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Abstract   
 
 

 

The rapid growing number of patients diagnosed with a neurodegenerative disease and more 

particularly with Alzheimer’s disease (AD) has stimulated intensive research in determining and 

understanding biological phenomena causing such devastating diseases and hence allowing for 

the elaboration of adapted therapeutic treatments. These diseases are also commonly called 

“conformational” diseases because they result from the misfolding of a protein leading to the 

formation of self-associated β-sheets, which in turn give rise to the formation of oligomers, 

protofibrils as well as insoluble fibrils characterizing the plaques found in the brain of affected 

patients. Consequently, the investigation of such proteins, in particular of Amyloid β (Aβ) in the 

case of AD, is a limited and difficult task to achieve, which often leads to contradictory results. 

To overcome these difficulties and to be able to study the key steps of conformational transitions 

and misfolding of such peptides and proteins, our research group has developed a new tool, 

called switch-peptides, enabling to block (Soff state) and trigger (Son state) peptide folding at will 

(Figure). 

 
 

The introduction of a switch element S built from Ser, Thr or Cys residues disrupts the regular 

polypeptide chain by the insertion of an ester and a flexible C-C bond resulting in a 

conformational disconnection of P1 and P2 (Figure), i.e. in an unordered (random coil), non-

folded conformation. Each S element is protected by a protecting group Y (Soff state) that can be 

cleaved independently by adding a base, an enzyme or by light, depending on the chemical 

nature of Y. The cleavage of the different protecting groups Y triggers a spontaneous O to N 
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acyl migration, re-establishing the regular amide backbone of the peptide chain, hence enabling 

the peptide to fold “in statu nascendi” and to adopt a well-defined secondary structure. 

The present thesis explores the potential of this novel concept for the example of conformational 

transitions relevant in amyloid β misfolding.  

In the first part we investigate the chemical stability of the S element in aqueous media, exposing 

a number of switch-peptides to various experimental conditions. Most notably, the ester bond 

proved to be stable at acidic as well as physiological conditions for several hours, opening a 

broad range of biological applications. 

The second part of the work is dedicated to the study of conformational transitions of switch-

peptides derived from Aβ(1-42). By incorporating one or several switch elements disposing 

orthogonal protecting groups Y, the impact of different fragments of the peptide as nucleation 

site for the process of β-sheet formation, self-assembly and aggregation has been revealed as 

monitored by CD, TEM studies and ThT (pathway B, Figure). For the first time, the orthogonal 

triggering of the two switch elements, i.e. S26 and S37 allowed to delineate the important role of 

the C-terminal part of Aβ in the early step of misfolding. 

Subsequently, one of the nucleation sites for aggregation, i.e. segment Aβ(14-24) was excised 

from the native sequence and transformed to a switch-peptide applying the host-guest technique. 

Detailed CD studies were applied for investigating conformational transitions of type random-

coil (Soff) to β-sheet structure (Son), serving as proof of concept for the use of Aβ-derived 

nucleation sites as guest sequence in combination with β-sheet promoting host peptides for the 

screening of potential inhibitors of fibril formation as early molecular event in the context of 

AD. 

This has been demonstrated in applying the elaborated host-guest peptides to evaluate the β-

sheet breaking potential of pseudo-proline (ψPro)-containing switch-peptides derived from Aβ 

(pathway C, Figure). Preliminary results indicate that the in situ formation of kink-

conformations may exert a β-sheet destabilizing effect, confirming previous observations from  

the Soto group.  

Finally, the use of switch-peptides as β-sheet and fibril breaking molecules by in situ α-helix 

nucleation (pathway A, Figure) has been explored. To this end, the potentially β-sheet forming 

segment Aβ(14-24) was linked via S element to a helix nucleating peptidomimetic (“N-Cap”). In 

the Soff state (pH ≤ 4), CD and TEM studies point to the onset of a β-sheet, fibril forming 

structure. In triggering O,N-acyl migration (pH ≈ 7), a so far unprecedented transition of type β-
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sheet to α-helix is observed, paralleled by a drastic increase in solubility and a complete 

disappearance of fibrils. 

The reversibility of β-sheet and fibril formation by α-helix nucleation in situ represents a most 

interesting observation and deserves further exploration as potential tool in the study of folding 

processes. 

In conclusion, the concept of “switch-peptides” has been successfully applied to biologically 

relevant molecular events of utmost therapeutical interest. 

 

Keywords: Amyloid β-derived switch-peptides; multiple O,N-acyl migration; conformational 

transitions; fibril disruption; neurodegenerative diseases; reversal of β-sheet formation. 
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Le nombre croissant de patients atteints de maladies neurodégénératives et plus particulièrement 

de la maladie d’Alzheimer a stimulé la recherche ayant pour but de déterminer et comprendre les 

phénomènes biologiques causant ces maladies dévastatrices afin de permettre l’élaboration de 

traitements thérapeutiques adaptés. Ces maladies sont aussi communément appelées maladies 

“conformationnelles” car elles résultent principalement du mauvais repliement d’une protéine 

conduisant à la formation de feuillets β s’associant entre eux pour donner naissance à des 

oligomères, des protofibrilles ainsi que des fibrilles insolubles qui caractérisent les plaques 

retrouvées dans le cerveau des patients atteints. Par conséquent, l’étude de ces protéines, plus 

particulièrement de l’Amyloide β, est limitée et difficile, donnant souvent lieu à des résultats 

contradictoires. Afin de contourner ces difficultés pour pouvoir plus facilement étudier les étapes 

clés du changement de conformation et du repliement incorrect de l’Aβ, notre groupe de 

recherche a développé un nouvel outil, appelé les « switch-peptides », permettant de bloquer 

(état Soff) puis de déclencher (état Son) le repliement du peptide à souhait (Figure).  

 

 
 

L’introduction d’un élément switch S construit à partir des résidues Ser, Thr ou Cys interrompt 

la chaine polypepidique par l’insertion d’une liaision ester et d’une liaison C-C flexible resultant 

dans une deconnection conformationnelle de P1 et P2 (Figure), c-à-d dans une conformation 

désordonnée de type pelote statistique. Les éléments S sont protégés par des groupes protecteurs 

Y (état Soff) pouvant être clivés de manière indépendante par l’ajout d’une base, d’une enzyme 

ou par la lumière, dépendant de la nature chimique de Y. Le clivage de Y déclenche une 
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migration acylique spontanée qui rétablit la liaison amide et la chaîne peptidique, ce qui permet 

au peptide de se replier « in statu nascendi » et d’adopter une structure secondaire définie. 

Le travail décrit dans cette thèse explore le potentiel de ce nouveau concept pour l’exemple des 

transitions conformationnelles de grande importance dans le repliement incorrect de l’amyloide 

β (Αβ).  

Dans un premier temps, nous avons étudié la stabilité de l’élément S en milieu aqueux, exposant 

plusieurs « switch-peptides » à différentes conditions expérimentales. Nous avons notamment 

démontré que dans des conditions acides et physiologiques, la liaison ester reste stable pour 

plusieurs heures, donnant accès à un large éventail d’applications biologiques. 

Nous nous sommes ensuite consacrés à l’étude des changements conformationnels de « switch-

peptides » dérivés de l’amyloide β 1-42. Par l’incorporation d’un ou plusieurs éléments switch 

disposants de groupes protecteurs orthogonaux Y, l’impact de différents fragments du peptide 

comme site de nucléation dans le processus de formation des feuillets β, de l’auto-assemblage et 

l’aggregation (voie B, Figure) a été révélé grâce à l’utilisation de plusieurs techniques 

complémentaires telles que CD, TEM et ThT. Pour la première fois, le déclenchement 

orthogonal de deux éléments switch, c-à-d S26 et S37 a permit de déterminer le rôle majeur de la 

partie C-terminale de l’Aβ dans les premières étapes du repliement incorrect du peptide. 

Ensuite, un des sites de nucléation de l’aggrégation, le segment Aβ(14-24) fut excisé de la 

séquence native et transformé en un « switch-peptide » appliquant la technique host-guest. Des 

études détailées par CD furent utilisées afin d’examiner les transitions conformationnelles de 

type pelote statistique (Soff) à feuillet β (Son), servant de preuve du concept dans l’utilisation de 

sites de nucléation dérivés de l’Aβ comme séquence guest en combinaison avec des peptides 

host promoteurs de feuillets β pour le screening d’inhibiteurs potentiels de la formation des 

fibrilles, événement moléculaire majeur survenant tôt dans le contexte de la maladie 

d’Alhzeimer. 

Ceci fut démontré en appliquant les peptides host-guest élaborés à l’évaluation de « switch-

peptides » dérivés de l’amyloid β comprenant une pseudo-proline (ψPro) comme potentiels 

briseurs de feuillets β (voie C, Figure). Les résultats préliminaires indiquent que la formation in 

situ de conformations en coude peut exercer un effet déstabilisant sur les feuillets β, confirmant 

ainsi de précédentes observations faites par C. Soto et al. 

Enfin, l’utilisation de « switch-peptides » comme molécules capables de briser feuillets β et 

fibrilles par la nucléation in situ d’une helice α (voie A, Figure) a été explorée. A cette fin, le 
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segment Aβ(14-24) formant des feuillets β a été lié via un élément S à un peptidomimétique 

nucléateur d’hélices (« N-Cap »). À l’état Soff (pH ≤ 4), les études CD et TEM pointent vers le 

commencement d’une structure de type feuillet β formant des fibrilles. Par le déclenchement de 

la migration acylique (pH ≈ 7), une transition de type feuillet β à helice α jamais observée 

jusqu’à présent a pu être démontrée. Parallèlement, une augmentation extrême de la solubilité et 

la disparition complète des fibrilles furent observées.  

La réversibilité  de la formation des feuillets β et des fibrilles par nucléation in situ d’hélice α 

représente une observation extrêmement importante et mérite une exploration plus approfondie 

comme outil potentiel dans l’étude des processus du repliement des protéines. 

En conclusion, le concept des « switch-peptides » fut appliqué avec succès dans l’étude des 

événements biologiques moléculaires d’intérêt thérapeutique majeur. 

 
Mots clés: “switch-peptides” dérivés de l’amyloide β ; multiple O,N-acyl migration ; transitions 

conformationnelles ; déstabilisation de fibrilles ; maladies neurodégénératives ; réversibilité de la 

formation de feuillets β. 
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Aβ Amyloid β 

Abs Absorbance 

Ac Acetyl 
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AcOEt Ethyl acetate 

AD Alzheimer’s disease 
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DCC N,N’-Dicyclohexylcarbodiimide 
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DCM dichloromethane 

DEA diethylamine 

DIPEA N,N-Ethyldiisopropylamine 

DPPIV Dipeptidyl aminopeptidase IV 

DMAP Dimethylaminopyridine 

DMF Dimethylformamide 

DMSO Dimethylsulfoxide 

D2O Deuterium oxyde 

EDT Ethanedithiol 

EDCI 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide 

EM Electron microscopy 

ESI-MS Electrospray Ionisation Mass Spectroscopy 

Et2O Diethylether 

EtOH Ethanol 

Fmoc 9-Fluorenylmethyloxycarbonyl 

HATU O-(7-Azabenzotriazol-1-yl)-N, N, N’, N’-tetramethyluronium 

hexafluorophosphate 

HCl Hydrochloric acid 
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HOBt 1-Hydroxybenzotriazole 

HPLC High Pressure Liquid Chromatography 

MALDI-TOF Matrix assisted laser desorption ionization time of flight 

MeOH Methanol 

MSNT 1-(2-Mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole 

MeIm N-Methylimidazole 

NMDA N-methyl-D-aspartic acid 

NMR Nuclear Magnetic Resonance 

NVoc 6-nitroveratroyloxycarbonyl 

PBS Phosphate buffer solution 

Pd/C Palladium on charcoal 

PyBOP (Benzotriazol-1-yloxy)-tripyrrolidinophosphonium 

hexafluorophosphate 

Rt Retention time 

SPPS Solid phase peptide synthesis 
tBu Tert-butyl 

TFA Trifluoroacetic acid 

TFE Trifluoroethanol 

THF Tetrahydrofuran 

ThT Tioflavin T 

Tris Tris(hydroxymethyl)aminomethane 

TIS Triisopropylsilane 

Trt Trityl 
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Amino Acids 
General structure of L-amino acids: 

H2N

R

H

OH

O  
 

Name Side Chain R 

Alanine (Ala, A) CH3 - 

Arginine (Arg, R) H2N-C(NH)-NH-CH2CH2CH2 - 
Asparagine (Asn, N) H2NCO-CH2 - 

Aspartic acid (Asp, D) HO2C-CH2 - 
Cysteine (Cys, C) HS-CH2 - 

Glutamic acid (Glu, E) HO2C-CH2CH2 - 
Glutamine (Gln, Q) H2NCO-CH2CH2 - 

Glycine (Gly, G) H- 
Histidine (His, H) HN N

H2C  
Isoleucine (Ile, I) CH3CH2(CH3)CH- 
Leucine (Leu, L) (CH3)2CH-CH2 - 

Lysine (Lys, K) H2NCH2CH2CH2CH2 - 
Methionine (Met, M) H3C-S-CH2CH2 - 

Phenylalanine (Phe, F) 
CH2

 

Proline (Pro, P) 
N
H  

Serine (Ser, S) HO-CH2 - 
Threonine (Thr, T) CH3CH(OH)- 

Tryptophane (Trp, W) 

N
H

H2C

 

Tyrosine (Tyr, Y) 
CH2HO

 

Valine (Val, V) (CH3)2CH- 
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Chapter I. Introduction 
 

1. General notions on peptide and protein structure and function 

 

Peptides and proteins are fundamental molecules characterizing living organisms. Their structure 

and function are both very essential in every process within living cells. Conventionally, proteins 

are polypeptide chains comprising more than 50 amino acids. Their size is extremely variable 

and goes from several hundred to several thousand kilo Daltons depending on the protein. They 

possess a wide range of functions, for example they function as catalysts, transport and store 

other molecules such as oxygen, provide mechanical support and immune protection, generate 

movement, transmit nerve impulses, and or control growth and differentiation. Peptides have 

also very relevant physiological functions, acting in particular as hormones, neurotransmitters, 

cytokines and growth factors. 

Proteins are the most abundant macromolecules in living cells, representing more than half of 

their dry weight. For that reason, in 1838, the chemist Gerardus Mulder proposed to call them 

proteins from the greek proteios, meaning “of primary importance”. At that time, the 

extraordinary properties of those macromolecules were totally unknown since their structure and 

composition remained a mystery. 

A century later, L. Pauling and R. Corey1 deduced by x-ray crystallography the two main 

structural features of proteins: the α-helix and β-sheet, now known to form the backbones of tens 

of thousands of proteins. 

Proteins and peptides are linear polymers built of monomer units, the amino acids, forming 

covalent bonds called peptide bonds (Figure 1). 

H2N

OH

H
N

N
H

R

O

polar

hydrophobic

charged
O Ri

Ri-1 O

H

OH C-terminal
extremity

N-terminal
extremity

n  

Figure 1. General structure of an L-amino acid (left). General formula of a protein formed by n peptide 

bonds (right). 
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Remarkably, proteins and long peptides spontaneously fold up into three-dimensional structures 

that are determined by the sequence of amino acids in the polymer.  

Proteins and peptides are built from a repertoire of 20 amino acids. Each amino acid is an α-

amino acid, containing both amine and carboxyl functional groups, where the amine function is 

in α position of the acid function. 

Each amino acid varies from one another by its side chain (R), which gives to amino acids 

distinctive chemical specificities that can be classified in three different groups owing to their 

chemical reactivity:  

(a) polar 

Uncharged polar amino acids are: Serine, Threonine, Cysteine, Tyrosine, Asparagine and 

Glutamine residues. 

(b) charged 

Charged amino acids are: Aspartic acid, Glutamic Acid, Lysine, Arginine, and Histidine. 

(c) hydrophobic 

Hydrophobic uncharged and non-polar amino acids are: Glycine, Alanine, Valine, Leucine, 

Isoleucine, Proline, Phenylalanine, Tryptophane and Methionine.  

Among those amino acids, proline is a particular residue because its ring structure makes it more 

conformationally restricted than the other amino acids. 

In naturally occurring amino acids, the stereochemical configuration of the chiral center is 

exclusively L. The D forms of amino acids are extremely rare.  

 

1.1. The peptide bond 

A peptide bond (or amide bond) is formed when two amino acids react together via a 

condensation reaction with the loss of a water molecule. In this bond, the non-linking electron 

pair of nitrogen is conjugated with the double bond of the carbonyl oxygen group to give rise to 

two mesomeric forms (Figure 2). The planarity of the peptide bond reduces the geometry around 

the bond to only two conformers: trans and cis. In the trans configuration, the two α-carbon 

atoms are on the opposite sides of the peptide bond. In the cis configuration, these groups are on 

the same side of the peptide bond. Almost all peptide bonds in proteins are trans because the 

steric hindrance of amino acid side chains clearly penalizes the cis conformation in comparison 
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to the trans conformation. Only amide bonds followed by a proline residue present 10% of cis 

conformation. 

C!i N
H

C!i+1

O

R1

R2

C!i N

C!i+1

O

R1

R2

N

R2

HO

R1

C!i C!i+1

Conformation trans Conformation cis
 

Figure 2. Cis-trans isomerization of the peptide bond. 

 

1.2. Torsion angles and Ramachandran plot 

Contrary to amide bonds, which can only adopt cis or trans conformations, the phi (φ) (between 

N-Cα) and psi (Ψ) (between C-Cα) torsion angles are relatively flexible (Figure 3). 

Nevertheless, because of steric interferences between atoms only some of the possible 

combinations of φ and Ψ angles are allowed.  

 

Figure 3. Spatial representation of a polypeptide chain to demonstrate the torsion freedom of a peptide 

unit. Only the N-Cα and Cα-C bonds can rotate, with bond angles designated φ and Ψ. 

 

This was analyzed by Ramachandran and Sasisekharan2, who used solid sphere models of amino 

acids to determine the range of allowed values for φ and Ψ and reported the results in the so-

called Ramachandran plot as depicted in the figure below. 
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Figure 4. Ramachandran plot. The gray and green regions indicate the allowed combinations of φ and Ψ 

angles for all residues except Gly and Pro. β-sheet conformation is found for 90< Ψ< +180 and -

180<φ< -60, right handed helix is found for -60<Ψ< +30 and -120<φ< -30, left handed helix is found 

for 0<Ψ< +60 and -45<φ< +90. 

1.3. Peptide and protein structures 

 The primary structure of a peptide or a protein corresponds to the linear arrangement of 

the amino acid residues in the polypeptide chain. The position of each amino acid in the 

sequence will determine how the chain will fold and adopt its secondary structure. 

 The secondary structure is the local conformation of a polypeptide chain and corresponds 

to the first level of organization of the polypeptide chain in the space. It results from the 

tendency of each amino acid residue to adopt defined combinations of dihedral angles φ and 

Ψ and also from  the establishment of hydrogen-bonding patterns between the carbonyls and 

amide protons along the chain. The two most frequent secondary structures are the α-helices and 

the β-sheets.  

 The tertiary structure refers to the spatial arrangement of the secondary structure units; it 

is the complete three-dimensional structure of a polypeptide chain. 

Proteins, which are built of several polypeptide chains, exhibit a fourth structural level, called 

the quaternary structure.  
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Figure 5. The four levels of protein structure. 

1.4. The random coil 

Proteins fold into a well-defined structure after their synthesis on a ribosome. However, small 

peptides and some polypeptide segments of proteins do not adopt a specific conformation due to 

a lack of amino acid side-chain interactions and because free rotation can take place around 

every bond of the backbone. This absence of specific interactions and the rotation freedom 

generates randomly oriented subunits, resulting in an unfolded state, called random coil. 

1.5. The β-sheet 

One of the major components found in proteins is the β-sheet. The basic unit is the β-strand, 

with the polypeptide almost fully extended. The dihedral angles’ region corresponding to β-

strands in the Ramachandran plot is between φ,Ψ = -120°, +130°. This extended conformation is 
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stable only when incorporated into a β-sheet, where hydrogen bonds with close to optimal 

geometry are formed between the peptide groups on adjacent β-strands. Adjacent strands can be 

either parallel or antiparallel, and the stereochemistry of the strands in the two cases are slightly 

different, such as the hydrogen bonding pattern between the two strands (Figure 6). 

 

Figure 6. Antiparallel and parallel β-sheet bonding patterns. 

 

1.6. The α-helix 

The α-helix is the major element of secondary structure in proteins. It was first described by 

Linus Pauling in 19511. α-helices are formed when a stretch of consecutive residues have a φ, Ψ 

angle pair approximately -60° and -50° (Ramachandran plot). The α-helix is right-handed in 

Nature because of the natural occurrence of L-amino acids. It has 3.6 residues per turn with 

hydrogen bonds between C=O of residue n and NH of residue n+4; the vertical distance between 

each turn is 5.4 Å. Each peptide unit in an α-helix has a dipole moment arising from the different 

polarity of NH and CO groups, these dipole moments are also aligned along the helical axis, 

which results in a partial positive charge at the amino end and a partial negative charge at the 

carboxy end of the α-helix3 (Figure 7). 
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Figure 7. Secondary structure of an α-helix (left) and its dipole moment. 

 
It is worth mentioning that α-helical motifs play a key role in many biological processes; for 

example, the key receptor-binding component in peptide hormones, such as neuropeptide Y4 or 

calcitonin5, have a bioactive helical conformation; furthermore, sequence specific DNA-binding 

proteins often employ α-helical motifs as the DNA recognition element6; eventually, the 

hemolytic activity of melittin and alamethicin peptides are believed to be linked to their helical 

structure7. 

1.7. Initiating α-helices using Ncap templates 

As we have previously seen, the two most common arrangements in proteins are helices and 

sheets. However, the α-helix is not a stable conformation in short polypeptides of fewer than 20 

residues because it lacks specific stabilizing interactions8. In 1959, Zimm and Bragg9 (and 

Lifson and Roig shortly afterwards) defined two parameters, the helix initiation constant (σ) and 

the propagation constant (s), to assess α-helix stability in peptides. The Zimm-Bragg equation 

gives K = [helix]/[random coil] = σsn-1, where n corresponds to the number of residues in the 

sequence. The initiation constant reflects the probability of aligning the first three residues in an 

α-helical conformation. Without stabilizing hydrogen bonds, this is a highly disfavored process, 

due to the repulsive interactions between the aligned dipoles and the loss of entropy. The 

propagation constant s reflects the likelihood of an amino acid residue adopting α-helical torsion 
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angles, when added to the end of a pre-existing helix. And while initiating the helix is paid only 

once for each helix, propagating it multiplies the statistical weight by one additional s-value for 

each hydrogen bond. 

To overcome the problem of initiating helices, Baldwin and coworkers10-12 added conformational 

constraints like salt bridges or charged groups at both termini of the sequence to force the 

peptide into α-helical conformation. Shortly after Kemp13 (and several other groups afterwards) 

developed rigid synthetic templates known as N-caps providing hydrogen bonding acceptors for 

the first four amide protons in the sequence that normally lack them (Figure 8). One difficulty in 

the design and synthesis of such N-Caps lies in the requirement to align H-bond acceptors in the 

correct geometry for helix initiation.  

 

Figure 8. A short peptide has a random coil conformation in aqueous solution and once an N-cap 

nucleating template is added to the sequence, the peptide adopts an α-helical structure. 

Peptide 
Random Coil  
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2. Protein folding and misfolding 

The complex machinery of protein folding is an amazing and fascinating process. How a protein, 

after its synthesis on ribosome, will fold and adopt its well-defined three-dimensional structure, 

essential for its precise function in the cell, is still today not completely understood. Many 

parameters have to be taken into account in protein folding, most notably, its amino acid 

sequence and the cellular environment surrounding the polypeptide chain. The amazing 

recognition and catalytic characteristics of proteins are deeply rooted in their three-dimensional 

structure. Whether they are involved in enzymatic catalysis, immune response, reception and 

emission of stimuli or in the expression and organization of genetic information, their particular 

shape is the key of their success. The stability of the defined structure of a protein is the result of 

the sum of covalent bonds, like disulphur bridges, and a full set of non-bonding interactions like 

Van der Waals interactions, hydrogen bonds, dipolar interactions and hydrophobic packing. The 

latter results from the tendency of hydrophobic residues to form a compact core in the middle of 

the entity while hydrophilic ones tend, in contact with water, to face outwards, creating a dense 

complex surface. 

If most proteins spontaneously fold into their native state, some require the help of enzymes 

called chaperones to assist them to achieve their proper folding. However, if the folding is 

unsuccessful, the polypeptide is directed to the proteasome – a large multisubunit protease - for 

degradation.  

Ensuring accuracy in protein folding is crucial for maintaining proper cellular function. Protein 

misfolding can have dramatic effects on health. 

Several diseases are caused by a loss of protein function because the misfolded proteins have 

been degraded by the proteasome. Other misfolding diseases are caused by conformational 

changes coupled to the aggregation of misfolded proteins outside the cell, beyond the influence 

of intracellular quality control systems. The major representatives of these disorders are the 

amyloidoses, characterized by insoluble extracellular deposits of protein aggregates occurring in 

the post-mitotic environment of the neuron and they include Alzheimer’s and Parkinson’s 

disease. 
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Figure 9. Regulation of protein folding in the Endoplasmic Reticulum (ER). 
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3. Alzheimer’s disease 

Dementia is among the most feared consequences of growing old, and with the aging of the 

populations, its prevalence is expected to increase in most industrialized countries in the coming 

decades. Indeed, Alzheimer’s disease (AD), which is a devastating neurodegenerative disorder 

affecting millions of individuals and for which, 100 years after its discovery, there is still no 

cure, accounts for more than 60% of cases of dementia14, 15. 

 

Figure 10. Brain cross-section as seen from the front. The cross-section on the left represents a brain 

from a normal individual and the one on the right represents a brain with Alzheimer's disease. 

 

The disease is named after a Bavarian neuropsychiatrist, the Dr. Alois Alzheimer, who first 

encountered in 1901 Auguste D., a 51 years old woman, who was suffering from progressive 

changes in her personality. She suffered notably from reduced comprehension and memory, 

aphasia, disorientation, unpredictable behaviour, and paranoia. Dr. Alzheimer, who had never 

encountered a patient with such symptoms before, was fascinated by Auguste D.’s case and 

decided to examine her more closely16. Over time, her state generally worsened, and in her final 

year, she became completely apathetic and spent most of her time hunched up in bed. After her 

death in 1906, Alzheimer autopsied her brain and discovered dense deposits outside and around 

the nerve cells called senile plaques, composed of deposits of Amyloid-β peptide and found to 

be common in the brains of people with senile dementia. But he also observed the presence of 

twisted bands of fibers, inside the nerve cells, known as the neurofibrillary tangles. These tangles 
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are composed of hyperphosphorylated Tau protein. Those findings were first presented and 

published 1906 and in 1911 and still remain today the key diagnostic features of AD17-19. 

 

Figure 11. Hippocampus from a neurologically normal individual and an individual with confirmed 

Alzheimer’s disease.  

 

3.1. Neurofibrillary tangles in AD 

Neurofibrillary tangles (NFT) are one of the pathologic hallmarks of Alzheimer’s disease20, 21 

and many other neurological diseases, such as, amongst others, amyotrophic lateral sclerosis, 

corticobasal degeneration and supranuclear progressive paralysis. 

Neurofibrillary tangles are intracellular fibrillar aggregates of the microtubule-associated protein 

tau that exhibit hyperphosphorylation and oxidative modifications. Microtubules are strongly 

involved in intracellular transport processes and are essential in the development of cell 

processes and establishment of cell polarity22, 23. 

Under physiological conditions, tau is a microtubule-associated protein (MAP) regulating the 

formation of axonal microtubules23, signal transduction24 and neurite outgrowth25. The state of 

phosphorylation of MAPs, balanced by protein kinases and phosphatase, plays a pivotal role in 

modulating microtubule networks26. However, abnormally hyperphosphorylated Tau protein 

accumulates and aggregates to paired helical filaments (PHFs) finally leading to 

neurodegeneration27 (see Figure 12). Interestingly, hyperphosphorylation of tau also blocks APP 

trafficking, suggesting that this tau and elevated levels of Aβ might be linked28. However, a 

recent study carried out by Goldsbury et al. demonstrated that inhibition of APP trafficking by 

tau protein did not increase the generation of Amyloid-β peptides28. 
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Figure 12. Comparison between a healthy neuron and a dead neuron comprising amyloid plaques and 

neurofibrillary tangles. 

 

3.2. From Amyloid Precursor Protein to Amyloid β   

The Amyloid Precursor Protein (APP) is localized to chromosome 21 and is expressed in many 

cell and tissue types including endothelia, glia and neurons of the brain. Within its polypeptide 

chain it bears the sequence of amyloid β (Aβ) 40 and 42, thought to play a key role in the 

pathology of AD. Three major isoforms of the protein exists, APP770, APP751 and APP695. The 

brain seems to produce predominantly the 695 amino acid isoform and thus this isoform has 

received the most attention in research on AD29. 

This transmembrane protein with a large extracellular amino-terminal domain and a small 

cytoplasmic domain can be localized to many membranous structures in the cell such as 

endoplasmic reticulum and Golgi compartments, as well as to the cell membrane. Although its 

exact role is not fully understood, it seems to have an important function in cell adhesion, 

intercellular communication and membrane-to-nucleus signaling30. 

Unlike most receptors, APP is sensitive to proteolytic cleavage. Three main proteolytic cleavage 

sites (the β, α and γ sites) have been identified: two close to the membrane and one within the 

transmembrane domain. The full-length Aβ is generated by the β-secretase cleavage at the β-

cleavage site, between residues 596 and 597. It releases a sAPP (the sAPPβ) and a membrane 

bound peptide (C99) containing the Aβ domain. C99 undergoes further cleavage by γ-secretase 

resulting in the two forms of Aβ, Aβ40 and Aβ42 (Figure 13). 
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Figure 13. Diagram of the cleavage of Amyloid Precursor Protein (APP) by the sequential events of 

different secretases, which result in the metabolic products of Aβ peptide. Above: representation of full 

length APP spanning the membrane. Below: enlarged, transmembrane segment of APP showing site 

action of secretases31. 

 

It was formerly thought that Aβ formation was a result of aberrant APP processing, but it is now 

clear that Aβ is a normal product of APP metabolism since it is also found in normal human 

cerebrospinal fluid and is believed to play a role in axonal transport of APP32. 

However, the mechanism by which Aβ accumulates and becomes toxic to neuronal cells leading 

to AD is still the subject of massive international research efforts. Today, there are increasing 

evidences suggesting that there is a link between induced oxidative stress and conformational 

changes occurring in Aβ, leading to neurotoxicity33-35.  

 

3.3. Understanding Amyloid β  misfolding and its toxicity 

Hundred years after the discovery by Dr. Alois Alzheimer of amyloid plaques in the brain of 

Auguste D suffering from dementia, the mechanism of amyloid formation and toxicity still 
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remains elusive. However, the clinical importance of AD has boosted intensive research in the 

mechanisms of Aβ folding and self-assembly. 

Early studies clearly demonstrated that aggregation of Aβ was essential for toxicity, but 

characterization of the assemblies that formed in vitro was limited, and it was assumed that since 

amyloid fibrils were detectable, these assemblies mediated the observed toxicity. Yet, it is 

known that there is a relatively weak correlation between the severity of dementia and the 

density of fibrillar amyloid plaques36-38.  

Moreover, there is growing evidence suggesting that early, diffusible oligomers (for example, 

dimers, trimers, and tetramers) of Aβ could themselves be toxic to synapses39-42, whereas the 

abundant fibrils of mature amyloid plaques represent a relatively inert reservoir of amyloid β 

protein that is in equilibrium with the smaller, biologically active oligomers43-45. Those β-sheet-

rich oligomeric intermediates exist as a heterogeneous mixture of aggregates of various sizes and 

morphologies (globular, chainlike, and annular structures) and are collectively called 

protofibrils46-48. 

 

Figure 14. Schematic diagram showing the different levels of structure, from the continuous, hydrogen-

bonded β-sheet within a protofilament to the organization of the protofilaments in the amyloid fibril49. 

There is also considerable evidence that the effects of an Aβ protein-initiated inflammatory and 

neurotoxic process include excessive generation of free radicals and oxidative injury to proteins 

and other macromolecules in neurons43. 
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Although significant progress has been made in the resolution of structural properties of amyloid 

fibrils, little is known about the events leading to the aggregation process. Several kinetic studies 

have suggested that fibril formation is a two step process, comprising an initial lag-phase, in 

which nuclei are formed, followed by an exponential or polymerization phase, in which early 

protofibrils grow and assemble to render mature amyloid fibrils, which are then in equilibrium 

with Aβ monomers (Figure 15). 

 

Figure 15. Amyloid fibril formation by nucleation-polymerization.  

 

The nucleation step is the rate-limiting step in the process of amyloid formation. The addition of 

pre-formed fibrils to the solution reduces substantially the length of the lag phase in a 

concentration dependent manner. This phenomenon is known as seeding. Addition of small 

amounts of seed can have dramatic effects in speeding up the process of amyloid formation. 

After nucleation occurs, various assemblies exhibiting structural and morphological 

characteristics of an increasingly complex nature (micelle-like aggregates or spheroids, 

protofibrils, protofilaments) populate sequentially to finally render mature amyloid fibrils. 

In 2006, Lansbury and Lashuel50 published a state-of-the-art review on the protein aggregation 

issue. They explain that due to the greater understanding of the protein fibrillization process in 

vitro, researchers are now focusing on which species are neurotoxic and are trying to elucidate 

the pathway by which they cause neuronal dysfunction leading to disease and death. For the last 
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15 years, the “amyloid cascade hypothesis” has driven most of the research done in AD51. It was 

thought that protein aggregation was the trigger of the cascade of events resulting in 

neurodegeneration and disease. However, it is difficult to find a correlation between protein 

deposits, neuronal dysfunction, neuronal loss and severity of symptoms at the time of death. It is 

also difficult to trace in vivo the early stages of the disease during which oligomers and 

protofibrils forms due to a lack of technical methods. Nevertheless, significant progress has been 

made in that field and it will soon be possible to track the natural history of protein aggregation 

and correlate it with disease progression52, 53. At present, it is already possible to detect in vivo 

fibrillar amyloid plaques with a positron emission tomography imaging reagent, but since 

fibrillar amyloid assemblies occur relatively late in the disease, it would be more useful to have 

analogous reagents targeting early amyloid species. 

Furthermore, a large amount of results has emerged from biophysical studies, providing a 

mechanistic rationale to better explain the effects of disease-causing mutations, but the major 

issue here is that the idealized experimental systems have poor resemblance to the complexity of 

the brain. 

In the review, Lansbury and Lashuel discuss also various hypotheses on neurodegeneration that 

have been proposed up-to-now, to find a rational between the results that have emerged from in 

vitro and in vivo studies. They ask what can be done to refine and clarify the current models and 

what needs to be done in order to produce disease-modifying treatments for neurodegenerative 

diseases and to identify presymptomatic individuals who could benefit from such treatments. 

They demonstrate that, although the techniques have significantly evolved, it remains difficult to 

eliminate any hypothesis since important diagnostic tools are still missing. However, they 

provide relevant information to confirm that the route of oligomers and protofibrillar aggregates 

as toxic species, stands heads above the rest. 

Furthermore, Lührs et al.54 published in 2005 a very important finding on the 3D structure of Aβ 

determined by NMR studies. Their findings suggest that Aβ misfolds by arranging itself into two 

β-sheets that run along the fibril axis. Sheet β1 is formed by residues 18-26, and sheet β2 is 

formed by residues 31-42 (Figure 16). They demonstrated that intersheet contacts are formed 

between residues F19/G38 and A21/V36 and a salt bridge between residues D23 and K28.  
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Figure 16. 3D structure of Aβ(1-42) fibril54. 

The structure of Aβ(1-42) protofilament explains the sequence selectivity, the cooperativity and 

the unidirectionality of the fibril growth. It also provides a structural explanation for the working 

mechanism of current Aβ fibrillization inhibitors.  

This study opens new perspectives in the comprehension of amyloidogenesis and may help in 

the development of anti-AD drugs. 

3.4. Therapeutic strategies: state-of-the-art 

Over the past 20 years, enormous progress has been made in both the diagnosis and treatment of 

dementia and in particular AD. However, due to the complexity of the disease, it is still 

nowadays only possible to slow down the symptoms that accompany the early stages of the 

disease onset. There is still no efficient remedy able to completely stop the gradual decline in 

memory, leading to dementia and ultimately to patient’s death. The drugs that are on the market 

aim at improving the patients’ life by decreasing symptoms like anxiety, insomnia or depression, 

they also provide improvement of the patient’s memory and concentration.  These agents act 

specifically in regulating the neurotransmitters acetylcholine and glutamate.  

Acetylcholine (ACh) is a small neurotransmitter allowing nerve cells to communicate with each 

other. It is synthesized in neurons of the CNS and PNS by the enzyme choline acetyltranferase 
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from choline and acetyl-CoA. The successful release and uptake of ACh between neurons is 

followed by its clearance by the enzyme acetylcholinesterase (ACh E), it re-establishes the 

sensitivity of neurons and is essential for proper muscle function.  Several observations have 

demonstrated that during the progression of AD, the levels of ACh decline, and thus a 

therapeutic strategy was to develop compounds capable of inhibiting ACh E degradation in order 

to keep an appropriate level of ACh in the brain.  Those ACh E inhibitors (Donepezil, 

Rivastigmin and Galantamin) have shown favourable, albeit mild, effects on cognitive 

impairment55, 56. 

Glutamate is another important neurotransmitter, which plays a crucial role during the 

development of dementia. Glutamate found in hippocampal neurons is involved in learning and 

memory processes. Contrary to acetylcholine, secretion of glutamate is increased during the 

development of AD, causing calcium ions to enter cells via NMDA receptors channels, leading 

to neuronal damage and cell death. Memantine, an NMDA receptor antagonist, is the only drug 

of this type on the market and works by preventing glutamate from binding to the post-synaptic 

NMDA receptors, thereby decreasing post-synaptic calcium influx through NMDA channels. 

This treatment as well improves the symptoms but does unfortunately not cure the disease57-60.  

Several studies also support the fact that statin drugs, widely used cholesterol-lowering drugs, 

have therapeutic benefits for Alzheimer’s disease. It has been demonstrated that taking statin 

drugs has positive effects on cognition in the elderly and can therefore reduce the risk of 

developing AD61. However, little is known about the mechanism through which the drug works 

and more intense research needs to be done to confirm those observations. 

Considerable evidence shows that oxidative stress is a marker of neurodegeneration and has been 

recently shown to be also involved in the early stages of the pathogenesis of various 

neurodegenerative disorders62-64. Several lines of evidence implied that oxidative damage to lipid 

membranes could disrupt normal neuronal and glial cell functioning, leading to the formation of 

amyloid plaques and to neuronal cell death. Hence, many antioxidants, such as for example, 

flavonoids, tannic acid, vitamin E and C are tested as potiental drugs to prevent AD since they 

might inhibit the production of free radicals and reactive oxygen species. Moreover, it is 

recommended for people at risk to have a diet rich in antioxidants. 

More recent therapeutic strategies have attempted to target the Aβ overload in different ways. 

One possibility is to prevent APP proteolytic processing by inhibiting the action of γ-secretase 

and β-secretase, responsible for Aβ biogenesis65, 66.  These compounds have shown a significant 
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lowering of plasma and CSF Aβ levels. The company Myriad genetics is developing such a 

compound (known as Flurizan TM) that has proven to reduce the level of Aβ42 in cell culture and 

in animal model of AD by modulating the activity of γ-secretase. It is currently being evaluated 

in phase III clinical trials in patients with mild AD. 

Another strategy uses immunization and immunomodulation of Aβ to promote clearance and 

inhibit toxicity67. The aborted clinical trial with the Elan vaccine (AN1792) due to inflammation 

of the brain has provided a large amount of information on how antibodies work to clear Aβ 

from the brain68, 69. Novel methods of antigen approaches are now under investigation and are 

designed to avoid the autoimmune adverse events70.  

A third approach targets directly Aβ itself. This should have a lower risk of developing 

unanticipated side effects, as the accumulated Aβ molecule is restricted to Alzheimer’s disease. 

Moreover, inhibiting the formation of Aβ fibrils seems a reasonable therapeutic strategy, 

because familial mutations that lead to an increase in Aβ concentration result in neuropathology. 

β-breaker peptidomimetics based on the sequence of Aβ16-21 have proved to block both Aβ 

seeding and growth in vitro. However, the pharmacological profile of these compounds is not 

ideal and Soto’s peptide showed toxicity in rats in phase I clinical trials71, 72. 

A new and very promising small molecule from the company Neurochem (Tramiprosate, 

Alzhemed TM) has entered advanced clinical trials73. It acts by binding monomeric Aβ and it was 

shown to cross the blood-brain-barrier as well as to significantly reduce Aβ levels in the brain. It 

has been demonstrated that Tramiprosate affects the levels of soluble Aβ40 and Aβ42 and 

influences its efflux from the brain and catabolism. To date, Tramiprosate completed phase III 

clinical trial in the US and Canada and demonstrated safety, efficacy and disease-modifying 

potential in the treatment of mild-to-moderate AD. It is now under phase III clinical trial in 

Europe.  

Finally, although researchers are focusing mainly on Amyloid β, studies on neurofibrillary 

tangles have progressed and, as with Aβ, small compounds capable of inhibiting aggregation and 

fibrillization of tau protein are now under investigation in vitro74, 75.  

 

Average life expectancy of people suffering from AD has increased in the last few decades 

thanks to intensive scientific research. It seems now clear that targeting a single mechanism of 

action or a single class of compound will not be sufficient to treat and cure this complex illness. 

However, given the scientific and clinical progress that has been made recently, physicians and 
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scientists strongly believe that it will take only few years for the “drugs of tomorrow”, capable of 

stabilizing and preventing the disease, to be available on the market.  



Chapter I  Introduction 
 

 22 

 

4. The concept of switch-peptides 

As discussed in the previous chapter, the protein misfolding problem is extremely difficult to 

solve, most notably due to the high propensity of the peptide or protein being investigated to 

self-assemble and aggregate76-79. However, it has become very urgent to be able to follow and 

understand the pathway from the native state of a peptide or protein to its misfolded and 

aggregated state since there is increasing evidence suggesting that this is the key event leading to 

neurotoxicity and to a large number of neurodegenerative diseases50, including Alzheimer’s 

disease on which we have focused our work.  

Our group80 developed a few years ago a new concept for in situ induction of conformational 

transitions called the switch-concept. In this concept switch-peptides are folding precursors, 

which allow not only to induce a defined structure in a peptide but also to study conformational 

transitions relevant in debilitating diseases. 

The designed switch-peptides consist of three segments: a peptide fragment P1 (which can also 

be a conformational induction unit σ), a switch element S and another peptide fragment P2, 

which may serve numerous functions such as host sequence, recognition sequence or bioactive 

sequence (Figure 17). The key conceptual feature of this design is that P1 and P2 are separated 

from each other when the peptide is in the Soff state rendering the peptide more flexible and if P1 

is a conformational inducting unit σ , the effect of σ  is decoupled when the switch is off and its 

effect is set off only when the switch is triggered to re-establish the regular backbone of the 

peptide.  
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Figure 17. ISN-induction of conformational transitions. By removal of Y, an O to N acyl migration 

occurs, restoring a regular peptide bond between P1 and P2 and thus leading to a change in the 

conformation of the peptide, typically from a flexible rc (Soff) to a folded state (Son). These conformational 

changes can be used to study the onset of biological function (A), β-sheet formation (B) and disruption of 

β-structures (C)80. 

Y represents the amino-protecting group of the residues Ser or Thr involved in the formation of 

the switch element S; it can be either a H+, an enzymatic cleavable group or a photolytically 

cleavable group. Due to the different nature of the Y groups, it is possible to introduce in a 

peptide sequence multiple switch elements, which can be triggered orthogonally and 

independently. This technique turns out to be very relevant in the investigation and possibly the 

identification of aggregation “hot spots” in a defined sequence81.  

4.1. The switch element S 

The novel class of switch peptides described in the previous paragraph belongs to the family of 

depsipeptides (depsi means ester in greek). They comprise one or several ester bonds localized to 

specific residues having a hydroxy group in their side-chain, i.e. Ser or Thr. The structural 

modification induced by the substitution of the related amide bond by such flexible non-peptidic 

bonds, leads to a considerable improvement of the solubility (presence of an ionisable amine) 

and the conformational flexibility of the peptide.  
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Figure 18. A serine derived switch element S. 

The subsitution of the amide bond with an ester bond is fairly conservative since both types of 

bonds prefer a trans conformation, are planar and have similar bond angles and lengths, 

preferring similar Ψ and φ dihedral angles82-84. However, they differ in their capacity of forming 

hydrogen bonds. The carbonyl group of the ester bond is a weaker hydrogen bond acceptor than 

the amide bond85. Moreover, the nitrogen atom of the amide bond is a hydrogen bond donor 

contrary to the ester bond (Figure 19). 
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Figure 19. Schematic representation of a normal polypeptide backbone hydrogen bonding (A) and the 

deletion of a hydrogen bond by the incorporation of an ester (B). 

The substitution of one or several amide bonds in a peptide or protein results in a decrease of 

thermodynamic stability. The insertion of ester bonds in secondary structures of type β-sheet or 

α-helix gave an estimation of these effects86. The obtained values have a large variation scale 

(0.7 to 24.6 kcal/mol) depending on the number of hydrogen bonds that are suppressed during 

the incorporation of ester functions in the native protein structure. Schultz and coworkers87 have 

examined the contribution of hydrogen bonds in α-helices to the overall stability of a protein by 

replacing several backbone amide linkages in α-helix 39-50 of T4 lysozyme with ester linkages. 
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It was estimated that a substitution at the N- or C-terminal positions, suppressing a hydrogen 

bond, has a destabilizing effect of about 0.7 and 0.9 kcal/mol. In the middle of the helix, the 

removal of two hydrogen bonds destabilizes the helical structure by 1.7 kcal/mol. 

Kelly et al.88 have demonstrated that the introduction of ester bonds in a small β-sheet protein 

has the strongest destabilizing effect when H-bonds that are enveloped by a hydrophobic cluster 

are perturbed. Mutations at the extremities of the strands exposed to solvent where water 

molecules can compete had much weaker effects. 

Furthermore, the introduction of a CH2 group in the switch-peptide backbone introduces an 

additional degree of flexibility to the peptide. Indeed, the rotation around the Cα-Cβ bond89 

increases the number of possible conformations of the switch-peptides. 

Eventually, the charged amino group in the alpha position can also exert a structure destabilizing 

effect through Coulomb interactions with the polypeptide backbone by interfering with the 

hydrogen bond network. According to the Chou-Fasman parameters90, positively or negatively 

charged amino acids have a lower β-sheet propensity (for example Pβ Glu = 0.37; Pβ Ile = 1.60).  

All these modifications introduced by the switch element in a peptide sequence should modify 

dramatically its structure and function and should result in the disconnection of peptide 

segments, which allows us to study the impact of specific peptide regions on its folding and 

aggregation.  

4.2. O, N-acyl migration 

The concept of switch-peptides is based on the well-known O to N intramolecular migration 

reaction. The reversible O,N-acyl migration reaction was first investigated by Bergmann91 in 

1923. They demonstrated that the migration is pH-dependent and results in the interconversion 

between an O-acyl and an N-acyl analogue. Under acidic conditions, the equilibrium is shifted in 

favor of the O-acyl analogue and, under basic conditions, in favor of the N-acyl analogue. In 

peptides, the reaction is possible at positions of the sequence containing Ser or Thr residues 

(Figure 20). 
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Figure 20. Reversible O to N acyl migration in serine and threonine containing peptides. 
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Today, intramolecular migration reactions find wide applications not only in peptide and protein 

chemistry but also in the area of protecting groups and prodrugs. 

 

Mechanism 

Acyl transfer reactions have been the subject of extensive mechanistic studies and two distinct 

mechanisms have been proposed for this rearrangement92, 93. The key difference between these 

mechanisms is the resulting stereochemistry of the carbon atom connected with the hydroxyl 

group. 

The first mechanism involves the formation of a hydroxyoxazolidine intermediate and leads to a 

retention of configuration as no bond with the asymmetric carbon atom is involved. This 

rearrangement is initiated by the nucleophilic attack of the hydroxyl functionality on the 

electrophilic amide carbonyl to form the hydroxyoxazolidine intermediate. Subsequent ring 

opening of this cyclic intermediate gives the O-acyl analogue. 

The second mechanism involves the formation of an oxazoline intermediate via nucleophilic 

attack of the carbonyl oxygen on the hydroxyl group containing carbon atom. Subsequent ring 

opening results in the O-peptide with a complete inversion of configuration at the chiral carbon.  

Depending on the experimental conditions, either mechanism is possible. When a serine is 

involved, both mechanisms yield the same product, as there are no chiral carbon atoms in the 

side chain. Experimental evidence suggests that steric factors and the choice of solvent used play 

a role in controlling the mechanism by which the rearrangement occurs. Moreover, in addition to 

esters, acyloxy94 and carbamate95 groups, and even amides (upon heating)96 can also undergo 

intramolecular acyl migration via the same mechanisms. 
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Figure 21. Two possible mechanisms of O to N acyl migration. 
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5. Aim of this work  

The work presented in this thesis is within the framework of the switch concept, which has been 

established as a novel tool for the in situ induction of structural and functional properties of 

bioactive peptides (Figure 17). Basically, switch-peptides are used to enable the control and 

onset of secondary structures in peptides having a high propensity to aggregate spontaneously, 

making their investigation difficult to achieve.  

 

In a first study, switch-peptides’ stability in their Soff state was explored and gave us important 

information on the conditions applied in subsequent studies. 

This thesis focuses particularly on switch-peptides derived from amyloid β, known to play a key 

role in the pathology of Alzheimer’s disease. The first objective was to synthesize Aβ(1−42) 

switch-peptides containing multiple orthogonal switch elements to allow for the observation of 

folding events in separate and specific regions of the peptide. It was made possible through the 

sequential activation of orthogonal switch-elements (pathway B, Figure 17). This represents an 

attractive tool for the identification of sequence “hot-spots” crucial for misfolding and 

aggregation.  

 

In a next step, the Aβ(14-24) segment, which has demonstrated to play a key role in Aβ 

misfolding process was excised from the whole sequence and was used in the host-guest 

technique combined with the switch concept in order to study its conformational transition from 

an unfolded flexible precursor (Soff) to its native folded state (Son). Since the handling of 

aggregation-prone peptides is troublesome, making the investigation for potential aggregation 

inhibitors difficult, it was thus of particular interest to examine the potential of host-guest 

switch-peptides for the screening and evaluation of specific Aβ inhibitors. 

 

This has been demonstrated in applying the elaborated host-guest peptides to evaluate switch-

peptides derived from Aβ capable of preventing or even reversing Aβ misfolding and 

aggregation. These peptides are composed of an Aβ recognition sequence and a structure-

disrupting unit containing a pseudoproline, which are linked together via a switch element S, 

rendering the molecule more flexible. This dynamic and flexible system, which separates the 
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recognition and disruption unit should facilitate the insertion of the molecules within Aβ 

aggregates and thus enhance their therapeutic potential in the treatment of Alzheimer’s disease.  

 

Finally, to explore pathway A of the concept (Figure 17), the same sequence of Aβ(14-24) was 

coupled via a switch element S to an α-helix inducing template σ  (Ncap). Using several 

complementary techniques, like CD, EM, ThT or Congo Red, we examined the impact of the 

Ncap unit on helix nucleation and its potential as β-sheet destabilizing agent. 
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Chapter II. Results and discussion 

1. overview 

As we have already seen in chapter I, switch-peptides are composed of three different fragments: 

a peptide fragment P1 (which can also be a conformation induction unit σ), a switch element S 

and a second peptide fragment P2 (Figure 17). 

Section 2 of this chapter deals with the stability of the switch element (S) over time when the 

peptide is in the Soff state and exposed to different conditions. 

In section 3, the incorporation of multiple switch elements into the full length Aβ(1−42) to 

disrupt its native structure in order to understand its folding mechanism and to examine the 

folding of specific segments of the peptide is discussed. 

Section 4 concentrates on the host-guest switch-peptide technique, where the segment of Aβ(14-

24), which has proven to be important for Aβ misfolding, has been excised from the amyloid 

sequence and is used with the host-guest technique as a model for studying fibrillogenesis and 

for screening amyloid β inhibitors in vitro. 

The elaboration of switch-peptides as potential Aβ aggregation inhibitors and their inhibitory 

effects on the host-guest switch-peptides studied in the previous section are presented in section 

5. 

Finally, in section 6, the same Aβ(14−25) sequence was coupled via a switch element to an Ncap 

unit to study conformational transitions of type β to α.  it resulted in a drastic increase in 

solubility and a complete disappearance of fibrils. 
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2. Study of the stability of the switch element S in the Soff state 

Under physiological conditions, the O to N acyl migration is a rather fast process, which can 

vary depending on the nature of the protecting group Y (Figure 17), on the nature of the residues 

involved in the switch element and on the conditions that are applied. Here, we discuss the 

stability of the switch element over time to be certain that the O to N acyl migration occurs 

before the ester bond undergoes hydrolysis. Indeed, one critical aspect of switch-peptides is that 

the ester bond constituting the switch element may undergo time dependent hydrolysis. The 

mechanisms for acid and base hydrolysis are described in the following schemes: 
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Scheme 1. Mechanism of the base ester hydrolysis. 
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Scheme 2. Mechanism of the acid catalyzed hydrolysis.   

     

We investigate the stability of switch-peptides towards hydrolysis in the Soff state under different 

conditions, varying the pH of the medium from 4.6 to 8 and the temperature from 25°C to 37°C. 

Switch-peptides, with a H+ as protecting group, have to be dissolved in an acidic medium in 

order to avoid spontaneous O to N acyl migration and hence to retain the Soff state of the peptide.  
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Switch-peptides having a proctecting group removable by the enzyme DPPIV are exposed to pH 

up to 8 as the enzyme’s activity is maximal at pH 8.  

Furthermore, the side chain of the amino acids involved in the switch as well as the size of the 

peptide chain can have an effect on its stability. To study all the parameters, investigations are 

carried out on three different peptides:  

- Fmoc-Leu-(Boc)Ser-OH1 depsidipeptide (peptide 2) 

- Fmoc-Gly-(NVoc)Ser-OH depsidipeptide (peptide 6) 

- Ac-Leu-Cys(ψMe, Mepro)-Ala-(Arg-Pro)Ser –(NMe)Phe-Phe-Asp-NH2 (peptide 19) 

 

The kinetics of the stability were monitored by RP-HPLC assays at pH 4.6, 7.4 and 8 over a 

period of one month at two different temperatures (25°C and 37°C). 

2.1. Stability towards hydrolysis at pH 4.6  

When the protecting group of a switch-peptide is a proton (H+), the peptide has to be first 

dissolved in an acidic medium to keep it in its Soff state and to avoid a spontaneous O to N acyl 

migration. For this reason, the ester hydrolysis rate of peptides 2 and 6 were monitored under 

acidic conditions. The peptides were dissolved in 10 mM acetate and 150 mM NaCl buffer, pH 

4.6, at a concentration of 0.5 mM and were incubated at 25 °C and 37°C. 50 µL aliquots of 

incubated samples were withdrawn at the indicated time points and analyzed by analytical RP-

HPLC.  

Figure 22 represents the time dependent hydrolysis of switch-peptides 2 and 6 in the Soff state at 

25°C and 37°C, respectively. 

 

                                                
1 We follow the proposed nomenclature for depsipeptides. See: S. V. Filip, F. Cavelier, J. Pept. 
Sci. 2004, 10, 115-118. 
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Figure 22. Hydrolysis of peptides 2 and 6 over 25 days, at pH 4.6, 25°C and 37°C. 

 

Figure 23. pseudo-first order kinetic plot of peptide 2 and 6 at 37°C, pH 4.6. 

 

For peptides 2 and 6 we observe that the degradation of the ester bond follows a pseudo-first-

order kinetic (Figure 22 & Figure 23). In all cases, the hydrolysis reaction was found to be very 

slow under acid conditions at pH 4.6, showing substantial stability over a 48h incubation at 37°C 

(less than 2% degradation). 

2.2. Stability towards hydrolysis at pH 7.4  

In order to test the stability of peptides 2, 6 and 19 at physiological conditions, samples were 

dissolved in 10 mM PBS and 150 mM NaCl buffer, pH 7.4, at a concentration of 0.5 mM and 

incubated at 25 °C and 37°C. At various intervals, 50 µL aliquots were withdrawn and injected 
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in analytical RP-HPLC. Figure 24 shows the HPLC chromatograms of peptide 6 at time 0 and 

after 24h at pH 7.4 and 37°C. After 24h the HPLC shows three distinct peaks at Rt = 16.3 min, 

22 min, and 24.4 min respectively, two of them corresponding to the degradation products. The 

peak at Rt = 16.3 min corresponds to the fragment NVoc-Ser-OH and the peak at Rt = 22 min to 

the fragment Fmoc-Gly-OH of the depsipeptide after hydrolysis. The area of the Soff peak after 

24h at 37°C corresponds to about 87% of the Soff peak at time 0, which means that the peptide 

underwent 13% hydrolysis after that incubation period (see also Figure 25).  

 

  

Figure 24. HPLC chromatogram of peptide 6 at t = 0 and after 24h at physiological conditions. 

 

For the six different assays, the percentage of hydrolysis of the Soff state was plotted against time 

to compare the influence of the temperature on the different switch-peptides (Figure 25).  
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Figure 25. Hydrolysis of peptides 2, 6 and 19 over 48h, at pH 7.4, 25°C and 37°C. 

 

The above kinetics reveal that the fragility of the ester bond clearly depends on the bulkiness of 

the side chain of the amino acid composing the ester, but does not seem to depend on the chain 

length of the peptide. Indeed, we observe that peptide 6, containing a glycine residue, shows 

increased susceptibility towards hydrolysis compared to peptide 2 containing a leucine (23% for 

peptide 6 after 48h compared to 5% for peptide 2). Peptide 19, the longest peptide chain among 

the three peptides, having a switch element composed of an alanine residue is more stable than 

peptide 6 but less than peptide 2 containing the bulky side chain of leucine to protect against 

degradation.  

Increased peptide stability was observed at lower temperature (25°C), showing less than 5% 

hydrolysis under otherwise identical conditions.      

 

2.3. Stability towards hydrolysis at pH 8 

0.5 mM of Peptides 2, 6 and 19 were dissolved in 10 mM Tris and 150 mM NaCl buffer, pH 8 

and were incubated at 25 °C and 37°C. Following incubation, the percentage of hydrolysis was 

determined as outlined above.  
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Figure 26. Hydrolysis of peptide 2, 6 and 19 over time, at pH 8, 25°C and 37°C. 

 

The results depicted in Figure 26 show that under alkaline conditions all three peptides were less 

stable relative to milder or more acidic conditions. Moreover, as previously observed at acidic 

and neutral pH, peptide 2 having the bulky and hydrophobic side chain of a leucine residue is 

more stable than peptide 6 containing a glycine and peptide 19 containing an alanine. However, 

for all three peptides less than 10% hydrolysis was recorded after 5h, and the O to N acyl 

migration is a fast reaction, which is complete within hours if not minutes. Thus the depsi-

peptides are stable long enough to allow for the migration to occur.  
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2.4. Conclusion 

The findings on the ester bond stability show that switch-peptides in the Soff state have a 

substantial degree of stability in acidic, neutral or basic environments. The obtained data indicate 

that the optimum pH for maximum stability is in the region of pH 4-5 for the three peptides. 

With increasing pH, the rate of hydrolysis increases and, depending on the nature of the switch 

element, relatively significant degradation can be observed at alkaline pH and 37°C.  

Moreover, these results indicate that steric hindrance, caused by branched alkyl groups97-99 in the 

side chain of the amino acid composing the switch element, significantly decreases the 

hydrolysis rate of the ester bond at 37°C and to a lesser extent at 25°C.  

These results provide significant information on the handling of switch-peptides, information 

that is of particular importance for the work done in the context of this thesis. Notably, it proves 

that significant hydrolysis does not occur before O to N acyl migration is complete. It also 

provides us with valuable information on the time frame in which switch elements in the Soff 

state remain stable in solution at various pH and temperature. It is particularly important to know 

the ability of switch-peptides for remaining in an unfolded conformation in the Soff state. Finally, 

these results validate the foundations of the switch concept.  
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3. Studying the folding mechanism of the full length amyloid β  peptide using 

switch-peptides 

 

3.1. Background and design 

 
As well known from systematic research on β-sheet forming oligopeptides, a detailed 

investigation of these processes is strongly hampered by the strong tendency of the involved 

peptides for spontaneous self-assembly and aggregation, limiting their experimental 

accessibility100. Moreover, Protein folding is a difficult process to simulate with classical 

dynamics as secondary structures can form in microseconds and because this process involves an 

ensemble of transition states difficult to monitor with the existing techniques101-103. To overcome 

this intrinsic problems in the preparation and investigation of β-sheet forming peptides, we have 

seen in the introduction chapter that our laboratory has recently developed a new concept80, 100, 

104, called the switch concept. Here, we apply this concept to amyloid β 1-42 peptide. This new 

generation of amyloid β switch-peptides enables us to start from a flexible, unfolded precursor 

(switch-peptide in the Soff state) in situ. Triggering of the switch elements by removal of the 

protecting group Y allows a spontaneous O to N acyl migration, re-establishing the native 

polyamide backbone and setting off peptide folding (Son) (Figure 27). This versatile method 

allows to follow via different techniques the early folding events and the structure onset as well 

as evolution of the molecule “in statu nascendi” (ISN). 

 

Figure 27. Amyloid β switch-peptide as folding precursors: consecutive trigerring of O, N acyl 

migrations in switch-peptides (Soff) for the onset (Son) of peptide folding and self-assembly in statu 

nascendi (ISN) of the folding molecule104. 
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Simultaneously, the use of pH-induced O,N-acyl migrations for accessing “difficult sequences” 

has been independently described by the groups of Kiso105 and Bienert106.  

Our main goal resides in the identification of nucleation sites (“hot spots”) for fibril formation in 

Aβ sequences as well as to be able to follow its early aggregation steps. To this end, we explore 

in this chapter four different Aβ switch-peptides containing different orthogonal switch elements 

for potential applications in vitro and in vivo. 

 
As Aβ possesses two Serine residues at positions 8 and 26 of its sequence and we know that the 

Serine at position 8 is far away from the critical part of the sequence, in a first generation, a 

switch-peptide was designed with one switch at position 26 (peptide 20). The rational for 

choosing this position for the switch element lies in the findings by Telpow et al.107 and Lührs et 

al.54 that residues Val24-Lys28 form a turn nucleating the intramolecular folding of Aβ 

monomer and from this step, subsequently assemble into Aβ oligomers.  

In a second generation of Aβ switch-peptides, an additional switch element was added at the C-

terminus of the Aβ sequence by replacing Gly37 with a Ser. It seems very appropriate to place a 

switch element S at this position since it has been demonstrated recently by the NMR-based 3D 

structure54 that the C-terminal segment constitutes the core structure of Aβ(1-42) fibrils (peptide 

21 & 22). This modification should not modify the folding behavior of Aβ, the side chain of 

residue 37 being oriented outside of the β-strands (Figure 16).  

In a third generation, the switch-element at position 26 was replaced by a ΨPro as solubilizing 

agent during the synthesis and only one switch element was kept at the C-terminus part  (S37) of 

the sequence (peptide 23). 

We have explored a series of orthogonal triggering systems using chemical and enzymatic 

methodologies81 (Figure 28) for incorporation in Aβ in order to identify nucleation sites for 

fibrillogenesis in the sequence. Due to their proteinogenic cleavage sites, enzymatic triggering is 

particularly useful for modulating the O,N-acyl migration step in vitro. Similarly, photolytically 

cleavable N-protecting groups have been explored and have proved their utility in switch-

peptides. 
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Figure 28. Orthogonal triggering systems. The N(Y)-protected switch-peptide containing an O-acyl 

isoserine (Soff state) as S-element is transformed to native state (Son) by chemical (hν, pH) or enzymatic 

cleavage of Y, triggering spontaneous intramolecular acyl migration at physiologic pH81. 

Using these orthogonal protecting groups, the following four Aβ switch-peptides were 

synthesized and are investigated in this chapter:  

 

 peptide 20:  
1DAEFRHDS8GYEVHHQKLVFFAEDVG (KP)S26  NKGAIIGLMVGGVVIA42 

  enzymatic triggering 

 peptide 21: 
1DAEFRHDS8GYEVHHQKLVFFAEDVG (H+)S26  NKGAIIGLMV (OP)S37 GVVIA42 

     pH triggering  enzymatic triggering 

 

 peptide 22: 
1DAEFRHDS8GYEVHHQKLVFFAEDVG (NVoc)S26  NKGAIIGLMV (OP)S37 GVVIA42 

      hν triggering  enzymatic triggering 

 peptide 23:  
1DAEFRHDS8GYEVHHQKLVFFAEDVG S26(ΨH,Hpro) NKGAIIGLMV (OP)S37 GVVIA42 

     Ser restored after SPPS enzymatic triggering 
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3.2. Synthesis and analytical data 

The Aβ derived switch-peptides were synthesized by solid phase peptide synthesis using the 

Fmoc/tBu strategy on a preloaded NovaSyn TGA resin based on tentagel with a low capacity 

(loading 0.23 mmol/g) (see experimental part). Cleavage of the peptides from the resin was 

achieved by using a mixture of TFA/TIS/EDT/H2O 94:2:2:2 (one hour, twice). Precipitation in 

cold ether gave the crude switch-peptides (Figure 29, insets). The peptides were well soluble in 

water and were purified by semi-preparative HPLC using a C8 column. The obtained peptides 

were analyzed by analytical HPLC (> 95% purity) and mass spectroscopy. The HPLC 

chromatograms and mass spectra of the purified compounds are depicted in Figure 29: 

  

 HPLC of purified peptide (Inset: crude peptide) ESI-MS or MALDI-TOF 

20 

 
 

Mth = 4738 
Mfound = [M+H]+ = 4739 

21 

 

 
Mth = 4752 

Mfound = [M+H]+ = 4753 
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22 

 
 

Mth = 4995 
Mfound = 1250 [M+4H]4+, 1000 [M+5H]5+, 833 

[M+6H]6+, 714 [M+7H]7+ 

23 

 
 

Mth = 4752 
Mfound = [M+H]+ = 4753 

Figure 29. Characterization of Aβ analogs by HPLC (C8 column, gradient 0-100% A in 30 min) and 

Mass Spectroscopy (ESI/MS or MALDI-TOF). 

3.3. Stability studies 

To assess the stability of the different amyloid derived switch-peptides towards aggregation, they 

were incubated at 37°C for two to three days in their Soff states. Electron microscopy, ThT 

fluorescence and CD spectroscopy were used to measure and control the morphology of the 

peptide after each incubation period. 
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Figure 30. CD profile of peptide 23 (Soff state) after 24h and 48h at 37°C in Tris buffer pH 7.4 (upper 

left). ThT fluorescence intensity of peptide 23 in Soff and Son states after 48h incubation at pH 7.4, 37°C 

(upper right). EM images of the peptide in the Soff state after 24h (A) and 48h (B) at pH 7.4, 37°C 

(bottom). 

CD studies of peptide 23 (Soff state) demonstrate that the peptide remains in a flexible random 

coil conformation after 48 hours at 37°C in pH 7.4 Tris buffer. Moreover, ThT fluorescence level 

after 48h was as low as at time zero; EM images revealed the presence of only minor oligomeric 

structures under these conditions, confirming that peptide 23 in its Soff state does not form 

amyloid-like fibrils even after a long incubation period (Figure 30).  

Stability towards aggregation of peptides 20 and 22 was assessed by incubating them at 37°C in 

H20 at 200 µM and in pH 7.4 Tris buffer at 25 µM for two to three days. EM studies revealed 

that peptide 22 comprising 2 switch elements did not form fibrils after 3 days in H20 but showed 

a diminished stability at physiological conditions (oligomeric structures were observed after 24h) 

(Figure 31). 

EM studies of peptide 20 comprising only one switch at position 26 of its sequence showed 

fibril-like structures after two days of incubation in H20; nevertheless, the peptide was stable 

under these conditions for 24h. Moreover, as for peptide 22, the stability towards aggregation of 

peptide 20 was diminished at pH 7.4, EM images revealed a significant amount of oligomers 

after 24h and short fibrils after 48h (Figure 31).  
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 Peptide 22 (Soff state) Peptide 20 (Soff state) 

H2O 
 

 

 

 
 

 

Buffer pH 7.4 
 

 

 

 
 

 
Figure 31. Electron Microscopy of peptide 20 and 22 in their Soff state after 24h, 48h or three days 

incubation at 37°C in H20 (peptide concentration = 200µM) and in Tris buffer pH 7.4 (peptide 

concentration = 25 µM). 
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3.4. Folding and aggregation studies 

The folding and aggregation process of the  amyloid β-derived switch-peptides 20-23 were 

investigated by analytical HPLC, CD spectroscopy, EM and ThT fluorescence. The results are 

depicted below. 

 
Peptide 20 
 
Switch-peptide 20 possesses one S element at position 26, which can be triggered by the enzyme 

DPPIV. To study the enzyme-induced acyl transfer, peptide 20 was dissolved in a solution of 

H2O/Tris pH 7.4 (30 mM) (1:3) and 150 mM NaCl at a concentration of 200 µM, 20 µL of 

DPPIV (0.02 unit) were added to the mixture prior to incubation at 37°C. At various intervals, 20 

µL aliquots were taken from the sample and injected to analytical HPLC. Figure 32 shows the 

HPLC chromatograms of the chemical conversion of switch-peptide 20 from its Soff to its Son 

state. However, monitoring of the conversion resulted in broadening and eventual vanishing of 

the Soff peak, which was due to the rapid precipitation of the peptide, accompanied by an 

increase in solution turbidity observed in the vial. As precipitation occurs before the completion 

of O to N acyl migration, monitoring the conversion by HPLC is difficult (see Figure 32).  

 
Figure 32. HPLC chromatograms of peptide 20 obtained for the DPPIV-triggered acyl transfer at S26.   

 
However, we attempted to further investigate conformational transitions and fibril formation of 

peptide 20 by circular dichroism, electron microscopy and ThT fluorescence. To this end, the 

peptide was first dissolved in a solution of H2O/Tris pH 7.4/TFE 35:60:5 (c = 25 µM); TFE was 

added to favor the solubility after the transition from rc to β-sheet. Unexpectedly, we observe at 

time zero a CD spectrum characteristic for a β-sheet with a strong negative cotton effect at λ = 



Chapter II  Results & Discussion 
 

 49 

218 nm (Figure 33, red curve). Obviously, the content of TFE (5%) promoted β-sheet formation 

in the Soff state. To overcome this problem, a mixture containing 2.5% TFE was prepared and at 

time zero, the spectrum was characteristic of a random coil with a negative cotton effect at λ = 

198 nm (Figure 33, black curve). 

 

Figure 33. CD spectra of peptide 20 in the Soff state at pH 7.4 with 5% or 2.5% TFE. 

Subsequently, acyl migration was triggered in the sample with 2.5% TFE by the addition of 2 µL 

DPPIV enzyme (0.002 unit) and the sample was incubated at 37°C. The conformational 

transition was relatively slow, showing a transformation from rc to β-sheet after 24h. The β-

sheet transition was accompanied by a significant decrease in negative cotton effect at λ = 218 

nm ( Figure 34, green curve), further demonstrating the high propensity of the peptide for 

precipitation. EM images revealed the presence of oligomeric structures after 24 and 48h of 

incubation and, short fibrillar morphology of the peptide was only observed after 4 days of 

incubation. A low remaining concentration of peptide in solution may have accounted for the 

slow onset of fibrillogenesis found with this peptide. It is indeed well-known that fibrillogenesis 

is concentration dependent.  
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 Figure 34. Conformational transition upon O to N acyl migration of peptide 20 monitored by CD in Tris 

buffer pH 7.4/ 2.5% TFE at 37°C (left). Fibril formation followed by EM over a period of 4 days (right). 

Because peptide 20 was difficult to investigate due to its instability towards precipitation (see 

stability studies above) and its rapid precipitation during acyl migration, a new generation of 

amyloid β-derived switch-peptides (peptides 21 and 22) comprising a second switch element at 

the C-terminus of the sequence (position 37) was designed. 

 

Peptide 21 
 
In switch-peptide 21, the central S26 is triggered by adjusting the pH to physiological pH. To 

study the pH-induced acyl transfer, switch-peptide 21 (200 µM) was dissolved in a solution of 

H2O/Tris pH 7.4 (30 mM) (1:3) and 150 mM NaCl. At various intervals, 20 µL aliquots were 

taken, quenched with 10 µL HCl 1M and injected to analytical HPLC. Figure 35 represents the 

acyl migration after triggering S26, restoring native Aβ(1-36). The chromatogram shows a 

gradual decrease in absorbance of the Soff peak and concomitant increase in absorbance of the Son 

peak. This time no precipitation was associated with the activation of S26 suggesting that Aβ(1-

36) has no tendency for spontaneous aggregation. EM imaging confirmed a substantial stability 

found in peptide 21 after 48h, showing that the additional switch at S37 prevents it from 

undergoing fibrillogenesis. 
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Figure 35. Overlay of chromatograms obtained for the pH-induced acyl transfer at switch S26 in peptide 

21. Triggering of S26 restores the regular amide bond Aβ(1-36) (left). EM image of peptide 21 S26
on/S37

off 

after 24h. 

To trigger switch element S37, enzyme DPPIV (0.002 unit) was added to the solution; O,N-acyl 

migration was again monitored by analytical HPLC by injecting 20 µL aliquots at various time 

points (Figure 36). Here, we observe a gradual decrease in absorbance of peak 2 (S26
on, S37

off) 

and the increase in absorbance of a new peak (3) corresponding to S26
on, S37

on. Interestingly, by 

the subsequent enzymatic switching on of the C-terminal segment (37-42), the characteristic 

phenomena observed for native Aβ(1-42), i.e. aggregation and precipitation are initiated as 

monitored by a drastic decrease in absorbance of peak 3 and its complete disappearance after a 

few hours. 
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Figure 36. Overlay of the HPLC chromatograms obtained for the DPPIV-triggered O,N-acyl transfer at 

S37 in switch-peptide 21. At time zero, S26 is on and S37 is off, after 1h15, two peaks are observed 

corresponding to S26
on ,S37

off  (peak 2) and after restoring the complete Aβ(1-42) sequence, peak 3 (S26
on 

,S37
on). 
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In parallel, the conformational transition was monitored by CD and EM at 25 µM, 37°C in Tris 

buffer pH 7.4 / 5% TFE. At time zero, the curve corresponding to S26
on, S37

off was characteristic 

of a random coil, which evolved to a β-sheet conformation after addition of DPPIV enzyme 

(Figure 37).  

 

 
Figure 37. Conformational transition upon pH- and enzyme-triggered acyl migrations from a random 

coil (Soff) to a β-sheet (Son) of switch-peptide 21 monitored by CD in Tris buffer pH 7.4/ 5% TFE at 37°C 

(left). Fibril formation followed by EM over a period of 4 days (right). 

EM studies show that oligomers are formed after 8h and protofibrils start to grow after 24h, 

giving rise to amyloid-like fibrils after 2 days and reaching maturation after 4 days. These 

observations were confirmed by ThT fluorescence (Figure 41), where peptide 21 bound ThT dye 

and reached a plateau after 2 days. 

 

With peptide 21, the sequential triggering of the S elements was restricted to a particular order, 

i.e. S26 had to be switched on first by raising the pH to 7.4; in a second step the enzyme, only 

being active between pH 7 and 8, could be added to trigger S37 at the C-terminus of the peptide. 

Given this order of switching on the S-elements, it was thus not possible to study independently 

the impact of the C-terminal part on the folding of Aβ; therefore, peptide 22, containing two 

orthogonal switches (at position 26 and 37 as well) was designed. Peptide 22 possesses one 

switch protected by NVoc group (photolytic cleavable group) at S26 and one switch at S37 
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cleavable by the enzyme DPPIV. In this particular case, we do not have to follow a specific 

order, i.e. we can trigger either S37 first or vice versa. 

 

Peptide 22 
 
To follow O to N acyl migration, peptide 22 was subjected to HPLC analysis under the same 

conditions as previously for peptide 20 and 21. Here, S37 was triggered first (S26 remained in the 

Soff state). From HPLC monitoring, we can see the disappearance of peak 1 (S26
off, S37

off) and the 

appearance of the peak 2 (S26
off, S37

on) over time. Interestingly, by triggering first S37 and letting 

S26 off, i.e. switching on the C-terminal segment (37-42), we already observe a significant 

decrease in absorbance and complete disappearance of the Son peak after a few hours, indicating 

that precipitation and aggregation were already initiated. This gives a first experimental proof of 

the importance of Aβ C-terminal part for folding and aggregation of Aβ(1-42). 

 

 
Figure 38. HPLC chromatograms of acyl migration of S37 in peptide 22. Peak 1 corresponds to switch-

peptide 22 in the Soff state, peak 2 (more hydrophobic) represents the peptide after acyl migration at 

switch S37. 

To further examine the importance of the C-terminus on folding and aggregation, peptide 22 was 

subjected to CD, EM and ThT studies. The peptide was dissolved in H2O/Tris buffer pH 7.4/ 

2.5% TFE to a final concentration of 25 µM. The switch at position S37 was triggered by the 

addition of 2 µL enzyme DPPIV (0.002 unit) at 37°C. At time zero, a strong negative cotton 

effect at λ = 198 nm characteristic of a random coil is observed (Figure 39, black curve). The 

signal evolves over time towards a spectrum corresponding to a β-sheet structure and after 7h30 

the transformation is nearly complete (Figure 40, blue curve). Moreover, EM images revealed 
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that significant amounts of oligomers were formed after 6 hours and amyloid-like fibrils were 

found after two days. This result confirms that the C-terminus part of Aβ(1-42) represents a 

nucleation site for folding and aggregation and that even by letting the position S26 off, 

aggregation  occurred and was as fast as observed for peptide 21. 

 

 

 
Figure 39. Conformational transition upon enzyme-triggered acyl migration from a random coil (Soff) to 

a β-sheet (S37
on) of switch-peptide 22 monitored by CD in Tris buffer pH 7.4/ 2.5% TFE at 37°C (left). 

Fibril formation followed by EM over a period of 4 days (right). 

As we have demonstrated that the switch element at position 26 did not seem to have a big 

impact on folding and aggregation of Aβ(1-42) compared to switch element at position 37, the 

design of a peptide containing a single switch element at position 37 (peptide 23) seemed to be 

the most challenging for elucidating folding and aggregation in comparison to previous peptides.   

 

Peptide 23 
 
As before, peptide 23 was subjected to CD, EM and ThT studies to evaluate its folding process at 

physiological conditions and at a concentration of 25 µM. To follow the transition from random 

coil to β-sheet by CD, 5% of TFE was added to the solution. As already seen from the stability 

studies (Figure 30) peptide 23 adopts a random coil conformation for at least two days without 

fibril formation. Here, at time zero, the peptide shows a CD spectrum characteristic of a flexible 

random coil conformation. On triggering O,N-acyl migration by adding 2 µL DPPIV, peptide 23 
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undergoes a conformational transition to a β-sheet structure (negative cotton effect at λ = 220 

nm). EM studies revealed significant amounts of oligomers after 7h30 incubation and mature 

amyloid-like fibrils are formed after two days. These results clearly demonstrate that the C-

terminus of Aβ1-42 plays a key role in the early step of misfolding.  

 

Figure 40. Conformational transition upon O to N acyl migration of peptide 23 (left) followed by CD in 

Tris buffer pH 7.4 at 37°C. Fibril formation followed by EM over a period of 4 days (right). 

 

3.5. ThT kinetic comparison 

In parallel to CD and TEM studies, the detection of fibril formation for the four Aβ-derived 

switch-peptides was followed by ThT fluorescence. It is known that only multimeric fibrillar 

forms, not multiple β-sheet domains in native proteins, are fluorescent with ThT. Therefore, ThT 

is thought to interact specifically with amyloid fibrils; consequently, measuring the level of 

binding of ThT to fibrils is indicative for the kinetics of fibril formation. 

In this experiment, the peptides were incubated under the same conditions as previously for the 

CD and EM studies.  

We observe that peptide 20, shown to have a high propensity for precipitation, does not show a 

strong fluorescent signal compared to peptides 21, 22 & 23 (Figure 41), confirming our earlier 

finding that due to its rapid precipitation, the concentration of peptide 20 remaining in solution is 

too low to enable peptide for aggregation. 
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Figure 41 also shows that after triggering the two switch elements, peptide 21 binds ThT 

fluorescent dye in approximately the same degree as peptide 23 comprising one switch at 

position 37. For peptide 22, in the state S26
off, S37

on,we observe a lag phase to ThT binding but 

after two days a strong signal comparable to peptide 21. 

 

Figure 41. Kinetics of fibril formation for the four Aβ-derived switch-peptides monitored by ThT 

fluorescence.  
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3.6. Discussion 

 
We have demonstrated that amyloid β-derived switch peptides are powerful tools to identify 

nucleation sites for fibril formation in Aβ sequences and to follow its early aggregation steps. 

The introduction of a single switch element at position 26 of Aβ sequence facilitates the 

synthesis and the solvation of the peptide in aqueous media but is not sufficient to enable the 

investigation of O,N-acyl migration and the subsequent onset of β-structures and fibrillogenesis 

since the peptide precipitates immediately after triggering O,N-acyl migration. However, the 

incorporation of a second switch element at position S37 allowed us to study in more detail the 

processus of misfolding and thus to demonstrate that the C-terminal part of Aβ(1-42), more 

particularly the segment Aβ(37-42) is crucial for fibril formation  and aggregation. 

Moreover, we have demonstrated with peptide 23 that incorporating a single switch element at 

position 37 increases drastically the stability of Aβ towards self -assembly, showing that 

disconnecting the C-terminal segment is sufficient to keep the peptide in an unfolded state.  

These experimental results are in harmony with the 3D-structure of Aβ(1-42) proposed by Lührs 

et al.54 and confirm for the first time the important role of the C-terminus on the rate of fibril 

formation108. 
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4. Host-guest switch-peptides derived from Aβ  as a model for studying 

fibrillogenesis and for screening amyloid β  inhibitors in vitro. 

 

4.1. Background 

Protein misfolding, such as found with Aβ peptide in AD or α-synuclein protein in PD, and its 

accompanying aspect in conformational transitions, has attracted a vast interest in various 

research fields. 

For example, recent research suggests that conformational transitions of amyloid β precursor 

molecules into aggregated, β-sheet-type forms play a key role in the deposition of cerebral 

amyloid plaques characteristic of Alzheimer’s disease. 

It is also important to understand the mechanism of their formation starting from monomers 

because it is becoming increasingly clear that the nonfibrillar intermediates may be the toxic 

species in Alzheimer’s disease40, 109-111. 

It is thus of importance to find a method that could efficiently evaluate the influence of external 

factors such as temperature, pH, inhibitors or β-breakers on the propensity of a peptide to adopt a 

well-defined secondary structure. This method could then be applied to study the conformational 

transition of amyloid proteins from an unordered state into β-sheets. 

This intrinsic problem of protein folding prompted Mutter et al. to apply the host-guest technique 

in combination with the concept of “switch-peptides” studying conformational transitions of 

peptide segments excised from their native sequence80, 112. 

 

The host-guest approach was first introduced in peptide chemistry by Scheraga113 in the early 

seventies. The method consists of incorporating guest residues into a host polypeptide sequence 

having the propensity to fold in an α-helical structure to determine the helix-coil stability 

constants of the 20 naturally occurring amino acids. Few years later, Toniolo and Mutter et al.114-

116 used the host-guest technique to investigate the impact of guest amino acids (in particular Gly 

and Pro) on host peptide sequences having the potential to adopt both helical and β- structures. 

They were able to demonstrate that depending on the conformational preferences of the guest 

residue, the extension of an α-helix forming host peptide could be blocked by a single guest 
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amino acid (natably Pro), or that a single guest amino acid inserted in to a β-sheet forming host 

peptide could destabilize the ordered conformation.  

 

The hydrophobic Aβ(16-20) sequence KLVFF of the Aβ peptide is considered as a key region 

for nucleating self-assembly and oligomerization and therefore the formation of fibrils. However, 

the pentapeptide Aβ(16-20) alone does not form fibrils by itself and thus, residues flanking this 

region are important for Aβ fibril formation. Tjernberg et al.117 identified the shortest fibril-

forming Aβ fragment as being the sequence HQKLVFFAED corresponding to the Aβ(14-23). 

Even though this decapeptide forms fibrils, it does not give CD spectra characteristic for β-sheet 

formation probably due to its low overall propensity for the onset of β-sheets. To elucidate the 

role of this core region in β-sheet and fibril formation, we designed a host-guest system where 

Aβ(14-24) is flanked between two β-sheet promoting (Leu-Ser)n oligomers as host sequences104, 

118. Upon acyl migration i.e. in restoring the regular backbone of the host-guest peptide, it is 

possible to follow the ISN-induction of conformational transitions from random-coil to β-sheet. 

Consequently, host-guest switch-peptides may be used to study the early folding events of Aβ as 

a tool for the screening of Aβ inhibitors and β-breakers, bypassing, the difficulties of handling 

native Aβ(1-42). 

4.2. Design of host-guest switch-peptides 

Two amyloid β-derived host-guest switch-peptides are designed: 

• Peptide 8 (Figure 42), containing a single switch at postion 21 of [Ser21]Aβ(14-24) that 

can be triggered by the enzyme DPPIV. To generate a switch element, Ala 21 has been 

replaced by a Ser residue. 

• Peptide 9 (Figure 52) featuring two switch elements at the N- and the C- terminus of the 

guest sequence Aβ(14-24).  

Peptides 8 and 9 were subsequently used to investigate the spontaneous intramolecular O to N 

acyl migration as monitored by HPLC, the induction of folding events such as self-assembly, β-

sheet (CD) and fibril formation (EM) of the molecule and their use as a screening kit system for 

Aβ fibril inhibitors and β-sheet breakers. 
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4.2.1. Host-guest switch-peptide 8 containing a single switch element S 

 

 

Figure 42. Application of the concept of switch-peptides to host-guest peptide [Ser21]Aβ(14-24) (8) with a 

single switch element at position 21. In the Soff state, the peptide is designed to adopt a random coil 

conformation; after addition of the enzyme DPPIV, the peptide undergoes O,N-acyl migration, inducing 

peptide folding and self-assembly. 

 
Synthesis  
 
The synthesis of peptide 8 was performed in collaboration with S. Dos Santos (PhD thesis 2005, 

EPFL). The peptide was assembled on Rink amide MBHA resin applying the Fmoc/tBu strategy 

as depicted in Scheme 3.  
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Scheme 3. Solid phase synthesis of switch-peptide 8. (i) standard solid phase peptide synthesis according 

to the  Fmoc/ tBu strategy, (ii) Fmoc-Ser(OH)-OH, Boc-Arg(di-Boc)-OH and Fmoc-Pro-OH (30 min); 

(iii) Fmoc-Phe-OH (3eq), DIC (3eq), DMAP (0.5eq), DCM/DMF (4:1), 2h; (iv) TFA/TIS/H2O 95:2.5:2.5, 

2x1h. 

The synthesis was straightforward and the HPLC revealed a major peak identified as the target 

peptide 8 (Figure 43). Some deletion sequences were observed. After purification by preparative 

HPLC, 8 was obtained in a yield of ca 30% (>95% purity). 
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Figure 43. HPLC (C18, 0 to 100% A, 30 min) of crude and purified switch-peptide 8, inset: MALDI-TOF 

of the purified compound (m/z =2300 [M+H]+). 

 
Kinetic studies on folding and fibril formation by HPLC, CD, EM and ThT 
 
To follow the O to N acyl migration, peptide 8 was dissolved in Tris buffer pH 8 at a 

concentration of 400 µM. Subsequently, enzyme DPPIV was added to the mixture. At various 

intervals, 20 µL aliquots were taken and injected to analytical HPLC (Figure 44). 

 

Figure 44. HPLC chromatograms of the enzymatic cleavage of dipeptide H-Arg-Pro-OH from switch-

peptide 8 (Soff) and subsequent acyl migration restoring the regular amide backbone (peptide 8 in the Son 

state). 

While triggering O,N-acyl migration by adding DPPIV enzyme, we observe by HPLC (Figure 

44) the evolution of the cleaved dipeptide Arg-Pro (7.2min), the gradual disappearance of the Soff 

peak (15.2 min) and the onset of a new peak corresponding to the Son state (peak at 15.7 min). 
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We can notice a decrease in absorbance of the Son peak compared to the Soff peak. This 

corresponds to β-sheet formation and precipitation of the peptide. 

In parallel, the conformational transition was monitored by CD and EM at 50 and 20 µM at 37°C 

and pH 8. At a concentration of 50 µM (Figure 45), at time zero, the curve corresponding to the 

Soff state was characteristic of a random coil (rc) structure (blue) but after addition of DPPIV a 

dramatic change from rc to β-sheet conformation is observed. The time course of the process is 

relatively fast, the half-life of β-sheet formation or disappearance of the rc being ca 15 min 

(Figure 45). Similarly, EM studies (Figure 46) show that after restoring the peptide backbone, 

the onset of β-sheet formation results in spontaneous fibril formation. Protofibril formation is 

observed immediately after enzyme addition to the peptide and a large amount of fibrils 

comparable to amyloid β fibrils are observed after 20 minutes. Furthermore, the peptide binds 

ThT dye reaching a plateau at 10 min only. This finding suggests that the lag-time for fibril 

formation of peptide 8 is very fast and that amyloid-aggregates are formed reaching maturation 

after few a minutes. 

 

 

Figure 45. CD monitoring  the conformational transition upon acyl migration from a random coil to a β-

sheet conformation at 37°C in Tris buffer, pH 8 (500 µM) + 10% MeOH and 2.5 mM NaCl (peptide 

concentration = 50 µM). Inset: CD monitoring over time of β-sheet formation at 218 nm (green dots) and 

of random coil disappearence at 195 nm (blue dots). 
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Figure 46. Conformational transition of peptide 8 followed by negatively stained electron micropscopy in 

the absence of DPPIV and after its addition to the solution (see text).  

 

 
Figure 47. Thioflavin T fluorescence kinetics of peptide 8 at 50 µM and 37°C. 
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In contrast, the folding of the peptide at 20 µM (Figure 48 & Figure 49) was significantly slower 

(by factor of 8) compared to 50 µM as shown by the CD spectra. A half-time value for the 

conformational transition from random coil to β-sheet of ca 120 min is observed, confirming that 

the folding and aggregation of peptide 8 strongly depends on the concentration. 

 

 
Figure 48. CD monitoring of the conformational transition upon acyl migration from a random coil to a 

β-sheet conformation at 37°C in Tris buffer pH 8 (500 µM) + 10% MeOH and 2.5 mM NaCl (peptide 

concentration = 20 µM).  

The screening of CD samples by EM revealed the presence of short fibrillar-like structures after 

1 hour (Figure 49). These morphological changes are in agreement with the changes in CD 

minima observed at 195 nm and 218 nm, indicating a slow transition from rc to β-sheet structure. 

β-sheet conversion appeared to be completed after 5 hours, as monitored by the negative cotton 

effect at 218 nm as well as the abundant presence of structurally mature fibrils. The first CD 

spectra (at t = 0, 1h and 1h45) converge in one point at λ = 208 nm, the isosbestic point. This 

observation suggests that at this stage only two states contribute to the CD spectrum, i.e. that rc 

and β-sheet species are in equilibrium. However, after 2h30 the spectra do not converge into this 

point anymore, indicating the presence of multiple species in the solution, i.e. rc, β-sheet and 

soluble oligomeric structures and suggesting that aggregation started. Moreover, Th T 

fluorescence reached a plateau after 7 hours, which confirm our observations (Figure 50, black 

curve). 
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Figure 49. Electron micrographs of peptide 8 incubated at pH 8 and 37°C (c = 20 µM). 

 
Screening of molecules of fibril-destabilizing activity  
 
After the establishment of the methodology, we further probed the potential of host-guest switch-

peptide 8 for the investigation of the effect of molecules known for their Aβ fibril destabilizing 

activity (taken from the literature) upon Aβ fibril formation. For this purpose, we chose 

antioxidants such as tannic acid, wine-related polyphenols (myricetin) and the neurotransmitter 

dopamine119-122 that have been demonstrated to protect the brain from in vitro Aβ toxicity and to 

inhibit formation and extension of amyloid β 1-40 and 1-42 in vitro.  

 

Experiments 

Peptide 8 was incubated for 48 hours under the following conditions: Peptide 8 was first 

dissolved in MeOH/H20 50/50 to a final concentration of 400 µM (stock solution). The solution 

was vortexed for 30 seconds and filtered through a 0.2 µm filter by centrifugation for 5 min at 
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10’000 rpm. 50 µL aliquots of the filtrate were transfered into autoclaved Eppendorf tubes. 750 

µL of Tris buffer pH 8 500 µM + 2.5 mM NaCl and 100 µL of MeOH were added to each tube. 

The inhibitors were dissolved in MeOH at concentrations of 400 to 800 µM and 100 µL of these 

stock solutions were added to the mixture to give the correct final concentration of inhibitor in 

the reaction mixture. 1.5 µL (0.002 unit) of DPPIV enzyme was then added to each vial and 

placed in a water bath at 37°C for 48 hours. Aliquots of 160 µL were removed from the 

incubated samples at different time points and stored at -18°C until further analysis. 

 

Thioflavin T (ThT) and Electron microscopy (EM) analysis 

ThT is a fluorescent dye widely used for the detection of amyloid fibrils due to its relatively 

specific interaction. 

The inhibitory effects on β-sheet formation of peptide 8 of tannic acid, myricetin and dopamine 

were tested using standard analytical techniques of ThT fluorescence and EM as described 

above.  

 

 

Figure 50. Kinetics of fibril formation monitored by Th T fluorescence. Control (black); after addition of 

80 µM dopamine (cyan), 40 µM oxidized dopamine (blue) and 40 µM myricetin (green), 40 µM tannic 

acid (red). 
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Figure 51. TEM images of peptide 8 fibrils A) after 48 h incubation at 37°C, and in presence of 2 eq of 

tannic acid (B), 2 eq of myricetin (C) and 4 eq of dopamine (D). 

 

In the absence of inhibitors, peptide 8 (20 µM) forms fibrils within 5 hours upon enzymatic 

triggering, as can be seen by the fast increase in ThT fluorescence levels (Figure 50). ThT level-

off after ca 6 h indicating saturation in ThT binding and fibril completion. The presence of 

mature fibrils observed by EM after 48 hours incubation time is in agreement with the kinetic of 

ThT binding (Figure 51; A).  

Interestingly, secondary structure formation (rc to β-sheet) of peptide 8 was inhibited in the 

presence of tannic acid (40 µM), myricetin (40 µM) and oxidized dopamine (40 µM). Compared 

to the antioxidants the effect of dopamine (80 µM) is less pronounced within the first 2.5 hours 

of incubation. Nevertheless, significant inhibition was observed after 5 hours incubation 

incubation with dopamine, showing a gradual decline in ThT fluorescence. Most notably, 

fibrillogenesis was completely inhibited in samples co-incubated with the antioxidants tannic 

acid (Figure 51, B) or myricetin (Figure 51,C), as seen by the presence of some oligomeric 
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species, whereas residual amounts of short fibrillar structures could be observed in samples 

incubated with dopamine (Figure 51, D). 
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4.2.2. Host-guest switch-peptide 9 disposing two switch elements. 

 

Figure 52. Host-guest switch-peptide 9, containing two switch elements at the N- and C- terminus of the 

guest peptide Aβ(14-24). In the Soff state, the peptide is designed to adopt a random coil conformation, 

after adjusting the pH to physiological conditions, spontaneous acyl migration occurs resulting in peptide 

folding. 

Synthesis 

The Aβ-derived host-guest switch-peptide 9 was assembled on 1 g of Rink amide MBHA resin 

(loading 0.66 mmol/g) according to the Fmoc/tBu strategy (Scheme 4). 
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Scheme 4. Solid phase synthesis (SPPS) of switch-peptide 9. (i) standard solid phase peptide synthesis 

according to the  Fmoc/ tBu strategy, (ii)Fmoc-Val-OH (3 eq), DIC (3 eq), DMAP (0.5 eq), DCM/DMF 

(4:1); (iii) Fmoc-Leu-OH (3eq), DIC (3eq), DMAP (0.5eq), DCM/DMF (4:1), 2h; (iv) TFA/TIS/H2O 

95:2.5:2.5, 2x1h. 

The synthesis was straightforward and the HPLC revealed one major peak identified as the target 

peptide 9 (Figure 53). Only one deletion sequence was observed. After purification by 

preparative HPLC, 9 was obtained in a yield of ca 36% (> 95% purity). 
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Figure 53. Analytical data of switch-peptide 9, left: HPLC (C8, 0 to 100% A, 30 min) of crude 

compound, right: HPLC (0 to 100% A, 30 min) and ESI/MS ((m/z) 1016 [M + 2H]2+, 678 [M + 3H]3+, 

509 [M + 4H]4+; inset) of purified compound. 

Kinetic studies of folding and fibril formation  
 
Conversion of peptide 9 from the Soff to the Son state via O to N acyl migration was followed by 

HPLC. Peptide 9 was dissolved in acetate buffer, pH 4.6 (10 mM) at 400 µM, 37°C. To trigger 

acyl migration, the pH was adjusted to 7.4 by adding 10% PBS buffer pH 7.4 (0.3 M + 150 mM 

NaCl). At various intervals, 20 µL aliquots were taken and injected to analytical HPLC to follow 

the migration (Figure 54). 

 

 
Figure 54. HPLC chromatograms of the O,N-acyl migration of peptide 9 at 37°C, pH 7.4. 

The appearance of a new peak (Son) on the HPLC chromatogram is associated with triggering of 

both switches simultaneously.  The half-time value for migration in peptide 9 (25 min) was 

found to be similar as in peptide 8. However, unlike peptide 8, pH triggering of peptide 9 at a 

concentration of 20 µM did not result in the formation of fibrils, and CD spectra indicated a 
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predominant random coil structure after 5 hours of incubation at 37°C; in addition, only a weak 

Th T fluorescence signal was observed. This result prompted us to carry out the following 

experimental analyses at increased peptide concentrations; i.e. c = 40 µM.  

 

Figure 55. CD monitoring of the conformational transition of peptide 9 from random coil to β-sheet 

conformation at physiological conditions. 

 

The CD spectra (Figure 55) show that incubation of peptide 9 (40µM) at pH 7.4 results in a 

complete conversion from random coil to β-sheet structure within 4.5 hours. pH-induced changes 

in secondary structure of peptide 9 appeared slow within the first hour, showing a predominantly 

random coiled structure by CD, in agreement with the oligomeric morphology found by EM 

(Figure 56).  The presence of fibrils and the onset in β-sheet formation was found after 2.5 hours 

of incubation, which seemed to be complete after 4.5 hours. A similar trend of increase in ThT 

fluorescence was observed, showing low levels ThT binding in peptide 9 within the first hour of 

incubation (Figure 57). The CD spectra revealed an isosbestic point for t = 1h, 2h30, 3h, 4h30 

suggesting a two-state transition within this time frame.   
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Figure 56. kinetic of fibril formation of peptide 9 followed by electron microscopy.  

 
 

 

 
Figure 57. Bar chart representing the ThT values of peptide 9 incubated at 40 µM under physiological 

conditions. 

In conclusion peptide 9 transforms from a soluble, flexible, unfolded state (Soff) in situ to a β-

sheet structure as monitored by CD spectroscopy, EM, and ThT fluorescence studies. Similar to 

peptide 8, we further probed the potential of this model for mimicking Aβ folding and 

aggregation and for examining the impact of three molecules well-known for their Aβ fibril-

destabilizing activity upon the onset of ordered conformations during the process of structure 

evolution (“in statu nascendi”).  
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Screening of molecules of Aβ fibril-destabilizing activity 
 
Aggregation kinetics in the presence of tannic acid, myricetin or dopamine were investigated 

using ThT fluorescence measurements and Electron Microscopy. 

 

Experiments 

Peptide 9 was dissolved in H20 to a final concentration of 800 µM (stock solution). The solution 

was vortexed for 30 seconds and filtered through a 0.2 µm filter by centrifugation (5 min at 

10’000 rpm). 50 µL aliquots of the filtrate were put into autoclaved Eppendorf tubes. 750 µL of 

100 µM acetate buffer, pH 4.6 were added to each tube. The inhibitors were dissolved in MeOH 

at concentrations of 400 to 800 µM and 100 µL of these stock solutions were added to the 

mixture to give the correct final concentration of inhibitor in the reaction mixture. 100 µL of Tris 

buffer pH 7.4 (0.3 M + 150 mM NaCl) were added to each vial to trigger the acyl migration and 

placed at 37°C for 48 hours. Aliquots of 90 µL were removed from the incubated samples at 

different time points and stored at -18°C until further analysis. 

 

ThT and EM analysis 

By incubating peptide 9 at 37°C, ThT fluorescence followed a characteristic hyperbolic curve, 

pointing to a fast nucleation. This curve is consistent with a first-order kinetic model observed by 

Naiki and Nakakuki. When peptide 9 was incubated with 80 µM tannic acid, myricetin or 

oxidized dopamine, the final equilibrium level decreased significantly indicating that no fibrils 

were present in the mixture. A low signal was also observed for the Soff state of 9 (at 48h), 

indicating the presence of random coil conformation.  

 



Chapter II  Results & Discussion 
 

 77 

 

 

Figure 58. Kinetics of fibril formation monitored by Th T fluorescence. Control (green); after addition of 

80 µM tannic acid (blue), 80 µM myricetin (cyan) and 80 µM dopamine (back), control peptide in the Soff 

state (red). 

EM data are in support of the results obtained by ThT analysis. Most notably, we observe after 

two days incubation that peptide 9 forms mature amyloid-like fibrils (Figure 59, A), whereas 

when incubated in the presence of inhibitors no fibrils were present in the solution; only 

amorphous aggregates were observed by EM. In addition, incubation at pH 4.6 (Soff  state) did 

not result in amyloid-like fibrils, in agreement with the adoption a soluble, unordered 

conformation in the Soff state over days at 37°C; short, non amyloid-like fibrils in the sample can 

be rationalized by ester bond hydrolysis (ca 5% after 48 h at 37°C, see Figure 22). 
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Figure 59. EM images of peptide 9 after 48 h at 37°C and pH 7.4 A) control Son state, B) tannic acid 2 eq, 

C) myricetin 2 eq, D) oxidized dopamine 2 eq, E) control peptide 9 in the Soff state. 

To probe the impact of an inhibitor upon the kinetics of acyl migration, peptide 9 was subject to 

O,N-acyl migration in the presence of tannic acid as monitored by HPLC. As shown in Figure 60 

the migration occurs reaction proceeds without any disturbing effect by the inhibitor. The mass 

of the Soff and Son peak being identical, the more hydrophilic peak (Rt = 18.1 min) could be 

attributed (MALDI-TOF) to the peptide in the Soff state. 
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Figure 60. HPLC monitoring of the O to N acyl migration of peptide 9 (c = 40 µM) in presence of 2 eq 

tannic acid inhibitor (see text). 
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4.3. Discussion 

 
We have demonstrated that the host guest technique combined with the switch concept represent 

a versatile tool to follow the folding and aggregation of the sequence Aβ (14-24), which plays a 

key role in β-sheet nucleation of full-length Aβ. Our results suggest that starting from a stable, 

unfolded state (Soff), the self-assembly and β-sheet formation as molecular origin of peptide 

fibrillogenesis can be studied in situ using specific nucleation sites of native Aβ as guest 

segments within a host model peptide. EM and CD data indicate that the kinetics of the onset of 

fibril formation of both peptide 8 and 9 is fast and that the aggregates formed are similar to those 

by native Aβ(1-42). The designed host guest systems, i.e. Aβ (14-24) flanked N- and C-

terminally by (Leu-Ser)n oligomers proved to be a versatile model of amyloid β for studying the 

onset of β-structures and subsequent fibrillogenesis. 

Moreover, we have validated the host guest approach as a convenient and reliable screening 

system for the investigation of molecules of Aβ fibril destabilizing activity. 
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5. Design and synthesis of Switch-peptides of amyloid β  fibril disrupting 

potential 

5.1. Background 

 
The main targets for therapeutic intervention of the Aβ cascade include the inhibition of Aβ 

production, the inhibition of Aβ aggregation and fibril formation, in addition to the inhibition of 

the consequent inflammatory responses caused by the Aβ deposition. 

Soto et al., Tjenberg et al. as well as Kapurniotu et al. proposed that short synthetic peptides 

capable of binding Aβ but unable to become part of the β-sheet structure (β-sheet breaker 

peptides) may stabilize the amyloidogenic Aβ conformer and hence preclude amyloid 

formation123-126. Thus, these peptides have the ability to interact specifically with Aβ and block 

its β-sheet conformation, to disassemble preformed fibrils in vitro, to prevent neuronal death 

induced by fibrils in cell culture, to reduce amyloid β-protein deposition in vivo and to block the 

formation of amyloid fibrils in a rat brain model of amyloidosis. However, this hypothesis of β-

breaking might have a counterproductive effect by transforming fibrils to oligomeric structures 

that are nowadays thought to be the most toxic species in the pathology of AD. At present, 

although some efficient drugs in slowing down the symptoms exist and huge progress are being 

made, there is still no effective treatment available for AD as well as for most of the protein 

folding disorders. However, the 5-residues peptides (Ac-LPFFD-NH2 and Ac-LP(NMe)FFD-

NH2) proposed by Soto protected at his N- and C-termini to prevent proteolytic degradation and 

to increase its blood-brain barrier permeability have shown the potential to be used as therapeutic 

agents to prevent or retard the progression of amyloidosis in AD125.  

To further increase their stability and breaking effects, various pseudoprolines (ΨPro) were 

substituted for Pro. Ψ-Pro are Ser, Thr or Cys-derived proline analogs. For example, the Pro-

specific induction of the cis-geometry127 of the Xaa-ΨPro imide bond is pronounced and as a 

non-natural amino acid, it is more stable against proteolytic degradation. 

The two pseudoproline-containing peptides investigated by Soto and Mutter et al. showed good 

enzymatic stability but a lower fibril inhibition activity compared to the Pro containing 

analogues72. The stabilization of the cis-configuration reduced the inhibition activity of the 

peptides suggesting, as the cis-Pro is the active conformation, that the trans-Pro is required for 
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binding to the target. It seems that conformational flexibility of the molecules is, at least in the 

recognition/binding step, crucial for activity. The process of fibrillogenesis inhibition can be 

delineated as two distinct steps: first, the peptides recognize a particular stretch of the Aβ 

sequence and second, upon binding lead to a conformational destabilization of β-sheet structure 

formation. In the first step, the constraint (the cis amide bond) imposed by the pseudo-proline 

results in reduced binding to the Aβ of the β-sheet breaker peptides. Consequently, it seemed 

reasonable to separate structure from function by using switch-peptides.  

For this purpose, we have designed switch-peptides comprising a recognition element (P2) and a 

ΨPro-derived β-disrupting unit (P1) separated from each other by a switch element (S) (Figure 

61). Upon introduction of a flexible ester-bond, the impact of the ΨPro-moiety is decoupled from 

the peptide chain and does not interfere with the bonding properties of the recognition sequence. 

After binding of the peptide to the Aβ sequence, the switch can be triggered and the β-sheet 

destabilizing effect of the ΨPro is initiated. Thus, the modular character of switch-peptides is 

ideal to take into account the dual action of β-strand recognition/binding and β-sheet 

desabilization (Figure 61). 
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Figure 61. Disruption of β-sheets with kink-inducing switch-peptides. 

5.2. Design and synthesis 

 

Five different switch-peptides containing either the dimethyl-pseudo-proline or the dihydro-

pseudo-proline in the β-sheet destabilization unit P1 were designed. The recognition sequence P2 

was either H-Phe-Phe-Asp-NH2 or H-MePhe-Phe-Asp-NH2. The switch element was protected 

either by a proton (H+) or a dipeptide (ArgPro), cleavable by the enzyme DPPIV. Scheme 5 

gives a general overview of the different switch-peptides synthesized and further investigated.  
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Scheme 5. General scheme of Amyloid-derived switch-peptides (see text). 

 
Firstly, pseudoproline derivatives were synthesized from cysteine hydrocloride and 

subsequently, the building block Ac-Leu-Cys(ψR, R)pro-OH was prepared (see Figure 62) for 

further incorporation in solid phase peptide synthesis. 
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Figure 62. Synthesis of the dipeptide Ac-Leu-Cys(ψR, Rpro)-OH. (i) sol. HCHO 40% / H2O (4/10), 

overnight, RT, quantitative; (ii) acetone/dimethoxypropane (80/18), reflux, 2h, quantitative, (iii) DAST 

(1.2 eq), DCM, 15 min, (iv) Dipea (2 eq), DCM, 1h, 30%. 

The synthesis of the five switch-peptides were performed on a Sieber amide resin (loading 0.71 

mmol/g) following the Fmoc/tBu strategy as depicted in Scheme 6  
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resin: Sieber Amide Fmoc(NR)PhePheAsp(OTBu)

Boc-HN-Ser(NR)PhePheAsp(OTBu)

HO

Boc-HN-Ser(NR)PhePheAsp(OTBu)
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AcLeuCys(! R,R)proAlaO

i

ii

iv

AcLeuCys(! R,R)proAlaO

AcLeuCys(! R,R)proAlaO

Boc-HN-Ser(NR)PhePheAsp(OTbu)-NH2

H+-Ser(NR)PhePheAsp(OH)-NH2

iii

v

vi

vii
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HO
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(Boc)Arg(diBoc)Pro-HN-Ser(NR)PhePheAsp(OTBu)

HO

iv
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AcLeuCys(! R,R)proAlaO
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(Boc)Arg(diBoc)Pro-HN-Ser(NR)PhePheAsp(OTbu)-NH2

ArgPro-Ser(NR)PhePheAsp(OH)-NH2

v

vi

vii

 

Scheme 6. Solid phase synthesis of β-breaker switch-peptides 15 to 19. Resin Sieber amide (0.71 

mmole/g), (i) PyBop (2 eq), aa (2 eq), Dipea (4 eq), (ii) Boc-Ser-OH ( 2 eq), HATU (2 eq), Dipea (4 eq), 

(iii) Fmoc-Ser-OH (2 eq), HATU (2 eq), Dipea (4 eq), (iv) DIC (3 eq), DMAP (0.1 eq), Fmoc-Ala-OH (3 

eq), (v) AcLeuCys(ψR, R)pro-OH (2 eq), HATU (2 eq), Dipea (4 eq), (vi) resin cleavage 1% TFA in DCM 

2x20 min, (vii) Boc and tBu cleavage: 50% TFA in DCM, 2.5% TIS and 2.5% H2O. 

The syntheses were straightforward and gave after purification by preparative HPLC a white 

powder with 15% to 20 % yield depending on the peptide (see experimental part). Here is the list 

of the switch-peptides synthesized followed by their analytical data: 

Peptide 15: Ac-Leu-Cys(ψMe, Mepro)-Ala-(H+)Ser-Phe-Phe-Asp-NH2 

Peptide 16: Ac-Leu-Cys(ψH, Hpro)-Ala-(H+)Ser-Phe-Phe-Asp-NH2 

Peptide 17: Ac-Leu-Cys(ψMe, Mepro)-Ala-(H+)Ser-(NMe)Phe-Phe-Asp-NH2 

Peptide 18: Ac-Leu-Cys(ψH, Hpro)-Ala-(H+)Ser-(NMe)Phe-Phe-Asp-NH2 

Pepitde 19: Ac-Leu-Cys(ψMe, Mepro)-Ala-(ArgPro)Ser-(NMe)Phe-Phe-Asp-NH2 
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 Analytical HPLC of purified compound ES/MS of purified compound 
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18 
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Figure 63. Analytical data of the purified compounds. HPLC (C18, gradient 0 to 100% A, 30 min); Mass 

spectroscopy ESI-MS. 

5.3. Kinetic studies  

5.3.1. pH-induced acyl migration  

Peptide 15: Ac-Leu-Cys(ψMe, Mepro)-Ala-(H+)Ser-Phe-Phe-Asp-NH2  

 

To assess the influence of pH on the migration speed, the acyl migration of peptide 15 were 

triggered at three different pH (pH 6, 6.6 and 7.4). All experiments were done at 37°C, the 

peptide was dissolved in a mixture of acetonitrile/phosphate buffer of the desired pH (1:9) to a 

final concentration of 500 µM. At different time points, 20 µL aliquots were removed, quenched 

with 20 µL HCl 1 M and injected to analytical HPLC.  

Figure 64 below shows the HPLC chromatograms of the migration at pH 6. The HPLC shows 

two peaks at Rt = 17 min corresponding to the Soff state and Rt = 20 min (Son state after O to N 

migration). Upon migration, we observe the decrease in absorbance of the Soff peak and the 
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increase of the Son peak; the migration is relatively rapid, even at pH 6 since the half-life value is 

about 25 min (see Figure 65).  

 
 

Figure 64. HPLC chromatograms of the O to N acyl migration of peptide 15 in buffer pH 6/acetonitrile 

(9:1) 

For the three different assays, the percent of peptide in the Son state was plotted against time to 

compare the influence of the pH on acyl migration speed.  
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time (min) 

conversion 
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Figure 65. Overlay of time course and pseudo-first order kinetics of switch-peptide 15 subjected to 

different pH conditions. 

The results obtained here at different pH show that the migration is extremely sensitive to pH. At 

pH 7.4 the half-life value was only of 1.5 min and at pH 6 was of 24 min, it is thus easier to 

follow the migration by HPLC at pH 6. Peptides 16, 17 and 18 were therefore investigated at pH 

6 under similar conditions. 

 

Peptide 16 : Ac-Leu-Cys(ψH, Hpro)-Ala-(H+)Ser-Phe-Phe-Asp-NH2 

peptide 16 was dissolved in phosphate buffer pH 6 containing 10 % acetonitrile to a final 

concentration of 500 µM. Figure 66 shows the chemical conversion of the peptide from its Soff 

state to its Son state. In these conditions, the half-life value of the peptide (Soff state) is about 14 

min (Figure 67). We also observe that the migration is complete after 90 min. 

 

 

Figure 66. HPLC chromatograms of the O to N acyl migration of peptide 16 in buffer pH 6/acetonitrile. 
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Figure 67. pH-induced acyl migration: time course (pink: Son, blue: Soff) and pseudo-first order kinetics 

of peptide 16. 

These results indicate that peptide 16 containing a dihydro-pseudoproline rearranges faster than 

peptide 15 containing a dimethyl-pseudoproline. This can be explained by the steric constraints 

imposed by the methyl groups of the dimethylpseudoproline and by the difference in 

electronegativity of the two pseudoprolines. 

Peptide 17: Ac-Leu-Cys(ψMe, Mepro)-Ala-(H+)Ser-(NMe)Phe-Phe-Asp-NH2 

O to N acyl migration of peptide 17 was followed under similar conditions as previously. We 

observe here that the half-life value is about 19 min; it was of 25 min in the case of peptide 15 

(Figure 68 & Figure 69). Compared to peptide 15, peptide 17 also contains a dimethyl-

pseudoproline but possesses an N-methylated phenylalanine after the S element. Interestingly, 

the constraint imposed by the methyl groups of the pseudo-proline has the effect of retarding the 

O,N-acyl migration (see results above) but on the contrary, the N-methylation of the residue Phe 

succeeding the switch element facilitates and accelerates the migration. One plausible 

explanation to this fact is that the methyl group of the N-methyled Phe residue, more 

electronegative than hydrogen, attracts electrons towards itself and speed up the migration by 

dislocating the electrons in the same direction as the O, N-acyl migration, contrary to dimethyl-

pseudoproline (on the left side of the switch element) attracting the electrons on the opposite 

direction and hence having the effect of retarding the migration. 
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Figure 68. HPLC chromatograms of the O to N acyl migration of peptide 17 in buffer pH 6/acetonitrile. 

 

Figure 69. pH-induced acyl migration: time course (blue: Son, pink: Soff) and pseudo-first order kinetics 

of peptide 17. 

Peptide 18: Ac-Leu-Cys(ψH, Hpro)-Ala-(H+)Ser-(NMe)Phe-Phe-Asp-NH2  

Peptide 18 containing a dihydro-pseudoproline and a N-methylated phenylalanine after the 

switch element had the fastest rearrangement time under the conditions used for peptides 15, 16 

and 17. Indeed, its half-life rearrangement value is of 8 min only (Figure 71), which is 3 times 

faster than peptide 15 having a dimethyl-pseudoproline and no N-methylation of the 

phenylalanine. This is easily explained by the reasons given earlier in this chapter. 
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Figure 70. HPLC chromatograms of the pH induced acyl migration of peptide 18 at pH 6.  
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Figure 71. pH-induced acyl migration: time course and first order kinetics of switch-peptide 18. 

In summary, it emerges from these studies that O,N-acyl migration is greatly influenced by the 

pH. The half-life value can go from 1.5 min at pH 7.4 to 24 min at pH 6 (which means a factor of 

12). The results obtained also point out that modifications brought to the molecule, even small, 

can have an impact on the kinetic of migration.  

5.3.2. O to N acyl migration induced by enzymatic triggering  

Peptide 19: Ac-Leu-Cys(ψMe, Mepro)-Ala-(ArgPro)Ser-(NMe)Phe-Phe-Asp-NH2 

The enzymatic conversion of peptide 19 was performed under physiological conditions. The 

peptide was dissolved in PBS pH 7.4 buffer at a concentration of 500 µM and incubated at 37° 
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with DPPIV enzyme (ratio enzyme/substrat: 1/25 000). The enzymatic cleavage and the 

migration were monitored by analytical HPLC. At different time points, 20 µL aliquots were 

withdrawn and injected to HPLC. Figure 72 shows the HPLC chromatograms of the enzymatic 

triggering of peptide 19.  

 
 

 

Figure 72. HPLC chromatograms of the enzymatic cleavage of dipeptide H-Arg-Pro-OH from switch-

peptide 19 (Soff), and subsequent acyl migration to give 19 in the Son state. 

HPLC overlay (Figure 72) shows the appearance of a first very hydrophilic peak corresponding 

to the cleavage of H-Arg-Pro-OH dipeptide by the enzyme. A second peak, decreasing with time, 

corresponds to the peptide in the Soff state. A third peak corresponding to the Soff state after Arg-

Pro cleavage but before acyl migration is observed and eventually, a fourth peak corresponding 

to the peptide in its Son conformation appears with a higher retention time. The enzymatic 

cleavage is relatively rapid; the conversion is complete after 2 hours 15 min at pH 7.4 (t1/2 ≈ 20 

min). It is, however, slower than pH triggered acyl-migration for which a half-life value of 1.5 

min was observed at pH 7.4.  

5.4. Study of the inhibition potential of Amyloid-derived switch-peptides  

The inhibition potential of the five switch-peptides on fibrillogenesis was evaluated at 

physiological conditions by two different methods, electron microscopy and thioflavin T 
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fluorescence on host-guest switch-peptide 9, which proved to be a powerful tool for the 

screening of potential inhibitors of fibril formation in the previous section (see section 4).  

 

Experminental procedure 
 
Host-guest switch-peptide 9 was dissolved in H20 to a final concentration of 800 µM (stock 

solution). The solution was vortexed for 30 seconds and filtered through a 0.2 µm filter by 

centrifugation (5 min at 10’000 rpm). 50 µL aliquots of the filtrate were put into autoclaved 

Eppendorf tubes. 750 µL of acetate buffer pH 4.6 100 µM were added to each tube. The 

inhibitors were dissolved in MeOH at concentrations of 1.6 mM and 100 µL of these stock 

solutions were added to the mixture to give the correct final concentration of inhibitor in the 

reaction mixture. After 30 min (recognition lag time), 100 µL of Tris buffer pH 7.4 (0.3 M) and 

150 mM NaCl were added to each vial to trigger the switch. They were then placed in a 37°C 

water bath for 48 hours. Aliquots of 90 µL were removed from the incubated samples at different 

time points and stored at -18°C until further analysis. 

 

ThT and EM analysis 

When peptide 9 was incubated alone at 37°C for 48 h, its ThT fluorescence curve  (Figure 73, 

black curve) was similar to the ThT fluorescence curve of the full length Aβ121 (not shown). EM 

images taken after 2 days revealed amyloid-like fibril formation, confirming the results obtained 

from ThT measurements.  
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Figure 73. Kinetics of fibril formation of peptide 9 (40 µM) monitored by ThT fluorescence. Control 

(black), with 160 µM of peptides 15 (red), 16 (green), 17 (blue), 18 (cyan), and 19 (pink). 

Figure 73 and Figure 74 (E) show that peptide 18 for which O,N-acyl migration was the fastest 

seems to have no inhibitory effect on fibril formation. Other inhibitors activated by pH with 

longer t1/2 half-life values showed a slightly increased inhibition (about 22% of inhibition by ThT 

after 48h). We can see by EM that the fibrils formed when peptide 9 is incubated in the presence 

of inhibitors 15, 16, 17 and 19 are shorter than fibrils of the control sample (see Figure 74). 

Interestingly, peptide 19, which is activated by the enzyme DPPIV, exhibited a better inhibitory 

effect compared to the other investigated compounds (about 47% of inhibition after 48h). This 

phenomenon had previously been observed 104,128 and can be explained by the fact that O,N-acyl 

migration of peptides activated by enzymes is slower because enzyme triggering is the rate 

limiting step for acyl migration and not rearrangement. The results confirm previous 

observations that the switch-peptide in its Soff state where the recognition sequence of Aβ is 

separated from the kink inducing unit should have time to first recognize Aβ sequence before 

setting off the kink structure that stabilizes fibrils. 
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Figure 74. EM images of peptide 9 after 48 h at 37°C and pH 7.4, A) alone and in presence of 4 

equivalents of B) peptide 15, C) peptide 16, D) peptide 17, E) peptide 18 and F) peptide 19. 

To compare the inhibitory effect of our molecules with the well-known pentapeptide inhibitor 

iAβ5 (Ac-LPFFD-NH2) and with Ac-LVFFD-NH2, their inhibitory effect was tested on peptide 9 

under the same conditions as above. ThT fluorescence of peptide 9 with 4 eq of inhibitors did not 

show any decrease in fluorescence compared to the control.  

 

Figure 75. Kinetics of fibril formation of peptide 9 (40 µM) monitored by ThT fluorescence. Control 

(green), with 160 µM of Ac-LVFFD-NH2 (red), Ac-LPFFD-NH2 (black). 



Chapter II  Results & Discussion 
 

 97 

However, although fibrils were observed by EM, they were shorter than the fibrils observed for 

the control. From these studies, we deduce that both molecules had a smaller inhibitory effect on 

peptide 9 fibrillogenesis than switch-peptides molecules investigated earlier. This confirms 

previous observations that the introduction of a switch element separating the β-sheet breaking 

unit from the recognition sequence enable a better recognition of the target before activating the 

switch, restoring the regular amide backbone and setting off the β-disrupting unit activity. This 

sequential process allows the peptide to be in closer contact with the target and have a stronger 

impact on fibril destabilization.  

 

Figure 76. EM images of peptide 9 after 48 h at 37°C and pH 7.4, A) alone and in presence of 4 

equivalents of B) Ac-LVFFD-NH2, C) Ac-LPFFD-NH2. 
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5.5. Discussion 

 
The switch-peptides were successfully synthesized by SPPS in good yields. It emerges from 

these studies that O,N-acyl migration is greatly influenced by the pH. The half-life value can go 

from 1.5 min at pH 7.4 to 24 min at pH 6 (which means a factor of 12). The results obtained also 

point out that modifications brought to the molecule, even small, can have an impact on the 

kinetic of migration. 

No significant differences in term of inhibition potential were noted between the switch-peptides 

triggered via pH, except for peptide 18 having the fastest rearrangement half-time value. The 

peptide did not show any inhibitory activity. The major reason might be that the peptide does not 

stay long enough in its recognition state (Soff state) before rearranging and thus, does not bind 

correctly to the target sequence to block its β-sheet and fibril formation.  

Moreover, the rearrangement of switch-peptide 19 having a protecting group cleavable by an 

enzyme was slower and could be controlled easily. Peptide 19 was able to stay longer in the Soff 

state for better recognition, which was beneficial since it exhibited better inhibition activity 

compared to other peptides triggered via pH (47% inhibition vs. 22% inhibition).  

Compared to the two pentapeptides Ac-LVFFD-NH2 and Ac-LPFFD-NH2 tested in the same 

manner, the switch-peptides had an enhanced inhibitory activity on the fibril formation of host-

guest switch-peptide 9.  

These results open interesting perspective in the rational design of flexible peptides able to bind 

β-sheets in an efficient way before setting off the kink in situ, increasing the biological potential 

of inhibitors. 
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6. Disruption of Amyloid-Derived Peptide Assemblies through the Controlled 

Induction of a β-sheet to α-Helix Transformation: Application of the 

Switch-Concept2 

 
Protein misfolding and self-assembly into highly ordered β-sheet rich fibrillar assemblies known 

as amyloid fibrils are common features of a growing class of systemic and neurodegenerative 

diseases, including Alzheimer’s, Parkinson’s, Huntington’s disease, senile systemic amyloidoses, 

and type II diabetes129, 130. Although there is strong evidence implicating amyloid formation in 

the pathogenesis of these diseases, the precise mechanisms of amyloid formation and clearance 

in vivo as well as the structural basis of amyloid toxicity remain unknown. The lack of tools to 

monitor and/or control the initial structural transitions associated with protein misfolding, 

amyloid formation and/or dissociation is at the origin of this gap in knowledge. Significant 

efforts have been devoted to study proteins and small peptides that self-assemble into amyloid-

like fibrillar structures as model systems to investigate amyloid formation or to generate 

materials with interesting physical properties. However, our knowledge of the mechanical and 

structural dynamics within β-sheet assemblies such as amyloid fibrils remains limited. Early 

assumptions131 that β-sheet assemblies, including amyloid fibrils, occupy a global minimum of 

free energy that is lower than that of the native state led to greater emphasis on understanding 

and inhibiting amyloid formation, rather than amyloid dissociation and clearance. Despite the 

extreme stability of β-sheet rich amyloid fibrils to proteases, acid and chemical denaturants, 

increasing evidence from humans132 and in vitro studies points to a dynamic structure within 

amyloid fibrils and suggests that the process of amyloid formation is reversible133, 134.  These 

findings combined with the fact that strategies aimed at destabilizing amyloid and/or accelerating 

their clearance seem to reverse the disease phenotype135-137 suggest that a detailed understanding 

of the stability and dynamic behavior of amyloid fibrils is of critical importance to developing 

therapeutic strategies for amyloid diseases. 

Our laboratory has previously shown80, 100, 112 that incorporation of molecular switches into 

polypeptides, based on ON intramolecular acyl migration in situ105, 106, 138, 139, allows for 

                                                
2 This Chapter has been published in Angew. Chem. Int. Ed, 2007, 46, 2681-2684 
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controlled induction or reversal of secondary structural transitions140-142 and self-assembly of 

small peptides.  

Moreover, during his PhD Thesis143, R. Mimna, who worked mainly on the design and synthesis 

of helix-inducing N-cap compounds (σ)144, was able to demonstrate that in model switch-

peptides, N-cap units prevented the formation of β-sheet by inducing a stable α-helical structure. 

Subsequently, an amyloid-derived switch-peptide containing an N-cap as conformational 

induction unit (σ) was designed. By triggering the switch, we could observed a transformation of 

type β to α by Circular Dichroism (CD). Based on these primarily findings, the work presented 

in this chapter focuses on further investigating the feasablilty of disrupting amyloid formation 

through the controlled induced transformation form β-sheet to α-helix structures of the self-

assembled peptides within the amyloid structure (Figure 77). 
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6.1. Design 

 

 

Figure 77. Aβ(14-25) is linked to a helix-inducing template σ (Ncap = Ac-[cyclo-1-5]-KARADA) through 

a Ser-derived switch-element S (O-acyl isopeptide unit, Soff-state). On removal of the N-protecting group 

Y, spontaneous O,N-acyl migration occurs (Son state) resulting in the activation of σ  and induction of a 

helix structure in peptide 7 (left). Under the right conditions, the helix-nucleating effect of σ  is strong 

enough to induce a transformation from β-sheet (step 1) to α-helix (step 2), along with disruption of the 

preformed Aβ(1-42)-derived β-sheet-rich assemblies within amyloid fibrils. 

The amyloid-derived switch-peptide contains the shortest Aβ fibril-forming sequence 

HQKLVFFAEDVG, corresponding to Aβ(14-25), connected to a helix nucleating Ncap144 (σ) 
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via a Ser-derived switch element (S) (Peptide 7, Figure 77). The Aβ(14-25) peptide contains the 

amino acid residues 16-20 that are essential for fibril formation in the full length Aβ peptide and 

readily forms amyloid fribrils in vitro145, 146. As Ncap, we chose the cyclic pentapeptide sequence 

Ac-(cyclo-1-5)-KARAD, which contains a lactam bridge formed between the Lys and Asp 

residues at positions i and i + 4 respectively144. This type of lactam bridge effectively constrains 

the residues into an enforced α-helical turn and, when incorporated into a larger peptide, can 

greatly increase the overall helicity147, 148. 

6.2. Synthesis  

 
The synthesis of peptide 7 was performed in collaboration with R. Mimna (PhD Thesis 2005, 

EPFL). The fibril-forming peptide Aβ(14-25), HQKLVFFAEDVG, was assembled on Rink 

amide resin (0.60 mmol/g, 0.30 g, 0.18 mmol), using standard Fmoc-based solid-phase 

synthesis149. The switch-element was introduced by manually coupling the protected 

depsidipeptide Fmoc-Ala-(Boc)Ser-OH150 as described by Coin et al.139. Subsequently, the N-

capping template was introduced as protected building block Fmoc-(cyclo-1-5)-KAR(Pbf)AD-

OH140-142. Cleavage from the resin and purification by semi-preparative HPLC afforded peptide 

7, Ac-[(cyclo-1-5)-KARAD]A-S1-HQKLVFFAEDVG-NH2 (S1 = (+H)Ser)150, as a white powder 

and was characterized by analytical HPLC (> 95% purity) and ESI-MS (1056.86 [M + 2H/2]+, 

704.81 [M + 3H/3]+, 529.31 [M + 4H/4]+). 

 

Scheme 7.  Synthesis of switch-peptide 7.  (i) standard Fmoc/tBu SPPS;  (ii) dipeptide Fmoc-Ala-

(Boc)Ser-OBzl (2.5 eq), PyBOP (2.5eq), DIEA (5eq), DMF, 1.5h;  20% piperidine/DMF, 10 min x 2;   

(iii) Fmoc-(cyclo-1-5)-KAR(Pbf)AD-OH  (2 eq), PyBOP (2 eq), DIEA (4 eq), DMF, 2h;   20% 

H2N

Rink amide resin

(i)
HQKLVFFAEDVG

(ii)
A-S1-HQKLVFFAEDVG

Boc

(iii)

Ac-KARADA-S1-HQKLVFFAEDVG

Boc

N-cap A!(14-24)

switch element

Ac-KARADA-S1-HQKLVFFAEDVG-NH2

S1 = (+H)Ser

N-capped A! switch peptide 7

(iv)
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piperidine/DMF, 10 min x 2;  Ac2O (10 eq), pyridine (10 eq), DMF, 30 min;  (iv) TFA/TIS/H2O/DODT 

95/2/2/1, 2h. 

 

 

 

Figure 78.  Analytical data of switch-peptide 7 a) HPLC chromatogram of crude compound, b) HPLC 

and ESI-MS (inset) of purified compound. 

 

6.3. N-cap induced β to α  reversal of Aβ(14-25) 

 

CD and EM studies 

 
To examine the solution properties of peptide 7 in the Soff and Son states (Figure 77), the 

secondary structure and aggregation state of the peptide was probed by circular dichroism (CD) 

and electron microscopy (EM).  

In the Soff state (pH 4.5, 50 mM acetate, 150 mM NaCl) and at concentrations between 10-100 

µM, peptide 7 displays a CD spectra showing the typical cotton effect of a β-sheet structure 

(curve 1 in Figure 79). Activation of the helix-inducing Ncap (Son) via a pH–induced O,N-acyl 

migration80, 100, 105, 106, 138, 139 is not sufficiently strong to overcome the intrinsic β-sheet 

propensity of Aβ(14-24) resulting in identical CD spectra. However, when activated in the 
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presence of 25% TFE as α-helix promoting cosolvent, an unprecedented structural transition 

from predominantly β-sheet in the Soff state with a strong negative cotton effect a λ = 218 nm 

(curve 2) to an α-helix in the Son state with negative cotton effects at λ = 204 nm and 222 nm 

(curve 3) is observed and is complete within less than 5 min at room temperature (t1/2 value = 

150 sec, Figure 79, inset). This result demonstrates the strong nucleating effect of the Ncap and 

shows for the first time the possible reversibility of highly ordered β-sheet structures.   

 

Figure 79. Conformational transitions of peptide 7 (c = 5 x 10-5 M, T = 25°C) : A) curve 1: pH 4.6 buffer 

(Soff); curve 2: pH 4.6 buffer/TFE 75:25 (Soff); curve 3: pH 7.0 buffer/TFE 75:25 (Son). Inset: the kinetics 

of the conformation from β-sheet (Soff) to α-helix (Son) structures as monitored by changes in the CD 

signal. 

 

 
Figure 80. Negative electron micrographs of peptide 7 (c = 5 x 10-5 M) in the Soff state (A) and Son state 

5min (B) and 12 h (C) after activation of the intramolecular O to N acyl migration. 
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Electron microscopy (EM) studies revealed that the transition from β-sheet to α-helical structure 

is accompanied by a dramatic change in the morphology of the fibrils and subsequent 

dissociation.  Figure 80 shows negatively stained micrographs of peptide 7 before (Soff, A) and 

after (Son, B and C) triggering the switch element in the presence of 25% TFE. In the Soff state, 

peptide 7 self-assembles into long (> 2 µm) unbranched fibrils with an average diameter of 3.3 

nm (Figure 9A, inset: a). Lateral association of these thin fibrils results in the formation of 

twisted amyloid-like fibrils with an average diameter of 7.7 nm, 11 nm, and 20 nm, consistent 

with the 3.3 nm being the subunit “protofilament” of the wider fibrils (Figure 9A). Interestingly, 

upon triggering the O,N-acyl migration (Son state), short ribbon-like structures (Figure 80B) are 

observed, but disappear quickly with time giving rise to predominantly soluble α-helical 

structures of peptide 7.  Filtration of peptide 7 solution (Soff state) through a 0.22 µm membrane 

results in the loss of more than 80% of the peptide and disappearance of β-sheet structure (see 

Figure 80). In the Son state, more than 95% of peptide 7 remains in solution after filtration 

through 0.22 µm membrane, consistent with the transition from an aggregated β-sheet to soluble 

α-helix structures (CD)(Figure 81) as evidenced by the disappearance of fibrillar assemblies 

(Figure 80C), and loss of ThT fluorescence upon activation of the O,N-acyl migration (Figure 

82).   

 

Figure 81. CD spectra of peptide 7 in the Son state in 25% TFE at 25°C of the filtrate after filtration 

through a 10kDa membrane filter (dashed line), and of the retentate (continuous line). 
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Thioflavin T (ThT) and Congo Red (CR) binding of peptide 7 

 
To confirm our results on the morphology of the fibrils, peptide 7 was mixed with amyloid 

specific dyes such as Congro Red (CR) and Thioflavin T (ThT) and its binding to these dyes was 

assessed by UV spectroscopy and fluorescence sperctroscopy respectively (Figure 82). 

The binding of peptide 7 to the amyloid specific dye Congo Red (CR) causes a red-shift in its 

absorbance spectrum, characteristic of amyloid fibrils. The left part of Figure 82 shows the 

absorbance spectra of Congo Red alone (full line), in the presence of peptide 7 in the Soff -state 

(dashed line) or preformed α-synuclein fibrils (dotted line).  The CR spectrum in the presence of 

peptide 7 resembles those previously published for Aβ and is virtually identical to that observed 

for preformed fibrillar assemblies of the amyloid forming protein α-synuclein linked to 

Parkinson’s disease.  Amyloid fibrils of α-synuclein were used because a freshly prepared 

fibrillar sample was available at the day the experiment with peptide 7 was carried out. 

Furthermore, the peptide also binds Thioflavin T when it is in the Soff state, thus in a β-sheet 

conformation. This further confirms that the fibrils formed by the peptide are indeed amyloid-

like fibrils (Figure 82, right). 

The binding of peptide 7 in the Son state to ThT was also examined and revealed that the peptide 

did not exhibit any fluorescence when it was in the Son state, thus in an α-helical conformation 

(Figure 82, right, orange bar). Therefore, we can conclude that a conformational transition from 

β-sheet to soluble α-helical structure of the peptide has occurred and that amyloid fribrils have 

effectively been destabilized and cleared. 
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Figure 82. Left: Absorbance spectra of CR alone (full line), in the presence of peptide 7 in the Soff state 

(dashed line) and preformed a-synuclein fibrils (dotted line). Right: ThT fluorescence of peptide 7 in 25% 

TFE in the Soff state (green), as well as after O to N acyl migration and filtration through a 10 kDa 

membrane filter (orange), ThT control (black). 

Heat induced dissociation/denaturation 

 
To better understand the structural properties of peptide 7, we probed its stability in the Son and 

Soff state towards heat-induced dissociation/denaturation. To this end, the peptide solutions are 

heated gradually and the conformation of the peptide is monitored by CD (Figure 83). Heating of 

peptide 7 in the Soff state (pH 4.5, 25°C, green curve) to 95°C results in a transition from β-sheet 

to a predominantly unordered structure (black curve). Interestingly, upon cooling the sample to 

25°C, the peptide does not return to its original β-sheet structure, but rather forms an α-helical 

structure (orange curve), pointing to the onset of the helix-inducing effect of the Ncap at high 

temperature (due to temperature induced O,N-acyl migration and activation of the Ncap). Most 

notably, once the β-sheet is destabilized at high temperature, the helix-inducing effect of the 

Ncap is strong enough to overcome the intrinsic β-sheet potential of peptide 7, i.e. a Ncap-

induced transition of type random-coil (95°C) to α-helix (25°C) is observed.  

 

Moreover, at pH 7 and in the absence of TFE, peptide 7 (Son state) does not exhibit a clear α-

helical structure but when heated to 95°C and cooled back to 25°C the peptide undergoes a 

transformation similar to the one previously observed at pH 4.6.  
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Figure 83. Monitoring conformational transition of peptide 7 by CD (c = 5 x 10-5 M): A) in buffer pH 

4.6 and B) in buffer pH 7. 

Conformation of peptide 7 in the Soff state in TFE 

TFE is commonly used as a co-solvent in protein folding studies, this solvent can effectively 

solubilize both peptides and proteins and it is known that, depending upon its concentration, TFE 

can strongly affect the three-dimensional structure of proteins and facilitates helix formation by 

affecting hydrophobic interactions. 

It is noteworthy that in the presence of TFE alone (20-100%), the conformation of peptide 7 is 

not affected and the peptide still forms predominantly β-sheet rich fibrillar aggregates (Figure 

84).  

It confirms that the helix nucleating template is necessary to enable peptide 7 to undergo a 

conformational transition from β-sheet to α-helix. 

 

Figure 84. CD spectrum (A) and negatively stained electron micrograph (B) of peptide 7 dissolved 

directly in 100 % TFE 
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6.4. Conclusion and perspective 

 

Using peptide 7, we were able to investigate the feasibility of disrupting amyloid formation 

through controlled induction of β-sheet to α-helix transformation of the self-assembled peptides 

within the amyloid structure. The experimental data offer new insights into the stability and 

structural properties of amyloid fibrils.  

Our studies support the dynamic structure of amyloid133, 134, 151 and demonstrate that significant 

structural rearrangements can take place within the β-sheet structure of amyloid fibrils. 

Furthermore, these studies demonstrate for the first time that structural changes in polypeptide 

regions140 that are not involved in amyloid formation could have significant impact on the 

stability and structural dynamics of amyloid fibrils.  

Developing tools to disrupt and/or reverse β-sheet based self-assembly have important 

implications for understanding the mechanisms of protein aggregation and clearance in vivo and 

the development of therapeutic strategies aimed at preventing/reversing amyloid formation.  

The ability to control the structure and morphology of the aggregates formed by peptide 7 

suggest that engineering specific switch elements and/or structure templating motifs within 

amyloid forming proteins and peptides could provide the necessary means to correlate structural 

differences between the different amyloid morphologies with toxicity.  
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Chapter III. Experimental part 

1. Instrumentation and general methods 

Reagents and solvents 

Solvents and reagents were purchased from Fluka (Buchs, Switzerland), Sigma-Aldrich Chemie 

GmbH (Steinheim, Germany) or Acros (Geel, Belgium). Amino acids derivatives, resins and 

coupling reagents were obtained by Calbiochem-Novabiochem (Läufelfingen, Switzerland), 

Bachem Fine Chemicals (Bubendorf, Switzerland) or Alexis (Läufelfingen, Switzerland). DMF 

for peptide synthesis was purchased from SdS (Peypin, France) and degassed with nitrogen 

before use. Acetonitrile for analytical and preparative HPLC was obtained from Biosolve BV 

(Valkenswaard, Netherlands). Water used for HPLC was a Milli-Q quality, collected after 

passing through a Millipore Milli-Q purification system (Volketswil, Switzerland). 

Trifluoroacetic acid used for HPLC was purchased from Baker AG (Basel, Switzerland). 

 

Chromatography 

Analytical reversed-phase HPLC spectra were recorded on a Waters system (Waters 

Corporation, Milford, MA, USA) consisting of two Waters 600 pumps, a Waters 600 System 

Controller, a Waters 486 Tunable Absorbance Detector and a printer Waters 746, using columns 

packed with Vydac Nucleosil 218TP54 C18 particles (250 x 4.6 mm), or 208TP54 C8 particles 

(250 x 4.6 mm). Flow rates of 1 mL/min were used and the UV absorbance was monitored at 

214 nm. All gradients were linear in eluent A (0.09% TFA in 90% aqueous acetonitrile) and 

eluent B (0.09% TFA in water). 

 

Preparative HPLC purifications were performed on a Waters Delta Prep 3000 System, with a 

Waters 600E System Controller and a Waters 484 Absorbance Detector, with Vydac Nucleosil 

218TP152050R C18 particles (5 x 25 cm). Flow rates of 80 mL/min were used and the UV 

absorbance was monitored at 214 nm. All gradients were linear in eluent A (0.09% TFA in 90% 

aqueous acetonitrile) and eluent B (0.09% TFA in water). 
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Semi-Preparative HPLC purifications were performed on a Waters Delta Prep 3000 System, with 

a Waters 600E System Controller and a Waters 484 Absorbance Detector, with Vydac Nucleosil 

218TP152050R C18 particles (22mm), or 208TP1022 C8 particles (2.2 x 25cm). Flow rates of 18 

mL/min were used and the UV absorbance was monitored at 214 nm. All gradients were linear in 

eluent A (0.09% TFA in 90% aqueous acetonitrile) and eluent B (0.09% TFA in water). 

For column chromatography, silica gel SiO2 merck 60 (0.040 – 0.063 mm, 230 – 400 Mesh) was 

used. 

 

Mass spectroscopy 

Electrospray ionization (ESI-MS) mass spectra were recorded on a Finnigan MAT SSQ 710 C 

spectrometer equipped with an IBM PS1295XP486 (software Technivent Vector II) in positive 

ionization mode with CH3CN/H2O/CH3COOH 50:50:1 as solvent. 

Whenever mass was higher than 2000 g/mol, mass was performed on a matrix-assisted laser 

desorption/ionization time of flight mass spectrometer MALDI-TOF Axima-CFR Shimadzu. All 

spectra were acquired in the reflectron mode or linear mode using α-cyano matrix. 

 

Circular Dichroism (CD) spectroscopy 

CD spectra were recorded on a JASCO J-810 spectropolarimeter using a bandwidth of 1nm, a 

data pitch of 0.5 nm, step scanning mode, a response of 0.25 sec and an accumulation of 2. 

Spectra were recorded from 195 nm to 250 nm using Time course or Interval scan measurements 

and a 0.1 cm cuvette.  

 

Electron Microscopy (EM) 

5 µL aliquots of switch-peptide solutions were adsorbed for two minutes on a carbon-coated 

200-mesh copper grid and stained with a solution of 2% uranyl acetate for 1min. After removal 

of excess liquid by blotting with filter paper, specimens were examined in a JOEL 1210 electron 

microscope, operated at 100 kV. Digitized photographs were recorded with a slow scan CCD 

camera (Gatan, Model 679). Magnification calibration was performed using catalase crystals. 
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Thioflavin T fluorescence assay (ThT) 

Fibril formation was monitored by a thioflavin T (ThT) (Sigma) fluorescence assay. Readings 

were carried out at a final protein and Th T concentration of 10µM, made up in a final volume of 

100µl of 50mM Glycine-NaOH buffer (pH 8.5).  

Th T fluorescence measurements were recorded on an Analyst Fluorescence instrument (LJL 

Biosystems, Sunnyvale CA, U.S.A) at an excitation and emission wavelength of 450 nm and 485 

nm, respectively. The relative fluorescence at 485 nm was used as a measure of the amount of 

fibrillar aggregates formed in solution. All samples were analysed in triplicates and corrected for 

the fluorescence level of the studied peptide at time 0. Data were plotted using Microcal Origin. 
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2. Solid-Phase Peptide Synthesis 

General 
 
The syntheses were carried out manually in a cylindrical vessel with a fritted disc and a 

removable lid equipped with a mechanical stirrer. Before each synthesis, silylation overnight of 

the glassware with a 25% solution of dichlorodimethylsilane in dry toluene is required to 

improve the surface hydrophobicity and prevents the beads from sticking to the wall of the 

vessel. The resin should be swollen with DCM for at least one hour and DMF degassed for at 

least 2 hours. Standard procedures of solid phase peptide synthesis using the Fmoc/tBu strategy 

were performed using 2-chlorotrityl, Rink amide MBHA, pre-loaded NovasynTGA  or Sieber 

amide resins. 

Coupling reaction 
 
For a standard coupling, 2 eq of Fmoc-Xaa-OH and 2eq of PyBOP were first dissolved in 

degassed DMF and added to the resin, 4 eq of DIPEA were then added to the vessel. Coupling 

reaction time varied from 30 min to 60 min. Some other couplings were performed with HATU, 

and the number of equivalents increased to 4 eq. 

Esterification method 
 
3 eq of Fmoc-Ala-OH, Fmoc-Phe-OH, Fmoc-Val-OH, Fmoc-Gly-OH or Fmoc-Leu-OH and 0.1 

eq of DMAP were dissolved in a mixture of DCM/DMF (4:1) and added to the resin, 3 eq of 

DIC were then added to the vessel. After 2 hours, a cleavage test was performed and the extent 

of esterification controlled by HPLC. If completion was not achieved, a second or third 

esterification was performed. 

Fmoc deprotection 
 
The Fmoc group was usually removed by treating the resin with a solution of 20% piperidine in 

DMF (2x10min). In switch-peptide 21 synthesis, a mixture of 2% DBU and 5% piperidine in 

DMF (2x5min) was sometimes used to avoid incomplete deprotection. When Rink amide 
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MBHA resin is used, the first Fmoc-group was removed with a solution of 20% piperidine in 

DMF for 5x2min and 1x10min. 

Colorimetric tests 
 
Kaiser test 
 
Solution 1: 1 g ninhydrin in 20 mL of ethanol. 
Solution 2: 80 g phenol in 20 mL of ethanol. 
Solution 3: 2 mL 0.001 M aqueous KCN in 98 mL of pyridine.  
 
A few resin beads were placed in a small test tube and 2 drops of each solution were added. The 

tube was then heated to 100°C for 3 min. A positive test is indicated by the presence of blue 

resin beads. 

Chloranil test 
 
Solution 1: 2% acetaldehyde in DMF. 
Solution 2: 2% chloranil in DMF. 
 
A few resin beads were placed in a small test tube and 2 drops of each solution were added. The 

mixture was then left at room temperature for 5 min and the beads inspected. A positive test is 

indicated by the presence of blue resin beads. 

Acetylation 
 
20 eq of acetic anhydride and 10 eq of pyridine in DMF were added to the resin and the reaction 

was carried out for 30 min. 

Cleavage of peptide from the resin 
 
The resin was treated with a solution of TFA/TIS/H2O 95:2.5:2.5 twice for 1 hour or, in the case 

of Sieber amide resin, with 1% TFA in DCM for 1 hour. 

After washing with TFA and MeOH, the solvents were evaporated under high vacuum and the 

peptides were precipitated with cold diethyl ether. After centrifugation, the peptides were 

purified by preparative or semi-preparative HPLC.  
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Sieber amide resin was washed with DCM alone. Toluene was added to the solution in order to 

get rid of TFA via an azeotrope. The peptide was then precipitated with cold ether, centrifuged, 

and purified by preparative HPLC. 

Small cleavage assays 
 
Small cleavage assays were performed at different stages during solid phase synthesis in order to 

check the correct evolution of the synthesis. For this purpose, a few beads of resin were treated 

with a solution of TFA/TIS/H2O 95:2.5:2.5 for 30 min. After filtration through a Millex Syringe 

Driven Filter Unit 0.22 µm and precipitation in cold diethyl ether, the samples were analyzed by 

mass spectrometry and HPLC.  

3. Synthesis 

3.1. Building block synthesis 

Fmoc-Leu-(Boc)Ser-OBzl1 (1) 

HN

O

O

H
N

O

O

O

O

O

O

 1 

Fmoc-Leu-OH (1 g, 2.83 mmol) and Boc-Ser-OH (0.84 g, 2.83 mmol) were dissolved in 25 mL 

DCM, DIC and DMAP were added to the solution. After stirring over night, the mixture was 

washed successively with 5% citric acid, 10% NaOH and brine and dried over CaCl2. After 

removal of the solvent, the colorless oil was purified by column chromatography 

                                                
1 We follow the proposed nomenclature for depsipeptides. See: S. V. Filip, F. Cavelier, J. Pept. 
Sci. 2004, 10, 115-118.  
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(Hexane/EtOAc 3:1) to give 1 as a white powder (1.55 g, 86%, C36H42N2O8, MW = 630.73 

g/mol). 

ESI MS: (m/z) 531.33 [M-Boc + H]+, 631.32 [M + H]+. 

HPLC: Rt = 30 (C18 0 to 100 A in 30 min). 

1H-NMR: (400MHz, CDCl3), d (ppm) 0.94 (dd, 6H, 2CH3-Leu), 1.28 (t, 2H, CH2-Leu), 1.44 (s, 

9H, (CH3)3-Boc), 1.58 (m, 1H, CH-Leu).  

 

Fmoc-Leu-(Boc)Ser-OH (2) 

HN

O

O

H
N

OH

O

O

O

O

O

 2 

To a solution of Fmoc-Leu-(Boc)Ser-OBzl (500 mg, 0.79 mmol) in 30 mL MeOH was added 50 

mg Pd on activated charcoal. A stream of H2 mixed with N2 was continuously bubbled through 

the mixture with stirring and after 2h at room temperature, the mixture was passed through celite, 

washed with MeOH, and evaporated under vacuum to give a white powder that was purified by 

preparative-HPLC and yielded 2 as a white powder (340 mg, 80%, C29H36N2O8), MW = 540.25 

g/mol). 

ESI MS: (m/z) 441.35 [M-Boc + H]+, 541.30 [M + H]+. 

HPLC: Rt = 13.9 (C18 50 to 85 A in 20 min). 

 

NVOC-Ser-OBzl (3) 

OH

H
N

O

O

O

O

NO2

O

O

     3 
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H-Ser-OBzl (1.18 g, 5.08 mmol) and DIEA (1.66 mL, 10.16 mmol, 2 eq) were dissolved in 20 

mL DCM. NVocCl (1.2 g, 5.08 mmol) were added to the solution. After stirring 30 min, the 

mixture was diluted with 60 mL DCM, washed twice with 1N HCl, dried over MgSO4, filtered 

and dried under vacuun to give an orange solid that was pure by HPLC (1.78 g, 94%, 

C20H22N2O9, MW = 434.40 g/mol). 

ESI-MS: (m/z) 435.17 [M + H]+. 

HPLC: Rt = 20.9 min (C18, 0 to 100% A in 30 min). 

 

Fmoc-Gly-(NVOC)Ser-OBzl (4) 

HN

O

O

H
N

O

O

O

O

O

O

NO2

O

O

4 

Fmoc-Gly-OH (1.16 g, 3.9 mmol), NVOC-Ser-OBzl (1.7 g, 3.9 mmol) and DMAP (47 mg, 0.39 

mmol, 0.1 eq) were suspended in 15 mL DCM and EDCI (900 mg, 4.6 eq) was added and all 

contents fully dissolved. After stirring 1.5h, the mixture was chilled and filtered to remove the 

urea byproduct then diluted with DCM and washed successively with 5% citric acid, 5% 

NaHCO3 and Brine. Drying over MgSO4 and removal of solvent yielded 4 as an orange powder 

(2.7 g, quantitative, C37H35N3O12, MW = 713.22 g/mol). 

ESI-MS: (m/z) 714.34 [M + H]+, 731.32 [M + H2O]+. 

HPLC: Rt = 28 (C18 0 to 100% A in 30 min) 

 

Fmoc-Gly-(NVOC)Ser-OH (5) 
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HN

O

O

H
N

OH

O

O

O

O

O

NO2

O

O

    5 

Fmoc-Gly-(NVOC)Ser-OBzl (2 g, 2.8 mmol) was dissolved in 20 mL THF. N2 atmosphere was 

applied for 15 min and then, 0.2 g Pd on activated charcoal were added to the solution. A stream 

of H2 was continuously bubbled through the mixture with stirring and after 24h at room 

temperature, the mixture wash flushed with N2 for 5 min, passed through celite and evaporated 

under vacuum to give 5 as an orange powder that was pure by HPLC (1.56 g, 90%, C30H29N3O12, 

MW = 623.56 g/mol). 

ESI-MS: (m/z) 624.52 [M + H]+, 641.56 [M + H2O]+. 

HPLC: Rt = 22.8 (C18 0 to 100% A in 30 min) 
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3.2. Synthesis of switch-peptides of amyloid β  fibril disrupting potential 

Synthesis of the dipeptides Ac-Leu-Cys(ΨMe,Mepro)-OH and Ac-Leu-Cys(ΨH,Hpro)-OH 

 Pseudo-proline H-Cys(ΨMe, Mepro)-OH (10) 

L-cysteine hydrochloride (2 g, 11.4 mmol, 1eq) was suspended in 160 mL of acetone. After 

addition of 36 mL (318.8 mmol, 14eq) of dimethoxypropane, the suspension was stirred and 

heated to reflux for 2h. The reaction mixture was cooled down, filtered to yield 10 as a white 

powder (1.85 g, quantitative). 
1H NMR (400 MHz, d6-DMSO): δ (ppm) 1.74 (s, 6H, CH3); 3.40 (dd, 1H, Hb); 3.53 (dd, 1H, 

Hb’); 4.90 (t, 1H, Ha) 

 

 Pseudo-proline H-Cys(ΨH, Hpro)-OH (11) 

L-cysteine hydrochloride (3.5 g, 20 mmol, 1eq) and 4 mL of 40% formaldehyde were left 

overnight at room temperature in 10 mL water. Addition of 10 mL of absolute EtOH and 6 mL 

of pyridine gave crystals which were collected, washed with EtOH and Et2O, and air-dried to 

give 1.9 g (72%) of 11 as a white powder. 
1H NMR (400 MHz, d6-DMSO): δ (ppm) 3.22 (dd, 1H, Hb1); 3.29 (dd, 1H, Hb2); 3.53 (dd, 1H, 

Hb’); 4.25 (t, 1H, Ha); 4.6 (s, 2H, CH2) 

 

Activated Ac-Leu-F (12) 

To a suspension of Ac-Leu-OH (840 g, 4.85 mmol) in 20 mL DCM, was added droppwise under 

nitrogen,  720 µL (5.81 mmol, 1.2 eq) of DAST. The reaction mixture was stirred for 15 min at 

room temperature. The solution was then extracted rapidly with iced water and the organic phase 

dried over MgSO4. The resulting Ac-Leu-F was immediately used for the next coupling reaction. 

 

Dipeptide Ac-Leu-Cys(ΨMe,Mepro)-OH (13) 

To the reactive Ac-Leu-F (4.85 mmol, 1eq) in DCM was added 790 mg of compound 10 (4.85 

mmol) and 1.6 mL (9.7 mmol, 2 eq) of DIEA. The reaction was stirred at room temperature for 

one hour and the solvent was evaporated. The crude was then purified by preparative HPLC 

(C18, 0 to 100% A in 30 min) to yield 13 as a white powder (554 mg, 36%). 
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Dipeptide Ac-Leu-Cys(ΨH,Hpro)-OH (14) 

To the reactive Ac-Leu-F (4.85 mmol, 1eq) in DCM was added 645 mg of compound 11 (4.85 

mmol) and 1.6 mL (9.7 mmol, 2 eq) of DIEA. The reaction was stirred at room temperature for 

one hour and the solvent was evaporated. The crude was then purified by preparative HPLC 

(C18, 10 to 30% A in 30 min) to yield 14 as a white powder (556 mg, 40%).   

 

Synthesis of β-breaker switch-peptides 

All β-breakers were synthesized on a Sieber amide MBHA resin (loading 0.71 mmol/g). Each 

coupling was performed with 2 eq of PyBop and 4 eq of DIEA, except for the last coupling 

where PyBop was replaced by HATU. After each coupling, the resin washed with DMF and 

DCM and Kaiser test was performed. Fmoc group was removed with a solution of 20% 

piperidine in DMF. The switch element was constructed by first coupling Boc-Ser-OH without 

side-chain protection. Fmoc-Ala-OH was then coupled via an ester bond to the free side-chain of 

Ser with DIC (46 µL; 3 eq) and DMAP (6 mg; 0.5 eq). 

After coupling of the dipeptide building block containing pseudoproline, the peptide was cleaved 

from the resin with a solution of 1% TFA in DCM (5*10 min). After each cleavage cycle, the 

filtrate is collected in a flask containing 50 mL of toluene. After the last cycle, the solvent is 

evaporated and the peptide is precipitated with cold diethylether, centrifuged and washed 3 times 

with cold ether. The peptide was then redissolved in a mixture of water/acetonitrile and 

lyophilized.  

 

Synthesis of Ac-Leu-Cys(ΨMe,Mepro)-Ala-(H+)Ser-Phe-Phe-Asp-NH2 (15) 

 

Sieber amide resin: 0.10 mmol; 150 mg (loading 0.71 mmol/g) 

Amino Acids MW Quantity (mg) 

No.of equivalents 

Coupling 

time (min) 

Remarks 

Fmoc-Asp(t-Bu)-OH 411.5 83/ 2 eq  60  Kaiser (-) 

Fmoc-Phe-OH 387 78/ 2 eq 60  Kaiser (-) 

Fmoc-Phe-OH 387 78/ 2 eq 60  Kaiser (-) 

Boc-Ser-OH 474 41/ 2 eq  60  Kaiser (-) 

Fmoc-Ala-OH 311 94/ 3 eq 2*120  esterification 

Ac-Leu-Cys(ΨMe,Mepro)-OH 316 50/ 2 eq 160   
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Cleavage of protecting groups 

The crude peptide was suspended in a solution of TFA/DCM/TIS/H2O (50/40/5/5) 50 mL for 

1h30. 50 mL of toluene was added to the reaction to facilitate the removal of TFA and thus 

prevent pseudoproline opening. After evaporation, few drops of DCM were added to the flask 

and the peptide was precipitated with diethylether. Purification by preparative HPLC (0 to 100% 

A in 30 min) yielded 15 as a white powder (13 mg; 15%). 

ESI-MS: (m/z) 883.20 [M + H]+. 

HPLC: Rt = 20.5 (C18 0 to 100% A in 30 min). 

 

Synthesis of Ac-Leu-Cys(ΨH,Hpro)-Ala-(H+)Ser-Phe-Phe-Asp-NH2 (16) 

 

Sieber amide resin: 0.13 mmol; 240 mg (loading 0.55 mmol/g) 

Amino Acids MW Quantity (mg) 

No.of equivalents 

Coupling 

time (min) 

Remarks 

Fmoc-Asp(t-Bu)-OH 411.5 107/ 2 eq  60  Kaiser (-) 

Fmoc-Phe-OH 387 100/ 2 eq 60  Kaiser (-) 

Fmoc-Phe-OH 387 100/ 2 eq 60  Kaiser (-) 

Boc-Ser-OH 474 53/ 2 eq  60  Kaiser (-) 

Fmoc-Ala-OH 311 128/ 3 eq 2*120  esterification 

Ac-Leu-Cys(ΨMe,Mepro)-OH 288 74/ 2 eq 160   

 

Cleavage of protecting groups 

The crude peptide was suspended in a solution of TFA/DCM/TIS/H2O (60/30/5/5) 50 mL for 2h. 

50 mL of toluene was added to the reaction to facilitate the removal of TFA and thus prevent 

pseudoproline opening. After evaporation, few drops of DCM were added to the flask and the 

peptide was precipitated with diethylether. Purification by preparative HPLC (0 to 100% A in 30 

min) yielded 16 as a white powder. 

ESI-MS: (m/z) 855.36 [M + H]+. 

HPLC: Rt = 15.7 (C18 0 to 100% A in 30 min). 
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Synthesis of Ac-Leu-Cys(ΨMe,Mepro)-Ala-(H+)Ser-(NMe)Phe-Phe-Asp-NH2 (17) 

 

Sieber amide resin: 0.23 mmol; 440 mg (loading 0.55 mmol/g) 

Amino Acids MW Quantity (mg) 

No.of equivalents 

Coupling 

time (min) 

Remarks 

Fmoc-Asp(t-Bu)-OH 411.5 189/ 2 eq  60  Kaiser (-) 

Fmoc-Phe-OH 387 178/ 2 eq 60  Kaiser (-) 

Fmoc-(NMe)Phe-OH 387 185/ 2 eq 60  HATU/ Kaiser (-) 

Boc-Ser-OH 474 94/ 2 eq  60  HATU/ Kaiser (-) 

Fmoc-Ala-OH 311 230/ 3 eq 2*120  esterification 

Ac-Leu-Cys(ΨMe,Mepro)-OH 316 145/ 2 eq 120  

 

Cleavage of protecting groups 

The crude peptide was suspended in a solution of TFA/DCM/TIS/H2O (50/40/5/5) 50 mL for 

1h30. 50 mL of toluene was added to the reaction to facilitate the removal of TFA and thus 

prevent pseudoproline opening. After evaporation, few drops of DCM were added to the flask 

and the peptide was precipitated with diethylether. Purification by preparative HPLC (0 to 100% 

A in 30 min) yielded 17 as a white powder. 

ESI-MS: (m/z) 897.80 [M + H]+. 

HPLC: Rt = 18.2 (C18 0 to 100% A in 30 min). 

 

 

Synthesis of Ac-Leu-Cys(ΨH,Hpro)-Ala-(H+)Ser-(NMe)Phe-Phe-Asp-NH2 (18) 

 

Sieber amide resin: 0.14 mmol; 255 mg (loading 0.55 mmol/g) 

Amino Acids MW Quantity (mg) 

No.of equivalents 

Coupling 

time (min) 

Remarks 

Fmoc-Asp(t-Bu)-OH 411.5 115/ 2 eq  60  Kaiser (-) 

Fmoc-Phe-OH 387 108/ 2 eq 60  Kaiser (-) 

Fmoc-(NMe)Phe-OH 387 112/ 2 eq 60  Kaiser (-)/ HATU 

Boc-Ser-OH 474 58/ 2 eq  60  Kaiser (-)/ HATU 

Fmoc-Ala-OH 311 138/ 3 eq 2*120  esterification 
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Ac-Leu-Cys(ΨH,Hpro)-OH 288 80/ 2 eq 120  

 

Cleavage of protecting groups 

The crude peptide was suspended in a solution of TFA/DCM/TIS/H2O (60/30/5/5) 50 mL for 2h. 

50 mL of toluene was added to the reaction to facilitate the removal of TFA and thus prevent 

pseudoproline opening. After evaporation, few drops of DCM were added to the flask and the 

peptide was precipitated with diethylether. Purification by preparative HPLC (0 to 100% A in 30 

min) yielded 18 as a white powder (20 mg; 16%). 

ESI-MS: (m/z) 869.37 [M + H]+. 

HPLC: Rt = 16.5 (C18 0 to 100% A in 30 min). 

 

Synthesis of Ac-Leu-Cys(ΨMe,Mepro)-Ala-(Arg-Pro)Ser-(NMe)Phe-Phe-Asp-NH2 (19) 

 

Sieber amide resin: 0.23 mmol; 440 mg (loading 0.55 mmol/g) 

Amino Acids MW Quantity (mg) 

No.of equivalents 

Coupling 

time (min) 

Remarks 

Fmoc-Asp(t-Bu)-OH 411 189/ 2 eq  60  Kaiser (-) 

Fmoc-Phe-OH 387 178/ 2 eq 60  Kaiser (-) 

Fmoc-(NMe)Phe-OH 387 185/ 2 eq 60  Kaiser (-)/ 

HATU 

Boc-Ser-OH 474 94/ 2 eq  60  Kaiser (-)/ 

HATU 

Fmoc-Pro-OH 337 155/ 2 eq 60  

Boc-Arg(Boc)2-OH 474 218/ 2 eq 60  

Fmoc-Ala-OH 311 230/ 3 eq 2*120  esterification 

Ac-Leu-Cys(ΨMe,Mepro)-OH 316 145/ 2 eq 120  

 

Cleavage of protecting groups 

The crude peptide was suspended in a solution of TFA/DCM/TIS/H2O (50/40/5/5) 50 mL for 

1h30. 50 mL of toluene was added to the reaction to facilitate the removal of TFA and thus 

prevent pseudoproline opening. After evaporation, few drops of DCM were added to the flask 
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and the peptide was precipitated with diethylether. Purification by preparative HPLC (0 to 100% 

A in 30 min) yielded 19 as a white powder (42 mg; 18%). 

ESI-MS: (m/z) 1150 [M + H]+, 576 [M + 2H]2+ 

HPLC: Rt = 17 (C18 0 to 100% A in 30 min). 
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3.3. Switch-Peptide 7 

Ac-Lys-Ala-Arg-Ala-Asp-Ala-O

H-Ser-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-NH2

       7 

 

The peptide was prepared by stepwise solid-phase synthesis (SPPS) using Fmoc/tBu protection 

and Rink amide resin that was preswollen with dichloromethane (DCM) for 30 min. Standard 

amide couplings involved dissolving 2.5 equivalents Fmoc-amino acid with equimolar amounts 

of PyBOP and collidine in DMF and stirring five minutes. The preactivated mixture was added 

to the resin swollen in DMF, together with an equimolar amount of DIEA. Coupling reaction 

times were in the range of 30-90 min and completeness of the couplings was verified by Kaiser 

test with repeat couplings performed if needed. To effect Fmoc cleavage, the peptide-resin was 

treated with a 20% solution of piperidine in DMF (2 x 10 min) and then washed with DMF (3X) 

and DCM (3x). 

Resin cleavage: The peptide-resin was treated with a solution of TFA/TIS/H2O/DODT (95:2:2:1) 

2 x 1 h. Following evaporation of the bulk of the TFA with a stream of dry nitrogen, the peptide 

was precipitated by the addition of cold ether, collected by filtration, and washed repeatedly with 

cold ether. 

 

Fmoc-Ala-(Boc)Ser-OBzl: Fmoc-Ala-OH (200 mg, 0.64 mmol), Boc-Ser-OBzl (190 mg, 0.64 

mmol), and DMAP (8.0 mg, 0.064 mmol) were combined in 5 mL DCM with a few drops of 

DMF added to fully dissolve the contents and DIC (0.10 mL, 0.64 mmol) was added. After 

stirring 1 h, the mixture was chilled and filtered to remove the urea byproduct then diluted with 

30 mL DCM and washed successively with 5% citric acid, 5% NaHCO3, and brine. Drying with 

MgSO4 and removal of solvent yielded a colorless oil that was purified by column 

chromatography (EtOAc/hexane 4:6) to yield 7 as a white powder (260 mg, 70%, C33H36N2O8, 

m/z calculated: 588.65).  

ESI-MS: (m/z) 489.38 [M – Boc + H]+, 589.38 [M + H]+. 

HPLC: Rt = 29.1 (C18, 5 to 95% A in 30 min). 
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Fmoc-Ala-(Boc)Ser-OH: To a solution of Fmoc-Ala-(Boc)Ser-OBzl (200 mg, 0.34 mmol) in 10 

mL MeOH, 10 mg Pd on activated charcoal was added. A stream of H2 mixed with N2 was 

continuously bubbled through the mixture with stirring and after 1 h at room temperature, the 

mixture was passed through celite and evaporated under vacuum to yield a white powder that 

was pure by HPLC (168 mg, quant., C26H30N2O8, m/z calculated: 498.53).  

ESI-MS: (m/z) 398.84 [M – Boc]. 

HPLC: Rt = 24.0 (C18, 5 to 95% A in 30 min). 

 

Fmoc-[(cyclo-1-5)-Lys-Ala-Arg(Pbf)-Ala-Asp]-OH: Synthesis of peptide I started by the 

preparation of the N-cap protected lactam-bridged pentapeptide that could be used as building 

block in SPPS. This was accomplished using the method developed by Shepherd et al [15b]. The 

solid phase synthesis of a lactam-bridged peptide requires an orthogonal protection of the side 

chains to be cyclized. In Fmoc/tBu SPPS, this need is met by the use of Alloc/Allyl, which is 

removed by Pd0 catalyzed reduction. The peptide is constructed and cyclized on a highly acid 

labile support. Cleavage can then be performed under mild acidic conditions to give a peptide 

fragment that is fully protected and contains a free acid at the C-terminus. 

 

Peptide 7: The fibril-forming peptide HQKLVFFAEDVG was assembled on Rink amide resin 

(0.60 mmol/g, 0.30 g, 0.18 mmol), using automated synthesis, a glycine residue was included at 

the C-terminal end to serve as a spacer. The switch-element was introduced by manually 

coupling the depsidipeptide Fmoc-Ala-(Boc)Ser-OH. After Fmoc removal, the N-capping 

template Fmoc-(cyclo-1-5)-KARAD-OH was coupled manually to give Fmoc-[(cyclo-1-5)-

KARAD]A-S1-HQKLVFFAEDVG-NH2 where S1 = (+H)Ser. As both the N-cap and the switch-

element were introduced as building blocks, all couplings were PyBOP mediated amide 

couplings, and the synthesis was straightforward. Following Fmoc deprotection, the peptide was 

treated with an excess of Ac2O and pyridine in DMF for 1 h. Cleavage from the resin and 

purification by semi-preparative HPLC (C8, 10 to 60% A, 30 min) afforded the desired peptide I 

as a white powder with > 95% purity (12 mg, C95H146N28O27, m/z calculated: 2112.35).  

ESI-MS: (m/z) 1056.86 [(M + 2H)/2]+, 704.81 [(M + 3H)/3]+, 529.31 [(M + 4H)/4]+.  

HPLC: Rt = 5.93 (C18, 0 to 30% A in 10 min). 
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Amino Acids Coupling 

No. 

Quantity (mg) 

No.of equivalents 

Coupling 

time (min) 

Remarks 

Fmoc-Gly-OH 1 (134/ 2.5 eq)  2 x 30   

Fmoc-Val-OH 2 (153/ 2.5 eq) 2 x 30   

Fmoc-Asp(OtBu)-OH 3 (185/ 2.5 eq) 2 x 30  

Fmoc-Glu(OtBu)-OH 4 (200/ 2.5 eq)  2 x 30  

Fmoc-Ala-OH.H2O 5 (148/ 2.5 eq) 2 x 30  

Fmoc-Phe-OH 6 (174/ 2.5 eq) 2 x 30  

Fmoc-Phe-OH 7 (174/ 2.5 eq) 2 x 30   

Fmoc-Val-OH 8 (153/ 2.5 eq) 2 x 30  

Fmoc-Leu-OH 9 (159/ 2.5 eq) 2 x 30  

Fmoc-Lys(Boc)-OH 10 (211/ 2.5 eq) 2 x 30  

Fmoc-Gln(Trt)-OH 11 (275/ 2.5 eq) 2 x 30  

Fmoc-His(Trt)-OH 12 (279/ 2.5 eq) 2 x 30 Kaiser (-) 

Fmoc-Ala-(Boc)Ser-OH 13 (302/ 3.0 eq) 90 manual coupling 

Kaiser (-) 

Fmoc-[(cyclo-1-5)-Lys-

Ala- 

Arg(Pbf)-Ala-Asp]-OH 

14 (260/ 1.5 eq) 180 manual coupling 

Kaiser (-) 
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3.4. Host-Guest Switch-Peptide 8 

H-Arg-Pro-Ser-Glu-Asp-Val24-Ser-Leu-Gly-NH2

Ac-Ser-Leu-Ser-Leu-14His-Gln-Lys-Leu-Val-Phe-Phe-O

         8 

 

The amyloid derived host guest switch-peptide 8 was assembled on 500 mg of Rink amide 

MBHA resin (loading 0.64 mmol/g) by Dr. Sonia Dos Santos within her PhD Thesis. 

Each coupling was performed with 2 eq of PyBop and 4 eq of DIEA. After each coupling, the 

resin  was washed with DMF and DCM and a Kaiser test was performed after each step. Fmoc 

group was removed with a solution of 20% piperidine in DMF. The switch element was 

constructed by first coupling Fmoc-Ser-OH without side protection followed by Fmoc-Pro-OH 

and Boc-Arg(di-Boc)-OH which were coupled normally. Fmoc-Phe-OH was then coupled via an 

ester bond to the free side chain of the Ser21 with DIC (3eq) and DMAP (0.5eq).  Colorimetric 

tests were negative all along the synthesis and cleavage tests assays indicated the correct 

evolution of the synthesis. 

After deprotection of the last Fmoc group and acetylation of the N-terminus, the peptide was 

cleaved from the resin with a solution of TFA/TIS/H20 (95/2.5/2.5) for 2 x 1h and thereafter, 

precipitated in cold diethylether. The crude peptide was purified by preparative HPLC (C18, 0 to 

60% A in 30 min) to give in a white powder (220 mg, 30%). 

HPLC: Rt = 16.4 (C18, 0 to 100% A in 30 min) 

MALDI-TOF: m/z = 2300 [M+H]+ 

 

Amino Acids Quantity (mg), eq 
Coupling 

time (min) 
Test 

Fmoc-Gly-OH 191/ 2eq 60 Kaiser (-) 
Fmoc-Leu-OH 226/ 2eq 60 Kaiser (-) 

Fmoc-Ser(tBu)-OH 245/ 2eq 60 Kaiser (-) 
Fmoc-Leu-OH 226/ 2eq 60 Kaiser (-) 

Fmoc-Ser(OH)-OH 210/ 2eq 30 Kaiser (-) 
Fmoc-Val-OH 217/ 2eq 60 Kaiser (-) 

Fmoc-Asp(tBu)-OH 264/ 2eq 60 Kaiser (-) 
Fmoc-Glu(tBu)-

OH.H2O 284/ 2eq 60 Kaiser (-) 

Fmoc-Ser(OH)-OH 210/ 2eq 30 Kaiser (-) 
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Fmoc-Pro-OH 228/ 2eq 30 Kaiser (-) 

Boc-Arg(di-Boc)-OH 304/ 2eq 30 

Cleavage 
HPLC (C18, 0 → 

100%A): Rt = 12.2 
min 

ESI-MS : m/z = 958 
[M+H]+, 

480 [M+2H]2+ 

Fmoc-Phe-OH 372/ 3eq 2x120 

Cleavage 
HPLC (C18, 0 → 

100%A): Rt = 20.9 
min 

ESI-MS : m/z = 1327 
[M+H]+, 

664 [M+2H]2+ 
Fmoc-Phe-OH 248/ 2eq 60 Kaiser (-) 
Fmoc-Val-OH 217/ 2eq 60 Kaiser (-) 
Fmoc-Leu-OH 226/ 2eq 60 Kaiser (-) 

Fmoc-Lys(Boc)-OH 300/ 2eq 60 Kaiser (-) 
Fmoc-Gln(Trt)-OH 391/ 2eq 60 Kaiser (-) 
Fmoc-His(Trt)-OH 397/ 2eq 60 Kaiser (-) 

Fmoc-Leu-OH 226/ 2eq 60 Kaiser (-) 
Fmoc-Ser(tBu)-OH 245/ 2eq 60 Kaiser (-) 

Fmoc-Leu-OH 226/ 2eq 60 Kaiser (-) 
Fmoc-Ser(tBu)-OH 245/ 2eq 60 Kaiser (-) 
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3.5. Host-Guest Switch-Peptide 9 

Ac-Ser-Leu-O

H-Ser-Leu-14His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val24-O

H-Ser-Leu-Gly-NH2

      9 

The amyloid derived host guest switch-peptide 9 was assembled on 1 g of Rink amide MBHA 

resin (loading 0.66 mmol/g). 

Each coupling was performed with 2 eq of PyBop and 4 eq of DIEA. After each coupling, the 

resin was washed with NMP and DCM and a Kaiser test was performed after each step. The four 

first Fmoc groups were removed with a solution of 2% DBU/ 5% piperidine in NMP and 

thereafter with  20 % piperidine in DMF. Switch elements were constructed by first coupling 

Boc-Ser-OH without side chain protection. The next amino acid was then coupled via an ester 

bond to the free side chain of the Ser with DIC 3eq and DMAP 0.5 eq. Colorimetric tests were 

negative all along the synthesis and cleavage tests assays indicated the correct evolution of the 

synthesis. 

After deprotection of the last Fmoc group and acetylation of the N-terminus, the peptide was 

cleaved from the resin with a solution of TFA/TIS/H20 (95/2.5/2.5) for 2 x 1h and thereafter, 

precipitated in cold diethylether. The crude peptide was purified by preparative HPLC (C18, 30 to 

50% A in 30 min) to give 9 as a white powder (500 mg, 36%). 

HPLC: Rt = 16.7 (C18, 0 to 100% A in 30 min) 

ESI-MS: (m/z) 1016.84 [(M + 2H)/2]+, 678.30 [(M + 3H)/3]+, 508.78 [(M + 4H)/4]+. 

 

Amino Acids Quantity (mg), eq 
Coupling 

time (min) 
Test 

Fmoc-Gly-OH 500/ 2.5eq 30 x 2 Kaiser (-) 
Fmoc-Leu-OH 580/ 2.5eq 30 x 2  Kaiser (-) 
Boc-Ser-OH 339/ 2.5eq 30 x 2 Kaiser (-) 

Fmoc-Val-OH 672/ 3eq 120 x 2 Kaiser (-) 
Fmoc-Asp(tBu)-OH 678/ 2.5eq 30 x 2 Kaiser (-) 

Fmoc-Glu(tBu)-
OH.H2O 732/ 2.5eq 30 x 2 Kaiser (-) 
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Fmoc-Ala-OH 528/ 2.5eq 30 x 2 Kaiser (-) 
Fmoc-Phe-OH 640/ 2.5eq 30 x 2 Kaiser (-) 
Fmoc-Phe-OH 640/ 2.5eq 30 x 2 Kaiser (-) 
Fmoc-Val-OH 560/ 2.5eq 30 x 2 Kaiser (-) 
Fmoc-Leu-OH 580/ 2.5eq 30 x 2 Kaiser (-) 

Fmoc-Lys(Boc)-OH 773/ 2.5eq 30 x 2 Kaiser (-) 
Fmoc-Gln(Trt)-OH 1000/ 2.5eq 30 x 2 Kaiser (-) 
Fmoc-His(Trt)-OH 1020/ 2.5eq 30 x 2 Kaiser (-) 

Fmoc-Leu-OH 580/ 2.5eq 30 x 2 Kaiser (-) 
Boc-Ser-OH 207/ 2eq 30 x 2 Kaiser (-) 

Fmoc-Leu-OH 690/ 3eq 120 x 2 Kaiser (-) 
Fmoc-Ser(tBu)-OH 630/ 2.5eq 30 x 2 Kaiser (-) 
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3.6. Synthesis of Amyloid-β  (1-42) derived switch-peptide 22 

H-A!(1-24)-Gly-O

NVOC-Ser26-A!(27-35)-Val-O

H-Orn-Pro-Ser37-A!(38-42)-OH

22 

The synthesis was performed on 1 g of a pre-loaded Fmoc-Ala-NovaSyn TGA resin (loading 

0.20 mmol/g).  

The first Fmoc protecting group was removed with a solution of 20% piperidine in DMF (2x10 

min) and the amino acids Fmoc-Ile-OH and Fmoc-Val-OH was coupled with 2 eq of PyBOP.  

The Fmoc group was then removed with a solution of 2% DBU 5% piperidine in DMF.  

HATU was used as coupling reagent all along the synthesis (2eq or 4 eq). 

Switch element S2 at Ser37 was constructed by first coupling Fmoc-Ser-OH without side chain 

protection followed by normal coupling of Fmoc-Pro-OH and Boc-Orn(Boc)-OH. Fmoc-Val-OH 

was then coupled via an ester bond to the free side chain of the serine with DIC 3eq and DMAP 

0.5 eq. 

Switch element S1 at Ser26 was introduced by coupling the depsidipeptide Fmoc-Gly-

(NVOC)Ser-OH as a building block. 

Cleavage test assays were performed during the synthesis and analyzed by HPLC, ESI-MS or 

MALDI-TOF to check the correct evolution of the synthesis. 

 

Residue Quantity 
(mg) 

Coupling 
conditions Cleavage test remarks 

41 Fmoc-Ile-OH 141 PyBOP, 2eq, 
60min 

- 20% piperidine 

40 Fmoc-Val-OH 135 PyBOP, 2eq, 
60min 

-  

39 Fmoc-Val-OH 137 HATU, 2eq, 
60min 

-  

38 Fmoc-Gly-OH 119 HATU, 2eq, 
60min 

-  

37 Fmoc-Ser(OH)-OH 130 PyBOP, 2eq, 
60min 

-  

 Fmoc-Pro-OH.H2O 142 PyBOP, 2eq,   
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60min 

Boc-Orn(Boc)-OH 133 PyBOP, 2eq, 
60min 

Rt = 13.1 min 
756 [M+H]+ 

- 

36 Fmoc-Val-OH 
203 CDI, 3eq, 

2x120min 
Rt = 21.4 min 
1077 [M+H]+ 
539 [M+2H]2+ 

 

35 Fmoc-Met-OH 149 HATU, 2eq, 
60min 

-  

34 Fmoc-Leu-OH 
141 HATU, 2eq, 

60min 
Rt = 22.3 min 
1369 [M+H]+ 
683 [M+2H]2+ 

 

33 Fmoc-Gly-OH 119 HATU, 2eq, 
60min 

-  

32 Fmoc-Ile-OH 141 HATU, 2eq, 
60min 

-  

31 Fmoc-Ile-OH 141 HATU, 2eq, 
60min 

-  

30 Fmoc-Ala-OH.H2O 124 HATU, 2eq, 
60min 

-  

29 Fmoc-Gly-OH 119 HATU, 2eq, 
60min 

-  

28 Fmoc-Lys(Boc)-OH 187 HATU, 2eq, 
60min 

-  

27 Fmoc-Asn(Trt)-OH 
239 HATU, 2eq, 

60min 
Rt = 20.2 min 
988 [M+2H]2+ 
659 [M+3H]3+ 

 

25-26 Fmoc-Gly-    
(NVoc)Ser-OH 

374 HATU, 3eq, 
90min 

Rt = 16.9 min 
1180 [M+2H]2+ 
787 [M+3H]3+ 

- 

     

24 Fmoc-Val-OH 137 HATU, 2eq, 
60min 

-  

23 Fmoc-Asp(tBu)-OH 164 HATU, 4eq, 
60min 

Rt = 19.9 min 
 

 

22 Fmoc-Glu(tBu)-OH 170 HATU, 4eq, 
60min 

-  

21 Fmoc-Ala-OH.H2O 125 HATU, 4eq, 
60min 

-  

20 Fmoc-Phe-OH 

155 HATU, 4eq, 
60min 

 MS after Fmoc 
removal  

1349 [M+2H]2+ 
900 [M+3H]3+ 
675 [M+4H]4+ 

19 Fmoc-Phe-OH 155 HATU, 4eq, 
60min 

-  

18 Fmoc-Val-OH 
137 HATU, 4eq, 

60min 
1582 [M+2H]2+ 
1054 [M+3H]3+ 
791 [M+4H]4+- 
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17 Fmoc-Leu-OH 141 HATU, 4eq, 
60min 

  

16 Fmoc-Lys(Boc)-OH 188 HATU, 4eq, 
60min 

  

15 Fmoc-Gln(Trt)-OH 
244 HATU, 4eq, 

60min 
1769 [M+2H]2+ 
1179 [M+3H]3+ 
884 [M+4H]4+- 

 

14 Fmoc-His(Trt)-OH 248 HATU, 4eq, 
60min 

-  

13 Fmoc-His(Trt)-OH 248 HATU, 4eq, 
60min 

  

12 Fmoc-Val-OH 200 HATU, 4eq, 
60min 

-  

11 Fmoc-Glu(tBu)-OH 
200 HATU, 4eq, 

60min 
1347 [M+3H]3+ 
1010 [M+4H]4+ 
808 [M+5H]5+- 

 

10 Fmoc-Tyr(tBu)-OH 184 HATU, 4eq, 
60min 

1051 [M+4H]4+ 
841 [M+5H]5+-- 

 

  9 Fmoc-Gly-OH 119 HATU, 4eq, 
60min 

  

8 Fmoc-Ser(tBu)-OH 153 HATU, 4eq, 
60min 

-  

7 Fmoc-Asp(tBu)-OH 165 HATU, 4eq, 
60min 

-  

6 Fmoc-His(Trt)-OH 248 HATU, 4eq, 
60min 

-  

5 Fmoc-Arg(Pbf)-OH 260 HATU, 4eq, 
60min 

Maldi-TOF 
4530 [M+H]+ 

small peak in 
maldi 

4 Fmoc-Phe-OH 155 HATU, 4eq, 
60min 

-  

3 Fmoc-Glu(tBu)-OH 200 HATU, 4eq, 
60min 

-  

2 Fmoc-Ala-OH.H2O 130 HATU, 4eq, 
60min 

-  

1 Boc-Asp(tBu)-OH 116 HATU, 4eq, 
60min 

- - 
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3.7. Synthesis of Amyloid-β  (1-42) derived switch-peptide 23 

H-A!(1-35)-Val-O

H-Orn-Pro-Ser37-A!(38-42)-OH

23 

The synthesis was performed on 1 g of a pre-loaded Fmoc-Ala-NovaSyn TGA resin (loading 

0.20 mmol/g).  

The first Fmoc protecting group was removed with a solution of 20% piperidine in DMF (2x10 

min) and the amino acids Fmoc-Ile-OH and Fmoc-Val-OH was coupled with 2 eq of PyBOP.  

The Fmoc group was then removed with a solution of 2% DBU 5% piperidine in DMF until the 

7th amino acid of the sequence (Aspartic acid) was reached. From 7th to 1st amino acid, Fmoc 

protecting group was removed with 20% piperidine in DMF to avoid aspartimide formation that 

can occur when strong basic conditions are used to remove Fmoc. 

HATU was used as coupling reagent all along the synthesis (2 eq or 4 eq). 

Switch element S at Ser37 was constructed by first coupling Fmoc-Ser-OH without side chain 

protection followed by normal coupling of Fmoc-Pro-OH and Boc-Orn(Boc)-OH. Fmoc-Val36-

OH was then coupled via an ester bond to the free side chain of the serine with DIC 3eq and 

DMAP 0.5 eq. 

To facilitate the synthesis on the resin the pseudo-proline building block Fmoc-Gly25-

Ser26(ψMe,Me)pro-OH was used. During the final cleavage, the pseudo-proline opened and the 

normal sequence was restored. 

Cleavage test assays were performed during the synthesis and analyzed by HPLC, ESI-MS or 

MALDI-TOF to check the correct evolution of the synthesis. 

 

Residue Quantity 
(mg) 

Coupling 
conditions Cleavage test remarks 

41 Fmoc-Ile-OH 
176 PyBOP, 2.5eq,  

2 x 20min 

- 20% piperidine 

40 Fmoc-Val-OH 170 PyBOP, 2.5eq,  
2 x 20min 

525 [M+H]+-  

39 Fmoc-Val-OH 170 HATU, 2.5eq,  
2 x 20min 

-  
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38 Fmoc-Gly-OH 150 HATU, 2.5eq,  
2 x 20min 

-  

37 Fmoc-Ser(OH)-OH 164 PyBOP, 2.5eq,  
2 x2 0min 

-  

Fmoc-Pro-OH.H2O 169 PyBOP, 2.5eq,  
2 x 20min 

  

Boc-Orn(Boc)-OH 166 PyBOP, 2.5eq,  
2 x 20min 

Rt = 13.1 min 
756 [M+H]+ 

- 

36 Fmoc-Val-OH 
170 CDI, 3eq, 

2x120min 
Rt = 21.4 min 
1077 [M+H]+ 

 

 

35 Fmoc-Met-OH 186 HATU, 2.5eq,  
2 x 20min 

-  

34 Fmoc-Leu-OH 176 HATU, 2.5eq,  
2 x 20min 

  

33 Fmoc-Gly-OH 150 HATU, 2.5eq,  
2 x 20min 

-  

32 Fmoc-Ile-OH 176 HATU, 2.5eq,  
2 x 20min 

1606 [M+H]+ 

803 [M+2H]2+- 
 

31 Fmoc-Ile-OH 176 HATU, 2.5eq,  
2 x 20min 

-  

30 Fmoc-Ala-OH.H2O 164 HATU, 2.5eq,  
2 x 20min 

-  

29 Fmoc-Gly-OH 150 HATU, 2.5eq,  
2 x 20min 

-  

28 Fmoc-Lys(Boc)-OH 235 HATU, 2.5eq,  
2 x 20min 

-  

27 Fmoc-Asn(Trt)-OH 300 HATU, 2.5eq,  
2 x 20min 

  

25-26 Fmoc-Gly25-
Ser26(ψMe,Me)pro-OH 

212 HATU, 2.5eq, 2 x 
40min 

Rt = 16.9 min 
1059 [M+2H]2+ 
706 [M+3H]3+ 

- 

     

24 Fmoc-Val-OH 170 HATU, 2.5eq,  
2 x 20min 

-  

23 Fmoc-Asp(tBu)-OH 205 HATU, 2.5eq,  
2 x 20min 

  

22 Fmoc-Glu(tBu)-OH 221 HATU, 2.5eq,  
2 x 20min 

-  

21 Fmoc-Ala-OH.H2O 164 HATU, 2.5eq,  
2 x 20min 

-  

20 Fmoc-Phe-OH 
194 HATU, 2.5eq,  

2 x 20min 
1339 [M+2H]2+ 
893 [M+3H]3+ 
669 [M+4H]4+ 

 

19 Fmoc-Phe-OH 194 HATU, 2.5eq,  
2 x 20min 

-  

18 Fmoc-Val-OH 170 HATU, 2.5eq, 
2 x 20min 
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17 Fmoc-Leu-OH 176 HATU, 2.5eq,  
2 x 20min 

  

16 Fmoc-Lys(Boc)-OH 235 HATU, 2.5eq,  
2 x 20min 

  

15 Fmoc-Gln(Trt)-OH 
305 HATU, 2.5eq,  

2 x 20min 
1647 [M+2H]2+ 
1098 [M+3H]3+ 
823 [M+4H]4+- 

 

14 Fmoc-His(Trt)-OH 310 HATU, 2.5eq,  
2 x 20min 

-  

13 Fmoc-His(Trt)-OH 310 HATU, 2.5eq,  
2 x 20min 

  

12 Fmoc-Val-OH 170 HATU, 2.5eq,  
2 x 20min 

-  

11 Fmoc-Glu(tBu)-OH 221 HATU, 2.5eq,  
2 x 20min 

  

10 Fmoc-Tyr(tBu)-OH 230 HATU, 2.5eq,  
2 x 20min 

--  

9 Fmoc-Gly-OH 
150 HATU, 2.5eq,  

2 x 20min 
1339 [M+3H]3+ 
1004 [M+4H]4+- 
803 [M+5H]5+ 

 

8 Fmoc-Ser(tBu)-OH 192 HATU, 2.5eq,  
2 x 20min 

-  

7 Fmoc-Asp(tBu)-OH 
205 HATU, 2.5eq, 

60min 
- Deprotection 

with 20% 
piperidine 

6 Fmoc-His(Trt)-OH 310 HATU, 2.5eq,  
2 x 20min 

-  

5 Fmoc-Arg(Pbf)-OH 324 HATU, 2.5eq,  
2 x 20min 

 small signal in 
ESI/MS 

4 Fmoc-Phe-OH 194 HATU, 2.5eq,  
2 x 20min 

-  

3 Fmoc-Glu(tBu)-OH 221 HATU, 2.5eq,  
2 x 20min 

-  

2 Fmoc-Ala-OH.H2O 164 HATU, 2.5eq,  
2 x 20min 

-  

1 Boc-Asp(tBu)-OH 
145 HATU, 2.5eq, 

2 x 20min 
1584 [M+3H]3+ 
1188 [M+4H]4+- 
905 [M+5H]5+- 

- 
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Product Index 

 Fmoc

NH

O

O

H
N

OBzl

O

Boc

 

Fmoc-Leu-(Boc)Ser-OBzl 1 

Fmoc

NH

O

O

H
N

OH

O

Boc

 

Fmoc-Leu-(Boc)Ser-OH 2 

OH

H
N

OBzl

O

O

O

O

O NO2

 

NVOC-Ser-OBzl 3 

O

H
N

OBzl

O

O

O

O

O NO2

O

NH

Fmoc  

Fmoc-Gly-(NVOC)Ser-OBzl 4 



Product Index 
 

 140 

O

H
N

OH

O

O

O

O

O NO2

O

NH

Fmoc  

Fmoc-Gly-(NVOC)Ser-OH 5 

OH

H
N

OH

O

O

N
H

Fmoc

 

Fmoc-Gly-(NVOC)Ser-OH 6 

Ac-Lys-Ala-Arg-Ala-Asp-Ala-O

H-Ser-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-NH2

 

7 

H-Arg-Pro-Ser-Glu-Asp-Val24-Ser-Leu-Gly-NH2

Ac-Ser-Leu-Ser-Leu-14His-Gln-Lys-Leu-Val-Phe-Phe-O  

8 

Ac-Ser-Leu-O

H-Ser-Leu-14His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val24-O

H-Ser-Leu-Gly-NH2

 

9 
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HN

S

O

OH

 

H-Cys(ΨMe,Mepro)-OH 10 

HN

S

O

OH

 

H-Cys(ΨH, Hpro)-OH 11 

N
H

O

F

O  

Ac-Leu-F 12 

N
H

O

N

S

O

O

OH

 

Ac-Leu-Cys(ΨMe,Mepro)-OH 13 

N
H

O

N

S

O

O

OH

 

Ac-Leu-Cys(ΨH, Hpro)-OH 14 
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H - Ser -  Phe - Phe - Asp -  NH2

Ac - Leu - Cys(!Me, Mepro) -Ala-O  

15 

H - Ser -  Phe - Phe - Asp -  NH2

Ac - Leu - Cys(!H, Hpro) -Ala-O  

16 

H - Ser -  (NMe)Phe - Phe - Asp -  NH2

Ac - Leu - Cys(!Me, Mepro) -Ala-O  

17 

H - Ser -  (NMe)Phe - Phe - Asp -  NH2

Ac - Leu - Cys(!H, Hpro) -Ala-O  

18 

H-Arg-Pro- Ser -  (NMe)Phe - Phe - Asp -  NH2

Ac - Leu - Cys(!Me, Mepro) -Ala-O  

19 

H-A!(1-24)-Gly-O

H-Lys-Pro-Ser-A!(27-42)-OH

 

20 

H-A!(1-24)-Gly-O

H-Ser26-A!(27-35)-Val-O

H-Orn-Pro-Ser37-A!(38-42)-OH

 

21 
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H-A!(1-24)-Gly-O

NVOC-Ser26-A!(27-35)-Val-O

H-Orn-Pro-Ser37-A!(38-42)-OH

 

22 

H-A!(1-35)-Val-O

H-Orn-Pro-Ser37-A!(38-42)-OH

 

23 

OHO

OH O

OH

OH

OH

OH

 

Myricetin 

NH2

OH

HO

 

Dopamine 

O

O

NH2  

Dopaquinone (oxidized dopamine) 
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 Technology (HUT) – Finland 
 Synthesis of 4-substituted prolines and their incorporation into peptide 

sequences. Study of their impact on peptide conformation.  
 

Two internships in industry (SICPA and FILAB) during my studies and summer work in a hospital 
as an assistant in a physical therapy facility (3* 8 weeks). 
 
Others Skills and Competences 
 
Management  - Member of the organizing committee of Forum EPFL 2007,  

 Public Relations representative and organized the conference held during 
the manifestation. 

- Teaching Assistant for EPFL students and training of a student during his 
semester project in a chemistry laboratory. 

- Attended modules on Management of Biotech, Medtech and Pharma 
ventures (MoT, EPFL). 
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Computer Office, Illustrator, Photoshop, ChemDraw, SciFinder, Origin. 
 
Hobbies 
 
Outdoor activities (hiking, cycling, ski), swimming, travels, cooking, photography. 
 
Publications, Posters and Oral Communications 
 
“Disruption of amyloid-derived peptide assemblies through the controlled induction of a β-sheet to 
α-helix transformation: application of the switch concept”, M.-S. Camus, R. Mimna, A. Schmid, G. 
Tuchscherer, H.A. Lashuel, M. Mutter, Angew. Chem. Int Ed, 2007, 6(15): 2681-4. 
 
“Switch-peptides as folding precursors in self-assembling peptides and amyloid fibrillogenesis”, G. 
Tuchscherer, A. Chandravarkar, M.-S. Camus, J. Bérard, K. Murat, A. Schmid, H. A. Lashuel, M. 
Mutter, Biopolymers (Peptide Science), 2007;88(2):239-52. 
 
“Switch-peptides: From conformational studies to Alzheimer’s disease”, L. Saucède, S. Dos Santos, 
A. Chandravarkar, B. Mandal, R. Mimna, K. Murat, M.-S. Camus, J. Bérard, E. Grouzmann, M. 
Adrian, J. Dubochet, J. Lopez, H. A. Lashuel, G. Tuchscherer, M. Mutter, Chimia, 2006, 60, 199-
202. 
 
“Switch on Amyloid β peptide self-assembly by acyl migrations”, S. Dos Santos, A. Chandravarkar, 
B. Mandal, R. Mimna, K. Murat, M.-S. Camus, G. Tuchscherer, M. Mutter, Biopolymers (Peptide 
Science), 2005, 80, 4, 568 and Proceedings of the 19th American Peptide Symposium, San Diego, 
June 18-23, 2005. 
 
“Host-Guest switch-peptides derived from Aβ as a model for studying fibrillogenesis and for 
screening amyloid β inhibitors in vitro”, M.-S. Camus, A. Schmid, S. Dos Santos, A. Chandravarkar, 
B. Mandal, G. Tuchscherer, H. A. Lashuel, M. Mutter, in preparation. 
 
“Studying the folding mechanism of the full length amyloid β peptide using switch-peptides”, M.-S. 
Camus, A. Schmid, S. Dos Santos, A. Chandravarkar, G. Tuchscherer, H. A. Lashuel, M. Mutter, in 
preparation. 
 
“Disruption of amyloid-derived peptide assemblies through the controlled induction of a β-sheet to 
α-helix transformation: application of the switch concept”, M.-S. Camus, R. Mimna, A. Schmid, G. 
Tuchscherer, H.A. Lashuel, M. Mutter. Poster, 7th German Peptide Symposium, 2007, Heidelberg, 
Germany. 
 
“Switch-Peptides: Folding Precursors in Self-Assembling Peptides and Amyloid Fibrillogenesis and 
In Situ Induction of Conformational Transitions”, M.-S. Camus, R. Mimna, A. Chandravarkar, A. 
Schmid, G. Tuchscherer, H.A. Lashuel, M. Mutter. Oral communication, Swiss Chemical Society 
fall meeting, 2007, Lausanne, Switzerland and 20th American Peptide Symposium, 2007, Montreal, 
Canada.   
     
 
 
 
 
 
 




