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Due to the Heisenberg uncertainty principle, various classical systems differing only on the scale smaller
than Planck’s cell correspond to the same quantum system. We use this fact to find a unique semiclassical
representation without the Van Vleck determinant, applicable to a large class of correlation functions express-
ible as quantum fidelity. As in the Feynman path integral formulation of quantum mechanics, all contributing
trajectories have the same amplitude: that is why we denote it the “dephasing representation.” By relating our
approach to the problem of existence of true trajectories near numerically-computed chaotic trajectories, we
make the approximation rigorous for any system in which the shadowing theorem holds. Numerical imple-
mentation only requires computing actions along the unperturbed trajectories and not finding the shadowing
trajectories. While semiclassical linear-response theory was used before in quasi-integrable and chaotic sys-
tems, here its validity is justified in the most generic, mixed systems. Dephasing representation appears to be
a rare practical method to calculate quantum correlation functions in nonuniversal regimes in many-
dimensional systems where exact quantum computations are impossible.
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The method that is described in this Rapid Communicajectory with a slightly different initial condition that stays
tion is based on two observations: the first is the fact that th@ear(“shadows’) the computed one.
relationship between classical and quantum dynamics is While shadowing is extremely useful if the perturbation is
many to one; the second is the idea of shadowing of a pefrandom, which is the case for the roundoff computer errors,
turbed trajectory by a nearby unperturbed trajectory. We staiit works also if the perturbation is deterministic, e.g., given
by explaining these two ingredients in more detail. by a precise change of the Hamiltonian. This is a completely

Classical vs quantum dynamids the semiclassicalSCO)  ifferent physical problem: Even if a computer could evolve
approximation, quantum wave function is associated with g5iectories exactly without any roundoff errors, we might be

claslsiqal SL;rf?]CQLagrar}gian_ manifoly ifn phadseb sp?ce..S(lil interested in comparing the trajectories with the same initial
evolution of the wave function Is performed by classically ., qitions, but of two slightly different Hamiltonians. It

evqlvmg this surface and computing actions along the traje‘.:t'urns out that in chaotic systems these trajectories will again
tories of the points of the surface. At the end, the surface '%xponentially diverge. Below we rigorously show that the

projected onto an appropriate coordinate plane. If we slightl
distort the initial surface, individual trajectories will changeSfatter probl_em can be transformed o the for.mer. .
Comparison of the dynamics of two slightly different

exponentially fast. However, if the distortion is small Hamiltonians is the subject of a very rich and recently much
enough, the original and distorted initial surfaces semiclassi- ) y y

cally correspond to the same quantum wave functiomsir ?r:lcj)?iloer? tf)UbJ::EBr%;H:; ;f_ngs]'t'\{_'gsolecrﬁﬁis\fal izngegtu 3rét_um
overlap is=1). Due to the unitarity of quantum evolution, P ) ty

the overlap of the two wave functions associated with the>cribed by so-called fidelitpA(t): Classicakquantur fidel-

two evolved surfaces will remair1 for all times. !W is _the classica(quantu_n) (_)ver_lap attime of two initially
Shadowing Because of the exponential sensitivity to ini- identical phase-space distributiofiantum stategy)), that

. . =
tial conditions and because of the finite precision of a comVere evolved by slightly different Hamiltoniart$™ and H*

o ;
puter, computer-generated trajectories in chaotic systems ag—rla: ;\égggrr]ee controls the strength of the perturbation. In

accurate only for a logarithmically short time. As a result, it
was not clear whether it makes sense at all to do computer , Ji(HO V) hiHOUR| 12
simulations for longer times and whether, e.g., the fractal M(t) =[O(1)]“ = Kyie € lpl°.
patterns seen in these simulations are rea_l. The solution was Studying fidelity is useful in itself but also because many
offered by Hammel, Yorke, and Grebddi with the concept  giher, seemingly unrelated quantum correlation functions
of shadowing which was I.ate.r, in various sgttmgs, promoteqgke the same mathematical form. For exampi(}) is
to a theorem(2,3]. Their finding is that while a computed ¢ jiyalent to the Loschmidt echo—the survival probability
trajectory dlverg_e_s expon_entlally from _the true trajectory ¢ o state evolved first bk for time t, then by -H€ for time
with the same initial conditions, there exists an errorless trag ¢ \va were to evaluate this overlap directly semiclassically
[5,8,9, we would have to find exact trajectoriestéf and of
H¢, corresponding phases and prefactors, and then calculate
*Electronic address: vanicek@post.harvard.edu the overlap. This would be extremely difficult in chaotic sys-
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tems because of the exponential growth of errors, exponen- Anosov[10] and Bowen[11] showed that for uniformly
tially proliferating contributing trajectories, and exponen- hyperbolic maps, noisy trajectories can be shadowed for an
tially growing number of singularities. In fact, full SC infinitely long time by true trajectories. Most physical sys-
treatment, i.e., evaluating the overlagelf by the stationary tems, however, are not uniformly hyperbolic, which led to a
phase approximation, would yield anything but the right an-series of investigations for more general systems. By now,
swer since we would be adding up a huge number of infinitehere exist theorems for both continuous differential equa-
singularities. Compared to the direct approach, the dephasirtgpns and discrete maps, and they require the satisfaction of
representationiDR) is simple, as can be seen from the fol- various assumptionfl—3]. The general conclusion is that

lowing alternative expressions: shadowing in nonuniformly hyperbolic systems only works
for a finite timets, which decreases with increasing pertur-

Opr(t) = (th)‘df A%’ exdiAS(r’,p’,t)/h], bation. Below we relate the problem of Hamiltonian pertur-
bations to the problem of the shadowing of noisy trajectories

for symplectic maps, without considering detailed assump-
0 ) o o tions of a particular ST.
Opr(t) :f d’ exdiAS(r’,p’" /h]e(r)F, (1) Let g, and p, be the position and momentum at time
and letx,=(q,,pn). Let the continuous system be described
. by a HamiltoniarH=H%+ eV=p?/2 +W+ €V, whereW is the
OpR(t) = f ddr’ f dp’ exp[l—AS(r’,p’,t)}pW(r’,p’), unperturbed potential anéV is the perturbation. Further as-
h sume thatv andW are differentiable andVV(q,t)| <1 for
where the first expression is for position eigenstétés the &l d. The corresponding symplectic méaliS:x,—Xn.1 is
second for wave packets with mean momenfimand the ~ 9iven by
third (and most generaffor Wigner distributionspy,. Since Prer = Pn— VWG, N) — €V V(g,N),
Wigner distribution can represent mixed states, the third ex-
pression can describe purity fidelity and decoherence. Ana- Qo1 =0+ P
logs of the first two expressions exist in momentum and LT Em
other representations, and all can be derived from the Wigner Lemma 1The true trajector)@"(n}ﬁ:‘,j1 of f€is ane pseudot-
form. In all expressions, the action differena& is just the  rajectory off°.
integral of the perturbation along the unperturbed trajectory Proof. [X,.,;—f0X,) | =|fé(X,) - f°X,) | =]eV' (G, | <e.

with initial conditionsr’, p’, Lemma 2 Let the noise amplitude bé§, i.e., let the nu-
¢ merically computed trajector{X,}>_, of f< be aé pseudot-
AS(r/p )= -L=- ef dV/(r (7, 7). rajectory offe. Then{x,}>_, is a (5+¢) pseudotrajectory of

0 f0

Proof. [Xne1— FOXp) | =[Xne1— FE(Xn) + FE(X,) — TO(X) |
<K= FEX) | (%) — TOX,) | < 8+|Fé(X) —TOX) | < S+e,
where we used Lemma 1 in the last inequality.

Lemma 1 shows that Hamiltonian perturbations are
equivalent to random noise as long as further assumptions of

close to the trajectory ofi® up to timet. [That this is pos- - >
sible follows from the shadowing theoref8T) as we show the particular ST are satisfied. Lemma 2 shows that we can
combine Hamiltonian perturbations with random noise be-

below] All we have to compute is the phase difference along ]
the trajectory. We avoid the singularities since the prefactorfOr® applying the ST.

precisely cancel and we also need to evaluate a much smaller 1€ author believes that the DR expressi¢hsare the
number of trajectories than in the standard SC treatment. Wisindamental representations of fidelity because they provide

explain these claims below when we derive the approxima(t© Nis knowledggnot only the only accurate but simply the
tion. only way to calculate fidelity semiclassically for longer than
First let us show that the problem of sensitivity of dynam-the logarithmic time. DR can be thought of as the Van Vieck
ics to the change of Hamiltonian is equivalent to the problenProPagator in the mixed position-momentum representation,
of shadowing of numerically noisy trajectories. For simplic- SO that the Van Vieck determinant equals (dfna/op’)
ity we show this for a general two-dimensional symplectic=1 and the Maslov indices cancel. However, since most au-
map, which is nothing else but a discretization of thors are familiar only with the Van Vleck propagator in the
continuous-time dynamics of a Hamiltonian system. We nee®0Sition representation, we show explicitly how DR can be
three standard definitions that hold for amot-necessarily derived by acareful treatment of this propagator.

Roughly speaking, the motivation for DR is the following:
instead of using the trajectory @€ with the same initial
condition, we use the shadowing trajectory: a trajectory o
H€ with a slightly different initial condition, which remains

symplectio map f:X,— X;1- The Van Vleck propagator in position representation,
Definition A true trajectory {x,}2-, of a mapf satisfies i i

Xn+1=f(x,) for a<n<hb. Ksdr”,r';t) = E (27Tih)_d/Zlel2 exp(gﬁ - Evi) ,
Definition {X,}2_, is an e pseudotrajectoryof a mapf if J

Xne1—f(Xp)| < e for asns<b. is the standard SC approximation of the quantum propagator.
Definition The true trajectory{x,}>_, & shadows{X,J’.,  The sum is over all classical trajectories connecting point

onasns<bif [x,—X,| <& for asn<h. attime =0 to pointr” at time, 7=t, § is the classical action,
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t 1

S(r",r';1) =f dr L(r(7),r(7),7, ‘|

0 0.8 i
and C;=|de(#S/ar"or’)| is the Van Vleck determinant 0.6 e *1
equal to the classical transition probability. There are three = “
major problems with this approximation. First, the number of 04 ?‘-A
trajectories in a generic system grows exponentially with Ly
time. Second, there is a growing number of singularities in 0-2 '\r’v‘-""ﬁ Aa -
this expression at conjugate points. Third, direct evaluation ve x‘UJ"'."-O'\"‘ oy
of this expression would involve an expensigmt search 10 20 30 40 50
i.e., finding for each trajectory the initial momentump’ (@) t
leading to the final position”. In improved SC methods
such as the initial value representation, the root search and 1
singularities are avoided, at a cost of replacing the sum over 0.8 '\..
trajectoriesj by an integral over initial conditiongl2,13. Y
Forgettingfor a momentll these problemg&s have most 0.6 %
authors discussing fidelity semiclassicdl;8], with the ex- = ‘e‘
ception of Ref[9] where fidelity is computed semiclassically 0.4 \)
for a logarithmically short timg let us useKgc to express o2 ‘:;'\"»..._
fidelity amplitude: :
....""“‘“'M
o(t) = f drKELr,r ; HK3(r,r';t). b) 10 20 30 40 50

(The superscript tells us which Hamiltonian is ugedle FIG. 1. Comparison of the exact quantum calculatidots and
could proceed in several ways: we could try evaluating thiglephasing representatiqdashed-dotted lineof fidelity M(t) for
integral by the stationary-phase method. That would give 4he standard mam=1000, 1000 classical trajectories usetop:
singular result as explained in the text above Egbecause Mixed phase spac&=0.8, e=5x10"%). Bottom: chaotic phase
there can be many coalescing stationary phase paiats. SPacek=10, €=2x107).

disbelievers the author recommends trying @r we could

evaluate the integral numerically, which might smooth outthe off-diagonal terms actually improves the approximation.
some of the singularities in the two integrands by integrationThis can be seen, e.g., fer0, where we geDpg(t)=1 only

but would be virtually impossible in practice. What Jalabertif we neglect the off-diagonal ternshis was noted already
and Pastawsk[5] suggested was using only the diagonalby Jalabert and Pastawdki]). As a result, we have

terms (j°=j¢), justifying this by the claim that the off-
diagonal terms cancel out in the average over initial staes
realizations of the perturbation, since they calculated the av-
erage fidelity. There are several problems with this ap-
proach. SinceH® and He are different, after a long enough
time it will not be possible to distinguish terms as diagonal
and off-diagonal. Also it is not obvious that the off-diagonal
terms should cancel since these are in majority.

However, this separatias possible in DR. For the trajec-
tories of H¢, instead of using the precise initial conditions,
we infinitesimally adjust the initial conditions so that the
trajectories ofH¢ shadow those oHC. While Kz=K2 re-
mains unchanged in DR,

Opr(t) = f dr > (277h)9C? expliAS/h).
j

Realizing thatC%=|de{(dp’/dr)|, we obtain DR(1) for posi-
tion eigenstate%r’).

DR was first numerically tested in chaotic systems which
are “closer” to being uniformly hyperboligs,7]. Motivated
by the ST for nonhyperbolic systems here we also apply the
method to mixed systems. Figure 1 shows fidelity decay of
initial position state$q=0.4) for the Chirikov standard map
(W=kV=-k cosqg, h=1/27n) in cases with mixed and cha-
otic dynamics. The success of DR is striking: using only
1000 trajectories in the chaotic cag®ttom), the approxi-
mation is excellent at timé=50 where there are-10°° SC
contributions in the standard approagh8,9. DR works,
Note that because we are using the shadowing trajectory, trence for chaotic systems, only the statistics of actions mat-
Maslov index and the Van Vleck determinant are the same akers, which can be reproduced by a smaller enserf®)g.
for K3, only the action is differengsince this trajectorysa  Counterintuitively, experts in the field of chaos might be
true trajectory oH¢). Now there is an exact one-to-one cor- more surprised by the results for mixed phase sg&me.
respondence between the terms of the two propagatordhe reason is that in both integralded chaotic systems
Moreover, if we use the Loschmidt echo picture, only thethere existdifferent simplifications. In mixed systems with
diagonal terms form a continuous trajectory in phase spackoth invariant tori and chaotic regions, neither simplification
(momentum at time is continuouy and so semiclassically, works throughoutphase space. DR still reproduces even the
only these terms survive. It turns out, that in DR, neglectingfine details ofM(t) in Fig. 1.

. o o i i
KEr(r.r';t) _g (27ih)"¥2(CD)H2 exp(ES{— Euj-o).
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While there is a rigorous prescription how to verify the jectories[9]. In many-dimensional systems, DR seems to be
applicability of the ST, it is beyond the goal of this Rapid the only method to evaluate fidelity because the complexity
Communication. It is done by numerically finding, for each of exact quantum propagation grows exponentially with di-
trajectory, rigorous bounds on several dynamical _qyantltleﬁ]ensiona”ty
[3]. The goal of this paper was to reveal the surprising con- 14 conciude, DR is an efficient method that can describe
nection between classical shadowing and quantum mechags, v m mechanical decays purely in terms of dephasing.
ics and to present a generally applicable SC method. We . . L .

his strangely suggests that in some cases it is possible to

therefore omit here the rigorous check of the assumptions o . : .
the ST for the specific example in Fig. 1. A rough estimated€scribe the decay of classical overlaps by interfer¢idp

ts~ €2 for the shadowing time from a conjecture in Refs. In particular, we have rigorously shown that DR is accurate
[1-3] givests~ 14 and 23 for the top and bottom parts of for systems and times where ST applies. The many-to-one
Fig. 1, respectively. This estimate should be used with caurelationship between classical and quantum dynamics on
tion since it does not even depend knFigure 1 suggests Which DR is based has been exploited befdr&,16. While

that most trajectories are shadowable well beyond this timghe replacement-manifold methdd6] is very simple and
because otherwise it would be virtually impossible that agives excellent results in a variety of problems, it requires
method based on the ST, using a large number of quite rarfiinding the replacement manifolds. DR goes one step further:
domly interfering waves should mimic so accurately the ex-here the fact that a slightly distorted initial surface exists is
act quantum solution. sufficient. It is not necessary to find it explicitly.

A more thorough description of the universal numerical The author conjectures that DR should be applicable to
success of DR in Gaussian, algebraic, Fermi golden rulesther classes of correlation functions of the typée® €8] )
Lyapunov, and intermediate regimes, and for more generg{pere operaton differs only slightly fromB, andA and B
perturbations, will be presented elsewhfid]. Furthermore, o ot necessarily correspond to real-time quantum evolu-
it can be shown that considering statistics of action differjon possible applications may include temporal and thermal
ences in DR leads to a simple unified theory of the fourc,irejation functions in many-body systems in condensed

regimes{14]. Due to the exponential proliferation of SC Con- matter and chemical physics, and in the general wave scat-
tributions, numerical evaluation of(t) for longer times tering in disordered media.

would previously only be done using exact quantum propa-

gation on a grid8]. For the standard map that we used, the The author would like to thank E.J. Heller and W.H.
most successful SC calculations were done up to tim&0  Miller for discussions and the Mathematical Sciences Re-
where there were fewer than “6ontributing classical tra- search Institute for support.
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