q

4. A >eo B if A =α A
′ >eo B

′ =α B

We let >=
o be the smallest relation on agents such that

1. P >=
o Q if P >o Q
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2. (x)P >=
o (x)Q if P >o Q

3. (νz̃) 〈M〉P >=
o (νz̃) 〈M〉Q if P >o Q

4. A >=
o B if A =α A

′ >=
o B

′ =α B

Note that in the above definition, it is implicit that {z̃} ⊆ n(E) and {z̃} ⊆
n(M) since well-formed concretions should satisfy this condition.
Processes related by >o have the same concrete semantics.

Theorem 13:
Let P,Q ∈ P and assume that P >o Q.

1. If P
µ
−֒→
S
A then Q

µ
−֒→
S
B and A >=

o B

2. If Q
µ
−֒→
S
B then P

µ
−֒→
S
A and A >=

o B ♦

We now study abstract evaluation and how it interacts with substitu-
tions and concrete evaluation.

Lemma 79:
Let E ∈ E and σ : N→ M a substitution. Then ea(ea(E)σ) = ea(Eσ). �

Hence, abstract evaluation is idempotent.

Corollary 8:
Let E ∈ E. Then ea(ea(E)) = ea(E). ♠

Lemma 80:
Let E ∈ E and σ : N → M a substitution. Assume that ec(Eσ) = M ∈ M.
Then ec(ea(E)σ) = M. �

The symbolic semantics and the concrete semantics are related accord-
ing to the following theorem.

Theorem 14:
Let P,Q ∈ P and σ : N→ M a substitution.

1. If P
µs
7−→
c
A and e(cσ) = true then Pσ

ec(µsσ)
−֒−−−→
nc(cσ)

B with Aσ >eo B

2. If Pσ
µ
−֒→
S
B then P

µs
7−→
c
A with e(cσ) = true, nc(cσ) = S, ec(µsσ) = µ

and Aσ >eo B ♦

Note that in the above theorem, it is implicit that ec(µsσ) 6= ⊥.
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5.4.3 Symbolic open hedged bisimulation

The previous results suggest to replace in Definition 77 the concrete tran-
sitions system by the symbolic transitions system. This yields the notion
of symbolic open hedged bisimulation.

Definition 89 (symbolic open hedged bisimulation).
A symmetric consistent open hedged relation R is a symbolic open hedged
bisimulation if for all (se, P,Q) ∈ R, for all σ, ρ and B such that (σ, ρ) ⊲B se,

1. if P τ
7−→
c1
P′ and e(c1σ) = true then

there exist Q′ and c2 such that Q
τ
7−→
c2
Q′, e(c2ρ) = true

and (se(σ,ρ)
B +c(nc(c1σ),nc(c2ρ)), P′σ,Q′ρ) ∈ R

2. if P E
7−→
c1

(x)P′ (with x 6∈ n(π1(H(se(σ,ρ)
B )))),

e(c1σ) = true and (ec(Eσ), b) ∈ S(I(H(se(σ,ρ)
B ))) then

there exist y, E′, Q′ and c2 such that Q
E′
7−→
c2

(y)Q′

(with y 6∈ n(π2(H(se(σ,ρ)
B )))), e(c2ρ) = true, ec(E′ρ) = b

and (se(σ,ρ)
B +i(x, y) +c(nc(c1σ),nc(c2ρ)), P′σ,Q′ρ) ∈ R

3. if P E
7−→
c1

(νc̃) 〈F〉P′ (with {c̃} ∩ n(π1(H(se(σ,ρ)
B ))) = ∅)

e(c1σ) = true and (ec(Eσ), b) ∈ S(I(H(se(σ,ρ)
B ))) then

there exist d̃, E′, F′, Q′ and c2 such that Q
E′
7−→
c2

(νd̃) 〈F′〉Q′

(with
{

d̃
}

∩ n(π2(H(se(σ,ρ)
B ))) = ∅), e(c2ρ) = true, ec(E′ρ) = b

and (se(σ,ρ)
B +o(ec(Fσ), ec(F′ρ)) +c(nc(c1σ),nc(c2ρ)), P′σ,Q′ρ) ∈ R

Let se ∈ SH and P,Q ∈ P. We say that P and Q are symbolic open hedged
bisimilar under se —written P ∼̇se

SOH Q— if there exists a symbolic open
hedged bisimulation R such that (se, P,Q) ∈ R.

As expected, symbolic open hedged bisimilarity and open hedged bisim-
ilarity coincide as stated by the following theorem.

Theorem 15 (Symbolic characterisation):
Let se ∈ SH and P,Q ∈ P. Then

P ∼̇se
OH Q ⇐⇒ P ∼̇se

SOH Q
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PROOF
We prove both implications.

⇒ LetR =















(se, P,Q) |















P′ ∼̇se
OH Q

′

P >o P
′ ∧Q >o Q

′

fn(P) ⊆ n(π1(H(se)))
fn(Q) ⊆ n(π2(H(se)))















.

We show thatR is a symbolic open hedged bisimulation.

ClearlyR is a symmetric consistent open hedged relation.

Let (se, P,Q) ∈ R and σ, ρ and B such that (σ, ρ) ⊲B se.

There are P0 and Q0 such that P0 ∼̇se
OH Q0 and P >o P0 and Q >o Q0.

By Corollary 9, since P >o P0 and Q >o Q0 we have (*) Pσ >o P0σ
and Qρ >o Q0ρ.

– Assume that P τ
7−→
c1
P′ with e(c1σ) = true.

By Theorem 14, we have Pσ
τ

−֒−−−→
nc(c1σ)

P′′ with P′σ >eo P
′′, i.e.

P′σ >o P
′′.

By Theorem 13 and (*), we thus have P0σ
τ

−֒−−−→
nc(c1σ)

P1 with P′′ >=
o

P1, i.e. P′′ >o P1.

Since P0 ∼̇se
OH Q0, we have Q0ρ

τ
−֒→
S2
Q1 with P1 ∼̇se′

OH Q1 and

where se′ := se(σ,ρ)
B +c(nc(c1σ), S2).

So by Theorem 13 and (*), we have Qρ
τ
−֒→
S2
Q′′ with Q′′ >=

o Q1,

i.e. Q′′ >o Q1.

Hence by Theorem 14, Q τ
7−→
c2
Q′ with e(c2ρ) = true, nc(c2ρ) =

S2 and Q′ρ >eo Q
′′, i.e. Q′ρ >o Q

′′.
Thus P′σ >o P1 and Q′ρ >o Q1.
Clearly fn(P′σ) ⊆ n(π1(H(se′))) and fn(Q′ρ) ⊆ n(π2(H(se′))).
So (se′, P′σ,Q′ρ) ∈ R.

– Assume that P E
7−→
c1

(x)P′ (with x 6∈ n(π1(H(se(σ,ρ)
B )))), e(c1σ) =

true and (ec(Eσ), b) ∈ S(I(H(se(σ,ρ)
B ))).

By Theorem 14, we have Pσ
ec(Eσ)
−֒−−−→
nc(c1σ)

(x)P′′ with ((x)P′)σ >eo

(x)P′′, i.e. P′σ >o P
′′.
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By Theorem 13 and (*), we thus have P0σ
ec(Eσ)
−֒−−−→
nc(c1σ)

(x)P1 with

(x)P′′ >=
o (x)P1, i.e. P′′ >o P1.

Since P0 ∼̇se
OH Q0, we have Q0ρ

b
−֒→
S2

(y)Q1

(with y 6∈ n(π2(H(se(σ,ρ)
B ))))

and P1 ∼̇se′
OH Q1 where se′ := se(σ,ρ)

B +i(x, y) +c(nc(c1σ), S2).

So by Theorem 13 and (*), Qρ
b
−֒→
S2

(y)Q′′ with (y)Q′′ >=
o (y)Q1,

i.e. Q′′ >o Q1.

Hence by Theorem 14, Q E′
7−→
c2

(y)Q′ with e(c2ρ) = true,

nc(c2ρ) = S2, ec(E′ρ) = b and ((y)Q′)ρ >eo (y)Q′′ , i.e. Q′ρ >o
Q′′.
Thus P′σ >o P1 and Q′ρ >o Q1.
So (se′, P′σ,Q′ρ) ∈ R.

– Assume that P E
7−→
c1

(νc̃) 〈F〉P′ (with {c̃} ∩ n(π1(H(se(σ,ρ)
B ))) =

∅) and e(c1σ) = true and (ec(Eσ), b) ∈ S(I(H(se(σ,ρ)
B ))).

By Theorem 14, we have Pσ
ec(Eσ)
−֒−−−→
nc(c1σ)

(νc̃) 〈M〉P′′ with

((νc̃) 〈F〉P′)σ >eo (νc̃) 〈M〉P′′ i.e. ec(Fσ) = M and P′σ >o P
′′.

By Theorem 13 and (*), we thus have P0σ
ec(Eσ)
−֒−−−→
nc(c1σ)

(νc̃) 〈M〉P1

with (νc̃) 〈M〉P′′ >=
o (νc̃) 〈M〉P1 i.e. P′′ >o P1.

Since P0 ∼̇se
OH Q0, we have Q0ρ

b
−֒→
S2

(νd̃) 〈N〉Q1

(with
{

d̃
}

∩ n(π2(H(se(σ,ρ)
B ))) = ∅)

and P1 ∼̇se′
OH Q1 where se′ := se(σ,ρ)

B +o(M,N) +c(nc(c1σ), S2).

So by Theorem 13 and (*), we have Qρ
b
−֒→
S1

(νd̃) 〈N〉Q′′ with

(νd̃) 〈N〉Q′′ >=
o (νd̃) 〈N〉Q1, i.e. Q′′ >o Q1.

Hence by Theorem 14, Q E′
7−→
c2

(νd̃) 〈F′〉Q′ with e(c2ρ) = true,

nc(c2ρ) = S2, ec(E′ρ) = b and ((νd̃) 〈F′〉Q′)ρ >eo (νd̃) 〈N〉Q′′ ,
i.e. ec(F′ρ) = N and Q′ρ >o Q

′′.
Thus P′σ >o P1 and Q′ρ >o Q1.
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So (se′, P′σ,Q′ρ) ∈ R.

HenceR is a symbolic open hedged bisimulation.

⇐ LetR =

{

(se, P,Q) |

{

P′ ∼̇se
SOH Q

′

P′ >o P∧Q
′ >o Q

}

.

We show thatR is an open hedged bisimulation.

ClearlyR is a symmetric consistent open hedged relation.

Let (se, P,Q) ∈ R and σ, ρ and B such that (σ, ρ) ⊲B se.

There are P0 andQ0 such that P0 ∼̇se
SOH Q0 and P0 >o P andQ0 >o Q.

By Corollary 9, since P0 >o P and Q0 >o Q we have (*) P0σ >o Pσ
and Q0ρ >o Qρ.

– Assume that Pσ
τ
−֒→
S1
P′.

By Theorem 13, we have P0σ
τ
−֒→
S1
P1 with P1 >=

o P
′, i.e. P1 >o P

′.

Thus by Theorem 14, we have P0
τ
7−→
c1
P′0 with e(c1σ) = true,

nc(c1σ) = S1 and P′0σ >eo P1, i.e. P
′
0σ >o P1.

Since P0 ∼̇se
SOH Q0, we have Q0

τ
7−→
c2
Q′0 with e(c2ρ) = true and

P′0σ ∼̇
se′
SOH Q

′
0ρ where se′ := se(σ,ρ)

B +c(nc(c1σ),nc(c2ρ)).

Thus, by Theorem 14, we have Q0ρ
τ

−֒−−−→
nc(c2ρ)

Q1 with Q′0ρ >eo Q1,

i.e. Q′0ρ >o Q1.

So by Theorem 13, Qρ
τ

−֒−−−→
nc(c2ρ)

Q′ with Q1 >=
o Q

′, i.e. Q1 >o Q
′.

So P′0σ >o P
′ and Q′0ρ >o Q

′.
So (se′, P′,Q′) ∈ R.

– Assume that Pσ
a
−֒→
S1

(x)P′

(with x 6∈ n(π1(H(se(σ,ρ)
B ))))

and (a, b) ∈ S(I(H(se(σ,ρ)
B ))).

By Theorem 13, we have P0σ
a
−֒→
S1

(x)P1 with (x)P1 >=
o (x)P′ , i.e.

P1 >o P
′.

Thus by Theorem 14, we have P0
E
7−→
c1

(x)P′0 with e(c1σ) = true,

nc(c1σ) = S1, ec(Eσ) = a and ((x)P′0)σ >eo (x)P1, i.e. P′0σ >o P1.
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Since P0 ∼̇se
SOH Q0, we have Q0

E′
7−→
c2

(y)Q′0

(with y 6∈ n(π2(H(se(σ,ρ)
B )))), e(c2ρ) = true, ec(E′ρ) = b

and P′0σ ∼̇
se′
SOH Q

′
0ρ where

se′ := se(σ,ρ)
B +i(x, y) +c(nc(c1σ),nc(c2ρ)).

Thus, by Theorem 14, Q0ρ
b

−֒−−−→
nc(c2ρ)

(y)Q1 with ((y)Q′0)ρ >eo

(y)Q1, i.e. Q′0ρ >o Q1.

So by Theorem 13, Qρ
b

−֒−−−→
nc(c2ρ)

(y)Q′ with (y)Q1 >=
o (y)Q′, i.e.

Q1 >o Q
′.

So P′0σ >o P
′ and Q′0ρ >o Q

′.
So (se′, P′,Q′) ∈ R.

– Assume that Pσ
a
−֒→
S1

(νc̃) 〈M〉P′

(with {c̃} ∩ n(π1(H(se(σ,ρ)
B ))) = ∅) and

(a, b) ∈ S(I(H(se(σ,ρ)
B ))).

By Theorem 13, we have that P0σ
a
−֒→
S1

(νc̃) 〈M〉P1

with (νc̃) 〈M〉P1 >=
o (νc̃) 〈M〉P′ , i.e. P1 >o P

′.

Thus by Theorem 14, P0
E
7−→
c1

(νc̃) 〈F〉P′0 with e(c1σ) = true,

nc(c1σ) = S1, ec(Eσ) = a and ((νc̃) 〈F〉P′0)σ >eo (νc̃) 〈M〉P1 ,
i.e. ec(Fσ) = M and P′0σ >o P1.

Since P0 ∼̇se
SOH Q0, we have Q0

E′
7−→
c2

(νd̃) 〈F′〉Q′0

(with
{

d̃
}

∩ n(π2(H(se(σ,ρ)
B ))) = ∅), e(c2ρ) = true, ec(E′ρ) = b

and P′0σ ∼̇
se′
SOH Q

′
0ρ

where se′ := se(σ,ρ)
B +o(ec(Fσ), ec(F′ρ)) +c(nc(c1σ),nc(c2ρ)).

Thus, by Theorem 14, we have Q0ρ
b

−֒−−−→
nc(c2ρ)

(νd̃) 〈N〉Q1 with

((νd̃) 〈F′〉Q′0)ρ >eo (νd̃) 〈N〉Q1, i.e. ec(F′ρ) = N andQ′0ρ >o Q1.

So by Theorem 13, Qρ
b

−֒−−−→
nc(c2ρ)

(νd̃) 〈N〉Q′ with (νd̃) 〈N〉Q1 >=
o

(νd̃) 〈N〉Q′, i.e. Q1 >o Q
′.

So P′0σ >o P
′ and Q′0ρ >o Q

′.
So (se′, P′,Q′) ∈ R.
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HenceR is an open hedged bisimulation.

5.4.4 Towards mechanisation

Ultimately, we seek mechanisable (efficiently computable) ways to per-
form equivalence checks. Hüttel [86] showed decidability of bisimilarity
checking by giving a “brute-force” decision algorithm for framed bisim-
ulation in a language of only finite processes. However, this algorithm is
not practically implementable, generating≫ 22

20
branches for each input

of the Wide-mouthed Frog protocol of [9].
To this matter, Theorem 15 is an important step towards mechanisation

of open hedged bisimulation because Definition 89 clarifies which pairs of
respectful substitutions have to be considered to enable transitions.
Another crucial point is the infinite quantifications in the definition of

environment consistency. We are confident that we can reuse some ideas
that were implemented in our prototype tool [38] for checking symbolic
bisimilarity of [39]. In this latter case, and as in [33], it turned out to be
sufficient to check a finite subset of the environment-respecting substitu-
tion pairs: the minimal elements of a refinement preorder. However, the
presence of consistency makes for a significant difference in the refinement
relation. Since our environments are slightly simpler than those of sym-
bolic bisimilarity (and so is also the definition of consistency), it seems
reasonable to think that similar ideas will apply to our setting. Another
interesting related work is [57] where a procedure is given for computing
a finite set of most general solutions for problems of so called simultaneous
construction.
In the sequel, we detail a procedure to compute a finite set of most

general solutions of transition constraints as derived by the symbolic tran-
sition system. We postpone to future work the definition and proof of
correctness of a decision procedure for checking open hedged bisimilarity
on the fragment of finite spi calculus terms. Note that it was shown in [86]
that finite control spi calculus is Turing complete.

Solving transition constraints In the following, we assume to have an
infinite set of variables V ⊆ N such that N \ V is still infinite. Every substi-
tution considered in this part is assumed to have its support included in
V .
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Definition 90 (solution of a constraint).
If c is a transition constraint and σ is a substitution, we say that σ is a
solution of c if e(cσ) = true.
We note S(c) the set of solutions of c.
We say that c is satisfiable if S(c) 6= ∅.

It is clear that if σ is a solution of c then so is the restriction σ⌈fn(c).

Before addressing the problem of computing S(c), we consider the
problem of solving constraints c = (νz̃) Φ where z̃ is empty and Φ con-
tains only matching guards.
A matching problem is a finite set S = {[E1=F1 ], . . . , [En=Fn ]} where

Ei, Fi ∈ E.
A substitution σ is a solution of S if for all 1 ≤ i ≤ n, e([Eiσ=Fiσ ]) =

true, i.e. for all 1 ≤ i ≤ n, ec(Eiσ) = ec(Fiσ) ∈ M.
Note that if for all i, Ei ∈ M and Fi ∈ M, then amatching problem is just

a unification problem since in this case, by Lemma 19 and Lemma 22, we
have that ec(Eiσ) = Eiσ ∈ M and ec(Fiσ) = Fiσ ∈ M. We thus show how
to transform a general matching problem in a matching problem where
only messages are involved. Before this, we need some more definitions.
A substitution σ is more general than a substitution σ′ on X ⊆ V, and

we write σ .X σ′, if there exists a substitution δ such that for all x ∈ X,
xσ′ = xσδ. When X = V, we omit to mention X, and so simply write
σ . σ′ and say that σ is more general than σ′. Note that due to our above
assumption, we have supp(δ) ⊆ V.
Observe that if σ .X σ′ and σ′ .X′ σ′′ with X ⊆ X′ then σ .X σ′′. Note

also that if σ .X σ′ then σ .X′ σ′ for any X′ ⊆ X. Finally, since only the
variables of X are relevant, if σ and σ′ agrees on X then σ .X σ′.
If c is a matching problem, a complete set of solutions of c is any set S

such that for any solution σ′ ∈ S(c) there exists σ ∈ S such that σ .n(S) σ′.
The case where S is finite is particularly interesting.
We are going to define a reduction =⇒ between matching problems

so that solvable normal forms involve only messages. The presence of
asymmetric cryptography requires to generalise our setting to finite sets
of matching problems.

Indeed, the matching problem
{

[Decayx= a ]
}

where a ∈ N has two

more general solutions: {Enca
pub(z)a/x , priv(z)/y} and {

Enca
priv(z)a/x , pub(z)/y},

z being a fresh new variable.
A finite set of matching problems is denoted by S. We say that σ is a

solution of S if there exists a matching problem S ∈ S such that σ is a
solution of S.
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We shall now define =⇒. To avoid writing symmetric rules, we define
a predicate on expressions which tells if the root node is a deconstructor
and will orient matchings accordingly.

Definition 91 (head deconstructor form).
Let E ∈ E. We say that E is in head deconstructor form, and write hd(E) if E
is of the form π1 (E

′) ,π2 (E′) ,DecsE2E1 or DecaE2E1.

Definition 92 (=⇒).
The reduction =⇒ relates a matching problem to a finite set of matching
problems. Its definition is given in Table 5.6. In this setting, the ∪ symbol
should be understood as disjoint union when on left side of =⇒.
We extend the definition of =⇒ to finite set of matching problems by

defining that S =⇒ S′ if there exists S ∈ S and S′′ such that S =⇒ S′′

and S′ := (S \ S) ∪S′′.

Example 19
Consider the following matching problem

S := {[DecskEncslπ1 (m)=DecskEncslπ1 (m) ], [π1 (a) = b ]}

and assume S ∩ V = {a, l,m}.
We have

{S} =⇒ {[ a=(z1 . z2) ], [z1=b ], [DecskEncslπ1 (m)=DecskEncslπ1 (m) ]}

=⇒

{

[ a=(z1 . z2) ], [z1=b ], [Encslπ1 (m)=Encsz4z3 ],
[z4= k ], [z3=DecskEncslπ1 (m) ]

}

=⇒

{

[ a=(z1 . z2) ], [z1=b ], [π1 (m) = z3 ], [ l=z4 ],
[z4= k ], [z3=DecskEncslπ1 (m) ]

}

=⇒

{

[ a=(z1 . z2) ], [z1=b ], [π1 (m) = z3 ], [ l=z4 ],
[z4= k ], [DecskEncslπ1 (m)= z3 ]

}

=⇒

{

[ a=(z1 . z2) ], [z1=b ], [m=(z5 . z6) ], [z5=z3 ], [ l=z4 ],
[z4= k ], [DecskEncslπ1 (m)= z3 ]

}

=⇒

{

[ a=(z1 . z2) ], [z1=b ], [m=(z5 . z6) ], [z5=z3 ], [ l=z4 ],
[z4= k ], [Encslπ1 (m)=Encsz8z7 ], [z8=k ], [z7=z3 ]

}

=⇒

{

[ a=(z1 . z2) ], [z1=b ], [m=(z5 . z6) ], [z5=z3 ], [ l=z4 ],
[z4= k ], [π1 (m) = z7 ], [ l=z8 ], [z8=k ], [z7=z3 ]

}

=⇒







[ a=(z1 . z2) ], [z1=b ],
[m=(z5 . z6) ], [z5=z3 ], [ l=z4 ], [z4=k ],
[m=(z9 . z10) ], [z9=z7 ], [ l=z8 ], [z8=k ], [z7=z3 ]
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1
¬ hd(E) hd(F)

{[E=F ]} ∪ S =⇒ {[F=E ]} ∪ S
2
¬ hd(E) E 6∈ V y ∈ V

{[E=y ]} ∪ S =⇒ {[y=E ]} ∪ S

3
{[op(E)= op(F) ]} ∪ S =⇒ {[E=F ]} ∪ S

op ∈ {pub, priv,H}

4
{[ (E1 . E2)=(F1 . F2) ]} ∪ S =⇒ {[E1=F1 ], [E2=F2 ]} ∪ S

5 {
[EncsE2E1=EncsF2F1 ]

}

∪ S =⇒ {[E1=F1 ], [E2=F2 ]} ∪ S

6 {
[EncaE2E1=EncaF2F1 ]

}

∪ S =⇒ {[E1=F1 ], [E2=F2 ]} ∪ S

7
{z1, z2} ⊆ V \ n(E, F, S)

{[π1 (E) =F ]} ∪ S =⇒ {[E=(z1 . z2) ], [z1=F ]} ∪ S

8
{z1, z2} ⊆ V \ n(E, F, S)

{[π2 (E) =F ]} ∪ S =⇒ {[E=(z1 . z2) ], [z2=F ]} ∪ S

9
{z1, z2} ⊆ V \ n(E1, E2, F, S)

{

[DecsE2E1=F ]
}

∪ S =⇒
{

[E1=Encsz2z1 ], [z2=E2 ], [z1=F ]
}

∪ S

10
{z1, z2} ⊆ V \ n(E1, E2, F, S)

{

[DecaE2E1=F ]
}

∪ S =⇒

{

[E1=Enca
pub(z2)

z1 ], [priv(z2)=E2 ], [z1=F ]
}

∪ S
{

[E1=Enca
priv(z2)

z1 ], [pub(z2)=E2 ], [z1=F ]
}

∪ S

11
op(F) 6∈ M x ∈ V {z} ⊂ V \ n(x, F, S)

{[ x=op(F) ]} ∪ S =⇒ {[ x=op(z) ], [z= F ]} ∪ S
op ∈ {pub, priv,H}

12
(F1 . F2) 6∈ M x ∈ V {z1, z2} ⊂ V \ n(x, F1, F2, S)

{[ x=(F1 . F2) ]} ∪ S =⇒ {[ x=(z1 . z2) ], [z1=F1 ], [z2=F2 ]} ∪ S

13
EncsF2F1 6∈ M x ∈ V {z1, z2} ⊂ V \ n(x, F1, F2, S)

{

[ x=EncsF2F1 ]
}

∪ S =⇒
{

[ x=Encsz2z1 ], [z1=F1 ], [z2=F2 ]
}

∪ S

14
EncaF2F1 6∈ M x ∈ V {z1, z2} ⊂ V \ n(x, F1, F2, S)

{

[ x=EncaF2F1 ]
}

∪ S =⇒
{

[ x=Encaz2z1 ], [z1=F1 ], [z2=F2 ]
}

∪ S

Table 5.6: Definition of =⇒



5.4. SYMBOLIC CHARACTERISATION 163

where {zi | 1 ≤ i ≤ 10} ⊆ V .
Let S′ be the last matching problem above. Then S′ has a most general

unifier, which is σ : z1 7→ b
z5 7→ z3
z4 7→ k

z7 7→ z3
z8 7→ k

z9 7→ z7
a 7→ (b . z2)
l 7→ k

m 7→ (z3 . z6)
z10 7→ z6

Observe that the restriction ρ = σ⌈n(S) = {(b . z2)/a, k/l, (z3 . z6)/m} is a
solution of S. ∗

We show that the reduction process=⇒ is sound and complete, i.e. that
if S =⇒ S′ then any solution of S′ is a solution of S and conversely that
any solution of S can be lifted into a solution of S′. For the completeness
result, note that it is needed to extend the solution of S to the fresh new
variables introduced in S′.
Soundness is a consequence of the following lemma.

Lemma 81:
If S =⇒ S then any solution of S is a solution of S.

PROOF
By case distinction on the rule for deriving S =⇒ S.
Let σ a solution of S.
We just show the result for the following cases:

• If S =
{

[DecaE2E1=F ]
}

∪ S′, {z1, z2} ⊆ V \ n(S) and S = {S1, S2}
with

S1 =
{

[E1=Enca
pub(z2)

z1 ], [priv(z2)=E2 ], [z1=F ]
}

∪ S′

S2 =
{

[E1=Enca
priv(z2)

z1 ], [pub(z2)=E2 ], [z1=F ]
}

∪ S′

By symmetry, assume that σ is a solution of S1. Then, it is a solution
of S′.
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Moreover, ec(priv(z2σ)) = ec(E2σ) ∈ M, ec(z1σ) = ec(Fσ) ∈ M and
ec(E1σ) = ec(Enca

pub(z2σ)z1σ).

Since z1σ ∈ M and z2σ ∈ M, we have ec(E1σ) = Enca
pub(z2σ)z1σ,

ec(E2σ) = priv(z2σ) and ec(Fσ) = z1σ.

Thus ec(DecaE2σE1σ) = z1σ = ec(Fσ). Hence σ is a solution of S.

• If S = {[ x=(F1 . F2) ]} ∪ S′, x ∈ V , {z1, z2} ⊆ V \ n(S) and S =
{{[ x=(z1 . z2) ], [z1=F1 ], [z2=F2 ]} ∪ S′}.

Since σ is a solution of S, we have ec(xσ) = ec((z1σ . z2σ)) ∈ M,
ec(z1σ) = ec(F1σ) ∈ M, ec(z2σ) = ec(F2σ) ∈ M and σ is a solution
of S′.

Thus xσ = (z1σ . z2σ), z1σ = ec(F1σ), and z2σ = ec(F2σ).

Hence ec((F1σ . F2σ)) = (z1σ . z2σ) = xσ = ec(xσ) and σ is a solution
of S.

Completeness is a consequence of the following lemma.

Lemma 82:
If S =⇒ S and σ is a solution of S then there exists a solution ρ of S that
agrees with σ on n(S).

PROOF
By case distinction on the rule for deriving S =⇒ S.
Since we are only interested in the names of S, we may assume that

supp(σ) ⊆ V ∩ n(S).
We just show the result for the following cases:

• If S =
{

[DecaE2E1=F ]
}

∪ S′, {z1, z2} ⊆ V \ n(S) and S = {S1, S2}
with

S1 =
{

[E1=Enca
pub(z2)

z1 ], [priv(z2)=E2 ], [z1=F ]
}

∪ S′

S2 =
{

[E1=Enca
priv(z2)

z1 ], [pub(z2)=E2 ], [z1=F ]
}

∪ S′

We have {z1, z2} ∩ supp(σ) = ∅.

Since σ is a solution of S then σ is a solution of S′ and there exists
M,N′ ∈ M such that ec(E1σ) = EncaN′M, ec(E2σ) = inv(N′) and
ec(Fσ) = M.
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There are two cases: either N′ = pub(N) for some message N or
N′ = priv(N) for some message N.

By symmetry, assume that N′ = pub(N) for some N ∈ M.

Then ec(E1σ) = Enca
pub(N)M, ec(E2σ) = priv(N) and ec(Fσ) = M.

Let ρ defined by xρ = xσ if x 6∈ {z1, z2}, z1ρ = M and z2ρ = N.

Then clearly ρ is a solution of S1 which agrees with σ on n(S).

• If S = {[ x=(F1 . F2) ]} ∪ S′, x ∈ V , {z1, z2} ⊆ V \ n(S) and S =
{{[ x=(z1 . z2) ], [z1=F1 ], [z2=F2 ]} ∪ S′}.

Since σ is a solution of S, it is also a solution of S′. Moreover ec(xσ) =
ec((F1σ . F2σ)) ∈ M. But ec(xσ) = xσ since xσ ∈ M.

We define ρ by xρ = xσ if x 6∈ {z1, z2}, z1ρ = F1σ, z2ρ = F2σ.

Clearly ρ is a solution of S that agrees with σ on n(S).

Example 20
Back to Example 19, we have that {σ} is a complete set of solutions of the
matching problem

S = {[DecskEncslπ1 (m)=DecskEncslπ1 (m) ], [π1 (a) =b ]}

where σ = {(b . z2)/a, k/l, (z3 . z6)/m}. ∗

We now show that normal forms of =⇒ are matching problems that
have no solution or that involve only messages (opposed to arbitrary ex-
pressions).

Lemma 83:
If S is in normal form then either S involves only messages or S has no
solution.

PROOF
Assume that S is in normal form.
If S involves only messages, we are done.
Otherwise, assume that [E=F ] ∈ S where E 6∈ M or F 6∈ M.
We make a case distinction on hd(E) and hd(F).
If hd(E) then depending on E, one of the rules 7,8,9 or 10 can be ap-

plied: contradiction.
If ¬ hd(E) and hd(F) then rule 1 can be applied: contradiction.
So the remaining case is ¬ hd(E) and ¬ hd(F).
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If E ∈ V then F 6∈ M and then one of the rules 11,12,13 or 14 can be
applied: contradiction.
If E 6∈ V and F ∈ V then rule 2 can be applied: contradiction.
So assume that E 6∈ V and F 6∈ V .
In E ∈ N then F 6∈ M so F 6∈ N and [E=F ] has no solution. Hence S

has no solution.
If F ∈ N then similarly [E=F ] has no solution. Hence S has no solu-

tion.
So assume that E 6∈ N and F 6∈ N. Then, since ¬ hd(E) and ¬ hd(F),

the root node of E and the root node of F is a constructor. Moreover, since
neither of the rules 3, 4, 5 nor 6 can be applied, the root node of E and
the root node of F differs. Clearly, there is no substitution σ such that
ec(Eσ) = ec(Fσ) with ec(Eσ) ∈ M. So [E=F ] has no solution. Hence S
has no solution.

Finally, we show that =⇒ is well-founded.

Lemma 84:
=⇒ is well-founded.

PROOF
First, we define the weight weight(E) of an expression E such that any
name has a weight of 0, any constructor adds 1 to the weight and any
deconstructor adds 3 to the weight. We define the weight of a match-
ing problem S = {[E1=F1 ], . . . , [En=Fn ]} to be the finite multiset of the
weight of each expressions in S, i.e.

weight(S) = {{weight(Ei),weight(Fi) | 1 ≤ i ≤ n}}

If S is a matching problem, we define nS to be the number of matching
in S of the form [E=F ] where ¬ hd(E) and (hd(F) or F ∈ V).
The measure m(S) of a matching problem S is the pair (weight(s), nS).
It is easy to see that if S =⇒ S then for any S′ ∈ S, we have m(S′) <

m(S) where < is the lexicographic order on the pairs composed of a finite
multiset of integers and an integer, which is well-founded. Indeed, rules
1-2 keep the first projection but make decrease the second one whereas
rules 3-14 make the first projection decrease.
So =⇒ is well-founded.

Thus, given a matching problem S, there exists a finite set of matching
problems S such that {S} =⇒∗ S and S is in normal form. According to
the previous results, any solution ofS is a solution of S and any solution of
S can be extended to be a solution of S. Moreover, any matching problem
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of S that involves more than messages has no solution. The other match-
ing problems, involving only messages, can be solved with a unification
algorithm. Each satisfiable problem yields one most general unifier σ. By
construction, we know that σ⌈n(S) is a solution of S and that any solution
ρ of S, we have σ .n(S) ρ. In other words, we have shown the following
theorem.

Theorem 16:
If S is a matching problem, there exists a complete finite set of solutions of
S. ♦

Hence, we have a constructive way to compute a complete finite set
of solutions when a transition guard is of the form c = S, where S is a
matching problem {[E1=F1 ], . . . , [En=Fn ]}.

If c has some restricted names, i.e. c = (νz̃) S where S is a matching
problem, then we can always α-rename c so that {z̃} ∩V = ∅ (since N \V
is infinite). Then, we solve S as previously. This yields a complete finite
set of solutions S of S.
Then it is easy to see that if σ ∈ S and n(σ)∩{z̃} 6= ∅ then any instance

of σ is not a solution of c. Conversely, if ρ is a solution of c, then ρ is a
solution of S so there exists σ ∈ S such that σ .n(S) ρ. Since ρ is a solution
of c, we have n(ρ) ∩ {z̃} = ∅ and necessarily n(σ) ∩ {z̃} = ∅. Thus
S ′ := {σ ∈ S | n(σ) ∩ {z̃} = ∅} is a complete finite set of solutions of c.

Example 21
Consider c := (νk) S where S has been defined in Example 19.
By Example 20, we know that {σ} is a complete set of solutions of S

where σ = {(b . z2)/a, k/l, (z3 . z6)/m}.
Since k ∈ n(σ), σ is not a solution of c. Hence c has no solution. ∗

Finally, if c is a general transition constraint, i.e. c = (νz̃) (S∪Φ)where
S is a matching problem and Φ = {[G1 :N ], . . . , [Gn :N ]}, we have that
S(c) = S(c′)where c′ = (νz̃) (S′ ∪Φ)where S′ = S∪{[Gi :M ] | 1 ≤ i ≤ n}.
Let S be a finite complete set of solutions of (νz̃) S′. Then it is easy to see
that S ′ = {σ ∈ S | ec(Giσ) ∈ N} is a finite complete set of solutions of c.

Conclusion

We have achieved our goal to find an open-style definition of bisimulation
in the spi calculus. We have shown that our proposal is an extension of K-
open bisimulation, which in turn was shown to coincide with Sangiorgi’s
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open bisimulation. We have also shown that open hedged bisimulation
is a sound proof technique for proving late hedged bisimilarity. Finally,
we have given a symbolic characterisation of open hedged bisimulation
which constitutes a promising step towards mechanisation.
As future work, there are several interesting paths to follow:

1. On the theoretical side, we would like to investigate whether a con-
verse result to Proposition 4 (page 144) can be proven. Even if our
conjecture of [50] finally appeared to be false (for the reasons we have
explained), we strongly believe that an analogous result holds. Our
current idea is to define the spi translation of pi calculus terms by
adding a guard [ x :N ] after each input prefix binding a name x. We
then conjecture that if two pi calculus terms are K-open bisimilar
then their spi translations are open hedged bisimilar. Having such a
result will show that not only open hedged bisimulation is an exten-
sion of K-open bisimulation but also that this extension is conserva-
tive.

2. Still on the theoretical side, another interesting question is, in how far
the congruence properties of K-open bisimulation carry over from
the pi calculus to the spi calculus. As noted by Boreale and Gorla in
[37], a major difficulty for congruence properties in the spi calculus
is the case of parallel composition, where a naive formulation is just
false. We could likely reuse a number of ideas of [37] for studying
the congruence properties of open hedged bisimulation. However, it
is yet unclear to us whether the distinction between input variables
and freshly created names will equally help us to formulate more
refined congruence properties.

3. On the practical side, we intend to formalise a decision procedure
for checking open hedged bisimilarity (for finite terms) and prove
its correctness. As mentioned, we have good hope to benefit from
our experience acquired when working on the symbolic bisimulation
checker [38]. Since open hedged bisimilarity is sound w.r.t. to late
hedged bisimilarity but is probably coarser than symbolic bisimi-
larity of [39], this would yield an interesting tool for checking be-
havioural equivalence of finite spi calculus processes.

An interesting work is the recent proposal of a trace based bisimula-
tion for the spi calculus [138]. In this work, Tiu gives an other formulation
of an open-style definition for the spi calculus, which is sound w.r.t. to
late hedged bisimulation. It is also shown that the underlying notion of
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bisimilarity is a congruence on finite spi processes. The major difference
between our proposal and Tiu’s proposal is the representation of environ-
ments. Roughly speaking, Tiu’s environments resemble the alternative
viewwe have given of our growing S-environments (which can be directly
interpreted as traces, hence the name). To this matter, our representation
seems to be more concise, probably very close to an implementation, but
at the cost of being maybe less intuitive. Another subtle difference is that
Tiu’s environments do not take care of the dynamic type of names (our γ’s
in the S-environments); we thus believe that our proposal is coarser than
Tiu’s one.
To overcome the infinite quantification on process inputs of the bisimu-

lation clause, symbolic techniques [79, 35] have been developed. The idea
has been exploited to implement bisimulation checking algorithms for the
pi calculus. For instance, [142, 42] both implement open bisimulation of
Sangiorgi [127] and rely on the symbolic characterisation lemma.
Another mean to study spi calculus, or more generally a pi calculus

with algebraic data terms (defined by constructors and deconstructors), is
to reuse directly pi calculus theory and tools by finding a suitable encod-
ing. Following this direction, a fully abstract encoding w.r.t. may-testing
equivalence has been proposed in [19, 20]. Despite being very interesting
from a theoretical point of view, it is unclear to us whether these encodings
could be of practical use, even more since may-testing equivalence is not
necessarily the right notion of equivalence to consider when dealing with
security properties.
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Chapter 6

A Formalisation in coq

Theorem provers are becoming mature enough to be used broadly for for-
malising and validating mathematical theories. The most emblematic ex-
ample is probably the recent formalisation of the 4 colour theorem in the
coq proof assistant [75]. Another interesting experiment is the POPLMARK
challenge [16] which is a set of benchmarks designed to evaluate the us-
ability of theorem provers and proof assistants for reasoning about the
meta-theory of programming languages.
One major contribution of this thesis is certainly the formalisation in

the proof assistant coq [135] of almost all of the results presented previ-
ously. Our own motivation for doing such a formalisation was firstly to
validate our theory of bisimulation for the spi calculus and secondly to be
able to extract [91] a certified bisimulation checker thanks to the Curry-
Howard isomorphism. Contrary to the usual approach of theorem prov-
ingwhere the theory is first developed on paper and then is optionally val-
idated within a theorem prover, we have taken a rather opposite approach
where we have validated the theory while elaborating it: our feeling is
that theorem provers should not be considered as an option but instead
should be the commonplace for accompanying fundamental research in
the field of computer science. Working this way has been very fruitful be-
cause we have been able to identify, understand and fix small and not so
small bugs in the theory (definitions or theorems) instantaneously. It is
interesting to note that our feeling is that some of these bugs would have
probably otherwise been uncaught. However, our approach had the dis-
advantage to slow down the development of the theory: formalising and
formally proving in a proof assistant is sometimes a very time-consuming
task. Thus, we have not been able to extract a fully certified bisimulation
checker since there remains some theoretical work to do about this.
In this chapter, we give an overview of the coq formalisation we have
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led. We show the difficulties that arise when doing such a work and ex-
plain how we have overcome them. We then enter into the details of sev-
eral proofs that we have omitted in the previous chapters. The complete
archive can be found at http://lamp.epfl.ch/~sbriais.

6.1 The formalisation

6.1.1 Representation of binders

One main technical difficulty when formalising programming languages
(such as the (s)pi calculus or F<: like in the POPLMARK challenge) is the
representation of binders and how bound variables and α-conversion are han-
dled. This is difficult because today’s proof assistants lack of support for
treating quotient sets (working up to α-conversion just means working
in the quotient set of terms by the equivalence relation =α). We give a
brief account of several representations of binders that has been proposed
during the last 40 years. These topics are discussed on the wiki of the
POPLMARK challenge and in some contributions (e.g. [90]) to the chal-
lenge.
In the sequel, we illustrate our explanation with the example of the λ-

calculus [21] and its possible representation in the ocaml language [137].
Recall that the set Λ of λ-terms are built upon a set of variables in the
following way:

t, u ::= x variables
| λx.t abstraction
| (t u) application

λ-terms are naturally represented in ocaml by an algebraic data-type de-
fined as follows:

type term = Var of variable (* variables *)
| Abs of abstraction (* abstraction *)
| App of term * term (* application *)

and type variable = ...
and type abstraction = ...

The matter is how to define the types variable and abstraction.

Nominal representation

This representation is the closest to the usual mathematical practise where
bound variables are identified with names and terms are considered up
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to α-conversion of bound names. Nominal logic of Pitts [116] is a first-
order logic that internalises this approach by offering primitives for re-
naming, for freshness of names and for name-binding. Support for nom-
inal logic within proof assistant is still marginal but is making significant
and promising progress [140].
Support for nominal representation is not provided by ocaml but there

exist extensions of ocaml that implement the idea of nominal logic [130,
59]. Nonetheless, with this approach, we would have

(* ... *)
and type variable = string
and type abstraction = string * term

For instance the λ-term t = λx.(x λy.(x (y a))) would be represented
by:

let t = Abs("x",App(Var("x"),
Abs("y",App(Var("x"),

App(Var("y"),
Var("a"))))))

de Bruijn indices

In this representation, variables are not represented by names but by the so
called de Bruijn indices [65]. Thus, each variable is encoded by an index (i.e.
an integer) that denotes the number of binders that are in scope between
that occurrence and its corresponding binder. A variable n is bound if it
is in the scope of at least n binders; otherwise it is free. Free variables are
thus also indexed.
With this approach, we would have the following definitions:

(* ... *)
and type variable = int
and type abstraction = term

Assuming that a has index 0, the λ-term t = λx.(x λy.(x (y a))) would
be defined by:

let t = Abs(App(Var(0),
Abs(App(Var(1),

App(Var(0),
Var(2))))))
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The strength of this representation is that α-equivalent terms have the
same de Bruijn notation. The disadvantage of this notation is that the
meaning of de Bruijn indices depends on the context; thus many lifting
and relocation operators pollute the statement of theorems. However, this
notation is very popular and is for instance used internally by the coq
proof assistant to represent terms.

Locally nameless representation

Roughly speaking, this representation is a blending of the nominal rep-
resentation and the de Bruijn notation. The idea is to represent bound
variables by their de Bruijn indices and free variables by names [51].
Thus, we would have the following definitions:

(* ... *)
and type variable = B(*ound*) of int

| F(*ree*) of string
and type abstraction = term

The λ-term t = λx.(x λy.(x (y a))) would be defined by:

let t = Abs(App(Var(B(0)),
Abs(App(Var(B(1)),

App(Var(B(0)),
Var(F("a")))))))

This representation has the advantage of the de Bruijn notation where
α-equivalent terms have the same representation and the advantage of
nominal representation where the statement of theorems are close to usual
mathematical practise. Compared to the de Bruijn notation, lifting func-
tions are not needed anymore because the meaning of indices is not any-
more context dependent. Indeed, a crucial invariant is that representations
of terms never contain free de Bruijn indices. Thus, one should take care
that the considered terms are always well-formed (i.e. closed), for instance
by defining a well-formedness predicate. Compared to the de Bruijn ap-
proach, one difficulty is how to handle the crossing of a binder (that ap-
pears for example in RES), since open terms are not considered. There
exist several solutions to this problem but it is not yet clear which one is
the right way to proceed (see final remarks of [90] for instance).
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Higher-order abstract syntax

This representation uses the functions provided by the logic (or the pro-
gramming language) to represent binders. The advantages of this ap-
proach are that α-conversion and substitution of bound names come for
free because they are handled automatically by the logic. The downside
is that depending on the expressiveness of the logic, it can lead to exotic
terms. To avoid these, it is possible to define well-formedness predicates
[120] but this kind of representation can be considered as a bit difficult to
manipulate.
In ocaml, this would correspond to:

(* ... *)
and type variable = string
and type abstraction = term -> term

It is important to understand that term -> term represents the type
of functions from term to term. While looking innocent at first, this quan-
tification over terms of type term actually quantifies over arbitrary (well-
typed) ocaml terms because the type ’a -> term is inhabited.
The λ-term t = λx.(x λy.(x (y a))) would be defined by:

let t = Abs(fun x ->
App(x,Abs(fun y ->

App(x,App(y,Var("a"))))))

6.1.2 The de Bruijn representation

The choice of the coq proof assistant was guided by the wish to extract
a certified tool at the end. This choice has led us to consider either the
de Bruijn notation or the locally nameless paradigm for formalising the
(s)pi calculus. We finally chose the de Bruijn representation because it
seemed to us better suited to represent and handle open terms and open-
style definitions.
We now describe the general spirit of our formalisation of the spi cal-

culus in coq. An inspiring work has been a formalisation of the polyadic
pi calculus within an older version of coq [82].
Names are identified with de Bruijn indices (i.e. integers) as expected.

We have naturally defined several inductive types to represent messages,
expressions, guards, processes, and agents. For instance, processes are
defined by:
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Inductive process : Set :=
| Zero : process
| Par : process -> process -> process
| Sum : process -> process -> process
| Bang : process -> process
| New : process -> process
| Tau : process -> process
| Input : expression -> process -> process
| Output : expression -> expression

-> process -> process
| IfThen : guard -> process -> process.

To keep the terms readable, we use a notation close to the mathemati-
cal notation instead of using their concrete coq values. Moreover, for the
examples, we use free variables in the range {a, b, . . . , z} and assume that
these are numbered starting from 0.
Thus the process a(x).[Decskx :M ](νl) b〈l〉. 0 is represented by the coq

process 0λ.[Decs110 :M ]ν3〈0〉. 0 (see also Table 6.1).

z y x . . . l k j . . . c b a
0λ.[Decs110 :M ]ν 3〈0〉.0

Table 6.1: Representation of a(x).[Decskx :M ](νl) b〈l〉. 0 using de Bruijn no-
tation

Note that since with de Bruijn notation binders’names are irrelevant,
we just indicate that there is a binder in a term either with λ for input
prefix or ν for restriction. We also use λ for abstractions so that (x)P is
written λ.P. Moreover, concretions (νz1 . . . zk) 〈E〉P are written νk〈E〉P.
When k = 1, we simply write ν〈E〉P and when k = 0, we write 〈E〉P.
It is convenient to define several operations for manipulating de Bruijn

indices. We explain and illustrate these operations by showing how to im-
plement several operations on agents. All of these operations take as a
parameter the binding depth of the term they are working on: this repre-
sents the number of binders in the enclosing context of the term. Going
through a λ or a ν increases this depth.

1. Clearly, a function is needed to check whether a given de Bruijn in-
dex is free in a term or not. The function memd(i, t) returns true if
the index i is free in term t (at binding depth d) and false otherwise.
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On names, it is simply defined by:

memd(i, n) := true if n = d+ i
:= false otherwise

Then, this operation is lifted to messages, expressions, guards, . . . For
instance, the definition for processes is given Table 6.2.

memd(i, 0) := false
memd(i, Eλ.P) := true if memd(i, E) = true

:= memd+1(i, P) otherwise
memd(i, E〈F〉.P) := true if memd(i, E) = true

:= true if memd(i, F) = true
:= memd(i, P) otherwise

memd(i, φP) := true if memd(i, φ) = true
:= memd(i, P) otherwise

memd(i, τ.P) := memd(i, P)
memd(i, P |Q) := true if memd(i, P) = true

:= memd(i,Q) otherwise
memd(i, P+Q) := true if memd(i, P) = true

:= memd(i,Q) otherwise
memd(i, ! P) := memd(i, P)
memd(i, νP) := memd+1(i, P)

Table 6.2: Definition of memd(i, P) lifted on processes

2. Recall that the parallel composition of an agent and a process is de-
fined by

((x)P) |Q := (x)(P |Q) if x 6∈ fn(Q)
((νz̃) 〈F〉P) | Q := (νz̃) 〈F〉(P |Q) if {z̃} ∩ fn(Q) = ∅

With de Bruijn notation, such side conditions are irrelevant. This
kind of conditions is treated in a systematic way since they can al-
ways be satisfied by using α-conversion. Thus, an operator liftd(k, t)
is defined to update the free de Bruijn indices in t to reflect an addi-
tion of k binders to the enclosing context of t.

On names, it is simply defined by

liftd(k, n) := n if n < d
:= n+ k otherwise
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As before, this operation is naturally lifted to other data types.

The parallel composition of an agent and a process is then defined
by

(λ.P) |Q := λ.(P | lift0(1,Q))
(νk〈F〉P) |Q := νk〈F〉(P | lift0(k,Q))

For instance, consider the abstraction F := (x)a〈x〉. 0 and the process
Q De f a(z).z〈x〉. 0. Their de Bruijn representations are F = λ.1〈0〉. 0
and Q = 0λ.0〈24〉. 0 and the parallel composition F |Q is equal to
λ.(1〈0〉. 0 | 1λ.0〈25〉. 0) (see also Table 6.3).

F Q

z y x . . . c b a
λ.1〈0〉.0

z y x . . . c b a
0λ.0〈24〉.0

F |Q

z y x . . . c b a
λ.(1〈0〉.0 | 1λ.0〈25〉.0 )

Table 6.3: Parallel composition of an abstraction and a process using de
Bruijn representation

3. Recall that the restriction of an agent is defined by

(νννy) ((x)P) := (x)(νy) P if y 6= x
(νννy) ((νz̃) 〈F〉P) := (νyz̃) 〈F〉P if y 6∈ {z̃} and y ∈ n(F)
(νννy) ((νz̃) 〈F〉P) := (νz̃) 〈F〉(νy) P if y 6∈ {z̃} and y 6∈ n(F)

As before, the side condition y 6= x or y 6∈ {z̃} can be satisfied via
α-conversion and is thus trivially handled with de Bruijn notation.

The interesting cases are restriction of an abstraction and restriction
of a concretion when y 6∈ n(F). Since the explanation of the former
is subsumed by the explanation of the latter, we focus on the restric-
tion of a concretion with y 6∈ n(F). In this case, the name y goes
through the binders z̃. So a reordering of de Bruijn indices in P is
needed. Moreover, the binding name y is removed from the con-
text of F. Hence indices of F should also be updated (decremented
by one). To update terms, we introduce two operations: swapd(k, t)
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that makes a circular permutation of the first k free indices of t and
lowd(t) that decrements by one the free indices of t. This latter op-
eration fails if the index 0 is free in the term (considered at depth
d).

Formally, these operations are defined on names by

swapd(i, n) := n if n < d
:= n+ 1 if d ≤ n < d+ k
:= d if n = d+ k
:= n if n > d+ k

lowd(n) := n if n < d
:= n− 1 if n > d

Restriction of agents is then defined by

ννν(λ.P) := λ.ν swap0(1, P)
ννν(νk〈F〉P) := νk+1〈F〉P if memk(0, F) = true

:= νk〈lowk(F)〉ν swap0(k, P) otherwise

4. The pseudo-application is defined by

((x)P) • ((νz̃) 〈F〉Q) := (νz̃) (P{F/x} |Q)

with the side condition that {z̃} ∩ fn(P) = ∅. As before, this require-
ment can be satisfied via an α-conversion.

To handle the substitution, we define an operation lsubstd(k, E, P)
that substitutes the index 0 in P by the expression E. The indices
of E should be updated according to the binding depth of the place
where it is substituted. The other free indices are decremented by
one (corresponding to the removal of the bound name that is being
substituted) and incremented by k, k being the number of binders in
the context of E.

This is defined on names by

lsubstd(k, E, n) := n if n < d
:= lift0(d, E) if n = d
:= n− 1+ k if n > d

Thus, pseudo-application is defined by

(λ.P) • (νk〈F〉Q) := νk(lsubst0(k, F, P) |Q)
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One tedious but necessary task to do when working with de Bruijn
representation is to prove several (about 60) facts about the above defined
operations (mem, lift, swap, low and lsubst). For instance, swap and lift
“commutes” in the following way:

∀d, d′, k, k′, x : swapd+k+d′(k
′ , liftd(k, x)) = liftd(k, swapd+d′(k

′, x))

When formalising a calculus like the spi calculus, the number of these
technical results literally explodes because each of the result should be
proved for each data type since there are as many instances of the oper-
ators above as the number of data types (i.e. one instance for names, one
instance for messages, one instance for expressions, ...) If this problem is
not handled carefully, we could have to prove about 60 facts * 6 data types
= 360 facts at least. Our approach to overcome this explosion of facts has
been to factor the work extensively by finding suitable abstractions.
Hence, we have tried to characterise what it means for a type to use

a de Bruijn representation. For convenience reasons, we have split the
five basic operations into three groups. The first group of operations is
composed of lift, swap and low. The definitions of these operations as
well as their properties are gathered into a record type. Thus a value of
type deBruijn_base t provides these operations for type t. The record
type is defined as follows:

Record deBruijn_base (t:Set) : Set := {
lift : nat -> nat -> t -> t;
swapR : nat -> nat -> t -> t;
low1 : nat -> t -> t;
(* lift, swapR and low1 properties *)
...
swapR_lift_comm :

forall (d d’ k k’:nat)(x:t),
(swapR (d+k+d’) k’ (lift d k x))=

(lift d k (swapR (d+d’) k’ x));
...

}.

Having a record of type deBruijn_base t and a compositional map
function of type (nat->t->t)->nat->t’->t’, it is possible to define
a record of type deBruijn_base t’ therefore providing de Bruijn op-
erations for type t’. Eligible map functions are characterised by a few
(precisely four) reasonable properties that should be satisfied.
Given a type t and a record of type deBruijn_base t, we define a

new record type that provides the mem operations and its properties:
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Record deBruijn_fn
(t:Set)(deBruijn_t:deBruijn_base t) : Set := {
mem_fn : nat -> nat -> t -> bool;
(* properties of mem_fn *)
...

}

Again, it is possible to gently lift this operation to a type t’ thanks to
a fold function that satisfies a few reasonable properties.
Finally, to provide the lsubst operation and its properties, we define

another record type:

Record deBruijn_subst
(t:Set)(deBruijn_t:deBruijn_base t)
(to:Set)(deBruijn_to:deBruijn_base to) : Set := {
low_subst : nat -> nat -> list to -> t -> t;
(* low_subst properties *)
...

}

Actually, there is a need to define two kinds of substitutions depending on
the return type: either subjects of type t are substituted by objects of type
to yielding a term of type t or subjects of type t are substituted by objects
of type to yielding a term of type to. The former case is used more often
and corresponds to the record type given above. However, the latter case
happenswhen defining the substitution of a name by an expression (yield-
ing back an expression). As for the other operations, given a reasonable
map function, it is possible to lift this operation to another type t’.
Note that for convenience reasons, we have defined directly a “gener-

alised” substitution, i.e. an operation lsubstd(k, es, t) that substitutes the n
first indices in t by the corresponding expression in the list es, n being the
length of this list.
To sum up, the architecture of our formalisation is the following:

• a module deBruijnNat implements every basic operation (i.e. lift,
swap, low, mem and lsubst) for the simple type nat. The technical
results about these operations are also proved in this module.

• a module deBruijnType defines the several record types described
above and provides several functions to lift de Bruijn operations from
a type to another.

It also defines eligible map and fold functions for going from type
t to type list t or from types t1 and t2 to type t1 * t2.
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• a module name embeds the operations on nat into operations on
names. The type name is defined by

Inductive name : Set := Ref : nat -> name.

Wedo this embedding to avoid confusions between natural numbers
and de Bruijn indices.

• a module message implements the type of messages. Suitable map
and fold functions are given. Then a “lifter” provided by module
deBruijnType is used to define de Bruijn operations on messages
(and all the technical results that come with them) in terms of de
Bruijn operations on names (defined in module name). This task is
fast and easy to achieve.

• as for messages, a module for expressions, guards, processes and
agents is defined and de Bruijn operations are implemented in the
same way.

For instance, the map function on processes is defined by:

Fixpoint t_map
(fe:nat->E.t->E.t)
(ff:nat->F.t->F.t) (d:nat) (p:t)

{struct p} : t :=
match p with

| Zero => Zero
| Par p q => Par (t_map fe ff d p)

(t_map fe ff d q)
| Sum p q => Sum (t_map fe ff d p)

(t_map fe ff d q)
| Bang p => Bang (t_map fe ff d p)
| New p => New (t_map fe ff (S d) p)
| Tau p => Tau (t_map fe ff d p)
| Input e p => Input (fe d e)

(t_map fe ff (S d) p)
| Output e f p => Output (fe d e)

(fe d f)
(t_map fe ff d p)

| IfThen phi p => IfThen (ff d phi)
(t_map fe ff d p)

end.
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Note that it takes two functions as arguments, one for applying op-
erations on expressions (of type E.t) and one for applying opera-
tions on guards (of type F.t). Note also how the meaning of binders
is given by incrementing the binding depth d in the case of New or
Input.

This architecture is summarised in Table 6.4. An arrow indicates the
use of a “lifter”.

deBruijnNat
definitions of de Bruijn operations

proofs of technical results

deBruijnType
specifications of de Bruijn operations

definitions of “lifters”

name message

expression formulae

process

agents

Table 6.4: Architecture of the coq formalisation (de Bruijn operations)

6.1.3 Abstracting from the semantics

Now that we have explained the general architecture of the formalisation
of terms, we focus our attention on the formalisation of the various la-
belled semantics.
One may notice that the definitions of the labelled semantics presented

previously in Table 3.8, Table 3.9 and Table 5.2 are quite similar. Moreover,
they share some properties, for instance see Theorem 4. So to avoid dupli-
cation of definitions and proofs, we have used an abstraction to formalise
the labelled semantics.
Our approach is to postpone the definition of the labelled semantics

until the definition of the semantics of actions. Hence, we assume to have
a set of actions A over which several functions are provided to create and
handle them:

• mkSil : A is a silent action.
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• mkInp : E → A∪ {⊥} is used for creating input actions. mkInp(E)
creates an action (α ∈ A) or fails (⊥) depending on the expression E
appearing in channel position.

• mkOutp : E× E → (A × E) ∪ {⊥} is used for creating output ac-
tions. mkOutp(E, F) creates a pair of an action and an expression
((α,M) ∈ A × E) or fails (⊥) depending on the expression E ap-
pearing in channel position and the expression F appearing in data
position (M represents the transmitted data).

• mkRes : A → A ∪ {⊥} is used to restrict a name in an action.
mkRes(α) tries to restrict the first de Bruijn index from α: it may
fail (⊥) or give an action (β ∈ A).

• mkIf : F × A → A ∪ {⊥} is used to guard an action. mkIf(φ, α)
either gives a guarded action (β ∈ A) or fails.

• mkInt : A×A → A∪{⊥} is used to make actions interact. Depend-
ing on actions α and β, mkInt(α, β) either succeeds or fails.

The labelled semantics is then defined by an inductive predicate as
shown by Table 6.5 (as before, we have omitted the symmetric variants
of rules CLOSE-L, PAR-L and SUM-L).
It is possible to prove several properties on the labelled semantics of Ta-

ble 6.5. For instance assume that each action is given a kind by the function
kind : A → {In,Out,Silent} and assume that the following properties
hold:

• kind(mkSil) = Silent

• ∀E ∈ E, α ∈ A : mkInp(E) = α =⇒ kind(α) = In

• ∀E, F ∈ E, α ∈ A,M ∈ E :

mkOutp(E, F) = (α,M) =⇒ kind(α) = Out

• ∀φ ∈ F, α, β ∈ A : mkIf(φ, α) = β =⇒ kind(α) = kind(β)

• ∀α, β ∈ A : mkRes(α) = β =⇒ kind(α) = kind(β)

• ∀α, β,γ ∈ A : mkInt(α, β) = γ =⇒ kind(γ) = Silent

Then, one can prove that if P α
−→ A and

1. if kind(α) = Silent then A is a process Q.
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SILENT
τ.P mkSil−−−→ P

INPUT
mkInp(E) = α ∈ A

Eλ.P α
−→ λ.P

OUTPUT
mkOutp(E, F) = (α,M) ∈ A× E

E〈F〉.P α
−→ 〈M〉P

CLOSE-L
P

α
−→ F Q

β
−→ C mkInt(α, β) = γ ∈ A

P |Q
γ
−→ F • C

RES
P

α
−→ A mkRes(α) = β ∈ A

νP
β
−→ νννA

IFTHEN
P

α
−→ P′ mkIf(φ, α) = β ∈ A

φP
β
−→ P′

PAR-L
P

α
−→ A

P |Q
α
−→ A |Q

SUM-L
P

α
−→ A

P+Q
α
−→ A

REP-ACT
P

α
−→ A

! P α
−→ A | ! P

REP-CLOSE
P

α
−→ F P

β
−→ C mkInt(α, β) = γ ∈ A

! P
γ
−→ (F • C) | ! P

Table 6.5: Formalisation of the labelled semantics in coq
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2. if kind(α) = In then A is an abstraction F.

3. if kind(α) = Out then A is a concretion C.

Table 6.6 shows the concrete implementation of actions corresponding
to Table 3.8. In this setting, actions are defined in the module ActionSpi
by:

Inductive action : Set :=
| Tau : action
| Inp : Name.t -> action
| Outp : Name.t -> action.

(* type for "standard" actions *)
Definition t := action.

mkSil := τ
mkInp(E) := n if ec(E) = n ∈ N

:= ⊥ otherwise
mkOutp(E, F) := (n,M) if ec(E) = n ∈ N

and ec(F) = M ∈ M
:= ⊥ otherwise

mkIf(φ, α) := α if e(φ) = true
:= ⊥ otherwise

mkRes(τ) := τ
mkRes(n) := low0(n) if mem0(0, n) = false

:= ⊥ otherwise
mkRes(n) := low0(n) if mem0(0, n) = false

:= ⊥ otherwise
mkInt(a, b) := τ if a = b
mkInt(b, a) := τ if a = b
mkInt(α, β) := ⊥ in all other cases

Table 6.6: Implementation of actions for the standard labelled semantics
of the spi calculus

The type of actions with type constraints is defined in ActionSpiNC
by:

(* type for "type constraints" *)
Definition constraint := list Name.t.
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(* type for action "with type constraints" *)
Definition t := ActionSpi.action * constraint.

The type of symbolic actions is defined in ActionSpiSymb by:

(* type for constraints *)
Definition constraint := nat * list FormulaeSpi.t.

Inductive action : Set :=
| Tau : action
| Inp : ExpressionSpi.t -> action
| Outp : ExpressionSpi.t -> action.

(* type for symbolic action *)
Definition t := action * constraint.

The integer in type constraint encodes the number of restricted names
in the underlying constraint.

6.2 Proof sketches

Hitherto, we have explained the spirit of our formalisation of the spi calcu-
lus in coq. We now give the proof sketches of some lemmas and theorems
stated in the previous chapters. We then quickly illustrate how one can for-
mally reason in coq about cryptographic protocols using our framework
by showing a perfect encryption equation.
In order to keep proofs readable, we use the mathematical notation

but one should keep in mind that all of the following results have been
validated in coq. We also remind the reader that results about hedges
have already been sketched in Chapter 4 but have also been validated in
coq.

6.2.1 Proof of Theorem 4

Theorem 4 states that:

1. If P ≡ Q and P
µ
−→ A then there exists B such that A ≡ B andQ

µ
−→ B.

2. If P ≡ Q and P
µ
−֒→
S
A then there exists B such that A ≡ B andQ

µ
−֒→
S
B.
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As a test suite for our formalisation, we have thus proved this well-known
result in coq.
Before sketching the proof, it is interesting to note that it does not hold

for the symbolic transitions system. Indeed, consider

P := (νx) x(z). 0
Q := y〈k〉. 0

Then P |Q cannot perform any internal transition whereas by scope
extrusion, we have

P |Q ≡ (νx) (x(z). 0 | y〈k〉. 0) τ
7−−−−−−−−−−−−−−−−−−→
(νx) {[ x :N ],[y :N ],[ x=y ],[ k :M ]}

(νx) (0 | 0)

This negative result is not particularly annoying because this phenomenon
happens only with “false” transitions (i.e. symbolic transitions with unsat-
isfiable constraints) however it is worth to note it.
As explained previously, we have abstracted the semantics over actions

in order to avoid duplication of work. So the theorem proved is rather

Theorem 17:
If the set of actionsA and the functionsmkSil,mkInp, . . . satisfy some con-
ditions, then if P ≡ Q and P α

−→ A then there exist β and B such that A ≡ B,

Q
β
−→ B and α = β. ♦

Note that it is convenient to abstract over the equality of actions because
using coq equality can sometimes be too strong. That is why we write
α = β in the above theorem.
Among the required conditions that should be satisfied by actions, the

following is needed to prove the case of scope extrusion:

∀α, α′, β,γ′′ ∈ A :
{

mkRes(α) = α′

mkInt(α′, β) = γ′′
=⇒

∃γ,γ′ ∈ A :







γ′ = γ′′

mkInt(α, lift0(1, β)) = γ
mkRes(γ) = γ′

The proof (of the theorem) proceeds in several steps. Firstly, some tech-
nical results about structural congruence and operations on agents have to
be proved. For instance, for any abstraction F, concretion C and process P,
we have that (F • C) | P ≡ F • (C | P). Secondly we prove that the theorem
holds for each axiom of the structural congruence and thirdly, we show
that the result is preserved by process contexts.
We refer the interested reader to the coq files to see the full details of

the definition of structural congruence and the proof of this theorem.
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6.2.2 Proof of Theorem 13

PROOF (OF LEMMA 77)
The goal is to prove that

∀E, F ∈ E : E >o F =⇒ (∀M ∈ M : ec(E) = M ⇐⇒ ec(F) = M)

We show the two implications separately, i.e. we show that

1. ∀E, F ∈ E : E >o F =⇒ (∀M ∈ M : ec(E) = M =⇒ ec(F) = M)

2. ∀E, F ∈ E : E >o F =⇒ (∀M ∈ M : ec(F) = M =⇒ ec(E) = M)

The two proofs proceed by rule induction on E >o F.
To illustrate this, we give the proof of the second implication for the

case when E >o F is deduced from the axiom π1 ((E1 . E2)) >o E1 if
ec(E2) 6= ⊥.
In this case, we have E = π1 ((F .G)) with ec(G) 6= ⊥.
By hypothesis, ec(F) = M. Since ec(G) 6= ⊥, there exists N ∈ M such

that ec(G) = N.
We have thus ec((F .G)) = (M .N).
So ec(E) = MÂ·

It is possible to generalise Lemma 22.

Lemma 85:
Let E ∈ E and F1, . . . , Fn ∈ E such that for all 1 ≤ i ≤ n, ec(Fi) = Ni 6= ⊥.
If ec(E) = M ∈ M then ec(E

[

F1/x1 , . . . ,
Fn/xn

]

) = M
[

N1/x1 , . . . ,
Nn/xn

]

.

PROOF
By induction on E.

Likewise, it is possible to generalise Lemma 78.

Lemma 86:
1. Let E, E′ ∈ E such that E >o E

′. Let F1, . . . , Fn ∈ E such that for all
1 ≤ i ≤ n, ec(Fi) 6= ⊥. Then E

[

F1/x1 , . . . ,
Fn/xn

]

>o E
′
[

F1/x1 , . . . ,
Fn/xn

]

.

2. Let E ∈ E. Let F1, . . . , Fn ∈ E and G1, . . . ,Gn ∈ E such that for all
1 ≤ i ≤ n, Fi >o Gi. Then E

[

F1/x1 , . . . ,
Fn/xn

]

>o E
[

G1/x1 , . . . ,
Gn/xn

]

.

3. Let E, E′ ∈ E such that E >o E
′. Let F1, . . . , Fn ∈ E and G1, . . . ,Gn ∈

E such that for all 1 ≤ i ≤ n, Fi >o Gi and ec(Fi) 6= ⊥. Then
E
[

F1/x1 , . . . ,
Fn/xn

]

>o E
′
[

G1/x1 , . . . ,
Gn/xn

]

.
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PROOF
1. By induction on E >o E

′ and thanks to Lemma 85.

2. By induction on E.

3. A simple corollary of the two previous results.

Clearly, Lemma 86 can be generalised to the case of guards and pro-
cesses.
Corollary 9:
1. Let φ, φ′ ∈ F such that φ >o φ′. Let F1, . . . , Fn ∈ E and G1, . . . ,Gn ∈
E such that for all 1 ≤ i ≤ n, Fi >o Gi and ec(Fi) 6= ⊥. Then
φ
[

F1/x1 , . . . ,
Fn/xn

]

>o φ′
[

G1/x1 , . . . ,
Gn/xn

]

.

2. Let P, P′ ∈ P such that P >o P
′. Let F1, . . . , Fn ∈ E and G1, . . . ,Gn ∈

E such that for all 1 ≤ i ≤ n, Fi >o Gi and ec(Fi) 6= ⊥. Then
P
[

F1/x1 , . . . ,
Fn/xn

]

>o P
′
[

G1/x1 , . . . ,
Gn/xn

]

. ♠

Lemma 87:
1. Let A, B two agents such that A >=

o B. Then (νννx) A >=
o (νννx) B.

2. Let A, B two agents such that A >=
o B and P,Q two processes such

that P >o Q. Then A | P >=
o B |Q.

3. Let F1, F2 two abstractions such that F1 >=
o F2 and C1,C2 two concre-

tions such that C1 >=
o C2. Then F1 • C1 >o F2 • C2.

PROOF
1. By induction on A >=

o B.

2. By induction on A >=
o B.

3. We have F1 =α (x)P1, F2 =α (x)P2 with P1 >o P2.

Similarly, we have C1 =α (νz̃) 〈M〉Q1 and C2 =α (νz̃) 〈M〉Q2 with
{z̃} ∩ fn(Pi) = ∅ for i ∈ {1, 2}.

By definition, we have

F1 • C1 = (νz̃) (P1{
M/x} |Q1)

F2 • C2 = (νz̃) (P2{
M/x} |Q2)

So to show the result, it is sufficient to show that P1{M/x} >o P2{
M/x}

which is given by Corollary 9.
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PROOF (OF THEOREM 13)
The goal is to prove that:
∀P,Q ∈ P : P >o Q =⇒

1. ∀S, A : P
µ
−֒→
S
A =⇒ ∃B : A >=

o B ∧Q
µ
−֒→
S
B

2. ∀S, B : Q
µ
−֒→
S
B =⇒ ∃A : A >=

o B ∧ P
µ
−֒→
S
A

1. By rule induction on P
µ
−֒→
S
A. We give the proof for the following

cases:

NC-INPUT Assume that P = E(x).P′
a
−֒→
{a}

(x)P′ where ec(E) = a ∈ N.

Since P >o Q, we haveQ =α F(x).Q′ with E >o F and P′ >o Q′.
By Lemma 77, we have ec(F) = a.

Thus, by NC-ALPHA and NC-INPUT, Q =α F(x).Q′
a
−֒→
{a}

(x)Q′

and (x)P′ >=
o (x)Q′.

NC-OUTPUT Assume that P = E1〈E2〉.P′
a
−֒→
{a}
〈M〉P′ with ec(E1) = a ∈ N

and ec(E2) = M ∈ M.
Since P >o Q, we have Q = F1〈F2〉.Q′ with E1 >o F1, E2 >o F2
and P′ >o Q′.
By Lemma 77, we have ec(F1) = a and ec(F2) = M.

Thus, by NC-OUTPUT, Q = F1〈F2〉.Q′
a
−֒→
{a}
〈M〉Q′ and we have

〈M〉P′ >=
o 〈M〉Q

′ .

NC-GUARD Assume that P = φP1 with P1
µ
−֒→
S
A, e(φ) = true and P =

φP1
µ

−֒−−−→
S∪nc(φ)

P′.

Since P >o Q, we have Q = ψQ1 with φ >o ψ and P1 >o Q1.

By induction, Q1
µ
−֒→
S
B with A >=

o B.

By Corollary 7, we have e(ψ) = true.

Thus, by NC-GUARD, we have Q = ψQ1
µ

−֒−−−→
S∪nc(ψ)

B.

Again by Corollary 7, we have nc(ψ) = nc(φ) so Q
µ

−֒−−−→
S∪nc(φ)

B

and A >=
o B.
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NC-CLOSE-L Assume that P = P1 | P2 with P1
a
−֒→
S
F1, P2

a
−֒→
S′
C1 and P

τ
−֒−→
S∪S′

A = F1 • C1.
Since P >o Q, we have Q = Q1 |Q2 with P1 >o Q1 and P2 >o
Q2.

By induction, we have Q1
a
−֒→
S
F2 and Q2

a
−֒→
S′
C2 with F1 >=

o F2

and C1 >=
o C2.

Thus by NC-CLOSE-L Q1 |Q2
τ
−֒−→
S∪S′

F2 • C2 = B.

By Lemma 87, we have A >o B, i.e. A >=
o B.

2. By rule induction on Q
µ
−֒→
S
B. We give the proof for the following

cases:

NC-INPUT Assume that Q = F(x).Q′
a
−֒→
{a}

(x)Q′ with ec(F) = a ∈ N.

Since P >o Q, we have P =α E(x).P′ with E >o F and P′ >o Q′.
By Lemma 77, we have ec(E) = a.

So, by NC-ALPHA and NC-INPUT, we have P =α E(x).P′
a
−֒→
{a}

(x)P′ and (x)P′ >=
o (x)Q′.

NC-CLOSE-L Assume that Q = Q1 |Q2 with Q1
a
−֒→
S
F2 , Q2

a
−֒→
S′
C2 and Q

τ
−֒−→
S∪S′

B = F2 • C2.
Since P >o Q, we have P = P1 | P2 with P1 >o Q1 and P2 >o Q2.

By induction, we have P1
a
−֒→
S
F1 and P2

a
−֒→
C 1
with F1 >=

o F2 and

C1 >=
o C2.

So by NC-CLOSE-L, we have P = P1 | P2
τ
−֒−→
S∪S′

A = F1 • C1.

Moreover, by Lemma 87, we have A >o B so A >=
o B.

NC-RES Assume that Q = (νz)Q′ with Q′
µ
−֒→
S
B′ with z 6∈ n(µ) and

Q
µ
−֒−−→
S\{z}

B = (νννz) B′.

Since P >o Q, we have P =α (νz) P′ with P′ >o Q′.

By induction we thus have P′
µ
−֒→
S
A′ with A′ >=

o B
′.

Since z 6∈ n(µ), we have by NC-RES and NC-ALPHA, P =α

(νz) P′
µ
−֒−−→
S\{z}

A = (νννz) A′.
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Moreover, by Lemma 87, we have (νννz) A′ >=
o (νννz) B′ i.e. A >=

o
B.

6.2.3 Proof of Theorem 14

PROOF (OF LEMMA 79)
The goal is to prove that

∀E ∈ E, ∀σ : N → M : ea(ea(E)σ) = ea(Eσ)

The proof proceeds by induction on E. We give the proof for the induc-
tive case E = π1 (F).
Assume E = π1 (F) and the result holds for F.
By induction, we have (*) ea(ea(F)σ) = ea(Fσ).
We have two cases:

1. if ea(F) = (F1 . F2) for some F1, F2.

Then ea(E) = F1.

So ea(ea(E)σ) = ea(F1σ).

Rewriting (*) gives ea((F1 . F2)σ) = ea(Fσ), i.e. ea((F1σ . F2σ)) =
ea(Fσ).

By definition, ea((F1σ . F2σ)) = (ea(F1σ) . ea(F2σ)).

So ea(Fσ) = (ea(F1σ) . ea(F2σ)).

So ea(Eσ) = ea(π1 (F) σ) = ea(π1 (Fσ)) = ea(F1σ) by definition.

Hence ea(ea(E)σ) = ea(Eσ).

2. otherwise

Then by definition, ea(E) = π1 (ea(F)).

Thus, ea(E)σ = π1 (ea(F)σ).

So ea(ea(E)σ) = ea(π1 (ea(F)σ)).

We have then two subcases:

(a) if ea(ea(F)σ) = (F1 . F2)
By (*), we have then ea(Fσ) = (F1 . F2).
By definition, we have ea(ea(E)σ) = F1.
And by definition, we have ea(π1 (Fσ)) = F1.
But ea(π1 (Fσ)) = ea(π1 (F) σ) = ea(Eσ).
So ea(ea(E)σ) = ea(Eσ).
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(b) otherwise
So by definition, we have ea(ea(E)σ) = π1 (ea(ea(F)σ)) which
is equal to π1 (ea(Fσ)) by (*).
By (*), we know that ea(Fσ) is not a pair so ea(π1 (Fσ)) =
π1 (ea(Fσ)).
But ea(π1 (Fσ)) = ea(Eσ).
So ea(ea(E)σ) = ea(Eσ).

PROOF (OF LEMMA 80)
The goal is to prove

∀E ∈ E, ∀σ : N → M : ec(Eσ) = M ∈ M =⇒ ec(ea(E)σ) = M

The proof proceeds by induction on E. We give the proof for the induc-
tive case E = π1 (F).
Assume E = π1 (F) and the result holds for F
We have ec(Eσ) = ec(π1 (Fσ)) = M ∈ M.
Necessarily, ec(Fσ) = (M .N) for some N ∈ M.
By induction, we have thus ec(ea(F)σ) = (M .N).
We have two cases:

1. if ea(F) = (F1 . F2)

Then ea(E) = F1.

We have ec(ea(F)σ) = ec((F1σ . F2σ)) = (M .N).

So necessarily, ec(F1σ) = M and ec(F2σ) = N.

Hence the result, since ec(Eσ) = M = ec(F1σ) = ec(ea(E)σ).

2. otherwise

We have ea(E) = π1 (ea(F)).

So ec(ea(E)σ) = ec(π1 (ea(F)σ)).

Since ec(ea(F)σ) = (M .N), we have ec(π1 (ea(F)σ)) = M by defi-
nition.

Hence ec(ea(E)σ) = ec(Eσ).

PROOF (OF LEMMA 76)
The goal is to prove that

∀E ∈ E : ec(E) = M ∈ M =⇒ E >o M



6.2. PROOF SKETCHES 195

The proof proceeds by a simple induction on E.
For instance, we give the proof for the inductive case E = π1 (F).
Assume that E = π1 (F) and the result holds for F.
Since ec(E) = M ∈ M, necessarily ec(F) = (M .N) ∈ M for some N.
By induction, we have F >o (M .N).
Thus, by definition of >o, we have π1 (F) >o π1 ((M .N)), i.e. E >o

π1 ((M .N)).
Moreover, by definition of >o, we have π1 ((M .N)) >o M, because

ec(N) 6= ⊥ by Lemma 19 since N ∈ M.
So, by transitivity of >o, we conclude that E >o M.

Before proving Theorem 14, we need results analogous to Lemma 87
involving >eo. The case for the restriction is technically difficult and re-
quires some auxiliary definitions.

Definition 93.
For x ∈ N, we define the inductive predicate x ⊳E on expressions as shown
in Table 6.7.

x ⊳ x

x ⊳ E1

x ⊳ (E1 . E2)
x ⊳ E2

x ⊳ (E1 . E2)

x ⊳ E1

x ⊳ EncsE2E1

x ⊳ E2

x ⊳ EncsE2E1

x ⊳ E1

x ⊳ EncaE2E1

x ⊳ E2

x ⊳ EncaE2E1

x ⊳ E

x ⊳ op(E)
op ∈ {pub, priv,H}

Table 6.7: Definition of x ⊳ E

Intuitively, x ⊳ E is a stronger condition than x ∈ n(E) because it re-
quires the name x to appear in only certain subexpressions of E. It will
help us to better control the case for restriction when relating the symbolic
LTS to the concrete one.
Lemma 88:
1. If E ∈ E then x ⊳ E =⇒ x ∈ n(E).

2. If M ∈ M then x ∈ n(M) ⇐⇒ x ⊳M.

3. If E ∈ E and σ : N → M is a substitution such that x 6∈ n(σ), then if
x ⊳ E then x ⊳ Eσ.

PROOF
1. By induction on x ⊳ E.
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2. By induction on M ∈ M.

3. By induction on x ⊳ E.

Lemma 89:
Let E ∈ E and σ : N → M a substitution such that x 6∈ n(σ). If x ⊳ E and
ec(Eσ) = M ∈ M then x ∈ n(M).

PROOF
By induction on x ⊳ E.

Definition 94.
We define a measure ♯(E) on expressions as shown in Table 6.8.

♯(a) := 0 if a ∈ N
♯((E1 . E2)) := ♯(E1) + ♯(E2)
♯(EncsE2E1) := ♯(E1) + ♯(E2)
♯(EncaE2E1) := ♯(E1) + ♯(E2)

♯(op(E)) := ♯(E) op ∈ {pub, priv,H}
♯(π1 (E)) := 1+ ♯(E) if E = (E1 . E2)

:= ♯(E) otherwise
♯(π2 (E)) := 1+ ♯(E) if E = (E1 . E2)

:= ♯(E) otherwise
♯(DecsFE) := 1+ ♯(E) + ♯(F) if E = EncsE2E1

:= ♯(E) + ♯(F) otherwise
♯(DecaFE) := 1+ ♯(E) + ♯(F) if E = EncaE2E1

:= ♯(E) + ♯(F) otherwise

Table 6.8: Definition of ♯(E)

Intuitively, ♯(E) is the number of potential redexes in E. It helps to
characterise precisely those expressions E such that ea(E) = E.

Lemma 90:
Let E ∈ E. Then ea(E) = E ⇐⇒ ♯(E) = 0.

PROOF
⇒ We show by induction on E that ♯(ea(E)) = 0. Thus, if ea(E) = E,
then ♯(ea(E)) = ♯(E) = 0.
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⇐ By induction on E.

Lemma 91:
Let E ∈ E, σ : N → M a substitution such that x 6∈ n(σ). If ec(Eσ) = M ∈
M, ♯(E) = 0 and x ∈ n(E) then x ⊳ E.

PROOF
By induction on E. We give the proof for several cases:

• E = a ∈ N

Necessarily, a = x thus z ⊳ E.

• E = (E1 . E2) and the result holds for E1 and E2
Clearly we have ♯(E1) = ♯(E2) = 0.

Since n(E) = n(E1) ∪ n(E2), we have x ∈ n(E1) or x ∈ n(E2).

Moreover, since ec(Eσ) 6= ⊥, we have necessarily ec(E1σ) 6= ⊥ and
ec(E2σ) 6= ⊥.

If x ∈ n(E1) then by induction x ⊳ E1. Hence x ⊳ E.

If x ∈ n(E2) then by induction x ⊳ E2. Hence x ⊳ E.

In both cases, we have x ⊳ E.

• E = DecsGF and the result holds for F and G

Since ♯(E) = 0, we have F 6= EncsF2F1, ♯(F) = 0 and ♯(G) = 0.

Since ec(Eσ) 6= ⊥, we have ec(Fσ) = EncsM2M1 and ec(Gσ) = M2
for some M1,M2 ∈ M. Thus ec(Fσ) 6= ⊥ and ec(Gσ) 6= ⊥.

Since n(E) = n(F) ∪ n(G) we have x ∈ n(F) or x ∈ n(G).

If x ∈ n(F), then by induction x ⊳ F. By case analysis on x ⊳ F and
since ec(Fσ) = EncsM2M1 and x 6∈ n(σ), we necessarily have that
F = EncsF2F1 for some F1, F2 ∈ E. This is a contradiction.

So necessarily x ∈ n(G). By induction we have x ⊳G. Since ec(Gσ) 6=
⊥ and x ⊳G we have by Lemma 89 that x ∈ n(ec(Gσ)) = n(M2). So,
since ec(Fσ) = EncsM2M1, we have x ∈ n(ec(Fσ)). Since x 6∈ n(σ),
we necessarily have that x ∈ n(F). This leads to a contradiction.

This case is thus impossible.
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Corollary 10:
Let E ∈ E and σ : N → M a substitution such that x 6∈ n(σ). If ec(Eσ) =
M ∈ M, ♯(E) = 0 then x ∈ n(E) ⇐⇒ x ∈ n(M).

PROOF
⇒ By Lemma 91, we have x ⊳ E.

So by Lemma 89, we have x ∈ n(M).

⇐ Trivial.

Definition 95.
We extend the definition of ♯ to symbolic actions and symbolic agents as
follows:

♯(τ) := 0
♯(E) := ♯(E)
♯(E) := ♯(E)

♯(P) := 0
♯((x)P) := 0

♯((νz̃) 〈F〉P := ♯(F)

Lemma 92:
If P

µ
7−→
c
A then ♯(µ) = ♯(A) = 0.

PROOF
By induction on P

µ
7−→
c
A and thanks to Lemma 90.

The next lemma is the counterpart of Lemma 87 for >eo.

Lemma 93:
1. Let A, B two agents such that A >eo B, and P,Q ∈ P such that P >o
Q. Then A | P >eo B |Q.

2. Let F1, F2 two abstractions such that F1 >eo F2 and C1,C2 two concre-
tions such that C1 >eo C2. Then F1 • C1 >o F2 • C2.

3. Let A, B two agents such that A >eo B.

• if both A and B are processes then (νννx) A >eo (νννx) B

• if both A and B are abstractions then (νννx) A >eo (νννx) B

• if A = (νz̃) 〈E〉P and B = (νz̃) 〈M〉Q and x ∈ n(E) ⇐⇒ x ∈
n(M) then (νννx) A >eo (νννx) B.

4. Let A, B two agents and σ : N→ M a substitution such that Aσ >eo B
and ♯(A) = 0. Let x 6∈ n(σ). Then (νννx) (Aσ) >eo (νννx) B.
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PROOF
1. By induction on A >eo B.

2. We have F1 =α (x)P, F2 =α (x)P′, C1 =α (νz̃) 〈E〉Q and C2 =α

(νz̃) 〈M〉Q′ with {z̃} ⊆ n(E), {z̃} ⊆ n(M), ec(E) = M, P >o P
′,

Q >o Q
′ and {z̃} ∩ fn(P) = {z̃} ∩ fn(P′) = ∅.

By definition,

F1 • C1 = (νz̃) (P{E/x} |Q)

F2 • C2 = (νz̃) (P′{M/x} |Q′)

To show the result, it is sufficient to show that P{E/x} >o P
′{M/x}.

This is a simple consequence of Corollary 9, since ec(E) = M and
thus E >o M.

3. The non trivial case is when both A and B are concretions.

In this case, we have A = (νz̃) 〈E〉P and B = (νz̃) 〈M〉Q with P >o
Q, ec(E) = M, {z̃} ⊆ n(E) and {z̃} ⊆ n(M). Since x ∈ n(E) ⇐⇒
x ∈ n(M), we have two cases.

• if x ∈ n(E). Then x ∈ n(M).
By definition,

(νννx) A = (νxz̃) 〈E〉P

(νννx) B = (νxz̃) 〈M〉Q

Thus clearly (νννx) A >eo (νννx) B.

• if x 6∈ n(E). Then x 6∈ n(M).
By definition,

(νννx) A = (νz̃) 〈E〉(νx) P

(νννx) B = (νz̃) 〈M〉(νx)Q

Thus (νννx) A >eo (νννx) B.

4. The non trivial case is when both A and B are concretions.

Then A = (νz̃) 〈E〉P and B = (νz̃) 〈M〉Q with ec(Eσ) = M, Pσ >o
Q, {z̃} ⊆ n(E), {z̃} ⊆ n(M) and ♯(E) = 0.

Since ♯(E) = 0, ec(Eσ) = M and x 6∈ n(σ), by Corollary 10 we have
x ∈ n(Eσ) ⇐⇒ x ∈ n(M). Thus, thanks to the previous result, we
have (νννx) (Aσ) >eo (νννx) B.
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Lemma 94:
1. Let c1, c2 be two constraints. Then nc(c1 & c2) = nc(c1) ∪ nc(c2)

2. Let c be a constraint. Then nc(ν+(x, c)) = nc(c) \ {x}. �

PROOF (OF THEOREM 14)
The goal is to prove that
If P,Q ∈ P and σ : N → M is a substitution then:

1. If P
µs
7−→
c
A and e(cσ) = true then Pσ

ec(µsσ)
−֒−−−→
nc(cσ)

B with Aσ >eo B

2. If Pσ
µ
−֒→
S
B then P

µs
7−→
c
A with e(cσ) = true, nc(cσ) = S, ec(µsσ) = µ

and Aσ >eo B

1. By induction on P
µs
7−→
c
A. We give the proof for the following cases:

S-INPUT Assume P = E(x).P′
ea(E)
7−−−−→
{[E :N ]}

(x)P′ = A. We have c = {[E :N ]}

and µs = ea(E).
Since e(cσ) = true, there exists a ∈ N such that ec(Eσ) = a.

Thus, by NC-INPUT, Pσ
a
−֒→
{a}

(x)P′σ.

By Lemma 80, we have ec(ea(E)σ) = a. Moreover, it is clear
that nc(cσ) = {a} and Aσ >eo (x)P′σ. Hence the result.

S-OUTPUT Assume that P = E〈F〉.P′
ea(E)

7−−−−−−−−→
{[E :N ],[F :M ]}

A = 〈ea(F)〉P
′ . We

have c = {[E :N ], [F :M ]} and µs = ea(E).
Since e(cσ) = true, there exists a ∈ N and M ∈ M such that
ec(Eσ) = a and ec(Fσ) = M.

Thus, by NC-OUTPUT, Pσ
a
−֒→
{a}
〈M〉P′σ.

By Lemma 80, we have ec(ea(E)σ) = a and ec(ea(F)σ) = M.
Thus Aσ >eo 〈M〉P

′σ.
Moreover, it is clear that nc(cσ) = {a}.
Hence the result.
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S-CLOSE-L Assume that P = P1 | P2. P1
E
7−→
c1
F, P2

E′
7−→
c2
C and P τ

7−−−−−−−−−→
{[E=E′ ]}&c1&c2

A = F • C.
We have c = {[E=E′ ]} & c1 & c2. Since e(cσ) = true, we
have e(c1σ) = e(c2σ) = true and there exists M ∈ M such that
ec(Eσ) = ec(E′σ) = M.

By induction, we have P1σ
ec(Eσ)
−֒−−−→
nc(c1σ)

F′ and P2σ
ec(E′σ)
−֒−−−→
nc(c2σ)

C′ with

Fσ >eo F
′ and Cσ >eo C

′.
Since ec(Eσ) = M is a concrete action, we have M = a ∈ N.

Thus, by NC-CLOSE-L, Pσ = P1σ | P2σ
τ

−֒−−−−−−−−→
nc(c1σ)∪nc(c2σ)

F′ • C′.

By Lemma 93, we have Fσ •Cσ >o F
′ •C′ so Fσ •Cσ >eo F

′ •C′.
Since (F • C)σ = Fσ • Cσ we thus have Aσ >eo F

′ • C′.
Moreover, we have by Lemma 94 nc(cσ) = nc([E=E′ ]σ) ∪
nc(c1σ) ∪ nc(c2σ), i.e. nc(cσ) = nc(c1σ) ∪ nc(c2σ).
Hence the result.

S-RES Assume that P = (νz) P′ with P′
µs
7−→
c
A′, P = (νz) P′

µs
7−−−→
ν+(z,c)

(νννz) A and z 6∈ n(µs).
We have e(ν+(z, c)) = e(c) = true.

So by induction, we have P′σ
ec(µσ)
−֒−−→
nc(cσ)

B with A′σ >eo B.

By Lemma 92, we have that ♯(µs) = ♯(A′) = 0.
Since ec(µsσ) 6= ⊥, ♯(µs) = 0 and z 6∈ n(σ) (by convention,
bound names are chosen different from free names), a simple
consequence of Lemma 91 and z 6∈ n(µs) is that z 6∈ n(ec(µsσ)).

So, by NC-RES, we have (νz) P′σ
ec(µσ)
−֒−−−−−→
nc(cσ)\{z}

(νννz) B.

By Lemma 94, we have nc(ν+(z, c)) = nc(c) \ {z}. Moreover,
by Lemma 93, we have Aσ = (νννz) (A′σ) >eo (νννz) B. Hence the
result.

2. By induction on Pσ
µ
−֒→
S
B. We give the proof for the following cases:

NC-INPUT Assume that Pσ = Eσ(x).P′σ
a
−֒→
{a}
B = (x)P′σ with ec(Eσ) =

a ∈ N.
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We have P = E(P).′ . By S-INPUT, we have P
ea(E)
7−−−−→
{[E :N ]}

(x)P′.

By Lemma 80, we have ec(ea(E)σ) = a.
Thus e({[E :N ]} σ) = true and nc({[E :N ]} σ) = {a}.
Moreover Aσ = ((x)P′)σ >eo B.
Hence the result.

NC-IFTHEN Assume that Pσ = φσP′σ with P′σ
µ
−֒→
S
B, e(φσ) = true and

P
µ

−֒−−−−→
S∪nc(φσ)

B.

We have P = φP′.

By induction, we have P′
µs
7−→
c
A with e(cσ) = true, nc(cσ) = S,

ec(µsσ) = µ and Aσ >eo B.

By S-IFTHEN, we have P
µs
7−−−→
c&{φ}

A.

Since e(φσ) = true and e(cσ) = true, we clearly have e((c &
{φ})σ) = e(cσ & {φσ}) = true.
By Lemma 94, we have nc((c & {φ})σ) = nc(cσ & {φσ}) =
nc(cσ) ∪ nc(φσ) = S ∪ nc(φσ).
Hence the result.

NC-PAR-L Assume that Pσ = P1σ | P2σ with P1σ
µ
−֒→
S
B′ and Pσ

µ
−֒→
S
B =

B′ | P2σ.

By induction, we have P1
µs
7−→
c
A′ with e(cσ) = true, nc(cσ) = S,

ec(µsσ) = µ and A′σ >eo B
′.

By S-PAR-L, we have P = P1 | P2
µs
7−→
c
A = A′ | P2.

By Lemma 93, we have Aσ >eo B since A
′σ >eo B

′ and P2 >eo P2.
Hence the result.

6.2.4 Late hedged bisimilarity in coq

Once hedges, spi calculus terms and labelled semantics are defined in coq,
it is easy to define the notion of late hedged bisimulation.
Our formal definition in coq follows closely Definition 69. A hedged

relation is thus a predicate on tuples (h, P,Q) where h is a hedge h and P
and Q are two processes. We define the notion of well-formedness, sym-
metry and consistency for such predicates. A late hedged bisimulation is



6.2. PROOF SKETCHES 203

thus a well-formed, symmetric and consistent hedged relation that satis-
fies the bisimulation clauses.
We illustrate how bisimulations can be exploited in coq through two

small examples inspired by [8].

Example 1

Define P(c,M) := (νk) c〈EncskM〉. 0 where k 6∈ {c} ∪ n(M).
We show that for any c,M and N we have P(c,M) ∼̇hLH P(c,N) where

h = I({(c, c), (M,M), (N,N)}).
Intuitively, this means that P(c,M) and P(c,M′) do not reveal M and

M′ respectively.

With de Bruijn representation, P(c,M) is defined by

P(c,M) := νlift0(1, c)〈Encs0lift0(1,M)〉. 0

Note in particular how the condition k 6∈ {c} ∪ n(M) is satisfied by
definition thanks to the lift0(1, ·) operation.

We define

h0(c,M,N) := I({(c, c), (M,M), (N,N)})

h1(c,M,N, k, l) := h0 ∪ {(EncskM,EncskN)}

It is easy to prove that h0(c,M,N) is consistent for any c, M and N
because it is the irreducible part of a reflexive hedge (i.e. a hedge h such
that whenever (M,N) ∈ hwe have M = N). h0(c,M,N) is also a reflexive
hedge and we have h0(c,M,N)−1 = h0(c,N,M) = h0(c,M,N).
Moreover, if k 6∈ n(π1(h0(c,M,N))) and l 6∈ n(π2(h0(c,M,N))) (i.e. k

and l are fresh) then h1(c,M,N, k, l) is consistent. In this case, by Theo-
rem 9, we have I(h1(c,M,N, k, l)) = h1(c,M,N, k, l).
Moreover we have obviously that h1(c,M,N, k, l)−1 = h1(c,N,M, l, k).
Let c ∈ N and M,N ∈ M. We define

R := {(h0(c,M,N), P(c,M), P(c,N))}
∪ {(h1(c,M,N, k, k), 0, 0) | k 6∈ n(h0(c,M,N))}
∪ {(h0(c,N,M), P(c,N), P(c,M))}
∪ {(h1(c,N,M, k, k), 0, 0) | k 6∈ n(h0(c,N,M))}

We check that R is a late hedged bisimulation.

Thus, we have P(c,M) ∼̇
h0(c,M,N)
LH P(c,N).
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Example 2

As a small variant, consider Q(c,M,M′) = (νk) c〈EncskM〉.c〈EncskM
′〉. 0

where k 6∈ {c} ∪ n(M,M′).
We show that for any c, M, N and N′, if N 6= N′ then there is no hedge

h such that (c, c) ∈ h (i.e. the channel c is known by the attacker) and
Q(c,M,M) ∼̇hLH Q(c,N,N′).
Intuitively, this means that even if two cyphertexts cannot be decrypted,
they can still be compared.
Let c ∈ N, M,N,N′ ∈ M such that N 6= N′.
The proof proceeds by contradiction. Assume that there is h such that

(c, c) ∈ h and Q(c,M,M) ∼̇hLH Q(c,N,N′). We show that necessarily
N = N′.
Assume thatR is a late hedged bisimulation such that

(h,Q(c,M,M),Q(c,N,N′)) ∈ R

SinceR is a bisimulation, we have that

(I(h ∪ {EncskM,EncslN}), c〈EncskM〉. 0, c〈EncslN
′〉. 0) ∈ R

(I(I(h ∪ {EncskM,EncslN}) ∪
{

EncskM,EncslN
′
}

), 0, 0) ∈ R

for some k 6∈ n(π1(h)) and l 6∈ n(π2(h)).
Define

h′ := I(h ∪ {EncskM,EncslN})

h′′ := I(h′ ∪
{

EncskM,EncslN
′
}

)

Since R is a consistent hedged relation, we necessarily have that h′′ is
consistent and thus is left consistent.
Hence, by Lemma 60, we have

∀(M,N), (M′ ,N′) ∈ S(h′′) : M′ = M =⇒ N′ = N

We now show that (EncskM,EncslN) ∈ S(h′′) and (EncskM,EncslN
′) ∈

S(h′′). It will follow that EncslN = Encsl ′N and so N = N′.
By Lemma 45, we have h′ ∪ {EncskM,EncslN

′} <H h
′′.

So clearly (EncskM,EncslN
′) ∈ S(h′′).

Still by Lemma 45, we have h ∪ {EncskM,EncslN} <H h
′. Moreover by

Corollary 1, we have h′ <H h
′ ∪ {EncskM,EncslN

′}. Hence, by transitivity
of <H , we have h ∪ {EncskM,EncslN} <H h

′′.
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So clearly (EncskM,EncslN) ∈ S(h′′).
Hence N = N′. This is a contradiction.

Actually, when N 6= N′, Q(c,M,M) and Q(c,N,N′) are not even test-
ing equivalent. Indeed, the following environment distinguishes these
two processes.

R := c(x).c(y).[ x= y ]c〈c〉.

Conclusion

In this chapter, we have presented our formalisation of the spi calculus in
coq.
Related works include a formalisation of the polyadic pi calculus in

coq using de Bruijn indices [81, 82], a formalisation of the pi calculus in
Isabelle using the higher-order abstract syntax approach [121] and a recent
formalisation of the pi calculus in Isabelle using the nominal approach
[24].
To ease the manipulation of de Bruijn terms and to keep small the

part devoted to show technical results about de Bruijn indices, we have
sketched a coq library to handle de Bruijn terms. This was technically dif-
ficult to achieve because of some limitations of the coq module system:
we finally got rid of these limitations by representing modules as records
(like in the object-oriented world). We think this contribution is important
and it will certainly be interesting to evaluate the usability of our de Bruijn
library for formalising other programming languages or for instance for
contributing to the POPLMARK challenge.
We have also sketched some other abstractions for defining the labelled

semantics. Hence, we have proved once and forall the theorem stating that
structural congruence preserves the semantics under suitable assumptions.
As a corollary, we have thus formally proved in coq Theorem 4 for the late
semantics of the pi calculus and the late semantics of the spi calculus with
or without type constraints. Indeed, we have not only formalised the spi
calculus but also the monadic pi calculus, both being an instance of an
abstract pi calculus (where expressions E and guards φ remain abstract)
which is defined by:

P,Q ::= 0 | P+Q
| P |Q | ! P
| (νx) P | τ.P
| E(x).P | E〈F〉.P
| φP



206 CHAPTER 6. A FORMALISATION IN COQ

It would be interesting to see if we can easily adapt our definitions to also
model the applied pi calculus [6].

It is worth noting that the use of the abstraction/concretion presenta-
tion has also greatly simplified the definition of the semantics and the pre-
sentation of the proofs because it naturally enforces to separate technical
lemmas from main results.

To catch a glimpse of our coq formalisation, we have listed below all
the modules together with a quick description and the weight in terms of
lines of coq code. It is composed of 41 modules for a total of about 33000
lines of coq code. It takes approximately 8 minutes to compile on a recent
computer (Core 2 Duo at 2.16 GHz) with the latest version of coq.

Even if we have only partially reached our goal (i.e. extract a certified
bisimulation checker), we think this work was worth the effort because
we have been able to catch and repair some subtle bugs in the definitions
or in the handwritten paper proofs. Moreover, it already provides a proof
environment for reasoning formally about cryptographic protocols using
the spi calculus framework.

As a first step towards the extraction of a fully certified bisimulation
checker, we have been able to extract a tool for computing the transitions
of pi calculus or spi calculus terms. This tool offers the choice of the used
semantics among the following: standard late semantics of the pi calcu-
lus, open semantics of the pi calculus, standard late semantics of the spi
calculus, late semantics with type constraints of the spi calculus, symbolic
semantics of the spi calculus. For having written several labelled seman-
tics in ocaml (e.g. [42, 38]) , we can say that this is an invaluable first step
because even this simple part can be error-prone. As obvious future work,
we intend to complete our formalisation of the spi calculus by defining
open hedged and symbolic open hedged bisimulation and study them. We
then intend to focus on the decision algorithm for checking open bisimu-
lation on finite terms.

Name Description Lines
tactics Definitions of some useful naive tac-

tics.
47

missing Auxiliary results that are missing in
the coq standard library.

512
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Name Description Lines
deBruijnNat Implementation of de Bruijn opera-

tions on natural numbers and proofs
of technical results.

910

deBruijnType Specification of de Bruijn operations
and definitions of de Bruijn structure
“lifter”

1846

name Embedding of de Bruijn indices into
an inductive type.

443

substLemma The substitution lemma for de Bruijn
indices.

263

Name Description Lines
expressionType The abstract type of expressions. 44
formulaeType The abstract type of guards. 43
processType The abstract type of abstract pro-

cesses.
108

process Implementation of abstract processes
as a functor.

587

agentType The abstract type of agents. 135
agent Implementation of asbtract agents

over abstract processes.
780

congruence Definition and properties of the struc-
tural congruence over abstract pro-
cesses and agents.

1838

Name Description Lines
expressionPi Implementation of pi calculus expres-

sions.
174

formulaePi Implementation of pi calculus guards. 202

Name Description Lines
opSpi Definition of operators (i.e.

{pub, priv,H}) for spi calculus mes-
sages/expressions.

93

messageSpi Implementation of spi calculus mes-
sages.

393

expressionSpi Implementation of spi calculus ex-
pressions.

435

formulaeSpi Implementation of spi calculus
guards.

216
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Name Description Lines
calculi Instantiation of the pi calculus and the

spi calculus.
34

actionType The abstract type of actions for defin-
ing LTS.

186

reduction Definition of the LTS as a functor
parametrised by a calculus and its ac-
tions. Definition of a certified func-
tion to compute transitions.

1127

redcong Generic proof of Theorem 4. 1700

Name Description Lines
actionPi Actions for the monadic pi calculus 552
reductionPi Instantiation of the late semantics of

the pi calculus.
41

Name Description Lines
evalSpi Definition and properties of evalua-

tion functions of the spi calculus.
1043

actionSpi Actions for the spi calculus 582
actionSpiNC Actions with type constraints for the

spi calculus
954

actionSpiSymb Symbolic actions for the spi calculus 1218
reductionSpi Instantiation of the three semantics of

the spi calculus and proofs of some
auxiliary results. Proof of Theorem 3.

341

Name Description Lines
workAround Auxiliary results to get rid of coq

type system problems.
145

substSpi Proof of Lemma 80 and Lemma 79. 437
redSpiNCprops Proof of Lemma 24. 588
roSpi Definition of >o and >=

o . Proof of
Theorem 13.

1388

fnInMsg Auxiliary results for proving Theo-
rem 14

449

redSpiSymProps Definition of >eo. Proof of Theo-
rem 14.

1990



6.2. PROOF SKETCHES 209

Name Description Lines
ordmissing Auxiliary results that are missing in

the FSet coq library.
1976

set_order Definition of the well-founded order
used to prove the existence of the
analysis of a hedge.

638

hedges Definitions and properties related to
hedges (see Chapter 4).

6913

Name Description Lines
spienv Auxiliary definitions for defining late

hedged bisimulation.
370

LHbisimulation Definition of late hedged bisimula-
tion. Proof of a perfect encryption
equation.

1417
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Chapter 7

From Protocol Narrations to Spi
Calculus

Protocol narrations are a widely-used informal means to describe, in an
idealistic manner, the functioning of cryptographic protocols as a single
intended sequence of cryptographic message exchanges among the proto-
col’s participants. Protocol narrations have also been informally "turned
into" a number of formal protocol descriptions, e.g., using the spi calculus.
In this chapter, we propose a direct formal operational semantics for pro-
tocol narrations that fixes a particular and, as we argue, well-motivated
interpretation on how the involved protocol participants are supposed to
execute. Based on this semantics, we explain and formally justify a natural
and precise translation of narrations into spi calculus. An optimised trans-
lation has been implemented in ocaml, and we report on case studies that
we have carried out using the tool.

7.1 Introduction

7.1.1 The setting

As we mentioned in Chapter 1, in the cryptographic protocol literature,
protocols are usually expressed as narrations [58, 95]. The protocol in
Table 7.1 is a typical example of this style. Two principals A and B are
both connected to the server S with whom they share the secret keys kAS
and kBS, respectively. The protocol tells the story where A wants to estab-
lish a secret connection (a shared key kAB) with B via the common server S:
first, A should contact S, then S forwards the key kAB to B. Finally, A uses
this key to exchange secret data with B. In this chapter, we focus our in-
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A→ S : (A .EncskAS
(B . kAB))

S→ B : EnckBS(A . (B . kAB))

A→ B : EnckABm

Table 7.1: Wide-Mouthed Frog protocol

terest on the bare operational content of the description technique of nar-
rations.
Our own motivation for the interest in a formal semantics for narra-

tions is that we had implemented a “straightforward” translator [74] from
protocol narrations into the spi calculus. We then wanted to formally
prove our translator correct but faced the problem that there was no formal
intended semantics to compare to. This lacking semantics is what we pro-
vide within this chapter. Indeed, it turns out that the attempt to properly
formalise narrations brings one already much closer to spi-like executable
descriptions, but there are a number of insightful observations along the
way, on which we report here as well.

7.1.2 The challenge

Despite being rather intuitive, the description technique of protocol nar-
rations contains lots of implicit concepts. Looking for a formal semantics,
these need to be rendered explicit. For example, Abadi [2] pointed out
that “informal protocol narrations” need to be complemented with expla-
nations of some either implicitly assumed facts or additional information
to remove ambiguities. He raised four tasks that need to be pursued:

1. One should make explicit what is known (public, private) before a
protocol run, and what is to be generated freshly during a protocol
run.

2. One should make explicit which checks the individual principals are
expected to carry out on the reception of messages.

3. Principals act concurrently, in contrast to the apparently sequential
idealised execution of a run according to a narration.

4. Concurrency occurs also at the level of different protocol sessions,
whichmay happen to be executed simultaneously while sharing prin-
cipals across.
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(Interestingly, Abadi used these requirements to motivate the use of the
spi calculus as a description technique for “formal protocol narrations”.)
The first item above should be clear: data is missing otherwise. To this

aim, narrations usually come with a bit of explanation in natural language
on the spirit of the protocol and on the assumptions made. Essentially,
these assumptions consist of expliciting the pieces of data known in advance
by the agents1 and those that are to be freshly generated during the course
of a protocol run.
The second item above results from the too high level of abstraction of

message exchanges, noted as A → B : M. There are a number of prob-
lems connected to the fact that message M is usually transmitted from A
to B by passing through an asynchronous insecure network where a po-
tential intruder can interfere [68]. Thus, once B receives a message, it may
be just the expected one according to the protocol, but it may also be an
intended message received at the wrong moment and, worse, it may be
an unintended message forged by some malicious attacker. So, B needs
to perform some informative checks. But precisely which ones? For ex-
ample, when B receives M it must first check in how far, at this very mo-
ment, it “understands” M (with respect to possible encryptions). Then,
if B acquires new knowledge by this analysis, it must ensure that this new
knowledge is consistent with its previously acquired knowledge. Some
careful analysis is due, requiring a suitable representation of knowledge.
The third item above looks innocent at first, but once the non-atomic

passage of messages through the network is properly taken into account,
some surprising effects arise due to parts of later message exchanges (re-
ferring to the order of exchanges in a narration) possibly occurring before
earliermessage exchanges have completed or even started.
The fourth item above is again intuitively straightforward, but the de-

scription technique of narrations completely ignores the problem.

7.1.3 Our approach

In this chapter, we present solutions to the first three items, leaving the
fourth for future work (see Section 7.8) Concerning the first item, we sim-
ply add a declaration part to narrations (Section 7.2). Here, we are no
different from competing approaches (see the paragraph on Related work
in Section 7.8). On item two, we propose (in Section 7.3) to compile ex-
changes of the form A → B : M into three separate syntactic parts, corre-
sponding to:

1We use the terms principal and agent interchangeably.
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(i) A asynchronously sends M towards B,

(ii) B receives some message (intended to be M), and

(iii) finally B checks that the message it just received indeed has the ex-
pected properties (associated with M, from the point of view of B).

With respect to the required checks, our approach is to automatically gen-
erate the maximum of checks derivable from the static information of pro-
tocol narrations. We call the resulting refined notion of narrations exe-
cutable, because it will allow us to formalise an operational semantics of
narrations, which would not be possible with an atomic, or synchronous,
interpretation of message exchanges.
Concerning the third item, we profit from the above decomposition

of message transmission and introduce a natural structural equivalence
relation on executable narrations that may bring any of the (con-)currently
enabled actions to top-level. On this basis, we provide a labelled transition
semantics (Section 7.5).
Finally, we rewrite executable narrations within the spi calculus, which

is then only a minor, albeit insightful, remaining step (Section 7.6). We
then establish a straightforward formal operational correspondence be-
tween the two semantics.

7.1.4 Tool support.

Wehave implemented the previous developments in ocaml (see Section 7.7).
Due to the overly big size of the generated formulae, we studied possible
simplification strategies. To this end, we have implemented naive ideas
such as removing duplicated atoms, or removing atoms like [E :M ] when
E is a message or when it appears as a sub-expression of the remaining for-
mula. We also perform some rewriting inside formulae, which according
to our experience gives good results in practise.

7.2 Extending protocol narrations

Like in the competing approaches on the representation of protocol narra-
tions, we extend narrations with a header that declares the initial knowl-
edge of each agent, the names generated by them and also the names that
are assumed to be initially only known by the system (this last point per-
mits to simulate a first pass where shared keys are securely distributed
among some agents).
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Hence, an extended protocol narration is composed of two parts: a
sequence of declarations followed by the narration itself. The agents are
picked among a countably infinite set A of agent names ranged over by
A, B,C, . . . , S, . . . and the messages are built upon a countably infinite set
N⋄ of names ranged over by a, b, c, . . . , k, l,m, n, . . .. For sake of simplicity,
we assume that A ∩N⋄ = ∅.
We implicitly assume that all agents involved in the protocol know

each other; this can be generalised by explicit declarations. The syntax of
messages and protocol narrations is given in Table 7.2.

messagesM⋄
M,N ::= a name

| A agent name
| H(M) hashing
| pub(M) public key
| priv(M) private key
| (M .N) pair
| EncsNM shared-key encryption
| EncaNM asymmetric encryption

exchanges
T ::= A B : M exchanges

narrations
L ::= ǫ empty narration
| T ; L non-empty narration

declarations
D ::= A knows M initial knowledge

| A generates n fresh name generation
| private k private name

protocol narration D
P ::= D ; P sequence of declarations
| L narration

Table 7.2: Protocol narrations

This calls several remarks. Firstly, we write message exchanges in
narrations A B : M instead of A → B : M. Secondly, names to con-
struct messages can be of two kinds: “pure” names or agent names. This
is only a minor difference compared to the messages used in Chapter 3.
Thirdly, as before, to handle asymmetric cryptography, we define the in-
verse key inv(M) of a message M to be pub(M′) if M = priv(M′), priv(M′)
ifM = pub(M′) and⊥ otherwise. Note that any participant has the power
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to verify if two messagesM1 andM2 are inverse keys one from each other,
simply by trying to decrypt with M2 a message encrypted with M1 and
conversely.
The meaning of private k is that k is a name which is initially only

available for the agents involved in the protocol. Typically, it is useful to
simulate that an agent A and a server S initially share a secret key kAS.
The meaning of A knows M is simply that, initially, agent A knows the
message M. Finally the meaning of A generates n is that A will gener-
ate a fresh name n (typically a nonce). For the sake of clarity, we enforce
fresh generated names to be declared explicitly. Table 7.3 shows the Wide-
Mouthed Frog protocol using our framework.

private kAS ; A knows kAS ; S knows kAS ;
private kBS ; B knows kBS ; S knows kBS ;
A generates kAB ; A knows m
A S : (A .EnckAS(B . kAB)) ;
S B : EnckBS(A . (B . kAB))
A B : EnckABm ; ǫ

Table 7.3: Wide-Mouthed Frog protocol, with formal declarations

It often happens in cryptographic protocols that a secret is shared by
several participants. For this reason, we propose to introduce as a macro
the construct

A1, . . . , An share k

which is intended tomean that the agents A1, . . . , An share the secret name
k. This macro is simply expanded into:

private k ; A1 knows k ; . . . ; An knows k

To ease the writing of formal declarations, one can also imagine to in-
troduce the shortcut A1, . . . , An knows M to mean A1 knows M ; . . . ;
An knows M.

7.3 Compiling protocol narrations

7.3.1 Target syntax.

As motivated in the Introduction, executable narrations (set X, as defined in
Table 7.4) are to be more explicit about the behaviour of individual agents.



7.3. COMPILING PROTOCOL NARRATIONS 217

Instead of atomic exchanges of the form A B : M as used in the standard
narrations of Table 7.2, we observe four more fine-grained basic actions
(nonterminal I in Table 7.4): emission A:B!E of a message expression E
(evaluating to M, see below), reception B:?x of a message and binding it
to a variable x (see below), check B:φ for the validity of formula φ from
the point of view of principal B, and scoping νk, which is reminiscent of
the spi calculus and represents the creation and scope of private names.
Scoping is decoupled from principals, allowing us to use a single construct
for names that are private and generated according to the declarations
of Section 7.2.

Expressions E
E, F ::= a name

| A agent name
| x variable
| H(E) hashing
| pub(E) public key
| priv(E) private key
| π1 (E) first projection
| π2 (E) second projection
| (E . F) pair
| EncsFE shared-key encryption
| EncaFE asymmetric encryption
| DecsFE shared-key decryption
| DecaFE asymmetric decryption

Formulae F
φ,ψ ::= [E=F ] matching

| [E :M ] well-formedness test
| inverse(E, F) inverse key test
| φ∧ φ conjunction
| tt always true

Simple action
I ::= νk fresh name generation
| A:B!E message emission
| A:?x message reception

Executable narrations X
X ::= ǫ empty narration

| I ; X non empty narration

Table 7.4: Syntax of executable narrations
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In interacting systems, when an agent receives a message, it binds it
to a fresh variable for reference in subsequent processing. For this pur-
pose, we introduce a well-founded totally ordered countably infinite set
x, y, z, . . . of variables V that we assume to be disjoint from A∪N⋄. Since an
agent does not only handle messages but also variables, we introduce the
notion of message expressions (E), including operations to construct and
deconstruct messages. The process of finding out whether some expres-
sion indeed “represents” some particular message, is formalised using the
evaluation function in Table 7.5.

7.3.2 Evaluation of expressions and formulae.

Definition of J·K : E→ {⊥} ∪M⋄
JEK := E if E ∈ N⋄ ∪A

J(E . F)K := (M .N) if JEK = M ∈ M⋄ and JFK = N ∈ M⋄
Jπ1 (E)K := M if JEK = (M .N) ∈ M⋄
Jπ2 (E)K := N if JEK = (M .N) ∈ M⋄
JEncsFEK := EncsNM if JEK = M ∈ M⋄ and JFK = N ∈ M⋄
JDecsFEK := M if JEK = EncsNM ∈ M⋄

and JFK = N ∈ M⋄
JEncaFEK := EncaNM if JEK = M ∈ M⋄ and JFK = N ∈ M⋄
JDecaFEK := M if JEK = EncaNM ∈ M⋄

and JFK = inv(N) ∈ M⋄
Jop(E)K := op(M) if JEK = M ∈ M⋄ for op ∈ {pub, priv,H}

JEK := ⊥ in all other cases
Definition of J·K : F → {true, false}

JttK := true
Jφ∧ψK := true if JφK = JψK = true

J[E=F ]K := true if JEK = JFK = M ∈ M⋄
J[E :M ]K := true if JEK = M ∈ M⋄

Jinverse(E, F)K := true if JEK = M ∈ M⋄
and JFK = inv(M) ∈ M⋄

JφK := false in all other cases

Table 7.5: Evaluation of expressions (can fail, in particular if v(E) 6= ∅)
and formulae

Formulae φ on received messages are described by (conjunctions of)
three kinds of checks: equality tests [E=F ] on expressions denote the com-
parison of two bit-streams of E and F; well-formedness tests [E :M ] denote
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the verification of whether the projections and decryptions contained in
E are likely to succeed; inversion tests inverse(E, F) denote the verification
that E and F evaluate to inverse messages. The evaluation function of Ta-
ble 7.5 is straightforwardly extended to formulae; note that, according to
it, [E :M ] is just a macro for [E=E ]. Similarly, inverse(E, F) can be en-
coded (for example) as [DecaFEncaE(E . F) :M ] (see also Section 7.7).
Table 7.4 lists the syntax of expressions, formulae and executable nar-

rations. In the following, we will omit the trailing ; ǫ of a non-empty
executable narration. Moreover, we overload the operator ; to also con-
catenate narrations.

Definition 96.
Let M ∈ M⋄, E ∈ E, φ ∈ F, x ∈ V . We let n(M), n(E), and n(φ) denote
the set of names occurring in M, E, and φ, respectively. Similarly, we let
v(E) and v(φ) denote the set of variables occurring in E and φ. E{M/x}
and φ{M/x} denote the substitution of M for x in E and φ, respectively.

7.3.3 Knowledge representation.

Asmotivated in the Introduction, the central point of the actual behaviour
of protocols is to find out which checks are to be performed. We further
motivated that such checks need to be based on (1) the narration code,
which statically spells out the intendedmessage to be received, and (2) the
current knowledge at the moment of reception, which imposes constraints
on how much the recipient can dynamically learn from the received mes-
sage and on what other information the newly acquired knowledge must
be consistent with.
Instead of accumulating only the dynamically acquiredmessages (stored

in variables x) we propose to tightly connect the (according to the narra-
tion) statically intended messagesM with the dynamically received actual
messages x. For this, we simply use pairs (M, x). Since consistency checks
will then (have to) operate on such pairs, we need to generalise this repre-
sentation of principal knowledge to finite subsets of M⋄ × E. The under-
lying idea is that a pair (M, E) means that the expression E is supposed to
be equal (or: has to evaluate) to M.
The following definition introduces knowledge sets, and also some tra-

ditionally employed operations on them (see also Chapter 4): synthesis re-
flects the closure of knowledge sets using message constructors; analysis
reflects the exhaustive recursive decomposition of knowledge pairs as en-
abled by the currently available knowledge.
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SYN-PAIR
(M, E) ∈ S(K) (N, F) ∈ S(K)

((M .N), (E . F)) ∈ S(K)

SYN-ENC-S
(M, E) ∈ S(K) (N, F) ∈ S(K)

(EncsNM,EncsFE) ∈ S(K)

SYN-ENC-A
(M, E) ∈ S(K) (N, F) ∈ S(K)

(EncaNM,EncaFE) ∈ S(K)

SYN-OP
(M, E) ∈ S(K)

(op(M), op(E)) ∈ S(K)
op ∈ {pub, priv,H}

Table 7.6: Synthesis

Definition 97 (Knowledge).
Knowledge sets K ∈ K are finite subsets ofM⋄ × E.
The set of names occurring in K is denoted by n(K).
The synthesis S(K) of K is the smallest subset of M⋄ × E containing K

and satisfying the SYN-rules in Table 7.6.
The analysis A(K) of K is

⋃

n∈NAn(K) where the sets Ai(K) are the
smallest sets satisfying the ANA-rules in Table 7.7.

For the same reasons as for hedges in Chapter 4, the analysis is defined in
two steps. We have defined a finitely stratified hierarchy (An(K))n∈N . Es-
sentially, the index n of an analysis setAn(K) approximates the number of
proper deconstruction steps that were needed in order to derive its knowl-
edge items (see the rules ANA-INI, ANA-FST, ANA-SND, and ANA-DEC). In
contrast to the standard approach, corresponding to An(K) ⊆ An+1(K),
here only certain items—not all of them—may be be propagated from
analysis level n to n+1 without proper deconstruction step.
As the following example shows, with the notion of knowledge of this

chapter the simple rule An(K) ⊆ An+1(K) would allow us to possibly
analyse the same message several times, in different ways, which would
indeed be harmful. Assume that we remove the rules ANA-DEC-REC and
ANA-NAM-REC as well as the indices of analysis sets in Table 7.7 (which
amounts to admitting An(K) ⊆ An+1(K)).
If we now analyse the knowledge set K = {(k, k), (Encskk, x)} according

to this “standard” approach then we would first get the pair (k,Decskx),
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ANA-INI
(M, E) ∈ K

(M, E) ∈ A0(K)

ANA-FST
((M .N), E) ∈ An(K)

(M,π1 (E)) ∈ An+1(K)
ANA-SND

((M .N), E) ∈ An(K)

(N,π2 (E)) ∈ An+1(K)

ANA-DEC-S
(EncsNM, E) ∈ An(K) (N, F) ∈ S(An(K))

(M,DecsFE) ∈ An+1(K)

ANA-DEC-S-REC
(EncsNM, E) ∈ An(K) (N, F) 6∈ S(An(K))

(EncsNM, E) ∈ An+1(K)

ANA-DEC-A
(EncaNM, E) ∈ An(K) (inv(N), F) ∈ S(An(K))

(M,DecaFE) ∈ An+1(K)

ANA-DEC-A-REC
(EncaNM, E) ∈ An(K) (inv(N), F) 6∈ S(An(K))

(EncaNM, E) ∈ An+1(K)

ANA-NAM-REC
(M, E) ∈ An(K) M ∈ N⋄ ∪A

(M, E) ∈ An+1(K)

ANA-OP
(op(M), E) ∈ An(K)

(op(M), E) ∈ An+1(K)
op ∈ {pub, priv,H}

Table 7.7: Analysis
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then the pair (k,Decs
Decskx

x), then (k,Decs
Decs

Decs
k
x
xx), etc. The resulting anal-

ysis set A(K) would be of infinite size, and thus not even be a knowledge
set2, thus prohibiting a finite representation of the knowledge of partici-
pants.
Instead, we control the propagation from analysis level n to n+1 by

the rules ANA-NAM-REC and ANA-DEC-REC. Knowledge items (M, E) can
only be propagated to the next level of the analysis if M is not analysable
(i.e., deconstructible) with the knowledge of the same level: either M is
a pure name (possibly an agent name) or M can not be decrypted with
knowledge from the same analysis level. Note that when computing the
sequence (An(K))n∈N , the rules ANA-FST, ANA-SND and ANA-DEC strictly
decrease the size of the messages, so they can only be applied a finite num-
ber of times. Thus, it is obvious that the sequence (An(K))n∈N converges
and thus A(K) is finite.

Example 22
Consider K0 = {(A, A), (B, B), (S, S), (kAS , kAS), (kBS, kBS)}.

Let K = K0 ∪
{

((A .EncskAS
(B . kAB)), x0)

}

.

Then A(K) = K ∪































( A , π1 (x0) )
( EncskAS

(B . kAB) , π2 (x0) )

( (B . kAB) , DecskAS
π2 (x0) )

( B , π1

(

DecskAS
π2 (x0)

)

)

( kAB , π2

(

DecskAS
π2 (x0)

)

)































∗

7.3.4 Generating checks.

The above knowledge representation allows us to generate the checks re-
quired onmessage reception in a justified manner. Recall that these checks
must verify (1) in how far the expectations of the recipient on the received
message (as expressed statically in the narration) are matched according
to the recipient’s current knowledge, and (2) in how far the gained knowl-
edge is consistent with previously acquired knowledge.
Thus, obviously necessary checks are due to the type of messages: if an

expression shall correspond to a pair then it better allows for projections;
if an expression shall correspond to an encrypted message, then it better
allows for decryption with the appropriate key—but only if it is known by
the receiver.
2In contrast, the “standard” analysis of the corresponding (i.e., projected onto the

static component) knowledge set K1 =
{

k,Encskk
}

yields A(K1) =
{

k,Encskk
}

.
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Less obviously required checks result from the following observation:
a message (identifier) M may occur more than once in a protocol narra-
tion. Thus, it may happen that, in some knowledge set, M is related to
two different expressions E1 and E2, via (M, E1) and (M, E2). As M was
precisely used in protocol narrations to indicate the very same message,
such a knowledge set can only be considered consistent if E1 and E2 in-
deed evaluate to the same message. In the context of asymmetric keys, it
can also happen that, in some knowledge set, we find a combination of
(M1, E1) and (M2, E2) where M1 = inv(M2). In this case, inverse(E1, E2)
should be satisfied.
Let us assume, as it is customary, that agents dispose of some mean-

ingful initial knowledge (usually of the form (M,M) with M represent-
ing some initially known key or participant name). Then, the consistency
check for repeated occurrences of data implicitly may take care of testing,
e.g., whether some received datum was sent by the expected agent.
To formalise these requirements, we generate consistency formulae.

Definition 98 (Consistency formula).
LetK be a knowledge set. Its consistency formulaΦ(K) is defined as follows:

Φ(K) :=
∧

(M,E)∈K [E :M ]
∧

∧

(M,Ei)∈K∧ (M,Ej)∈S(K)∧ Ei 6=Ej
[Ei=Ej ]

∧
∧

(M,Ei)∈K∧ (inv(M),Ej)∈S(K) inverse(Ei, Ej)

The first conjunction clause checks that all expressions can be evaluated.
The second conjunction clause checks that if there are several ways to
build a particular messageM, then all the corresponding expressions eval-
uate to the same entity. (Note that the omission of the subclause Ei 6= Ej
would make the first clause redundant; we just kept it for clarity of the
respective concepts.) The third conjunction clause checks that if it was
possible to generate a message M and its inverse inv(M), then the corre-
sponding expressions must also be mutually inverse.
When generating the above consistency formula, we compare pairs

taken from K with pairs taken from S(K). The following example shows
why it does not suffice to compare just the pairs in K. On the other hand,
we should not compare any possible combination of pairs taken from
S(K), because this would yield an infinite formula.

Example 23
If K = {(m, x), (H(m), y)}, we have that

Φ(K) = [ x :M ]∧ [y :M ]∧ [H(x)= y ]



224 CHAPTER 7. FROM PROTOCOL NARRATIONS TO SPI CALCULUS

Observe that, if the consistency formula did not consider pairs taken from
S(K), then the test [H(x)= y ] would not be present. ∗

7.3.5 Reducing knowledge sets.

Knowledge sets can often be simplified without loss of information by
reducing complex elements to their parts. In our case, we can further sim-
plify due to the occurrence of duplicated elements; there is no loss of in-
formation once the consistency formula of Definition 98 remembers the
duplication.

Definition 99 (Irreducibles).
Let K be a knowledge set.
The set of irreducibles I(K) is defined by

I(K) := irr(A(K))

where

irr(K) := {(M, E) ∈ K | M ∈ N⋄ ∪A}

∪

{

(EncsNM, E) ∈ K |
∀F1 : (M, F1) 6∈ S(K)

∨ ∀F2 : (N, F2) 6∈ S(K)

}

∪

{

(EncaNM, E) ∈ K |
∀F1 : (M, F1) 6∈ S(K)

∨ ∀F2 : (N, F2) 6∈ S(K)

}

∪

{

((M .N), E) ∈ K |
∀F1 : (M, F1) 6∈ S(K)

∨ ∀F2 : (N, F2) 6∈ S(K)

}

∪ {(op(M), E) ∈ K | ∀F : (M, F) 6∈ S(K)} .

Let ∼ denote the equivalence relation onM⋄ × E induced by

(M, E) ∼ (N, F) ⇐⇒ M = N

We let rep(K) denote the result of deterministically selecting3 one repre-
sentative element for each equivalence class induced by ∼ on K.

Example 24
We continue Example 22. We have:

I(K) = K0 ∪







(A,π1 (x0)), (B,π1
(

DecskAS
π2 (x0)

)

),

(kAB,π2
(

DecskAS
π2 (x0)

)

)







rep(I(K)) = K0 ∪
{

(kAB,π2
(

DecskAS
π2 (x0)

)

)
}

3Choose an arbitrary well-founded total order on expressions and select the smallest
expression according to this order.
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Here, we assume that the function rep(·) selected (A, A) instead of
(A,π1 (x0)), and (B, B) instead of (B,π1

(

DeckASπ2 (x0)
)

).
Moreover, we have (M, E) ∈ S(rep(I(K))) where

M := EncskBS
(A . (B . kAB))

E := EncskBS
(A . (B .π2

(

DecskAS
π2 (x0)

)

)) ∗

7.3.6 The compilation.

We now have set up all the required ingredients to compile an extended
protocol narration into an executable protocol narration. Technically, while
traversing the syntax of a given narration, the translation function keeps a
record of global information on the used variables and hidden names, as
well as local (i.e., participant-dependent) information on their knowledge
on generated names.

Definition 100 (Compilation).
The translation X J·K(υ,̟,κ,ν) : D → X is defined inductively in Table 7.8,
where υ ⊂ V (current set of used variables), ̟ ⊂ N⋄ (current set of private
names), κ : A → K (partial mapping from agents to their current knowl-
edge), and ν : A→ N⋄ (partial mapping from agents to their current set of
generated names).
Let P ∈ D be a protocol narration. LetAP denote the set of agent names

appearing in P. Then, X JPK(∅,∅,κP,∅) denotes the compilation of P, where
the initial knowledge κP is defined by κP(A) := {(B, B) | B ∈ AP} for all
A ∈ AP.
We say that P is well-formed if its compilation is defined.

For simplicity, the compilation assumes that all agents initially know each
other, as expressed in the initial knowledge set κP. Checks-on-reception
are deduced from the individual knowledge set of a receiver. To avoid
to perform the same checks again and again, the compilation keeps the
knowledge sets of κ in reduced form, i.e., κ(A) = rep(I(κ(A))). To update
f∈ {κ, υ}, we note f [x←y] with f [x←y] (x) = y and f [x←y] (z) = f(z) for
z 6= x.
The compilation of private k and A generates n checks in both cases

that the local (or generated) name is fresh, but differs with respect to the
addition of the fresh name to the knowledge sets of agents: whereas the
construction A generates n increases the knowledge of A, the name k of
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X JǫK(υ,̟,κ,ν) := ǫ

X JA knows M ; PK(υ,̟,κ,ν) := X JPK(υ,̟,κ′,ν)

if n(M) ∩
⋃

A∈A
ν(A) = ∅

where K′A := κ(A) ∪ {(M,M)}
and κ′ := κ [A← rep(I(K′A))]

X Jprivate k ; PK(υ,̟,κ,ν) := νk ; X JPK(υ,̟∪{k},κ,ν)

if k 6∈ ̟ ∪
⋃

A∈A
(n(κ(A)) ∪ ν(A))

X JA generates n ; PK(υ,̟,κ,ν) := νn ; X JPK(υ,̟,κ′,ν′)

if n 6∈ ̟ ∪
⋃

A∈A
(n(κ(A)) ∪ ν(A))

where K′A := κ(A) ∪ {(n, n)}
and κ′ := κ [A← rep(I(K′A))]
and ν′ := ν [A← ν(A) ∪ {n}]

X JA B : M ; PK(υ,̟,κ,ν) := A:B!E ;
B:?x ; B:φ ;
X JPK(υ∪{x},̟,κ′,ν)

if A 6= B and (M, E) ∈ S(κ(A))
where x := min(V \ υ)
and K′B := κ(B) ∪ {(M, x)}
and κ′ := κ [B← rep(I(K′B))]
and φ := Φ(A(K′B))

Table 7.8: Definition of X J·K·
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private k is not added to any knowledge; this task is deferred to explicit
A knows k clauses for the intended A.
The compilation of A B : M checks that M can be synthesised by A,

picks a new variable x and adds the pair (M, x) to the knowledge of B. 4

The consistency formula Φ(A(K′B)) of the analysis of this updated knowl-
edge K′B defines the checks φ to be performed by B at runtime. Note that
this must be done on the non-reduced version. In fact, it is precisely the
consistency check that allows us then to continue with the knowledge in
reduced form.
Finally, note that our concept of well-formedness of a protocol narration cor-
responds to the notions of executability in [54].

Example 25
LetWMF be the Wide-Mouthed Frog protocol presented Table 7.3.
We have κWMF : A → K

A 7→ {(A, A), (B, B), (S, S)}
B 7→ {(A, A), (B, B), (S, S)}
S 7→ {(A, A), (B, B), (S, S)}

WMF is well-formed and its compilation is

X JWMFK(∅,∅,κWMF,∅) =
νkAS ; νkBS ; νkAB ;
A:S!(A .EncskAS

(B . kAB)) ;
S:?x0 ; S:φ0 ;

S:B!EncskBS
(A . (B .π2

(

DecskAS
π2 (x0)

)

)) ;

B:?x1 ; B:φ1 ;
A:B!EncskAB

m ;
B:?x2 ; B:φ2

where φ0, φ1 and φ2 are given below.

φ0 ≈ [A=π1 (x0) ]∧ [B=π1
(

DeckASπ2 (x0)
)

]
φ1 ≈ [A=π1

(

DeckBSx1
)

]∧ [B=π1
(

π2
(

DeckBSx1
))

]
φ2 ≈ [Decπ2(π2(DeckBS

x1))x2 :M ]

We refer the reader to Section 7.7.2 where this protocol is studied with
our tool. ∗

4Usually, narrations are defined such that the sender A is supposed to statically know
the precise name B of the intended receiver. In a dynamic scenario, the compilation
would need to check that B is synthesisable by A.
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7.4 A detailed example: the ASW protocol

7.4.1 The protocol

The ASW protocol is an optimistic fair-exchange protocol for contract sign-
ing, proposed by Asokan, Shoup and Waidner in [15]. Figure 7.1 shows
the slightly simplified version of the Exchange Subprotocol of ASW (that
we will simply refer afterwards as the ASW protocol) that Caleiro, Viganò
and Basin have used in [55] to illustrate that a direct interpretation of proto-
col narrations would be too naive. A direct interpretation simply lists all
the external actions each participant should commit, but does not explicit
the internal checks and does not verify that these external actions are ac-
tually feasible. This protocol also shows that it is not sufficient to check
received messages just once, immediately after their reception, because
the receiving participant might only later on gain further knowledge that
would enable it to analyse the structure of the just-received message more
deeply.
The goal of the ASW protocol is to establish a valid contract between

the two participants A and B. The protocol proceeds in two rounds.
First, the two participants send their respective so-called public commit-

ments H(n1) or H(n2) with the contract text m they have agreed upon; n1
and n2 being nonces generated by the two participants and called their
respective secret commitments to the contract. For this first round, the re-
spective messages are digitally signed with the participants’ private keys.
As usual, the signature can be verified by using the corresponding public
key.
Then, in the second round, the participants exchange their respective

secret commitments so that they can check the public commitment they

A knows m ; A knows kA ; A knows pub(kB)
B knows m ; B knows kB ; B knows pub(kA) ;
A generates n1 ;
B generates n2 ;
A B : Enca

priv(kA)((pub(kA) . pub(kB)) . (m .H(n1)))

B A : Enca
priv(kB)

(Enca
priv(kA)((pub(kA) . pub(kB)) . (m .H(n1))) .H(n2))

A B : n1
B A : n2

Figure 7.1: The Exchange Subprotocol of the ASW protocol (simplified)
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have received in round one by hashing this value.
At the end of this exchange, both participants have a valid contract of

the form indicated in Figure 7.2.

Enca
priv(kA)((pub(kA) . pub(kB)) . (m .H(n1)))

Enca
priv(kB)

(Enca
priv(kA)((pub(kA) . pub(kB)) . (m .H(n1))) .H(n2))

n1

n2

Figure 7.2: Contract form at the end of the exchange

In this protocol, the participants should in some sense backtrack their
analysis once they have received themessage of the second round. Indeed,
when B first receives H(n1), it cannot check that this corresponds to the
hashing of the nonce n1 since n1 is not yet part of B’s knowledge. However,
once B receives n1 in the second round, it is able to check that the hashing
of n1 is effectively equal to the message that it has supposed to be H(n1)
in the first round; this check should occur before B sends its own public
commitment to A.

7.4.2 Compilation of the ASW protocol

We now study this protocol in our setting. We first define some shortcuts:

M1 := Enca
priv(kA)((pub(kA) . pub(kB)) . (m .H(n1)))

M2 := Enca
priv(kB)

(Enca
priv(kA)((pub(kA) . pub(kB)) . (m .H(n1))) .H(n2))

Computing the initial knowledge The initial knowledge set of partici-
pants A and B is, by definition,

κA0 := {(A, A), (B, B)}

κB0 := {(A, A), (B, B)}

Compilation of the declarations When compiling the declarations, the
compilation process checks that n1 and n2 are distinct names not used in
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the other pieces of information declared to be known at the beginning of
the protocol. After computation, we obtain the following knowledge sets

kA1 := {(A, A), (B, B), (m,m), (n1 , n1), (kA, kA), (pub(kB), pub(kB))}

kB1 := {(A, A), (B, B), (m,m), (n2 , n2), (kB , kB), (pub(kA), pub(kA))}

The line 7.1 of Figure 7.3 corresponds to the compilation of the declara-
tions.

νn1 ; νn2 ; (7.1)
A:B!E1 ; B:?x1 ; B:φ1 ; (7.2)
B:A!E2 ; A:?x2 ; A:φ2 ; (7.3)
A:B!E3 ; B:?x3 ; B:φ3 ; (7.4)
B:A!E4 ; A:?x4 ; A:φ4 (7.5)

Figure 7.3: Executable narration compiled from ASW protocol

First message When compiling the first message exchange, the compila-
tion process

1. checks that A can synthesise message M1 by looking for an expres-
sion E1 such that (M1, E1) ∈ S(kA1 ). Here, the unique candidate is
expression E1 := Enca

priv(kA)((pub(kA) . pub(kB)) . (m .H(n1))).

2. takes a new variable x1 to be bound to the message that participant
B will receive; according to the statically defined information con-
tained in the narration, this message is expected to be M1.

3. computes the consistency formula φ1 of the analysis of the knowl-
edge set resulting from the addition of (M1, x1) to kB1 , and computes
a reduced form of kB1 ∪ {(M1, x1)}.
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Here we have

A(kB1 ∪ {(M1, x1)})
=kB1
∪ {(M1, x1)}

∪
{

(((pub(kA) . pub(kB)) . (m .H(n1))),Deca
pub(kA)x1)

}

∪
{

((pub(kA) . pub(kB)),π1
(

Deca
pub(kA)x1

)

)
}

∪
{

((m .H(n1)),π2
(

Deca
pub(kA)x1

)

)
}

∪
{

(pub(kA),π1
(

π1

(

Deca
pub(kA)x1

))

)
}

∪
{

(pub(kB),π2
(

π1

(

Deca
pub(kA)x1

))

)
}

∪
{

(m,π1
(

π2

(

Deca
pub(kA)x1

))

)
}

∪
{

(H(n1),π2
(

π2

(

Deca
pub(kA)x1

))

)
}

After some simplifications (see 7.7.1), the consistency formula ap-
pears to be equivalent to

φ1 :=[pub(kB)=π2

(

π1

(

Deca
pub(kA)x1

))

]

∧ [pub(kA)=π1

(

π1

(

Deca
pub(kA)x1

))

]

∧ [m=π1

(

π2

(

Deca
pub(kA)x1

))

]

And a possible candidate for rep(I(kB1 ∪ (M1, x1))) is

kB2 :=k
B
1

∪ {(M1, x1)}

∪
{

(H(n1),π2
(

π2

(

Deca
pub(kA)x1

))

)
}

Note that (M1, x1) is not removed because B has no way to digitally
sign a message with the private key of A.

4. generates line 7.2 of Figure 7.3.

Second message The compilation of the second message exchange is
similar to the first message but with role of A and B swapped. So the
compilation process
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1. checks that B can synthesise the message M2 by looking for an ex-
pression E2 such that (M2, E2) ∈ S(kB2 ).

The candidate is expression E2 := Enca
priv(kB)

(x1 .H(n2)).

2. takes a new variable x2 to be bound to the message that participant
A will receive; according to the statically defined information con-
tained in the narration, this message is expected to be M2.

3. computes the consistency formula φ2 of the analysis of the knowl-
edge set resulting of the addition of (M2, x2) to kA1 and computes a
reduced form of kA1 ∪ {(M2, x2)}.

Here we have

A(kA1 ∪ {(M2, x2)})
=kA1
∪ {(M2, x2)}

∪
{

((M1 .H(n2)),Deca
pub(kB)

x2)
}

∪
{

(M1,π1
(

Deca
pub(kB)

x2

)

)
}

∪
{

(H(n2),π2
(

Deca
pub(kB)

x2

)

)
}

∪

{

(((pub(kA) . pub(kB)) . (m .H(n1))),

Deca
pub(kA)π1

(

Deca
pub(kB)

x2

)

)

}

∪
{

((pub(kA) . pub(kB)),π1
(

Deca
pub(kA)π1

(

Deca
pub(kB)

x2

))

)
}

∪
{

((m .H(n1)),π2
(

Deca
pub(kA)π1

(

Deca
pub(kB)

x2

))

)
}

∪
{

(pub(kA),π1
(

π1

(

Deca
pub(kA)π1

(

Deca
pub(kB)

x2

)))

)
}

∪
{

(pub(kB),π2
(

π1

(

Deca
pub(kA)π1

(

Deca
pub(kB)

x2

)))

)
}

∪
{

(m,π1
(

π2

(

Deca
pub(kA)π1

(

Deca
pub(kB)

x2

)))

)
}

∪
{

(H(n1),π2
(

π2

(

Deca
pub(kA)π1

(

Deca
pub(kB)

x2

)))

)
}

After some simplifications, the consistency formula appears to be
equivalent to

φ2 :=[π1

(

Deca
pub(kB)

x2

)

=M1 ]
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And a possible candidate for rep(I(kA1 ∪ (M2, x2))) is

kA2 :=k
A
1

∪ {(M2, x2)}

∪
{

(H(n2),π2
(

Deca
pub(kB)

x2

)

)
}

4. generates line 7.3 of Figure 7.3.

Third message For the third message, the compilation process

1. checks that n1 is synthesisable by A. The expression n1 is a candi-
date to build the message n1 (the pair (n1, n1) has been added to the
knowledge set of A during the compilation of the declarations).

2. takes a new variable x3 to be bound to the message that participant
B will receive; according to the statically defined information con-
tained in the narration, this message is expected to be n1.

3. computes the consistency formula φ3 of the analysis of the knowl-
edge set resulting of the addition of (n1, x3) to kB2 and computes a
reduced form of kB2 ∪ {(n1, x3)}

Here we have

A(kB2 ∪ {(n1, x3)}) =kB2
∪ {(n1, x3)}

After some simplifications (taking into account that at this point of
the executable narration, the formula φ1 should have been satisfied),
the consistency formula appears to be equivalent to

φ3 :=[H(x3)=π2

(

π2

(

Deca
pub(kA)x1

))

]

And a possible candidate for rep(I(kB2 ∪ (n1, x3))) is

kB3 :=(kB2 \
{

(H(n1),π2
(

π2

(

Deca
pub(kA)x1

))

)
}

)

∪ {(n1, x3)}

Note that the pair (H(n1),π2
(

π2

(

Deca
pub(kA)x1

))

) has been removed
from the knowledge set of B because now B knows n1 and thus can
synthesise himself H(n1).

4. generates line 7.4 of Figure 7.3.
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Fourth message Finally, for the fourth message, the compilation process

1. checks that n2 is synthesisable by B. The expression n2 is a candidate
to build the message n2.

2. takes a new variable x4 to be bound to the message that participant
a will receive; according to the statically defined information con-
tained in the narration, this message is expected to be n2.

3. computes the consistency formula φ4 of the analysis of the knowl-
edge set resulting of the addition of (n2, x4) to kA2 and computes a
reduced form of kA2 ∪ {(n2, x4)}

Here we have

A(kA2 ∪ {(n2, x4)}) =kA2
∪ {(n2, x4)}

After some simplifications (taking into account that at this point of
the executable narration, the formula φ2 should have been satisfied),
the consistency formula appears to be equivalent to

φ4 := [H(x4)=π2

(

Deca
pub(kB)

x2

)

]

And a possible candidate for rep(I(kA2 ∪ (n2, x4))) is

kA3 :=(kA2 \
{

(H(n2),π2
(

Deca
pub(kB)

x2

)

)
}

∪ {(n2, x4)}

Note that the pair (H(n2),π2
(

Deca
pub(kB)

x2

)

) has been removed from
the knowledge set of A because now A knows n2 and thus is able to
synthesise himself H(n2).

4. generates line 7.5 of Figure 7.3.

7.4.3 The ASW protocol and the pattern-matching spi cal-

culus

If we just look at participant B, the spi calculus term we can derive from
the executable narration of Figure 7.3 is (see also Section 7.6)
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(νn2) B(x1).

[pub(kA)=π1

(

π1

(

Deca
pub(kA)x1

))

]

∧ [pub(kB)=π2

(

π1

(

Deca
pub(kA)x1

))

]

∧ [m=π1

(

π2

(

Deca
pub(kA)x1

))

]

A〈Enca
priv(kB)

(x1 .H(n2))〉.

B(x3).

[H(x3)= π2

(

π2

(

Deca
pub(kA)x1

))

]

A〈n2〉. 0

But it is not clear to us how such a process can be expressed in the
pattern-matching spi calculus in the spirit of what is defined in [78].
A possible term in the pattern-matching spi calculus would be

new n2;

inp B
{

x • Enca
priv(kA)((pub(kA) . pub(kB)) . (m .H(x)))

}

;

out A Enca
priv(kB)

(Enca
priv(kA)((pub(kA) . pub(kB)) . (m .H(x1))) .H(n2));

inp B {•x};
out A n2; 0

But unfortunately, the first pattern is not implementable in the sense of
[78].
Indeed, being able to write {x • · · ·H(x) · · · } in a pattern positionwould

intuitively mean that it is possible to inverse the supposed one-way func-
tion H(·) : M⋄ → M⋄ and thus get a value x from its hashing H(x).

7.5 Executing protocol narrations

In this section, we propose an operational semantics for narrations. It pro-
ceeds in a traditional syntax-directed manner by analysing the current top-
level construct in order to see what to execute next. Since narrations con-
tain some implicit concurrency among principals, we introduce a struc-
tural reordering relation to shuffle concurrently enabled actions to the top
level. The actual execution of steps further needs to take care of the eval-
uation of messages to be sent, and also to prevent from name clashes that
are possible due to the presence of binders.
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7.5.1 Binders and α-conversion.

Our language of executable narrations contains two sort of binders: one
for names and one for variables.

The first binder is introduced by the construction νn. If X = νn ; X′,
then n is bound in X (i.e. the free occurrences of n in X′ refers to this
binder). As the identity of n is not important, we identify X with νn′ ;
X′{n

′
/n}where n′ is a name that is not free in X and X′{n

′
/n} is X′ where all

the free occurrences of n has been replacedwith n′. X and νn′ ; X′{n
′
/n} are

called α-equivalent. In the following, we identify α-equivalent executable
narrations. Now, for an executable narration X, we can define the usual
bound names bn(X), free names fn(X) of X and, moreover, if n, n′ ∈ N⋄,
X{n

′
/n}, the substitution of n′ for n in X.

The second binder is the one introduced by the construction A:?x. If
X = A:?x ; X′, then x is bound in the actions of X′ concerning A: indeed,
if further in the executable narration, B refers to x, the x is not the same
as the one used by A. Since variables will typically be substituted with
messages, we do not need α-conversion on variables but we need to define
a new kind of local substitution: if X is an executable narration, x ∈ V ,
M ∈ M⋄ with n(M) ∩ bn(X) = ∅ (which can be assured by choosing a
suitable α-equivalent version of X), and A ∈ A, we define in Table 7.9 the
substitution X{M/x}@A of M for x in X on A.

ǫ{M/x}@A := ǫ

(A′ :B!E ; X){M/x}@A :=

{

A′:B!E ; X{M/x}@A if A′ 6= A
A:B!E{M/x} ; X{M/x}@A otherwise

(A′ :?y ; X){M/x}@A :=











A′:?y ; X{M/x}@A if A′ 6= A
A:?y ; X{M/x}@A if A = A′ and y 6= x
A:?x ; X otherwise

(A′ :φ ; X){M/x}@A :=

{

A′:φ ; X{M/x}@A if A′ 6= A
A:φ{M/x} ; X{M/x}@A otherwise

(νn ; X){M/x}@A := νn ; X{M/x}@A

Table 7.9: Substitution
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7.5.2 Reordering.

Protocol narrations are sequences of actions. However, the sequential
character is not always causally motivated. Instead, the order of two con-
secutive actions carried out by different principals can always be swapped,
because —after our split of message exchanges in the compilation process
of Section 7.3—they are independent. The same holds for the consecutive
occurrence of an action and a scope, unless the scope’s name occurs in the
action. Formally, we manifest the swapping of independent actions in a
structural congruence relation.

Definition 101.
The reordering ∼= ⊆ X × X is the least equivalence relation satisfying the
rules given in Table 7.10, and closed under contexts of the form X ; [·] ;X′.
We define ∼=α to be the union of ∼= and α-equivalence.

∼=-S-S
A 6= C

A:B!E ; C:D!F ∼= C:D!F ; A:B!E

∼=-S-C
A 6= C

A:B!E ; C:φ ∼= C:φ ; A:B!E
∼=-S-R

A 6= C

A:B!E ; C:?x ∼= C:?x ; A:B!E

∼=-R-C
A 6= C

A:?x ; C:φ ∼= C:φ ; A:?x
∼=-R-R

A 6= C

A:?x ; C:?y ∼= C:?y ; A:?x

∼=-C-C
A 6= C

A:φ ; C:ψ ∼= C:ψ ; A:φ
∼=-S-N

n 6∈ n(E)
A:B!E ; νn ∼= νn ; A:B!E

∼=-C-N
n 6∈ n(φ)

A:φ ; νn ∼= νn ; A:φ
∼=-R-N

A:?x ; νn ∼= νn ; A:?x

∼=-N-N
νn ; νm ∼= νm ; νn

Table 7.10: Reordering

Given a particular message exchange A B : M, it may possibly seem sur-
prising at first that the reordering relation allows the respective reception
action B:?x to occur before its associated emission action A:B!M. Clearly,
the received message cannot be the intended one. Such a behaviour must
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be dealt with carefully, e.g., by rejecting unintended messages, but its ex-
istence cannot be avoided; it is a matter of fact that concurrent systems
exchange messages asynchronously.

7.5.3 Labelled transitions.

We define a straightforward labelled semantics of executable narrations,
in style influenced by spi calculus, in Table 7.11.

SEND
JEK = M ∈ M⋄

A:B!E ; X A:B!M
−−−→ X

RECEIVE
A:?x ; X A:?M

−−−→ X{M/x}@A
M ∈ M⋄

CHECK
X
A:β
−−→ X′

A:φ ; X
A:β
−−→ X′

JφK = true

OPEN
X
A:(νñ) B!M
−−−−−−→ X′

νz ; X
A:(νzñ) B!M
−−−−−−−→ X′

z ∈ n(M) \ {ñ}

RES
X
A:β
−−→ X′

νz ; X
A:β
−−→ νz ; X′

z 6∈ fn(β) REARRANGE
X ∼=α X

′ X′
A:β
−−→ X′′

X
A:β
−−→ X′′

Table 7.11: Labelled semantics of executable narrations

Our semantics relates two executable narrations with a transition
A:β
−−→

where A ∈ A and β is either an input action ?M where M ∈ M⋄ or a
bound output action (νñ) B!M where ñ is a (possibly empty) list of pair-
wise distinct names n1 · · · nk (that are bound in the remainder), B ∈ A and
M ∈ M⋄. If k = 0 (i.e. ñ is empty), we will simply write B!M. Note that
there is no internal action in our formal semantics of narrations. We might
also have introduced a rule

COM
X
A:(νñ) B!M
−−−−−−→ X′ X′

B:?M
−−−→ X′′

X
τ
−→ νñ ; X′′

but we tend to insist on the fact that every communication necessarily
passes through the network, while such a rule COM would allow to avoid
this.
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7.6 Rewriting protocol narrations . . . into spi cal-

culus

As the reader might have noticed, the executable narrations as of Sec-
tion 7.3 and the spi calculus of Chapter 3 are similar. Thus, we may now
provide a straightforward translation of executable narrations into the spi
calculus and easily show that the semantics is preserved. The main idea is
that the implicit concurrency structure of narrations as encoded with ex-
plicit agent names is projected out (X↾A of Definition 102) and explicitly
represented using the parallel composition operator of the spi calculus.
Any intended sequential occurrence of actions, namely those actions that
are associated to the same agent, is preserved by using the prefix operator
of the spi calculus. The private names are then simply put as a top-level
restriction around the parallel composition.
We consider as target spi calculus the one we defined in Chapter 3.

However, we assume here that the set of spi calculus names N is in bi-
jection with N⋄ ∪ A ∪ V . In other words, we assume that N⋄ ∪ A ∪ V is a
partition of N and will thus identify expressions of this chapter with spi
calculus expressions. We will also identifyM⋄ with a subset ofM: the set
of closed messages (with no variables). We also define a way to guard a
process P by a formula φ:

guard(tt, P) := P
guard([E= F ], P) := [E=F ]P

guard([E :M ], P) := [E=E ]P

guard(inverse(E, F), P) := guard([DecaFEncaE(E . F) :M ], P)
guard(φ∧ψ, P) := guard(φ, guard(ψ, P))

Definition 102 (Translation).
Let X ∈ X be an executable narration.

1. A(X) (Table 7.12) defines the set of agents acting in X.

2. R(X) (Table 7.12) defines the set of fresh restricted names of X.

3. X↾A (Table 7.13) defines the spi projection of X on A ∈ A.

4. The translation T JXK of X into spi calculus is defined by:

T JXK := (νn) n∈R(X) ∏A∈A(X)
X↾A

where (νn) n∈I and∏n∈I denote n-ary restriction and composition.
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A(ǫ) := ∅

A(A:B!E ; X) := {A} ∪ A(X)
A(A:?x ; X) := {A} ∪ A(X)
A(A:φ ; X) := {A} ∪ A(X)
A(νn ; X) := A(X)

R(ǫ) := ∅

R(A:B!E ; X) := R(X)
R(A:?x ; X) := R(X)
R(A:φ ; X) := R(X)
R(νn ; X) := {n} ∪ R(X)

Table 7.12: Definition of A(·), R(·)

ǫ↾A := 0

(A′ :B!E ; X)↾A :=

{

B〈E〉.X↾A if A′ = A
X↾A otherwise

(A′:?x ; X)↾A :=

{

A(x).X↾A if A′ = A
X↾A otherwise

(A′ :φ ; X)↾A :=

{

guard(φ,X↾A) if A′ = A
X↾A otherwise

(νn ; X)↾A := X↾A

Table 7.13: Definition of ·↾·
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We now conclude by showing that the operational semantics of ex-
ecutable narrations and their spi calculus translations coincide up to ≡.
Since the evaluation of expressions fails on open expressions (expressions
E such that v(E) 6= ∅) and since the semantics uses closed messages for
inputs (messages of M⋄), this result can only hold on closed executable
narrations. According to the translation function, these narrations X are
characterised by fn(T JXK) ∩ V = ∅.
The following theorem states the correspondence.

Theorem 18:
Let X ∈ X be a closed executable narration.

1. if X A:?M
−−−→ X′ then there is P′ such that T JXK

A
−→ (x)P′ and such that

P′{M/x} ≡ T JX′K.

2. if X
A:(νñ) B!M
−−−−−−→ X′ then there is P′ such that T JXK

B
−→ (νñ) 〈M〉P′ and

such that P′ ≡ T JX′K.

3. if T JXK
α
−→ (x)P′ and M ∈ M⋄ then there exist A ∈ A and X′ such

that α = A, X A:?M
−−−→ X′ and P′{M/x} ≡ T JX′K.

4. if T JXK
α
−→ (νñ) 〈M〉P′ then there exist A, B ∈ A and X′ such that

α = B, X
A:(νñ) B!M
−−−−−−→ X′ and P′ ≡ T JX′K.

PROOF
The proof relies on several facts:

• It is obvious that if X ∼=α X
′ then T JXK ≡ T JX′K.

• Every executable narration X can be written

X ∼=α νn1 ; · · · ; νnk ; XA1 ; · · · ; XAl

with R(X) = {n1, . . . , nk}, A(X) = {A1, . . . , Al}, R(XAi) = ∅ and
A(XAi) = {Ai} for 1 ≤ i ≤ l.

T JXK ≡ (νni) 1≤i≤k∏1≤j≤l XAj↾Aj

• If E ∈ E is closed (i.e. n(E) ∩ V = ∅) then ec(E) = JEK.

Thus, if E, F ∈ E are closed, we have

– J[E=F ]K = e([E=F ])

– Jinverse(E, F)K = e([DecaFEncaE(E . F) :M ])

The result is then straightforward.



242 CHAPTER 7. FROM PROTOCOL NARRATIONS TO SPI CALCULUS

7.7 spyer

spyer is a tool, developed in ocaml, that implements the previous formal
developments. A source distribution of spyer can be found online [44];
an early version was developed by Gensoul [74].

spyer takes as an input file an extended protocol narration (using also
the syntactic sugar described at the end of Section 7.2) and outputs an
executable protocol narration and/or a network of spi calculus processes.
The latter can then be used as input for our bisimulation checker sbc that
implements the symbolic bisimulation described in [39]. We have briefly
summarised in Table 7.14 the correspondence between the abstract syntax
of expressions and formulae used in this chapter and the expressions and
formulae used by spyer.

this chapter  spyer
Expressions

a a
x x
A A

EncsFE enc_s(E,F)
EncaFE enc_a(E,F)
DecsFE dec_s(E,F)
DecaFE dec_a(E,F)
(E . F) <E,F>
π1 (E) fst(E)
π2 (E) snd(E)
pub(E) pub(E)
priv(E) priv(E)
H(E) hash(E)

Formulae
[E :M ] wff(E)
[E=F ] [E=F]

inverse(E, F) inv(E,F)
F∧G F /\ G

Table 7.14: Correspondence of abstract and spyer syntax for expressions
and formulae

Before commenting some examples adapted from [58], we explain how
consistency formulae, which can quickly become huge, may be simplified.
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7.7.1 Simplifying formula.

The various sub-formulae generated by the consistency formula of Defini-
tion 98 contain lots of redundant information.

Example 26
For example, if K = {(A, A), (B, B), ((A . B), x), (A,π1 (x)), (B,π2 (x))},
then

Φ(K) = [A :M ]∧ [B :M ]∧ [ x :M ]
∧ [π1 (x) :M ]∧ [π2 (x) :M ]
∧ [A=π1 (x) ]∧ [B=π2 (x) ]
∧ [ x=(A . B) ]∧ [ x=(π1 (x) . B) ]
∧ [ x=(π1 (x) .π2 (x)) ]∧ [ x=(A .π2 (x)) ]

Actually, we should also add the symmetric tests since they are syntacti-
cally different and the Definition 98 ignores the symmetry of [ ·= · ] and
inverse(·, ·). ∗

To avoid this combinatorial explosion, we devise some mostly straight-
forward rules to simplify formulae. Before stating them, we define for-
mula equivalence.

Definition 103 (Formula Equivalence).
Two formulae φ and ψ are equivalent—written φ ≈ ψ—if and only if for
all (closing) substitutions σ : V → M⋄, we have JφσK = JψσK.

Since substitution correspond to message reception, two formulae are
thus equivalent if they evaluate in the same way in every execution.
In the following enumeration of equivalence laws, with φ1 ∧ φ2 ≈ φ2 ∧ φ1

and (φ1 ∧ φ2)∧ φ3 ≈ φ1 ∧ (φ2 ∧ φ3), we consider formulae up to commu-
tativity and associativity of the conjunction operator.
The first set of laws states the symmetry and transitivity of the equality

test.

• [E=F ]∧ φ ≈ [F=E ]∧ φ

• [E=F ]∧ [F=G ]∧ φ ≈ [E=F ]∧ [E=G ]∧ φ

The second set of laws simplifies well-formedness tests or inversion
tests.

• If φ = [E :M ]∧ φ′ and E is an expression without deconstructors
(i.e., that does not contain any occurrence of π1 (·), π2 (·) or Dec··),
then φ ≈ φ′.
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• If φ = [E :M ]∧ φ′ and E appears as a subexpression of an expression
appearing in φ′, then φ ≈ φ′.

• If φ = [π1 (E) :M ]∧ φ′ and π1 (E) or π2 (E) appear as a subexpres-
sion of an expression appearing in φ′, then φ ≈ φ′.

• If φ = [π2 (E) :M ]∧ φ′ and π1 (E) or π2 (E) appear as a subexpres-
sion of an expression appearing in φ′, then φ ≈ φ′.

• inverse(M,N)∧ φ ≈ φ if inv(M) = N

The third set of laws rewrites well-formedness tests or inversion tests
in terms of equality tests.

• inverse(E, F)∧ φ ≈ [DecaFEncaEG :M ]∧ φ for all G that do not contain
deconstructors or if it contains some, they are inside an exact occur-
rence of E or F. For example, G = F or G = E are valid choices
for G.

• [E :M ]∧ φ ≈ [E=E ]∧ φ.

The following law states a substitutivity property of equality:

• [E=F ]∧ φ ≈ [E=F ]∧ φ′, for all φ′ which is φ where some occur-
rences of E has been replaced by F or conversely.

Finally, the last set of laws rewrites equality tests such that the resulting
expressions contain fewer constructors.

• [ (E1 . E2)=(F1 . F2) ]∧ φ ≈ [E1=F1 ]∧ [E2=F2 ]∧ φ

• [EncsE2E1=EncsF2F1 ]∧ φ ≈ [E1=F1 ]∧ [E2=F2 ]∧ φ

• [EncaE2E1=EncaF2F1 ]∧ φ ≈ [E1=F1 ]∧ [E2=F2 ]∧ φ

• [H(E)=H(F) ]∧ φ ≈ [E=F ]∧ φ

• [pub(E)= pub(F) ]∧ φ ≈ [E=F ]∧ φ

• [priv(E)= priv(F) ]∧ φ ≈ [E=F ]∧ φ

• [ (E1 . E2)=F ]∧ φ ≈ [E1=π1 (F) ]∧ [E2=π2 (F) ]∧ φ

Example 27
With the above laws, the formula of Example 26 is provably equivalent to:

ψ = [A=π1 (x) ]∧ [B=π2 (x) ]
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These ideas are implemented in spyer. Moreover, it exploits the fact
that the consistency formula is only used when adding a pair (M, x) to an
already reduced knowledge set K. So, to avoid that the same checks are
performed several times, it keeps in a formula only the atoms involving
the variable x.

7.7.2 The Wide-Mouthed Frog Protocol

First, we give the input file corresponding to the Wide-Mouthed Frog pro-
tocol that we have studied earlier in this chapter.

(* Wide Mouthed Frog protocol *)
(* initial knowledge *)
A,B,S know A B S
A,S share kAS
B,S share kBS
A generates kAB
A know m

(* protocol narration *)
A -> S: <A,enc_s(<B,kAB>,kAS)>
S -> B: enc_s(<A,B,kAB>,kBS)
A -> B: enc_s(m,kAB)

We then invoke spyer with the above file to obtain the following exe-
cutable narration:

new kAS
new kBS
A: new kAB
A: S!<A,enc_s(<B,kAB>,kAS)>
S: ?0
S: [B = fst(dec_s(snd(0),kAS))] [A = fst(0)]
S: B!enc_s(<A,<B,snd(dec_s(snd(0),kAS))>>,kBS)
B: ?1
B: [B = fst(snd(dec_s(1,kBS)))]

[A = fst(dec_s(1,kBS))]
A: B!enc_s(m,kAB)
B: ?2
B: wff(dec_s(2,snd(snd(dec_s(1,kBS)))))

Finally, this gives the following spi-calculus system:
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agent A(agent_A, agent_B, agent_S, kAS, m) =
(^kAB)

’agent_S<<agent_A, enc_s(<agent_B, kAB>, kAS)>>.
’agent_B<enc_s(m, kAB)>.0

agent B(agent_A, agent_B, kBS) =
agent_B(x_1).

{[agent_B = fst(snd(dec_s(x_1, kBS)))]
/\ [agent_A = fst(dec_s(x_1, kBS))]}

agent_B(x_2).
{wff(dec_s(x_2, snd(snd(dec_s(x_1, kBS)))))}0

agent S(agent_A, agent_B, agent_S, kAS, kBS) =
agent_S(x_0).

{[agent_B = fst(dec_s(snd(x_0), kAS))]
/\ [agent_A = fst(x_0)]}

’agent_B<enc_s(<agent_A,
<agent_B,
snd(dec_s(snd(x_0), kAS))>>,

kBS)>.0

agent System(agent_A, agent_B, agent_S, m) =
(^kAS, kBS)

(A(agent_A, agent_B, agent_S, kAS, m)
| B(agent_A, agent_B, kBS)
| S(agent_A, agent_B, agent_S, kAS, kBS))

7.7.3 The Otway-Rees protocol

In the Otway-Rees protocol, lots of redundant information is shared by
participants. For example, the message m appears in every single mes-
sage exchange. The extended narration corresponding to the Otway-Rees
protocol is:

(* Otway Rees protocol *)
(* initial knowledge *)
A,B,S know A B S
A,S share kAS
B,S share kBS
A know m
A generates nA
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B generates nB
S generates kAB

(* protocol narration *)
A -> B : <m,A,B,enc_s(<nA,m,A,B>,kAS)>
B -> S : <m,A,B,

enc_s(<nA,m,A,B>,kAS),enc_s(<nB,m,A,B>,kBS)>
S -> B : <m,enc_s(<nA,kAB>,kAS),enc_s(<nB,kAB>,kBS)>
B -> A : <m,enc_s(<nA,kAB>,kAS)>

The executable narration computed by spyer is then:

new kAS
new kBS
A: new nA
B: new nB
S: new kAB
A: B!<m,<A,<B,enc_s(<nA,<m,<A,B>>>,kAS)>>>
B: ?0
B: [B = fst(snd(snd(0)))] [A = fst(snd(0))]
B: S!<fst(0),<A,<B,<snd(snd(snd(0))),

enc_s(<nB,<fst(0),<A,B>>>,kBS)>>>>
S: ?1
S: [snd(snd(dec_s(snd(snd(snd(snd(1)))),kBS)))

= <A,B>]
[snd(snd(dec_s(fst(snd(snd(snd(1)))),kAS)))

= <A,B>]
[fst(1)

= fst(snd(dec_s(snd(snd(snd(snd(1)))),kBS)))]
[fst(1)

= fst(snd(dec_s(fst(snd(snd(snd(1)))),kAS)))]
[B = fst(snd(snd(1)))]
[A = fst(snd(1))]

S: B!<fst(1),
<enc_s(<fst(dec_s(fst(snd(snd(snd(1)))),kAS)),
kAB>,kAS),
enc_s(<fst(dec_s(snd(snd(snd(snd(1)))),kBS)),
kAB>,kBS)>>

B: ?2
B: [fst(2) = fst(0)]

[nB = fst(dec_s(snd(snd(2)),kBS))]
B: A!<fst(2),fst(snd(2))>
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A: ?3
A: [nA = fst(dec_s(snd(3),kAS))] [m = fst(3)]

Actually, if the computation of the consistency formulae was following
literally whatwe devised in Section 7.3, the generated formulae of Swould
contain more than 300,000 (!) equality tests.

7.8 Related work and future work

We roughly and somewhat artificially divide the list of competing ap-
proaches into two classes. One class tries to tightly associate some for-
mal semantics with (variants of) narrations themselves. Another class
provides less tight associations, usually involving a different target for-
malism: here, we may distinguish approaches that informally reformulate
narrations within a different formalism from those that offer mostly au-
tomated translations from narrations into target formalisms, but do not
clearly justify the underlying translation principles (if exposed at all). Let
us, for the purpose of structuring this section, use the terms “tight” and
“lax” semantics to separate the two classes.
Sumii et. al. [132] propose a formal semantics of narrations by transla-

tion into spi calculus. The paper is written in Japanese, so it remains un-
clear to us how “tight” the approach really is, how they treat the problem
of checks-on-reception, and also whether there is any formal or informal
justification of the translation principles. In any case, our own intention
was to provide a formal semantics that does not require the use of an un-
derlying (and possibly too) general process calculus, so our approach is
still substantially different.

Tight semantics

The work of Caleiro, Viganó and Basin [54, 55] is quite similar in spirit and
aim with our work. They defined a trace-based denotational semantics
and gave a corresponding operational semantics with a variant of pattern-
matching spi calculus as target language. Some underlying ideas are quite
similar to ours but we find our formalism of knowledge sets is more light-
weight (although equally powerful) than their theory of view/opacity.
The view that a principal has of a message M corresponds to how far it un-
derstands the message M with its current knowledge. A message is said
to be opaque for a participant if the latter is not able to analyse at all the
form of the message (this corresponds to a view equal to a special sym-
bol γM). To relate to these definitions, one might say that our approach
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consists in considering that initially a received message M is opaque and
is thus bound to a fresh variable xM. Then, the analysis of the receiver’s
knowledge set resulting from the addition of (M, xM) to its current knowl-
edge set corresponds to computing the view that the receiver then has of
this particular message. In addition, the receiver also updates the “view”
that it has of other previously received message. Then, we can directly use
the result of the analysis to say which checks have to occur after the re-
ception of M. In contrast, Caleiro, Viganó and Basin had to introduce and
refer to further concepts like the facial pattern, the constructive form and the
inner facial pattern (and relate them with the concept of view) before being
able to give an operational semantics. The main simplification in our set-
ting arises from the joint treatment of messages and associated “views” as
knowledge elements of the form (M, E).
Another way to give semantics to protocol narrations could exploit the

widely-developed machinery of strand spaces [134], proposed by Thayer
Fábrega, Herzog and Guttman. This formalism has proved to be a suc-
cessful framework for reasoning on and verifying security properties of
cryptographic protocols [77]. Strand spaces are graphs that represent the
intended protocol behaviour of narrations by an explicit use of arrow-
notations: one type of arrow captures the sequential dependencies within
individual participants, giving rise to strands; another type of arrow cap-
tures the flow ofmessages between strands. In contrast to mere narrations,
strand spaces are not limited to represent just the intended behaviour, but
also the behaviour of malicious attackers, represented as so-called pene-
trator strands. Since strand spaces come with a formal semantics, in terms
of so-called bundles, this immediately also provides some semantics for
narrations. A bundle can be understood as a causality-closed subgraph of
a given strand space. As such, it represents the possible result of a valid
executions of the strand space. However, there is no notion of dynamic exe-
cution that could be understood as a form of operational semantics. Thus,
there is also no study of dynamic checks-on-reception, which is the main
technical contribution of the current chapter.
On the other hand, strand spaces have also been studied by Crazzo-

lara and Winskel in comparison to other models of concurrency [62, 63],
notably including event structures Petri nets and the algebraic process
language SPL; the latter is a simplified (since channel-free) spi-calculus
that is enhanced with some form of pattern-matching (cf. also [78] for
pattern-matching in a more standard spi-calculus, and our comments be-
low). Since thesemodels of concurrency—in particular the language SPL—
are equipped with forms of operational semantics, one might think that
their relation to strand spaces could provide an operational semantics of
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the latter “for free”. This, however, is not the case. In [62], for any given
SPL-process P in some particularly restricted form called !-par process,
Crazzolara and Winskel show how to formally and closely relate the net
behaviour Net(P) to the strand space behaviour Tr(P). In contrast, they
do not offer any way to translate strand spaces back into SPL-terms, which
would be required to inherit the desired operational semantics. In [63], the
authors further refine the relation between SPL and strand spaces by ex-
tending the latter with a notion of conflict to allow for better composition
properties. Still, they offer no way to translate arbitrary strand spaces to
SPL processes.

Lax semantics

The work of Bodei et. al. [30, 31] is also similar to ours, although still quite
different. Like us, they present a refinement of protocol narrations, but the
respective checks-on-reception appear only informally. Like us, they split
message exchanges into three parts, albeit different to ours. A formal se-
mantics is then only provided after “rewriting”, again informally, refined
narrations into terms of their channel-free process calculus LYSA. To our
knowledge, the above papers (short and long version) provide the best
available information about the system underlying their “systematic ex-
pansion”. Still, the expansion is not unambiguously explained, while our
expansion is fully automatic, based on simple intuitive principles and gen-
erates a maximum number of checks according to these principles. Finally,
their approach aims at static analysis techniques, while we ultimately tar-
get at dynamic analysis, e.g., as in the form of bisimulation checks [39] in
the spi calculus.
In other related approaches, narrations are reformulated or translated

using Casper [94], HLPSL2IF [22], CAPSL [96], CASRUL [87], or (s)pi
calculus [9, 28]. They have in common that they do not easily help to
understand how the gap between the rather informal narrations and the
target formalism is bridged. A compiler can itself be interpreted as giv-
ing semantics to narrations, but usually the translation process is not well
explained or otherwise justified, in particular regarding the treatment of
checks-on-reception. Moreover, our interest was to try to formalise the
semantics at the level of narrations rather than by translation into some
reasonably unrelated target formalism.
A subtle, but interesting difference between our work and Casper [94]

is their modified message syntax using a construction M % v, meaning
that the recipient of M should not try to decrypt M. We think this construct
was added because of Casper’s rather strict policy to require, unless the
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% is used, to be able to fully decrypt all messages (and possibly provide a
warning in case this fails). Our (arguably more flexible) policy is instead to
require agents to always just try to decrypt messages as far as their current
knowledge permits, so we implicitly let agents accept messages even if
they cannot (yet) fully decrypt them.
As we previously observed (cf. Section 7.4.3), the pattern-matching

spi calculus of [78] is not expressive enough to capture the checks-on-
reception we require. To overcome its limitations (in the part of our work
that deals with rewriting into spi calculus), we could have used a variant
similar in spirit to the one of [55]. However, we found it more orthogonal
and extensible to express those checks by means of dedicated formulae.
Moreover, our use of this version of the spi calculus was driven by the
wish to have our tool spyer generate spi calculus code that is compat-
ible with our symbolic bisimulation checker based on [39]. Finally, note
that the aim of [78] was to offer a type system to study safety property of
processes, but not to enable an automated way to turn protocol narrations
into spi calculus processes.

Future work

Here, we do not tackle the fourth task listed by Abadi [2] on how to get
to a formalisation of concurrent sessions on the basis of protocol narra-
tions. The main problem is that principals may play different roles in con-
current sessions such that the lookup of their respective keys needs to be
dealt with dynamically. The usual convenient confusion of the two con-
cepts of principal and role is no longer appropriate, so we propose to non-
trivially extend the narration notation rather than providing a suboptimal
semantics to an inappropriate notation. Note that this confusion also rules
out the naïve modelling of concurrent sessions by the bare unbounded
replication within spi calculus. Some inspiration from the work of Cre-
mers and Mauw [64] and the work done in the context of mixed strand
spaces [133, 76] may help us here.
Furthermore, it should be possible to develop reasoning techniques for

protocol narrations via an environment-sensitive extension of our semantics
that could be used to define and study meaningful behavioural equiva-
lences.
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Conclusion

In this thesis, we have tackled the lack of tool support of the spi calculus
approach for studying cryptographic protocols.
To achieve this goal, some theoretical developments were needed. On

the one hand we have established a rigorous link between security pro-
tocols and spi calculus by providing a formal semantics to protocol nar-
rations. On the other hand, inspired by the situation in the pi calculus
where open bisimulation of Sangiorgi has given rise to several implemen-
tations of bisimulation checkers, we have defined an open style definition
of bisimulation for the spi calculus. We have proven that this new notion
of bisimulation —namely open hedged bisimulation— is indeed an exten-
sion of open bisimulation of the pi calculus and that it is a sound proof
technique to show late hedged bisimilarity. We have also given a sym-
bolic characterisation of open hedged bisimulation that, we have argued,
constitutes a promising first step towards its mechanisation. Interestingly
enough, the projection down to the pi calculus of open hedged bisimula-
tion has enabled us to better understand certain aspects of the pi calculus
and to formulate more precise congruence properties of open bisimulation
than the ones that were first stated by Sangiorgi.
On the tool support side, we have implemented into spyer the formal

procedure to translate a protocol narration into spi calculus. Besides, we
have formalised the spi calculus in the coq proof assistant. Even if the
goals of this formalisation were firstly to validate our theoretical devel-
opments and secondly to extract eventually a bisimulation checker, this
already constitutes a sufficiently complete framework to reason formally
in coq about security protocols using the spi calculus approach.
As obvious future work, we intend to pursue our study of open hedged

bisimilarity. Taking advantage of the experience we got while working on
a prototype tool [38], we hope to soon be able to devise a decision proce-
dure for checking open hedged bisimilarity on finite terms and prove its
correctness in coq. We also intend to investigate open hedged bisimula-
tion from a more theoretical point of view; we have good hope that the
induced notion of bisimilarity enjoys good congruence properties.
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