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Due to the Heisenberg uncertainty principle, various classical systems differing only on the scale smaller
than Planck’s cell correspond to the same quantum system. We use this fact to find a unique semiclassical
representation without the Van Vleck determinant, applicable to a large class of correlation functions express-
ible as quantum fidelity. As in the Feynman path integral formulation of quantum mechanics, all contributing
trajectories have the same amplitude: that is why we denote it the “dephasing representation.” By relating our
approach to the problem of existence of true trajectories near numerically-computed chaotic trajectories, we
make the approximation rigorous for any system in which the shadowing theorem holds. Numerical imple-
mentation only requires computing actions along the unperturbed trajectories and not finding the shadowing
trajectories. While semiclassical linear-response theory was used before in quasi-integrable and chaotic sys-
tems, here its validity is justified in the most generic, mixed systems. Dephasing representation appears to be
a rare practical method to calculate quantum correlation functions in nonuniversal regimes in many-
dimensional systems where exact quantum computations are impossible.
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The method that is described in this Rapid Communica-
tion is based on two observations: the first is the fact that the
relationship between classical and quantum dynamics is
many to one; the second is the idea of shadowing of a per-
turbed trajectory by a nearby unperturbed trajectory. We start
by explaining these two ingredients in more detail.

Classical vs quantum dynamics. In the semiclassical(SC)
approximation, quantum wave function is associated with a
classical surface(Lagrangian manifold) in phase space. SC
evolution of the wave function is performed by classically
evolving this surface and computing actions along the trajec-
tories of the points of the surface. At the end, the surface is
projected onto an appropriate coordinate plane. If we slightly
distort the initial surface, individual trajectories will change
exponentially fast. However, if the distortion is small
enough, the original and distorted initial surfaces semiclassi-
cally correspond to the same quantum wave functions(their
overlap is<1). Due to the unitarity of quantum evolution,
the overlap of the two wave functions associated with the
two evolved surfaces will remain<1 for all times.

Shadowing. Because of the exponential sensitivity to ini-
tial conditions and because of the finite precision of a com-
puter, computer-generated trajectories in chaotic systems are
accurate only for a logarithmically short time. As a result, it
was not clear whether it makes sense at all to do computer
simulations for longer times and whether, e.g., the fractal
patterns seen in these simulations are real. The solution was
offered by Hammel, Yorke, and Grebogi[1] with the concept
of shadowing which was later, in various settings, promoted
to a theorem[2,3]. Their finding is that while a computed
trajectory diverges exponentially from the true trajectory
with the same initial conditions, there exists an errorless tra-

jectory with a slightly different initial condition that stays
near(“shadows”) the computed one.

While shadowing is extremely useful if the perturbation is
random, which is the case for the roundoff computer errors,
it works also if the perturbation is deterministic, e.g., given
by a precise change of the Hamiltonian. This is a completely
different physical problem: Even if a computer could evolve
trajectories exactly without any roundoff errors, we might be
interested in comparing the trajectories with the same initial
conditions, but of two slightly different Hamiltonians. It
turns out that in chaotic systems these trajectories will again
exponentially diverge. Below we rigorously show that the
latter problem can be transformed to the former.

Comparison of the dynamics of two slightly different
Hamiltonians is the subject of a very rich and recently much
studied subject of the sensitivity of classical and quantum
motion to perturbations[4–9]. This sensitivity is best de-
scribed by so-called fidelityMstd: Classical(quantum) fidel-
ity is the classical(quantum) overlap at timet of two initially
identical phase-space distributions(quantum statesucl), that
were evolved by slightly different HamiltoniansH0 and He

=H0+eV wheree controls the strength of the perturbation. In
Dirac notation,

Mstd = uOstdu2 = zkcue+isH0+eVdt/qe−iH0t/quclz2.

Studying fidelity is useful in itself but also because many
other, seemingly unrelated quantum correlation functions
take the same mathematical form. For example,Mstd is
equivalent to the Loschmidt echo—the survival probability
of a state evolved first byH0 for time t, then by −He for time
t. If we were to evaluate this overlap directly semiclassically
[5,8,9], we would have to find exact trajectories ofH0 and of
He, corresponding phases and prefactors, and then calculate
the overlap. This would be extremely difficult in chaotic sys-*Electronic address: vanicek@post.harvard.edu
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tems because of the exponential growth of errors, exponen-
tially proliferating contributing trajectories, and exponen-
tially growing number of singularities. In fact, full SC
treatment, i.e., evaluating the overlapitself by the stationary
phase approximation, would yield anything but the right an-
swer since we would be adding up a huge number of infinite
singularities. Compared to the direct approach, the dephasing
representation(DR) is simple, as can be seen from the fol-
lowing alternative expressions:

ODRstd = s2pqd−dE ddp8 expfiDSsr 8,p8,td/qg,

ODRstd =E ddr8 expfiDSsr 8,p8,td/qgucsr 8du2, s1d

ODRstd =E ddr8E ddp8 expF i

q
DSsr 8,p8,tdGrWsr 8,p8d,

where the first expression is for position eigenstatesur 8l, the
second for wave packets with mean momentump8, and the
third (and most general) for Wigner distributionsrW. Since
Wigner distribution can represent mixed states, the third ex-
pression can describe purity fidelity and decoherence. Ana-
logs of the first two expressions exist in momentum and
other representations, and all can be derived from the Wigner
form. In all expressions, the action differenceDS is just the
integral of the perturbation along the unperturbed trajectory
with initial conditionsr 8, p8,

DSsr 8,p8,td = Se − S0 = − eE
0

t

dtV(r std,t).

Roughly speaking, the motivation for DR is the following:
instead of using the trajectory ofHe with the same initial
condition, we use the shadowing trajectory: a trajectory of
He with a slightly different initial condition, which remains
close to the trajectory ofH0 up to timet. [That this is pos-
sible follows from the shadowing theorem(ST) as we show
below.] All we have to compute is the phase difference along
the trajectory. We avoid the singularities since the prefactors
precisely cancel and we also need to evaluate a much smaller
number of trajectories than in the standard SC treatment. We
explain these claims below when we derive the approxima-
tion.

First let us show that the problem of sensitivity of dynam-
ics to the change of Hamiltonian is equivalent to the problem
of shadowing of numerically noisy trajectories. For simplic-
ity we show this for a general two-dimensional symplectic
map, which is nothing else but a discretization of
continuous-time dynamics of a Hamiltonian system. We need
three standard definitions that hold for any(not-necessarily
symplectic) map f :xn°xn+1.

Definition. A true trajectory hxnjn=a
b of a map f satisfies

xn+1= fsxnd for aønøb.
Definition. hx̃njn=a

b is ane pseudotrajectoryof a mapf if
ux̃n+1− fsx̃nd u ,e for aønøb.

Definition. The true trajectoryhxnjn=a
b d shadowshx̃njn=a

b

on aønøb if uxn− x̃nu ,d for aønøb.

Anosov [10] and Bowen[11] showed that for uniformly
hyperbolic maps, noisy trajectories can be shadowed for an
infinitely long time by true trajectories. Most physical sys-
tems, however, are not uniformly hyperbolic, which led to a
series of investigations for more general systems. By now,
there exist theorems for both continuous differential equa-
tions and discrete maps, and they require the satisfaction of
various assumptions[1–3]. The general conclusion is that
shadowing in nonuniformly hyperbolic systems only works
for a finite time tS, which decreases with increasing pertur-
bation. Below we relate the problem of Hamiltonian pertur-
bations to the problem of the shadowing of noisy trajectories
for symplectic maps, without considering detailed assump-
tions of a particular ST.

Let qn and pn be the position and momentum at timen
and letxn=sqn,pnd. Let the continuous system be described
by a HamiltonianHe=H0+eV=p2/2+W+eV, whereW is the
unperturbed potential andeV is the perturbation. Further as-
sume thatV andW are differentiable andu¹Vsq,td u ,1 for
all q. The corresponding symplectic mapfe :xn°xn+1 is
given by

pn+1 = pn − ¹ Wsqn,nd − e ¹ Vsqn,nd,

qn+1 = qn + pn+1.

Lemma 1. The true trajectoryhx̃njn=a
b of fe is ane pseudot-

rajectory of f0.
Proof. ux̃n+1− f0sx̃nd u = ufesx̃nd− f0sx̃nd u = ueV8sq̃nd u ,e.
Lemma 2. Let the noise amplitude bed, i.e., let the nu-

merically computed trajectoryhxnjn=a
b of fe be ad pseudot-

rajectory of fe. Then hxnjn=a
b is a sd+ed pseudotrajectory of

f0.
Proof. uxn+1− f0sxnd u = uxn+1− fesxnd+ fesxnd− f0sxnd u

, uxn+1− fesxnd u + ufesxnd− f0sxnd u ,d+ ufesxnd− f0sxnd u ,d+e,
where we used Lemma 1 in the last inequality.

Lemma 1 shows that Hamiltonian perturbations are
equivalent to random noise as long as further assumptions of
the particular ST are satisfied. Lemma 2 shows that we can
combine Hamiltonian perturbations with random noise be-
fore applying the ST.

The author believes that the DR expressions(1) are the
fundamental representations of fidelity because they provide
(to his knowledge) not only the only accurate but simply the
only way to calculate fidelity semiclassically for longer than
the logarithmic time. DR can be thought of as the Van Vleck
propagator in the mixed position-momentum representation,
so that the Van Vleck determinant equals dets]pfinal /]p8d
=1 and the Maslov indices cancel. However, since most au-
thors are familiar only with the Van Vleck propagator in the
position representation, we show explicitly how DR can be
derived by acareful treatment of this propagator.

The Van Vleck propagator in position representation,

KSCsr 9,r 8;td = o
j

s2piqd−d/2Cj
1/2 expS i

q
Sj −

ip

2
v jD ,

is the standard SC approximation of the quantum propagator.
The sum is over all classical trajectories connecting pointr 8
at timet=0 to pointr 9 at time,t= t, Sj is the classical action,
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Sjsr 9,r 8;td =E
0

t

dt L(r std, ṙ std,t),

and Cj = udets]2Sj /]r 9] r 8du is the Van Vleck determinant
equal to the classical transition probability. There are three
major problems with this approximation. First, the number of
trajectories in a generic system grows exponentially with
time. Second, there is a growing number of singularities in
this expression at conjugate points. Third, direct evaluation
of this expression would involve an expensiveroot search,
i.e., finding for each trajectoryj the initial momentump j8
leading to the final positionr 9. In improved SC methods
such as the initial value representation, the root search and
singularities are avoided, at a cost of replacing the sum over
trajectoriesj by an integral over initial conditions[12,13].

Forgettingfor a momentall these problems(as have most
authors discussing fidelity semiclassically[5,8], with the ex-
ception of Ref.[9] where fidelity is computed semiclassically
for a logarithmically short time), let us useKSC to express
fidelity amplitude:

Ostd < E drKSC
e* sr ,r 8;tdKSC

0 sr ,r 8;td.

(The superscript tells us which Hamiltonian is used.) We
could proceed in several ways: we could try evaluating this
integral by the stationary-phase method. That would give a
singular result as explained in the text above Eq.(1) because
there can be many coalescing stationary phase points.(For
disbelievers the author recommends trying it.) Or we could
evaluate the integral numerically, which might smooth out
some of the singularities in the two integrands by integration,
but would be virtually impossible in practice. What Jalabert
and Pastawski[5] suggested was using only the diagonal
terms s j0= jed, justifying this by the claim that the off-
diagonal terms cancel out in the average over initial states(or
realizations of the perturbation, since they calculated the av-
erage fidelity). There are several problems with this ap-
proach. SinceH0 and He are different, after a long enough
time it will not be possible to distinguish terms as diagonal
and off-diagonal. Also it is not obvious that the off-diagonal
terms should cancel since these are in majority.

However, this separationis possible in DR. For the trajec-
tories of He, instead of using the precise initial conditions,
we infinitesimally adjust the initial conditions so that the
trajectories ofHe shadow those ofH0. While KDR

0 =KSC
0 re-

mains unchanged in DR,

KDR
e sr ,r 8;td = o

j

s2piqd−d/2sCj
0d1/2 expS i

q
Sj

e −
ip

2
v j

0D .

Note that because we are using the shadowing trajectory, the
Maslov index and the Van Vleck determinant are the same as
for KDR

0 , only the action is different(since this trajectoryis a
true trajectory ofHe). Now there is an exact one-to-one cor-
respondence between the terms of the two propagators.
Moreover, if we use the Loschmidt echo picture, only the
diagonal terms form a continuous trajectory in phase space
(momentum at timet is continuous), and so semiclassically,
only these terms survive. It turns out, that in DR, neglecting

the off-diagonal terms actually improves the approximation.
This can be seen, e.g., fore=0, where we getODRstd=1 only
if we neglect the off-diagonal terms(this was noted already
by Jalabert and Pastawski[5]). As a result, we have

ODRstd =E ddro
j

s2pqd−dCj
0 expsiDSj/qd.

Realizing thatCj
0= udets]p8 /]r du, we obtain DR(1) for posi-

tion eigenstatesur 8l.
DR was first numerically tested in chaotic systems which

are “closer” to being uniformly hyperbolic[6,7]. Motivated
by the ST for nonhyperbolic systems here we also apply the
method to mixed systems. Figure 1 shows fidelity decay of
initial position statessq=0.4d for the Chirikov standard map
(W=kV=−k cosq, q=1/2pn) in cases with mixed and cha-
otic dynamics. The success of DR is striking: using only
1000 trajectories in the chaotic case(bottom), the approxi-
mation is excellent at timet=50 where there are,1020 SC
contributions in the standard approach[5,8,9]. DR works,
since for chaotic systems, only the statistics of actions mat-
ters, which can be reproduced by a smaller ensemble[6,7].
Counterintuitively, experts in the field of chaos might be
more surprised by the results for mixed phase space(top).
The reason is that in both integrableand chaotic systems
there existdifferent simplifications. In mixed systems with
both invariant tori and chaotic regions, neither simplification
works throughoutphase space. DR still reproduces even the
fine details ofMstd in Fig. 1.

FIG. 1. Comparison of the exact quantum calculation(dots) and
dephasing representation(dashed-dotted line) of fidelity Mstd for
the standard map(n=1000, 1000 classical trajectories used). Top:
mixed phase space(k=0.8, e=5310−3). Bottom: chaotic phase
space(k=10, e=2310−3).
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While there is a rigorous prescription how to verify the
applicability of the ST, it is beyond the goal of this Rapid
Communication. It is done by numerically finding, for each
trajectory, rigorous bounds on several dynamical quantities
[3]. The goal of this paper was to reveal the surprising con-
nection between classical shadowing and quantum mechan-
ics and to present a generally applicable SC method. We
therefore omit here the rigorous check of the assumptions of
the ST for the specific example in Fig. 1. A rough estimate
tS,e−1/2 for the shadowing time from a conjecture in Refs.
[1–3] gives tS,14 and 23 for the top and bottom parts of
Fig. 1, respectively. This estimate should be used with cau-
tion since it does not even depend onk. Figure 1 suggests
that most trajectories are shadowable well beyond this time,
because otherwise it would be virtually impossible that a
method based on the ST, using a large number of quite ran-
domly interfering waves should mimic so accurately the ex-
act quantum solution.

A more thorough description of the universal numerical
success of DR in Gaussian, algebraic, Fermi golden rule,
Lyapunov, and intermediate regimes, and for more general
perturbations, will be presented elsewhere[14]. Furthermore,
it can be shown that considering statistics of action differ-
ences in DR leads to a simple unified theory of the four
regimes[14]. Due to the exponential proliferation of SC con-
tributions, numerical evaluation ofMstd for longer times
would previously only be done using exact quantum propa-
gation on a grid[8]. For the standard map that we used, the
most successful SC calculations were done up to timet,10
where there were fewer than 104 contributing classical tra-

jectories[9]. In many-dimensional systems, DR seems to be
the only method to evaluate fidelity because the complexity
of exact quantum propagation grows exponentially with di-
mensionality.

To conclude, DR is an efficient method that can describe
quantum-mechanical decays purely in terms of dephasing.
This strangely suggests that in some cases it is possible to
describe the decay of classical overlaps by interference[14].
In particular, we have rigorously shown that DR is accurate
for systems and times where ST applies. The many-to-one
relationship between classical and quantum dynamics on
which DR is based has been exploited before[15,16]. While
the replacement-manifold method[16] is very simple and
gives excellent results in a variety of problems, it requires
finding the replacement manifolds. DR goes one step further:
here the fact that a slightly distorted initial surface exists is
sufficient. It is not necessary to find it explicitly.

The author conjectures that DR should be applicable to
other classes of correlation functions of the typekc ueA†

eBucl
where operatorA differs only slightly fromB, andA andB
do not necessarily correspond to real-time quantum evolu-
tion. Possible applications may include temporal and thermal
correlation functions in many-body systems in condensed
matter and chemical physics, and in the general wave scat-
tering in disordered media.

The author would like to thank E.J. Heller and W.H.
Miller for discussions and the Mathematical Sciences Re-
search Institute for support.
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