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Abstract. We describe a simple and robust method of creating an efficient large-angle adiabatic
passage beamsplitter that does not require the light fields to be pulsed. We present simulations
that show momentum splittings of 80¯hk, where more than 60% of the atoms in the initial
distribution are in the final momentum peaks at±40h̄k.

1. Introduction

There is a great deal of interest in creating an efficient large-angle atomic beamsplitter. It has
already been demonstrated that beamsplitters based on adiabatic passage [1] can produce
efficient beamsplitting [2–4]. The first demonstrations induced the adiabatic population
transfer by allowing atoms to move through a series of partially overlapping laser fields
with Gaussian intensity profiles. The intensity of the laser fields was independent of time,
but the motion of the atoms through the spatially varying intensity profiles resulted in a series
of intensity pulses in the rest frame of the atom. Large splitting angles required that the
Gaussian laser fields be passed back and forth through the atomic beam many times, which
enhances any imperfections in the optical system and can result in decreased efficiency
for splitting angles above a few photon momenta. It has also been shown that adiabatic
passage beamsplitting using pulsed light can generate large splitting angles [4]. In this
paper we describe a simple and robust method of creating an efficient large-angle adiabatic
passage beamsplitter that does not require that the light fields be pulsed. The adiabatic
population transfer results from atomic motion through a spatially varying intensity pattern
due tooptical interferencebetween two laser beams which are nearly copropagating. Thus,
a few laser beams can produce hundreds of adiabatic population transfers under nearly ideal
optical conditions, resulting in simple, efficient and robust beamsplitting.

In this paper we will present numerical simulations which show momentum splittings of
80h̄k, where more than 60% of the atoms in the initial distribution are in the final momentum
peaks at±40h̄k. We will discuss the physical mechanisms which result in losses in the
beamsplitter and show that analytical predictions based on these mechanisms give excellent
agreement with detailed numerical simulations.

2. Elementary cycle

In this section we consider a new scheme of adiabatic population transfer which gives a
4h̄k splitting. We then show (section 3) that multiple repetitions of this scheme can easily
be realized by passing an atom through an optical interference pattern.
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Figure 1. Level scheme for theJ = 1 → J = 0 transition. |Jg = 1, α = x, y, z〉 and
|Je = 0, e〉 are ground and excited states, respectively. The chemical basis is used instead of
the traditional|Jg = 1, mz = −1, 0, +1〉 one. The ground states|x〉 and |y〉 are assumed to be
shifted by±h̄δ with respect to the|z〉 state. (For the beamsplitter scheme discussedδ = kp0/M

corresponds to the Doppler shift,p0 is the family momentum.) The laser frequency is chosen
to be resonant with the|z〉 → |e〉 transition. �z,x,y are the corresponding Rabi frequencies. In
the text we assume the�x and�y Rabi frequencies to be equal:�x = �y = �0.

2.1. Hamiltonian

Consider theJg = 1 ↔ Je = 0 transition (figure 1) in the time-dependent laser field

EE(t) = EE(t) exp(−iωt) + CC (1)

where

EE(t) =
∑

α=x,y,z

EEα(t)Eeα . (2)

When the laser frequency is resonant with the|z〉 → |e〉 transition (ω = ωe,z), the effective
Hamiltonian for such a system has the form

Ĥ = −h̄δ|x〉〈x| + h̄δ|y〉〈y| +
{ ∑

α=x,y,z

h̄�α(t)|e〉〈α| + HC

}
− ih̄

2
0|e〉〈e| (3)

where

�α = −〈‖d ‖〉Eα/
√

3 (4)

are the corresponding Rabi frequencies,〈‖d‖〉 is the reduced dipole matrix element, the
states|x〉, |y〉 and |z〉 are given by

|x〉 = −1√
2
(|Jg = 1, mz = +1〉 − |Jg = 1, mz = −1〉)

|y〉 = i√
2
(|Jg = 1, mz = +1〉 + |Jg = 1, mz = −1〉)

|z〉 = |Jg = 1, mz = 0〉

(5)

are ground atomic states in the chemical basis,0 is the spontaneous decay rate and∓h̄δ is
the energy shift of the|x〉 and |y〉 states with respect to|z〉 (see figure 1).

Assume the laser field to be strong:|�| � δ, 0. In this case the four eigenstates of the
Hamiltonian (3) are

|C ± (t)〉 ≈ 1√
2

[∑
α

n∗
α(t)|α〉 ± |e〉

]
(6)

|NC1, 2(t)〉 ≈
∑

α

q1,2
α (t)|α〉 (7)
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and the corresponding eigenvalues are

EC±(t) ≈ ±h̄|�(t)| (8)

ENC1,2(t) ≈ 0 . (9)

Here

En = E�/|�| (10)

is the polarization vector and the vectorsEq1,2 must be chosen from the subspace orthogonal†
to En∗:

Eq1 ⊥ Eq2 ⊥ En∗ . (11)

Notice the2D degeneracy for the states|NC1, 2〉. These ‘non-coupled’ states are not shifted
by the interaction with the laser light.

2.2. Adiabatic population transfer in theJg = 1 ↔ Je = 0 system

Suppose, that att = −∞ we prepared our system in some linear combination of the
non-coupled states:

|9(−∞)〉 =
∑

α

qα(−∞)|α〉 Eq(−∞) ⊥ En∗(−∞) . (12)

If the field changes slowly enough, the system will always remain in the manifold of the
non-coupled states:

|9(t)〉 =
∑

α

qα(t)|α〉 Eq(t) = Û (t)Eq(−∞) Eq(t) ⊥ En∗(t) . (13)

The unitary matrixÛ (t) is nothing else but the generalized Berry’s phase factor described
by Wilczek and Zee [5]. Assume the laser field to be real: Im(En) = 0. Then the unitary
transformationÛ (t) corresponds to theclassical parallel transportof Eq over the surface of
the unit sphere, where the trajectory of the motionEn(t) is defined by the polarization vector
(see, for example, [6]).

Now consider the particular cycle shown in figure 2:

�z(t) = �0

(
t

τ

)
�x(t) = �y = �0 (14)

where the trajectory of the polarization vectorEn corresponds to a path from the south pole
to the north pole along the 45◦ meridian, where 0◦ corresponds to theπx polarization.
The states|x〉 and |y〉 are non-coupled states both at the beginning (t = −∞) and at the
end (t = +∞) of the evolution. The parallel transport law [6] leads to the following
transformation rules:

|9(−∞)〉 = |x〉 −→ |9(+∞)〉 = −|y〉
|9(−∞)〉 = |y〉 −→ |9(+∞)〉 = −|x〉 .

(15)

Including the Raman detuningδ in the Hamiltonian (3) does not spoil the transformation
rules (15). This can be clearly seen from figure 2.

† Here and below the scalar product of two complex vectorsEA and EB is defined as〈 EA| EB〉 = ∑
α A∗

αBα .
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Figure 2. Energy level structure versus time for�x = �y = �0 = constant and�z growing
linearly with time. Minimum energy splitting between the coupled states|C+〉 and |C−〉
corresponds approximately to 2

√
2h̄�0. Splitting between non-coupled states|NC1〉 and |NC2〉

is 2h̄δ, where δ = �0/3. The state|NC1〉 connects adiabatically|x〉 (t = −∞) and |y〉
(t = +∞) bare states, whereas|NC2〉 provides the adiabatic connection between|y〉 and |x〉.

2.3. Elementary cycle in momentum space

Now consider the spatial motion of theJg = 1 ↔ Je = 0 system in a laser field

EE(t) = EE(y, z, t) exp(−iωt) + CC (16)

where

EE(y, z, t) = Ex(t) exp(+ikz)Eex + Ey(t) exp(−ikz)Eey + Ez(t) exp(iky)Eez (17)

and ω = ωe,z − ωR (ωR = h̄2k2/2M is the recoil energy,M is the atomic mass). In this
case the space of the atomic states is split into so-calledclosed familiesof states:

F( Ep0) = {| Ep0, e〉; | Ep0 − h̄Ekz, x〉; | Ep0 + h̄Ekz, y〉; | Ep0 − h̄Eky, z〉
}

(18)

where Ekα = kEeα. Let (p0)y = 0 and (p0)z = p0. Then each closed family (18) can be
considered as an independentJg = 1 ↔ Je = 0 system (figure 1), whereδ = kp0/M.
Corresponding rules for the population transfer due to the cycle (14) are

|9(−∞)〉 = | Ep0 − h̄Ekz, x〉 −→ |9(+∞)〉 = −| Ep0 + h̄Ekz, y〉
|9(−∞)〉 = | Ep0 + h̄Ekz, y〉 −→ |9(+∞)〉 = −| Ep0 − h̄Ekz, x〉 .

(19)

Notice the different directions of the momentum transfer depending on the initial internal
state. In section 3 we will use this process (14), (19) as abasic cycleto produce splitting
of an atomic beam.

2.4. Loss channels

So far we have considered the ideal population transfer process in which 100% of the atoms
are transferred. In this subsection, we will consider the different channels for loss of atoms
during the cycle (14). Suppose that we start in the state|x〉:

|9(−∞)〉 = |NC1(−∞)〉 = |x〉 . (20)
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For the ideal cycle (δ = 0, 0 = 0, τ → ∞) the final state of the atom must be|y〉. So we
define the loss as

loss= 1 − |〈y|9(+∞)〉|2 . (21)

Below we consider three different channels for the loss. We will calculate the probability
for a spontaneous jump (which contains stationaryPst and non-adiabaticPna parts) as well
as the probability of a Landau–Zener transitionPL–Z. The total loss

loss= Pst + Pna + PL–Z (22)

contains all three parts. Note that due to the symmetry between the non-coupled states the
formulae for the loss derived below can also be used for the|y〉 → |x〉 adiabatic passage.

2.4.1. Stationary spontaneous loss.First of all notice that ifδ 6= 0 the excited state|e〉
is always present in the dressed state|NC1(t)〉 at the intermediate stages of the evolution.
This gives rise to the spontaneous decays from|NC1(t)〉 even if the motion is very slow.
Moreover, the longer the interaction time the more atoms will be lost. The probability of a
spontaneous jump will be given by the formula

Pst =
∫ +∞

−∞
dt 0NC1 (23)

where 0NC1 = −2 Im(ENC1) is the spontaneous decay rate for the state|NC1〉. To the
lowest order inδ and0

Pst = ξ1

(
δ

�0

)2

0τ (24)

whereξ1 = 0.5629 can be expressed as an integral of a very complicated dimensionless
function.

2.4.2. Non-adiabatic spontaneous loss.If the interaction is not slow enough, the atomic
state will contain some small fraction of other dressed states. This may also lead to
spontaneous decay, even forδ = 0. Consider the Hamiltonian (3) in the adiabatic basis:

Ĥ = Ĥ0 − Â (25)

where

〈ζ |Ĥ0|ζ ′〉 = δζ,ζ ′Eζ (26)

(27)

is the adiabatic Hamiltonian,

〈ζ |Â|ζ ′〉 = i〈ζ |(∂/∂t)ζ ′〉 (28)

(29)

is the non-adiabatic coupling between the states andζ = C+, C−, NC1, NC2. Considering
Â as a small perturbation [7], then we may find a second-order correction0

(2)

NC1 to the
spontaneous rate. The probability of the spontaneous jump due to the non-adiabatic
corrections is

Pna =
∫ +∞

−∞
dt 0

(2)

NC1 . (30)

For small0 andδ = 0 this probability is given by

Pna = ξ2

(
1

�0τ

)2

0τ (31)

whereξ2 = 0.2083 is a dimensionless constant, which can be expressed in radicals.
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2.4.3. Landau–Zener transitions.Finally, consider the probability of Landau–Zener
transitionsPL–Z [8] from the state|NC1〉 to other dressed states. According to Dykhne’s
formula [9] we get

PL–Z =
∑

ζ=C+,C−
exp

[
−2

∫ t̃ζ

0
dt Im(Eζ − ENC1)

]
(32)

wheret̃ζ is the crossing point for theEζ (t) andENC1(t) curves in the complex plane. This
leads to the following expression:

PL–Z = 2 exp[−π�0τ ] (33)

whereδ and0 are assumed to be small.

3. Multiple repetition of the elementary cycle in the interference pattern

In this section we consider multiple repetitions of the basic process (14) and (19) due to
the motion through a longitudinal standing wave. This technique allows one to alternate the
directions of the laser beams and therefore produce an irreversible splitting of the atomic
momentum distribution.

3.1. Beamsplitter scheme

Consider the laser field (ω = ωe,z − ωR) in the following configuration:

EE(x, y, z) = Ẽxy sin(k‖x/2 + π/4) exp(+ikz)Eex + Ẽxy sin(k‖x/2 + π/4) exp(−ikz)Eey

+Ẽxy sin(k‖x/2 − π/4) exp(+ikz)Eey + Ẽxy sin(k‖x/2 − π/4) exp(−ikz)Eex

+Ẽz cos(k‖x) exp(iky)Eez (34)

where each longitudinal (0X) standing wave is the the result of the interference between a
corresponding pair of the running waves (see figure 3(a)). For example, theπz-polarized
wave can be built as

1
2 Ẽz exp[+ik cos(2/2)y + ik sin(2/2)x] + 1

2 Ẽz exp[−ik cos(2/2)y + ik sin(2/2)x]

−→ Ẽz cos(k‖x) exp(ik⊥y)Eez (35)

where

k‖ ≈ k2/2 k⊥ ≈ k (36)

for 2 � 1. Let an atomic beam propagate along the 0X axis with a longitudinal velocityv‖.
In the moving frame atoms will ‘see’ five transverse running waves with the alternating
amplitudes:

�→
x = �̃xy sin(k‖v‖t/2 + π/4) � ↼↽

y = �̃xy sin(k‖v‖t/2 + π/4)

�→
y = �̃xy sin(k‖v‖t/2 − π/4) � ↼↽

x = �̃xy sin(k‖v‖t/2 − π/4)

�z = �̃z cos(k‖v‖t)

(37)

where the arrows→, ↼↽ represent the+0Z and−0Z propagation directions, respectively,
and theπz-polarized wave is propagating along the 0Y axis.
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Figure 3. Beamsplitting scheme. (a) Light-field
configuration. (b) Field distribution along the atomic
beam. Corresponding amplitudes are�̃xy = 290ωR and
�̃z = 2900ωR. Ellipses show the elementary cycle of
figure 2 where�0 = �̃xy , τ = (�̃xy/�̃z)(k‖v‖)−1,
δ(n) = 2(2n − 1)ωR (n = 1, 2, . . . , 20 is the index of
the cycle). Each longitudinal standing wave is the result
of interference between two running waves with a small
angle between them (see (a)). (c) Schematic diagram for
the evolution of the momentum distribution. The initial
atomic distribution corresponds to the narrow peak of atoms
prepared in the linear superposition of|x〉 and |y〉 states.
The light-field configuration in the nodes of�z is shown.

Suppose that̃�z � �̃xy . Consider the first node of theπz-wave (figure 3(b)). If we
neglect the�→

y , � ↼↽
x pair of beams as compared to the strong�z wave, the time behaviour

of the light field in the vicinity of the node is very similar to the elementary cycle (14), (19).
Let the initial state of an atom be

|9initial〉 = 1√
2

[| Ep = 0, x〉 + | Ep = 0, y〉] (38)

(see figure 3(c)). Then after passing through the first node, the atomic beam will be split
into two parts in accordance with the rules (19). In the next node, the field configuration is
similar to one in the first node except for a mirror reflection with respect to theX0Y plane.
Therefore the interaction with the second node will lead to a further splitting of the beam
into two parts separated in momentum space by 8¯hk. Such a sequence may be repeated
many times. After passing through̃n nodes of theπz-wave, the splitting between two parts
of the atomic beam will be 4̃nh̄k. Different phases of the splitting are shown in figure 3(c).

3.2. Loss of atoms. Monte Carlo simulations

All three kinds of loss (24), (30) and (33) are accumulated after each elementary cycle. At
the end of the evolution, the total loss will be given by the formula

loss= 1 −
ñ∏

n=1

1 − [Pst(n) + Pna + PL–Z] ≈ 1 − exp[−Psum] (39)
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where

Psum =
ñ∑

n=1

[Pst(n) + Pna + PL–Z]

≈ 16ξ1

3
(ñ)3

(
ωR

�0

)2

0τ + ξ2ñ

(
1

�0τ

)2

0τ + 2ñ exp[−π�0τ ] (40)

and

�0 = �̃xy (41)

τ = (�̃xy/�̃z)(k‖v‖)−1 (42)

δ(n) = 2(2n − 1)ωR (n = 1, 2, . . . , ñ) . (43)

We would like to note that̃n is the total number of nodes of theπz-wave.
In figure 4(a) and (b) we present the results of quantum Monte Carlo simulations for

the metastable He atoms (0 = 38ωR). In the calculations the momentum space has been
truncated to the range±60h̄k. We have chosen an angle2 = 0.053 rad, which corresponds
to a longitudinal period of theπz-wave ofλ‖ = 2π/k‖ = 38 µm. Corresponding amplitudes
are�̃xy = 290ωR and�̃z = 2900ωR. The Rabi frequency of the ‘strong’ wave corresponds
to a saturation parameters = 1.3 × 106. Each plot in figure 4(a) and (b) represents the
momentum distribution after̃n = 20 elementary cycles for longitudinal velocities 5 m s−1

and 15 m s−1 (3ωR/k‖ and 9ωR/k‖), respectively. The initial atomic distribution corresponds
to the narrow peak of width ¯hk/4. The initial internal state is given by (38). The splitting
between the peaks corresponds to the predicted 4ñh̄k = 80h̄k.

In figure 5 the loss of atoms versus longitudinal velocity is shown. We define a transfer
as successful if the final momentump satisfies||p| − 40h̄k| 6 h̄k/8. Atoms with any other
momentum are considered ‘lost’. For the velocity range between 5 m s−1 and 15 m s−1 more
than 60% of the atoms in the initial distribution are in the final momentum peaks at±40h̄k.

For comparison we also plot the theoretical prediction (39), (40). The theoretical
prediction and the results of the simulations are in good agreement, though no fit parameter
has been used. However, the resonance structure of the curve in figure 5 cannot be explained
by (39) and (40). Notice that the major resonances correspond tok‖v‖ = 1, 2, 3, 4ωR. They
may be associated with Doppler resonances in the residualπx, πy-standing wave.

Figure 4. Momentum distribution of metastable He atoms after the interaction with the
beamsplitter (figure 3);2 = 0.053 rad. The longitudinal velocity is (a) 3ωR/k‖ = 5 m s−1 and
(b) 9ωR/k‖ = 15 m s−1, respectively. The initial momentum width of the atomic distribution
is h̄k/4. Each histogram represents an average over 1000 Monte Carlo realizations.
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Figure 5. Loss of atoms versus longitudinal velocity. As a
desired signal atoms within±h̄k/8 interval around the peaks
are considered (see figure 4). Major resonances are located
at k‖v‖ = 1, 2, 3, 4ωR. The broken curve corresponds to the
analytical prediction (39), (40).

4. Conclusion

This paper describes a simple and robust method of creating an efficient large-angle adiabatic
passage beamsplitter that does not require pulsed light fields. The beamsplitter generates
the population transfer by moving atoms through a spatially varying intensity pattern due to
optical interference between two laser beams which are nearly copropagating. We present
numerical simulations which show momentum splittings of 80¯hk, where more than 60% of
the atoms in the initial distribution are in the final momentum peaks at±40h̄k. We show
that the loss in the beamsplitter is dominated by three mechanisms: (i) spontaneous emission
due to the transverse Doppler shift induced by the beamsplitting; (ii) spontaneous loss due
to non-adiabaticity in the population transfer; (iii) Landau–Zener transitions which transfer
the atom to undesired dressed states. Analytical predictions based on these mechanisms
give excellent correspondence with the results of Monte Carlo simulations.
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