
An Interface Formalism for Web Services

Dirk Beyer Arindam Chakrabarti Thomas A. Henzinger

Technical Report No. MTC-REPORT-2007-002
December 7, 2007

Ecole Polytechnique Fédérale de Lausanne
Faculté Informatique & Communications
CH-1015 Lausanne, Switzerland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Interface Formalism for Web Services ∗ †

Dirk Beyer
EPFL, Lausanne, Switzerland

Arindam Chakrabarti
University of California, Berkeley, U.S.A.

Thomas A. Henzinger
EPFL, Lausanne, Switzerland

Abstract

Web application development using distributed compo-
nents and web services presents new software integration
challenges, because solutions often cross vendor, adminis-
trative, and other boundaries across which neither binary
nor source code can be shared. We present a methodol-
ogy that addresses this problem through a formalism for
specifying and manipulating behavioral interfaces of multi-
threaded open software components that communicate with
each other through method calls. An interface constrains
both the implementation and the user of a web service to ful-
fill certain assumptions that are specified by the interface.
Our methodology consists of three increasingly expressive
classes of interfaces. Signature interfaces specify the meth-
ods that can be invoked by the user, together with parame-
ters. Consistency interfaces add propositional constraints,
enhancing signature interfaces with the ability to specify
choice and causality. Protocol interfaces specify, in addi-
tion, temporal ordering constraints on method invocations.
We provide approaches to check if two or more interfaces
are compatible; if a web service can be safely substituted
for another one; and if a web service satisfies a specifica-
tion that represents a desired behavioral property.

Keywords: Web services, Web service interfaces, Web ser-
vice compatibility, Web service substitutivity, Formal spec-
ification, Formal verification

1. Introduction

Component-based design for complex software systems
has been an area of active interest for some time. Building
web applications using distributed components or web ser-

∗ A preliminary version of this paper was presented at the First Interna-
tional Workshop on Foundations of Interface Technologies (FIT), held
on August 21, 2005, in San Francisco, CA.

† This research was supported in part by the ONR grant N00014-02-1-
0671 and by the NSF grants CCR-0234690 and CCR-0225610.

vices introduces special challenges. Conventional develop-
ment of a software product is often done by a single vendor;
and each developer has access to the entire source code or
can use debugging tools on an executable built from all the
software that his own contribution needs to interact with.
In contrast, a web application often uses services offered
by a number of different service providers, most of which
do not disclose even their executable binaries, leave alone
the source code; and the web application developer using
these services has to rely solely on the disclosed documen-
tation, which is usually informal, ambiguous, and often self-
contradictory. In such a situation, interface formalisms pro-
vide a means for unambiguously describing and manipulat-
ing constraints under which independently developed soft-
ware components can work properly together.

Static type systems used in programming languages con-
stitute a simple interface formalism to avoid composition
errors: a function’s signature ensures, for example, that the
function is only called with the correct number of parame-
ters and that the parameters are of the correct type. Richer
interface formalisms for software components have been
proposed for communication protocols [3], timing require-
ments [4], and resource usage [2]. In the spirit of these in-
terface theories, we present a formalism for web service in-
terfaces which supports a two-player game view of multi-
threaded open software components. This view makes the
formalism applicable to scenarios where the details of the
concrete implementation of a service, as well as the details
of the environment of the service, are not known at design
and analysis time. However, an interface constrains both the
implementation and the environment of the service with as-
sumptions that are made by the designer of the service. This
enables our approach to be used early in the web software
design cycle, and by service developers who do not have
access to the source or binary code of partner services that
form part of their environment. A preliminary version of our
interfaces [1] did not support the two-player view, permit-
ting analysis only for closed systems, where the environ-
ment is known.

In contrast to the formal verification of web service im-
plementations [6, 7, 5, 8], we explicitly propose to spec-
ify and verify interfaces of web services, which has a much
better chance of succeeding in practice, because interfaces
are usually less complex than the corresponding implemen-
tations. Indeed, good interface design requires that an in-
terface exposes all information needed to use the service
properly, but no more. In this spirit, we present three in-
terface description languages of successively increasing ex-
pressiveness. Using these languages, we can automatically
check if two or more interfaces are compatible (i.e., if they
satisfy each other’s assumptions), and if one interface can
be safely substituted for another one in every design. In ad-
dition to this, we introduce specifications to describe desired
propositional and temporal properties of web services, and
we provide means for checking whether an interface satis-
fies them.

The first formalism, called signature interfaces, exposes
only the names and types of web methods provided by the
service, and the names and types of web methods that the
interface expects to be provided by the environment. For
example, a signature interface may offer the web method
ProcPay, with the two possible return values OK and
FAIL, and it may itself rely on certain other methods and
return values. The second formalism, called consistency in-
terfaces, adds propositional constraints representing choice
and causality to signature interfaces; for example, it may
prohibit having both an invocation of ProcPay with return
value FAIL and invocation of ShipItemwith return value
OK in the same conversation. The third and richest formal-
ism, called protocol interfaces, adds temporal ordering con-
straints to consistency interfaces; for example, it may dis-
allow conversations where ShipItem is invoked with re-
turn value OK before ProcPay is invoked with return value
OK.

Example 1. (Supply chain management application) In
the following sections, we use a simple example to il-
lustrate the introduced interfaces. The supply chain man-
agement application consists of five web services: Shop,
Store, Bank, Transport, and Supplier. Figure 1
shows an architectural overview of the application. Labeled
arrows from one service to another indicate web method
calls from caller to callee. Shop supports the web method
SellItem called by Client to start the selling pro-
cess, and ChkAvail which checks availability of items
to be sold and is called by Shop itself. Shop requires
the web method ChkStore implemented by Store to
check whether desired items are in stock. It also requires
ShipItem implemented by Transport to ship items to
the customer, and ProcPay implemented by Bank to pro-
cess credit card payments. Store requires GetOffer and
Order implemented by Supplier to get an offer for and
order new items respectively. �

Figure 1. Supply chain management application

2. Signature Interfaces

LetM and I be finite sets of web methods and instances,
respectively. Instances are associated with calls to web
methods, and encode parameters passed to the web method,
return values from the web method, and other behavioral
differences between various calls to the web method; for in-
stance, if the invocation was synchronous or asynchronous,
or in the latter case, if it will lead to a callback. A names-
pace is a set N ⊆ M. Let A ⊆ M × I be the set of ac-
tions. The web method associated with an action a is de-
noted as [a]. Given A ⊆ A, [A] denotes {[a] | a ∈ A}.

A signature S = (N ,J ,K,D) consists of a names-
pace N , a set J ⊆ A of actions that are supported by S
such that [J] ⊆ N , a set K ⊆ A of external actions that are
required by S such that [K] ∩ N = ∅, and a partial func-
tion D : J → 2A which assigns to a supported action a a
set of actions that can be (directly) invoked by a. A signa-
ture S supports a web method m ∈ M if S supports an ac-
tion a such that [a] = m. An action a requires an action a′ in
S if a′ ∈ D(a). A signature S requires an action a′ if some
action a requires a′ in S. A signature S = (N ,J ,K,D) is
a signature interface if D(a) ⊆ (N ×I)∪K for all a ∈ J .

Intuitively, an element (〈m, i〉, D) of D says that when
the web method m is called and the caller assumes the in-
stance i, the signature S = (N ,J ,K,D) pledges to support
this action, and itself relies on that the assumptions carried
by the actions a′ ∈ D are fulfilled (by either this signa-
ture, or by the environment, or by a refinement of this sig-
nature). Thus, a signature interface relates the “guarantees”
made (actions supported) by the interface to the “assump-
tions” (actions assumed to be supported, either by the in-
terface itself or by the environment) under which they are
made.

Example 2. (Signature interface) The signature inter-
face for Shop uses the following sets of web methods, in-
stances, and actions:

2

M = { SellItem, ChkAvail, ChkStore, ProcPay,
ShipItem, GetOffer, Order }

I = { SOLD, NOTFOUND, OK, FAIL, REC }
A = { 〈SellItem, SOLD〉, 〈SellItem, FAIL〉,

〈SellItem, NOTFOUND〉,
〈ChkAvail, OK〉, 〈ChkAvail, FAIL〉,
〈ChkStore, OK〉, 〈ChkStore, FAIL〉,
〈ProcPay, OK〉, 〈ProcPay, FAIL〉,
〈ShipItem, OK〉, 〈ShipItem, FAIL〉,
〈GetOffer, REC〉, 〈Order, OK〉 }

Now we can define a signature SShop consisting of the fol-
lowing components:

NShop = { SellItem, CheckAvail }
JShop = { 〈SellItem, SOLD〉, 〈SellItem, FAIL〉,

〈ChkAvail, OK〉, 〈ChkAvail, FAIL〉 }
KShop = { 〈ChkStore, OK〉, 〈ChkStore, FAIL〉,

〈ProcPay, OK〉, 〈ProcPay, FAIL〉,
〈ShipItem, OK〉, 〈ShipItem, FAIL〉 }

DShop = {
〈SellItem, SOLD〉 7→ {〈ChkAvail, OK〉, 〈ProcPay, OK〉,

〈ShipItem, OK〉}
〈SellItem, FAIL〉 7→ {〈ChkAvail, OK〉, 〈ChkAvail, FAIL〉,

〈ProcPay, OK〉, 〈ProcPay, FAIL〉,
〈ShipItem, FAIL〉}

〈ChkAvail, OK〉 7→ {〈ChkStore, OK〉}
〈ChkAvail, FAIL〉 7→ {〈ChkStore, FAIL〉}
}

For instance, action 〈SellItem, SOLD〉 is supported
by SShop, and actions 〈ChkAvail, OK〉, 〈ProcPay, OK〉 and
〈ShipItem, OK〉 are assumed to be supported by the envi-
ronment. The action 〈SellItem, NOTFOUND〉 is not sup-
ported, but belongs to the namespace of the signature
— it could be supported in a refinement of this signa-
ture.

Signature SShop is a signature interface, because all ac-
tions it uses are from the local namespace N or from the set
of environment actions K. �

2.1. Compatibility and Composition

Given two signature interfaces S1 = (N1,J1,K1,D1)
and S2 = (N2,J2,K2,D2), ifN1∩N2 = ∅, then S1 and S2

are compatible (denoted by comp(S1,S2)), and their com-
position (denoted by (S1 ‖ S2)) is Sc = (Nc,Jc,Kc,Dc),
where Nc = N1 ∪ N2, and Jc = J1 ∪ J2, and Kc =
(K1 ∪ K2) \ (Nc × I), and Dc = D1 ∪ D2. The compo-
sition operation is commutative and associative. Compati-
bility and composition of signature interfaces can be com-
puted in O(n · log n) time, where n = max(|N1|, |N2|).

A signature interface S = (N ,J ,K,D) is closed if
it requires only actions a with [a] ∈ N . A signature in-
terface is open if it is not closed. A signature interface
S = (N ,J ,K,D) is concrete if it supports all actions a
with [a] ∈ N . A signature is abstract if it is not concrete.
Given a signature interface S = (N ,J ,K,D), an environ-
ment for S is a concrete signature interface E that is com-
patible with S such that the composition S ‖ E is closed.
Note that S ‖ E is concrete if and only if S is concrete, and
E is not unique. Intuitively, each E represents a design con-
text in which S can be used.

2.2. Refinement

Given two signature interfaces S = (N ,J ,K,D) and
S ′ = (N ′,J ′,K′,D′), we say S ′ refines S (written S ′ 4
S) if (i) N ′ ⊆ N , (ii) J ′ ⊇ J , (iii) K′ ⊆ K, and (iv) for
every a ∈ J , if a requires a′ in S ′, then a requires a′ in S.

The first condition ensures that the refined signature in-
terface does not try to reserve additional names for itself.
The second condition ensures that the refined signature in-
terface guarantees to support every action that is supported
by the abstract one. The other two conditions ensure that
the refined signature interface does not assume additional
actions to be supported by the environment. Given two sig-
nature interfaces S and S ′, the question if S ′ 4 S can be
decided in O(n · log n) time, where n = max(|N |, |N ′|).

Note that the above definition leads to substitutivity
of refinements: for signature interfaces S1, S ′1 and S2, if
comp(S1,S2) and S ′1 4 S1, then comp(S ′1,S2) and S ′1 ‖
S2 4 S1 ‖ S2. Intuitively, this means that in an overall de-
sign, an abstract placeholder component can be safely re-
placed with a refined version of it, and the overall design
would not exhibit any incorrect behavior if it did not do so
before.

3. Consistency Interfaces

A consistency interface C = (N ,J ,K,F) consists of a
namespace N , a set J ⊆ A of actions that are supported
by C such that [J] ⊆ N , a set K ⊆ A of external ac-
tions that are required by C such that [K] ∩ N = ∅, and
a partial function F : A → B(A), which assigns to a sup-
ported action a an expression from B(A), the set of expres-
sions over the set of actions A using the binary operators u
and t, and the constant ε.

Given a consistency interface C = (N ,J ,K,F),
the underlying signature of C (denoted by sig(C)) is
(N ,J ,K,D), where D : A → 2A is defined as follows:
for all a ∈ J , D(a) = {a′ | a′ occurs in expression F(a)}.
We require that the underlying signature of a consistency in-
terface is a signature interface.

3

Example 3. (Consistency interface) Now we
model Shop as a consistency interface CShop =
(NShop,JShop,KShop,FShop) where NShop, and JShop,
and KShop are as in Example 2, and FShop is as fol-
lows:

FShop = {
〈SellItem, SOLD〉 7→ 〈ChkAvail, OK〉 u 〈ProcPay, OK〉 u

〈ShipItem, OK〉
〈SellItem, FAIL〉 7→ 〈ChkAvail, FAIL〉 t

(〈ChkAvail, OK〉 u (〈ProcPay, FAIL〉 t
(〈ProcPay, OK〉 u 〈ShipItem, FAIL〉)))

〈ChkAvail, OK〉 7→ 〈ChkStore, OK〉
〈ChkAvail, FAIL〉 7→ 〈ChkStore, FAIL〉
}

This consistency interface is a natural extension of the sig-
nature interface SShop; it keeps different choices in the
conversations separate.

For action 〈SellItem, SOLD〉, all three actions in the ex-
pression on the right hand side occur together. For action
〈SellItem, FAIL〉, action 〈ChkAvail, FAIL〉 occurs alone,
or action 〈ChkAvail, OK〉 occurs together with either ac-
tion 〈ProcPay, FAIL〉 or both, actions 〈ProcPay, OK〉 and
〈ShipItem, FAIL〉. Notice that nothing is said about the or-
der of their occurrence. The actions for method ChkAvail
result in calls to the method ChkStore in Store.

The underlying signature of CShop is SShop from the ex-
ample in the last section. Our CShop is a consistency inter-
face because its underlying signature is a signature inter-
face. �

3.1. Compatibility and Composition

Given two consistency interfaces C1 = (N1,J1,K1,F1)
and C2 = (N2,J2,K2,F2), if the underlying signatures
sig(C1) and sig(C2) are compatible, then C1 and C2 are com-
patible (denoted by comp(C1, C2)), and their composition
(denoted C1 ‖ C2) is Cc = (Nc,Jc,Kc,Fc) where Nc =
N1∪N2, andJc = J1∪J2, andKc = (K1∪K2)\(Nc×I),
and Fc = F1∪F2. The composition operation is commuta-
tive and associative. Compatibility and composition of con-
sistency interfaces can be computed in O(n · log n) time,
where n = max(|N1|, |N2|). Note that the operators sig
and ‖ commute: for all consistency interfaces C1 and C2, we
have sig(C1 ‖ C2) = sig(C1) ‖ sig(C2).

A consistency interface C is closed (concrete) if sig(C)
is closed (concrete). Given a consistency interface C, an en-
vironment for C is a concrete consistency interface E that
is compatible with C, such that the composition C ‖ E is
closed.

3.2. Refinement

A conversation of a consistency interface is a set of ac-
tions that are exhibited together in one execution of the
system. Given a consistency interface C = (N ,J ,K,F),
the set of conversations represented by an expression from
B(A) is defined by the function [[.]] : B(A) → 22A , which
is defined as the least solution of the following system of
equations, where a ∈ A and ϕ1, ϕ2 ∈ B(A):

[[T]] = {{}}
[[a]] = {{a} ∪ y | y ∈ [[F(a)]]} if a ∈ J
[[a]] = {{a} ∪ y | y ⊆ (N × I) ∪ K}

if a /∈ J but [a] ∈ N
[[a]] = {{a}} if [a] /∈ N
[[ϕ1tϕ2]] = [[ϕ1]] ∪ [[ϕ2]]
[[ϕ1uϕ2]] = {x ∪ y | x ∈ [[ϕ1]], y ∈ [[ϕ2]]}

Given two consistency interfaces C = (N ,J ,K,F) and
C′ = (N ′,J ′,K′,F ′), we say C′ refines C (written C′ 4 C)
if

i) sig(C′) 4 sig(C), and

ii) for every a ∈ J , for all conversations x′ ∈ [[F ′(a)]],
there exists a conversation x ∈ [[F(a)]] such that x′ ⊆
x.

The definition above allows the refinement C′ to drop
conversations, or actions from a conversation, for actions
supported by C. The refinement C′ is allowed to support ad-
ditional actions that C does not support, but it is not allowed
to require additional actions, and it is not allowed to intro-
duce a new conversation x′ in C′ for an action supported
by C, such that x′ is not a fragment (subset) of a conver-
sation x of the same action in C. The refinement-checking
problem for consistency interfaces is in NP.

Theorem 3.1 Let C1, C′1 and C2 be three consistency in-
terfaces such that C′1 4 C1 and comp(C1, C2). Then
comp(C′1, C2) and C′1 ‖ C2 4 C1 ‖ C2.

3.3. Specifications

A specification ψ for a consistency interface is a formula
a 6 S where a ∈ A and S ⊆ A. Intuitively, a specification
a 6 S states that the invocation of action a must not lead
to a conversation in which the actions in set S are all exhib-
ited together. Formally, a specification ψ = a 6 S is satis-
fied by a consistency interface C = (N ,J ,K,F) (denoted
C |= ψ) if S * x for all x ∈ [[F(a)]]. The specification
satisfaction problem for consistency interfaces is in co-NP.
Given two compatible consistency interfaces C1 and C2, and
a specification ψ, the following holds: (C1 ‖ C2) |= ψ im-
plies C1 |= ψ and C2 |= ψ. The converse is not true.

4

Theorem 3.2 Given a consistency interface C and a speci-
fication ψ:

1. If C |= ψ, then for all C′ such that C′ 4 C, we have
C′ |= ψ.

2. C |= ψ if and only if there exists an environment E of C
such that C ‖ E |= ψ.

Corollary 3.3 Let C1, C′1, and C2 be three consistency in-
terfaces such that C′1 4 C1 and comp(C1, C2). Let ψ be a
specification such that C1 ‖ C2 |= ψ. Then C′1 ‖ C2 |= ψ.

4. Protocol Interfaces

Let Terms be a set such that elements term ∈ Terms
are given by the following grammar (a ∈ A and A ⊆ A,
|A| ≥ 2):

term :: ε | a | uA | �A

A protocol automaton H = (Q, δ) consists of a finite set of
locations Q and a finite (nondeterministic) transition rela-
tion δ ⊆ Q× Terms ×Q, consisting of tuples (q, term, q′)
of a source location q, a term term, and a successor loca-
tion q′. A location that does not occur as a source location
in any transition is a return location.

A protocol interface P = (N ,J ,K,H,R) consists of a
namespaceN , a set J ⊆ A of actions that are supported by
P such that [J] ⊆ N , a set K ⊆ A of external actions that
are required by P such that [K] ∩ N = ∅, a protocol au-
tomaton H, and a partial function R : A → Q which as-
signs to a supported action a a location of H.

The execution semantics of a protocol interface can intu-
itively be understood as follows. The interface maintains a
set of current locations. When execution starts due to the
invocation of a supported action a, this set contains ex-
actly one location R(a), and execution ends when the set
is empty. If a current location is q, the interface chooses
a transition of H with q as source location and executes
the term of the transition. Executing a term means: 1) for
an ε-term, to proceed with the successor; 2) for a term of
the form a, to execute the action a, and, after the execu-
tion of a is completed, proceed with the successor; 3) for a
term of the form uA, to execute all actions from the set A
(in parallel), and, after the execution of all actions is com-
pleted, proceed with the successor; and 4) for a term of the
form �A, to execute all actions from set A (in parallel),
and, after the execution of at least one of the actions is com-
pleted, proceed with the successor. Executing an action a
means adding the location R(a) to the set of current loca-
tions. Proceeding with the successor means the following:
if the successor location of the transition is a return loca-
tion, the current execution is completed; otherwise the suc-
cessor location of the transition is added to the current loca-
tions.

Given a protocol interface P = (N ,J ,K,H,R),
the underlying signature of P (denoted sig(P)) is
(N ,J ,K,D), where D is a partial function D : A → 2A

such that for all a ∈ J , D(a) = sigl(R(a)).
The function sigl : Q → 2A that assigns a set
of actions to every location q, is defined as follows:
sigl(q) =

⋃
i=0,1,...,k g(termi) ∪

⋃
i=0,1,...,k sigl(qi) for

(q, term0, q0), (q, term1, q1), . . . , (q, termk, qk) ∈ δ. The
function g : Terms → 2A is defined as g(ε) = ∅, and
g(a) = {a}, and g(◦A) = A with ◦ ∈ {u,�}, and a ∈ A,
and A ⊆ A. We require that the underlying signature of
a protocol interface is a signature interface, and that start-
ing with any location of the automaton as current location,
the execution of the protocol interface can be completed.

Example 4. (Protocol interface) Shop is rep-
resented by a protocol interface PShop =
(NShop,JShop,KShop,HShop,RShop) where NShop, and
JShop, and KShop are as in Example 2, and HShop and
RShop are defined as follows. For readability, we de-
fine HShop and RShop by giving the transition relation δ
of HShop as a sequence of tuples (q, term, q′), and indi-
cating the partial function R by writing an action a in
front of a transition with R(a) as source location (loca-
tion q0 is a return location):

HShop and RShop :
〈SellItem, SOLD〉 7→ (q1, 〈ChkAvail, OK〉, q2),

(q2, 〈ProcPay, OK〉, q3),
(q3, 〈ShipItem, OK〉, q0),

〈SellItem, FAIL〉 7→ (q4, 〈ChkAvail, FAIL〉, q0),
(q4, 〈ChkAvail, OK〉, q5),
(q5, 〈ProcPay, FAIL〉, q0),
(q5, 〈ProcPay, OK〉, q6),
(q6, 〈ShipItem, FAIL〉, q0),

〈ChkAvail, OK〉 7→ (q7, 〈ChkStore, OK〉, q0),
〈ChkAvail, FAIL〉 7→ (q8, 〈ChkStore, FAIL〉, q0)

This protocol interface is a natural extension of the consis-
tency interface CShop; in addition to what CShop does, PShop

maintains the temporal order of actions.
It models that for action 〈SellItem, SOLD〉 the three ac-

tions occur in the given sequence in a conversation. When
the action 〈SellItem, FAIL〉 is invoked, Shop checks
the availability of the item, nondeterministically assum-
ing the outcome to be either FAIL or OK. In the former
case, the next location is q0, i.e., the sequence induced by
action 〈SellItem, FAIL〉 ends here. In the second case,
(〈ChkAvail, OK〉), it proceeds with payment processing in
location q5, again nondeterministically assuming the out-
come to be FAIL or OK. In the former case the next loca-
tion is q0, and in the latter case it tries to ship the item (in
location q6), with the expectation of failure.

The underlying signature of PShop is SShop from Exam-
ple 2. Our PShop is a protocol interface because its underly-

5

ing signature is a signature interface and all its executions
can be terminated (by reaching a return location). �

Example 5. (Concurrency) The following describes the
protocol interface for the Store web service:

〈ChkStore, OK〉 7→ (q1, ε, q0),
(q1, 〈ChkStore, FAIL〉, q0),

〈ChkStore, FAIL〉 7→ (q2, 〈Supp1.GetOffer, REC〉 u
〈Supp2.GetOffer, REC〉, q3),

(q3, 〈Supp1.Order, OK〉, q0),
(q3, 〈Supp2.Order, OK〉, q0)

Let us first consider action 〈ChkStore, FAIL〉. The inter-
face models that two different supplier web services are si-
multaneously asked to provide an offer. In this case, the
protocol interface expresses not only sequence, but also
concurrency. After both offers are received, the automa-
ton switches to location q3, which models that the Store
web service orders the missing item from one of the two
suppliers. After this, the automaton switches to the re-
turn location q0, i.e., the conversation induced by action
〈ChkStore, FAIL〉 ends here. The conversation repre-
sented by action 〈ChkStore, OK〉 is either empty, or it con-
tains the actions for ordering new items (for the case
the stock is below a certain threshold). This is mod-
eled by making use of the nondeterministic transition
relation. �

4.1. Compatibility and Composition

Given two protocol interfaces P1 =
(N1,J1,K1,H1,R1) and P2 = (N2,J2,K2,H2,R2), if
the underlying signatures sig(P1) and sig(P2) are com-
patible, and Q1 ∩ Q2 = ∅, then P1 and P2 are com-
patible (denoted comp(P1,P2)), and their composi-
tion (denoted P1 ‖ P2) is Pc = (Nc,Jc,Kc,Hc,Rc),
where Nc = N1 ∪ N2, and Jc = J1 ∪ J2, and
Kc = (K1 ∪K2) \ (Nc×I), and Hc = (Q1 ∪Q2, δ1 ∪ δ2),
and Rc = R1 ∪ R2, where Qi and δi are the set of lo-
cations and the transition relation of the automaton Hi

for i ∈ {1, 2}. The composition operation is commuta-
tive and associative. Compatibility and composition of pro-
tocol interfaces can be computed in O(n2 · k2) time,
where n = |Q1| + |Q2| and k = max(k1, k2), and
ki = maxq{|S| : S = {(q, term, q′) : (q, term, q′) ∈ δi}}
are the corresponding maximal nondeterministic branch-
ing factors.

A protocol interface P is closed (concrete) if sig(P) is
closed (concrete). Given a protocol interface P , an environ-
ment for P is a concrete protocol interface E that is compat-
ible with P , such that the composition P ‖ E is closed.

4.2. Refinement

4.2.1. Underlying Game Graph Informally, a protocol
interface represents a game being played between two play-
ers P1 and P2. The interface, together with un-implemented
actions in its namespace, collectively constitute the sys-
tem, which plays against the environment by making moves
that change the state of the system and the environment. A
scheduler (introduced below) arbitrates when both the sys-
tem and the environment have available moves. Player P1

plays for the system and the scheduler, and player P2 plays
for the environment. The game is played over a state space
consisting of an infinite set of trees defined formally as fol-
lows.

Given a finite set of tree symbols T , a tree t over T is a
partial function t : N∗ → T , where N∗ denotes the set of fi-
nite words over the set of natural numbers N, and the do-
main dom(t) = {p ∈ N∗ | ∃(p, l) ∈ t} is prefix-closed.
Each element from dom(t) represents a node of tree t: the
empty word ρ represents the root of the tree; and the set of
child nodes of node p in tree t is ch(t, p) = {p′ | ∃n ∈
N : p′ = p · n ∧ p′ ∈ dom(t)}, where · is the concate-
nation operator for strings over N∗. Each node p of the tree
is named with the symbol t(p). The set of leaf nodes of a
tree t is leaf (t) = {p ∈ dom(t) | ch(t, p) = ∅}. The set
of all trees over a finite set T is denoted T (T). The ini-
tial state of the game, and the winning condition will be de-
fined later. The transitions of the game graph are defined as
follows.

Intuitively, locations in Q belong to the system, and rep-
resent control held by an action supported by the interface.
Four fresh locations q∀, q∃, q1, and q2 are introduced. Loca-
tion q∀ belonging to the system represents control held by
an un-implemented action that will be supported by a refine-
ment of the service being analyzed; the location q∃ belong-
ing to the environment represents control held by an action
required by the interface but outside its namespace that will
be supported by the environment; locations q1 and q2 are re-
turn locations.

Informally, the set of transitions→ of the game graph al-
lows players P1 and P2 to change the current state of the
game. Players P1 and P2 are allowed to move from a given
current state s only if s is a pair (t, r) where the tree t has at
least one leaf labeled with a location belonging to the sys-
tem and the environment respectively, and the second com-
ponent r fulfils the required conditions as described below.
Note that if t is a tree with several leaves, not all leaves may
necessarily be labeled with locations belonging exclusively
to either the system or the environment; then a scheduler ar-
bitrates which of them should be allowed to move. If only
one of the system or the environment actually has a leaf be-
longing to it in the tree t, then the scheduler must choose
the corresponding player to move next. Otherwise, from a

6

game state (t,∇), the scheduler chooses either the former or
the latter to be allowed to make the next move by choosing
a move to (t,∀) or (t,∃) respectively. Note that the sched-
uler is not allowed to modify the tree configuration. The
second component r of a game state (t, r) reflects the de-
cision of the scheduler on whether the system or the en-
vironment is allowed to move next: the system can move
only from game states of the form (t,∀), and the eniron-
ment can move only from game states of the form (t,∃).
Intuitively, the environment needs to win the game against
all possible schedulers. Thus, we allow the scheduler and
the system to conspire with each other against the environ-
ment, which must play against the coalition. Thus, moves
in → corresponding to transitions originating from a state
(t, r) for r ∈ {∀,∇} belong to player P1; and those cor-
responding to transitions originating from a state (t,∃) be-
long to player P2.

Formally, given a protocol interface P =
(N ,J ,K,H,R), the underlying game graph of P is
a labeled two-player game graph G = (S1, S2,L,→) (de-
noted by ugs(P)) where S1 = (T (Q•) × {∀,∇}) is the
set of player-1 states at which player P1 chooses the out-
going transition to the next state, and S2 = (T (Q•)× {∃})
is the set of player-2 states where player P2 chooses the
nest state, and L = 2A∪{ret} is the set of transition la-
bels, and → ⊆ S × L × S is the game transition re-
lation; where the set of game states S = S1 ∪ S2 is
the set of pairs (t, r) with r being an element of the set
R = {∃,∀,∇} and t being a tree over the set of tree sym-
bols Q• = {(q, •) | q ∈ Q ∪ {q∀, q∃, q1, q2}, • ∈ {�, ◦}},
with Q is the set of locations of protocol automa-
ton H and q∀, q∃, q1, q2 are fresh symbols not in Q, and
the transitions between states are labeled with sets of el-
ements from A ∪ {ret}. We write (t, r) A→ (t′, r ′)
for ((t, r), A, (t′, r ′)) ∈ →. Given a protocol inter-
face P the corresponding game transition relation is de-
fined as follows. In the following, for an action a the
symbol qa is defined as follows: qa = R(a) if a is sup-
ported (a ∈ J); qa = q∀ if a /∈ J but [a] ∈ N ; and
qa = q∃ if [a] /∈ N . The relation δ• used below is de-
fined as δ• = δ ∪ δ∀ ∪ δ∃, where δ is the transition relation
of H, and

δ∀ = {(q∀, ε, q1)}
∪ {(q∀, a, q∀) | a ∈ A, s.t. [a] ∈ N or a ∈ K}
∪ {(q∀, ◦A, q∀) | ◦ ∈ {u,�}, A ⊆ A,

s.t. for all a ∈ A, [a] ∈ N or a ∈ K}

δ∃ = {(q∃, ε, q2)}
∪ {(q∃, a, q∃) | a ∈ A}
∪ {(q∃, ◦A, q∃) | ◦ ∈ {u,�}, A ⊆ A}.

Informally, the relation δ∀ encodes the ability of an unim-
plemented action in the interface’s namespace to invoke any

action under the restrictions imposed on it by the interface;
and the relation δ∃ encodes the ability of the environment
to invoke any action. The relation → is defined as follows:

• Next-Mover: (t,∇) ε→ (t, r) where r = ∀ (or ∃)
if there exists a node p such that p ∈ leaf (t), and
t(p) = (q, ◦), and q ∈ Q ∪ {q∀, q1} (or q ∈ {q∃, q2}).

• Epsilon: (t, r) ε→ (t′,∇) if there exists a node p such
that p ∈ leaf (t), and t(p) = (q, ◦), and r = ∀ (or ∃) if
q ∈ Q∪{q∀, q1} (or q ∈ {q∃, q2}), and (q, ε, q′) ∈ δ•,
and t′ = (t \ {(p, (q, ◦))}) ∪ {(p, (q′, ◦))}.

• Call: (t, r)
{a}→ (t′,∇) if there exists a node p such that

p ∈ leaf (t), and t(p) = (q, ◦), and r = ∀ (or ∃) if q ∈
Q∪{q∀, q1} (or q ∈ {q∃, q2}), and (q, a, q′) ∈ δ•, and
t′ = (t \ {(p, (q, ◦))}) ∪ {(p, (q′, ◦)), (p · 0, (qa, ◦))}.

• Fork: (t, r) A→ (t′,∇) if there exists a node p such that
p ∈ leaf (t), and t(p) = (q, ◦), and r = ∀ (or ∃) if
q ∈ Q ∪ {q∀, q1} (or q ∈ {q∃, q2}), and (q,uA, q′) ∈
δ•, and t′ = (t \ {(p, (q, ◦))}) ∪ {(p, (q′, ◦)),
(p · 0, (qa0 , ◦)), . . . , (p · k, (qak

, ◦))}, where A =
{a0, . . . , ak}.

• Fork-Choice: (t, r) A→ (t′,∇) if there exists
a node p such that p ∈ leaf (t), and t(p) =
(q, ◦), and r = ∀ (or ∃) if q ∈ Q ∪
{q∀, q1} (or q ∈ {q∃, q2}), and (q,�A, q′) ∈ δ•,
and t′ = (t \ {(p, (q, ◦))}) ∪ {(p, (q′,�)),
(p · 0, (qa0 , ◦)), . . . , (p · k, (qak

, ◦))}, where A =
{a0, . . . , ak}.

• Return: (t, r)
{ret}→ (t′,∇) if there exists a node p · n,

n ∈ N, such that p · n ∈ leaf (t), and t(p · n) = (q, ◦)
and r = ∀ (or ∃) if q ∈ Q∪{q∀, q1} (or q ∈ {q∃, q2}),
such that q is a return location, t(p) = (q′, ◦), and t′ =
t \ {(p · n, (q, ◦))}.

• Return & Remove Sibling Tree: (t, r)
{ret}→ (t′,∇) if

there exists a node p·n, n ∈ N, such that p·n ∈ leaf (t),
and t(p · n) = (q, ◦) and r = ∀ (or ∃) if q ∈
Q∪{q∀, q1} (or q ∈ {q∃, q2}), such that q is a return lo-
cation, t(p) = (q′′,�), and t′ = (t \ {(p · p′, (q′, •)) |
p′ ∈ N∗ ∧ (q′, •) ∈ Q•}) ∪ {(p, (q′′, ◦))}.

A run of the game structure is an alternating sequence of
game states and sets of actions s0, A1, s1, A2, s2, . . ., with
∀i ∈ {1, . . . n} : si−1

Ai→ si. A trace is the projection of
a run to its action sets; for a run s0, A1, s1, A2, s2, . . ., the
corresponding trace isA1, A2, The set of moves belong-
ing to player Pi at a game state sj ∈ Si is {s | sj

A→ s,A ⊆
A ∪ {ret}}, where i ∈ {1, 2}. Move s of player Pi for
i ∈ {1, 2} at game state sj ∈ Si is labeled withA if sj

A→ s.
A strategy σi of a player Pi for i ∈ {1, 2} is a function that
maps every finite run s0, A1, s1, A2, s2, . . . , sk such that

7

sk ∈ Si to a move available to Pi at sk. The set of strategies
of player Pi for i ∈ {1, 2} is denoted Ψi. For a location q,
a q-run is a run s0, A1, s1, . . . with s0 = ({(ρ, (q, ◦))},∇),
i.e., a run starting from a game state where the sole thread
of control rests at location q of the protocol automaton;
a q-trace is a trace corresponding to a q-run. For a given
pair of strategies (σ1, σ2) and a location q, the outcome
is a q-run s0, A1, s1, A2, s2, . . ., such that for every prefix
ri = s0, A1, s1, A2, . . . , si of the run, if si ∈ Sj , we have
σj(ri) = si+1, for i ∈ N and j ∈ {1, 2}. Given a proto-
col interface P = (N ,J ,K,H,R) and an action a ∈ J ,
the initial state of the game representing the invocation of a
on P (denoted init(P, a)) is ({ρ 7→ (R(a), ◦)},∇).

4.2.2. Alternating Simulation Given two two-player
game graphs G′ = (S′1, S

′
2,L,→′) and G = (S1, S2,L,→)

with state spaces S′ = S′1 ∪ S′2 and S = S1 ∪ S2 respec-
tively, we say G′ is in alternating simulation with G if there
exists a relation - ⊆ S′ × S such that:

i) for every s1 ∈ S1, and s′1 ∈ S′1, if s′1 - s1, then for
every player P1 move s′2 labeled with A and available
at s′1 there exists a player P1 move s2 labeled with A
and available at s1, such that s′2 - s2, and

ii) for every s2 ∈ S2, and s′2 ∈ S′2, if s′2 - s2, then for
every player P2 move s1 labeled with A and available
at s2, there exists a player P2 move s′1 labeled with A
and available at s′2, such that s′1 - s1.

Given two protocol interfacesP = (N ,J ,K,H,R) and
P ′ = (N ′,J ′,K′,H′,R′), we say P ′ refines P (written
P ′ 4 P), if:

i) sig(P ′) 4 sig(P), and

ii) for every action a ∈ A, if P supports a, then the
two two-player game graphs G′ = ugs(P ′) and G =
ugs(P) are such that there exists an alternating simu-
lation relation - with init(P ′, a) - init(P, a).

Theorem 4.1 Let P1, P ′
1 and P2 be three protocol in-

terfaces such that P ′
1 4 P1 and comp(P1,P2). Then

comp(P ′
1,P2) and P ′

1 ‖ P2 4 P1 ‖ P2.

4.3. Specifications

A conversation of a protocol interface is a set
of sequences of objects A, where each A is a set
of actions. A specification ψ for a protocol interface
P = (N ,J ,K,H,R) is a formula a 6 ϕ where a ∈ J ,
and ϕ is a temporal formula of the form (¬C) U B (“not
C until B”), with C,B ⊆ A. Intuitively, a specification
a 6 (¬C) U B means that the invocation of action a must
not lead to a conversation in which an action from the set
B occurs before any action from the set C has occurred. A
specification ψ for a protocol interface P is interpreted over

traces generated by the underlying game graph ofP . Essen-
tially, the specification is taken as the winning condition for
the game.

Given a protocol interface P = (N ,J ,K,H,R), a lo-
cation q of H satisfies a temporal formula (¬C) U B (writ-
ten q |= (¬C) U B) if for all strategies σ2 ∈ Ψ2 of player
P2, there exists a strategy σ1 ∈ Ψ1 of player P1, such that
the outcome is a run corresponding to a q-trace A1, A2, . . .
of the underlying game graph ugs(P) such that there ex-
ists a j ∈ N with Aj ∩ B 6= ∅, and for all i < j we
have Ai ∩ C = ∅. An action a satisfies a temporal for-
mula (¬C) U B in interface P if and only if the location
R(a) satisfies the same formula, i.e., R(a) |= (¬C) U B.
A protocol interface P = (N ,J ,K,H,R) satisfies a spec-
ification ψ = a 6 ϕ (written P |= ψ) if we have a 6|= ϕ.
To concisely represent our algorithmic solution to this prob-
lem, we define a fresh temporal operatorW (“waiting for”),
with the following semantics: given a protocol interface
P = (N ,J ,K,H,R), a location q of H satisfies a tem-
poral formula (¬C) W B (written q |= (¬C) W B) if for
all strategies σ2 ∈ Ψ2 of player P2, there exists a strategy
σ1 ∈ Ψ1 of player P1, such that the outcome is a run cor-
responding to a q-trace A1, A2, . . . of the underlying game
graph ugs(P) such that either there exists no i ∈ N such
that Ai ∩ C 6= ∅, or there is a j ∈ N with Aj ∩B 6= ∅, and
for all k < j we have Ak ∩ C = ∅.

Theorem 4.2 Given a protocol interface P and a specifi-
cation ψ:

1. If P |= ψ, then for all P ′ such that P ′ 4 P , we have
P ′ |= ψ.

2. P |= ψ if and only if there exists an environment EofP
such that P ‖ E |= ψ.

Corollary 4.3 Let P1, P ′
1, and P2 be three protocol inter-

faces such that P ′
1 4 P1 and comp(P1,P2). Let ψ be a

specification such that P1 ‖ P2 |= ψ. Then P ′
1 ‖ P2 |= ψ.

While our previous formalism allowed specification-
checking only for closed protocol interfaces [1], we now al-
low to check specifications for open protocol interfaces as
well. In the Appendix we present Algorithm 1 which solves
the specification-checking problem using the proof rules in
Figures 2 and 3.

References

[1] D. Beyer, A. Chakrabarti, and T. Henzinger. Web Service In-
terfaces. In Proc. WWW, pages 148–159. ACM, 2005.

[2] A. Chakrabarti, L. de Alfaro, T. Henzinger, and M. Stoelinga.
Resource Interfaces. In Proc. EMSOFT, LNCS 2855, pages
117–133. Springer, 2003.

[3] L. de Alfaro and T. Henzinger. Interface Automata. In Proc.
FSE, pages 109–120. ACM, 2001.

8

[4] L. de Alfaro, T. Henzinger, and M. Stoelinga. Timed In-
terfaces. In Proc. EMSOFT, LNCS 2491, pages 108–122.
Springer, 2002.

[5] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility
Verification for Web Service Choreography. In Proc. ICWS,
pages 738–741. IEEE, 2004.

[6] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web
Services. In Proc. WWW, pages 621–630. ACM, 2004.

[7] X. Fu, T. Bultan, and J. Su. WSAT: A Tool for Formal Anal-
ysis of Web Services. In Proc. CAV, LNCS 3114, pages 510–
514. Springer, 2004.

[8] S. Narayanan and S. A. McIlraith. Simulation, Verifica-
tion and Automated Composition of Web Services. In Proc.
WWW, pages 77–88. ACM, 2002.

9

5. Appendix
Proposition 5.1 (Correctness of specification checking)
For a given protocol interface P and a specification ψ =
a 6 (¬C) U B for P , procedure CheckSpec(P, a, B,C)
(Algorithm 1) terminates and returns YES if P satisfies ψ,
and NO otherwise.

Algorithm 1 CheckSpec(P, a, B,C)
Input: Protocol interface P = (N ,J ,K,H,R),

Action sets B,C ⊆ A, and action a ∈ A
Output: YES if P satisfies a 6 (¬C) U B, NO otherwise
Variables: Set of judgements S, boolean done

1: done := F
2: while (¬ done) do
3: done := T
4: for each location q of automaton H do
5: // Try to prove q |= (¬C) W B.
6: if all premises of a rule for q |= (¬C) W B are in

S then
7: S := S ∪ {q |= (¬C) W B}
8: done := F
9: // Try to prove q |= (¬C) U B.

10: if all premises of a rule for q |= (¬C) U B are in
S then

11: S := S ∪ {q |= (¬C) U B}
12: done := F

end
13: if qa |= (¬C) U B ∈ S then
14: return NO

end
15: return YES

Note that we check specifications for open protocol inter-
faces, which contain calls to unsupported actions, either in
its own name space, corresponding to actions that are going
to be supported in refined versions, or in the environment’s
namespace, corresponding to actions that will be supported
only when the interface is composed with the environment
and additional functionality becomes available. In our case,
the game graph allows a variety of choices for behavior for
unsupported environment or refinement actions, and the ac-
tual behavior of the environment and of the refinement is
found by solving the game. In our framework, the environ-
ment is friendly, and its goal while playing the game is to
help the interface satisfy the specification. The behavior of
the system is constrained by the given code, and it has be-
havioral freedom only to the extent allowed by nondeter-
minism in the interface, which it uses to attempt to violate
the specification. The unsupported actions in the interface
namespace, corresponding to actions that will be supported
in refinement, play the game attempting to make the inter-
face violate the specification. If the environment has a strat-

egy to win the game, we say the interface satisfies the spec-
ification. This means that, irrespective of behavioral nonde-
terminism, and how the unimplemented actions in the inter-
face namespace are later implemented, the interface can al-
ways be used in a way that will ensure the desired property
is satisfied. For instance, if vendor A is using a service S
with an interface I provided by vendorB, vendorA will re-
ceive a guarantee that as long as it respects a protocol (given
by the environment’s winning strategy for the property de-
sired by A on interface I), no matter what internal refine-
ments are made to the implementation of S by vendor B,
the property desired by A will continue to hold true.

The strategies for the players P1 and P2 are encoded in
the proof rules presented in Figures 2 and 3, where qa for
an action a ∈ A is defined as in Section 4.2.1. The first
group of rules encodes the strategies of the two players for
the formula (¬C) W B. Player P2 tries to make the for-
mula false, her strategy is to call (at least once) an action
from C \ B; for example, from the location q∃, taking an
action from C \ B and returning immediately afterwards.
This always succeeds, except when C ⊆ B. Player P1 tries
to make the formula true, so her strategy is to avoid call-
ing any action from the set C. For example, from the loca-
tion q∀, player P1 can always immediately return.

The second group of rules encodes the strategies of the
two players for formula (¬C) U B. Player P2 tries to make
the formula false, her strategy is to call an action fromC be-
fore an action from B, or none from B; for example, from
the location q∃ she can immediately return by taking the ε-
transition to the return location. There is no proof rule for a
judgement of the form q∃ |= (¬C) U B, because such tran-
sitions can always be chosen by player P2 to violate the for-
mula. Player P1 tries to make the formula true, her strategy
is to call an action from B before an action from C; for ex-
ample, from location q∀, she can immediately call an action
from B and return immediately afterwards.

10

q |= (¬C) W B
q is a return location. (Return W)

q∃ |= (¬C) W B
C ⊆ B. (∃-Return W)

q′ |= (¬C) W B

q |= (¬C) W B
(q, ε, q′) ∈ δ ∪ δ∀. (Epsilon W)

qa |= (¬C) W B q′ |= (¬C) W B

q |= (¬C) W B
(q, a, q′) ∈ δ, a /∈ C. (Call W)

qa0 |= (¬C) W B . . . qak
|= (¬C) W B q′ |= (¬C) W B

q |= (¬C) W B

(q,uA, q′) ∈ δ,
A ∩ C = ∅,
A = {a0, . . . , ak}.

(Fork W)

qa |= (¬C) W B q′ |= (¬C) W B

q |= (¬C) W B

(q,�A, q′) ∈ δ,
A ∩ C = ∅, a ∈ A. (Fork-Choice W)

Figure 2. Proof rules for the W operator

q′ |= (¬C) U B

q |= (¬C) U B
(q, ε, q′) ∈ δ. (Epsilon U)

q |= (¬C) U B

(q, a, q′) ∈ δ ∪ δ∀ ∨ ((q, ◦A, q′) ∈ δ, a ∈ A, ◦ ∈ {u,�}),
a ∈ B. (Reached U0)

qa |= (¬C) U B

q |= (¬C) U B

((q, a, q′) ∈ δ, a /∈ C) ∨ ((q, ◦A, q′) ∈ δ, ◦ ∈ {u,�},
A ∩ C = ∅, a ∈ A) (Reached U+)

qa |= (¬C) W B q′ |= (¬C) U B

q |= (¬C) U B
(q, a, q′) ∈ δ, a /∈ C. (Call U)

qa0 |= (¬C) W B . . . qak
|= (¬C) W B q′ |= (¬C) U B

q |= (¬C) U B

(q,uA, q′) ∈ δ,
A ∩ C = ∅,
A = {a0, . . . , ak}.

(Fork U)

qa |= (¬C) W B q′ |= (¬C) U B

q |= (¬C) U B

(q,�A, q′) ∈ δ,
A ∩ C = ∅, a ∈ A. (Fork-Choice U)

Figure 3. Proof rules for the U operator

11

	Introduction
	Signature Interfaces
	Compatibility and Composition
	Refinement

	Consistency Interfaces
	Compatibility and Composition
	Refinement
	Specifications

	Protocol Interfaces
	Compatibility and Composition
	Refinement
	Underlying Game Graph
	Alternating Simulation

	Specifications

	Appendix

