
Noname manuscript No.
(will be inserted by the editor)

Semantics of OCL Specified with QVT?

Slavǐsa Marković and Thomas Baar

École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland
e-mail: {slavisa.markovic, thomas.baar}@epfl.ch

The date of receipt and acceptance will be inserted by the editor

Abstract The Object Constraint Language (OCL) has been for many
years formalized both in its syntax and semantics in the language standard.
While the official definition of OCL’s syntax is already widely accepted
and strictly supported by most OCL tools, there is no such agreement on
OCL’s semantics, yet. In this paper, we propose an approach based on meta-
modeling and model transformations for formalizing the semantics of OCL.
Similarly to OCL’s official semantics, our semantics formalizes the semantic
domain of OCL, i.e. the possible values to which OCL expressions can eval-
uate, by a metamodel. Contrary to OCL’s official semantics, the evaluation
of OCL expressions is formalized in our approach by model transformations
written in QVT. Thanks to the chosen format, our semantics definition for
OCL can be automatically transformed into a tool, which evaluates OCL
expressions in a given context.

Our work on the formalization of OCL’s semantics resulted also in the
identification and better understanding of important semantic concepts, on
which OCL relies. These insights are of great help when OCL has to be tai-
lored as a constraint language of a given DSL. We show on an example, how
the semantics of OCL has to be redefined in order to become a constraint
language in a database domain.

Key words QVT, OCL Semantics, Graph-transformations, DSL

? This work was supported by Swiss National Scientific Research Fund under
the reference number 200020-109492/1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Slavǐsa Marković and Thomas Baar

1 Introduction

The OCL is proven to be a very versatile constraint language that can be
used for different purposes in different domains, e.g., for restricting meta-
model instances [1], for defining UML profiles [2], for specifying business
rules [3], for querying models [4,5] or databases [6].

Due to the lack of parsers, OCL was used in its early days often in an
informal and sketchy style, what had serious and negative consequences as
Bauerdick et al. have shown in [7]. Nowadays, a user can choose among many
OCL parsers (e.g. OSLO [8], Eclipse Model Developement Tool (MDT) for
OCL [9], Dresden OCL Toolkit [10], Octopus [11], Use [12], OCLE [13]),
which strictly implement the abstract syntax of OCL defined in the OCL
standard [14].

The situation is less satisfactory when it comes to the support of OCL’s
semantics by current OCL tools. While most of the tools now offer some
kind of evaluation of OCL expressions in a given system state, none of the
tools is fully compliant with the semantics defined in the OCL standard. We
believe that the lack of semantic support in OCL tools is due to the lack of
a clear and implementation-friendly specification of OCL’s semantics. Inter-
estingly, the normative semantics of OCL1 given in the language standard
[14], Section 10: Semantics Described using UML is also formalized in form
of a metamodel, but, so far, this metamodel seems to be poorly adopted by
tool builders.

In this paper we present an new approach for formulating a metamodel-
based semantics of OCL. Defining a semantics for OCL basically means
(1) to define the so-called semantic domain, in which OCL expressions are
evaluated, and (2) to specify the evaluation process for OCL expressions in
a given context.

The semantic domain for OCL is given by all possible system states.
Since a system state can be visualized by an object diagram, the seman-
tic domain is (almost) defined by the official UML metamodel for object
diagrams. There are two major problems to be solved when defining the
semantic domain based on the definition of object diagrams. Firstly, UML’s
metamodel for object diagrams does not define the semantics of OCL’s
predefined types, such as Integer, Real, String, Set(T), etc. However, this
problem has been already recognized in the OCL standard and an addi-
tional package (named Values) for the OCL metamodel has been proposed.
We will, to a great extent, reuse the Values package in our approach. Sec-
ondly, the metamodel for object diagrams implicitly assumes the existence
of solely one object diagram at any moment of time. This becomes a major
obstacle as soon as more than one system state is relevant for the definition
of OCL’s semantics (and this is really the case when defining the semantics
of OCL’s post-conditions). We propose for this problem a solution which

1 There is also an informative semantics given in Annex A of [14], which is for-
mulated in a set-theoretical style and goes back to the dissertation of M. Richters
[15].

Semantics of OCL Specified with QVT 3

is fundamentally different from the one chosen in the normative semantics
and which leads, as we think, to a much simpler metamodel for the semantic
domain of OCL.

The evaluation of OCL expressions is specified in our approach by model
transformations, which are in turn described as QVT rules [16]. In order
to improve readability, we use in this paper a visualization of QVT rules,
which is inspired from graph-grammars. All QVT rules presented in this
paper are also available in its textual form. The complete set of rules can
be downloaded, together with all relevant metamodels, from [17]. Note that
the QVT rules are executable on QVT-compliant engines, what is demon-
strated by our OCL tool RoclET[18], which uses internally the QVT rules
for the evaluation of OCL expressions. The QVT engine of our choice was
Together Architect 2006 [19] which offers mature support for QVT editing,
and debugging.

To summarize, our semantics for OCL has the following characteristics:

– The semantics is directly executable. Contrary to a paper-and-pencil
semantics, OCL developers can immediately see by using a tool (e.g.
RoclET), how the semantics applies in a concrete scenario.
To our knowledge, only the semantics of OCL given by Brucker and
Wolff ([20,21]) has the same characteristics and can be executed in the
OCL tool HOL-OCL.

– The semantics is defined on top of the official metamodels for OCL’s ab-
stract syntax and UML class- and object-diagrams. Consequently, the
semantic definition becomes an integral part of the already existing lan-
guage definitions for UML and OCL.
However, we had to redefine some of the existing metamodels due to
some obvious inconsistencies, which would have prevented us from com-
pletely implementing our approach.

– The target audience for our semantics are developers, who use OCL
in practice. No familiarity with mathematical and logical formalisms is
presumed. In order to understand the semantics, only some knowledge
of metamodeling and QVT is required.

– The semantics is presented in a modular way. This allows to easily define,
starting from our semantics of OCL, the semantics of another constraint
language, which is tailored to a given Domain-Specific Language (DSL).
Similarly, one could also create a new dialect for OCL in the context of
UML; for example, one could decide to abandon OCL’s concept of being
a three-valued logic and to allow only two Boolean values true and false.

The last point highlights the flexibility of our approach. This flexibil-
ity is an important step forward to the vision originally formulated by the
PUML group (see, e.g., [22]) to treat OCL not just as one monolithic lan-
guage but rather as a family of languages, which can be applied in many
different domains and can adapt easily to different requirements from these
domain while still sharing a substantial amount of common semantic con-
cepts, libraries, etc.

4 Slavǐsa Marković and Thomas Baar

This paper is a revised and enhanced version of [23]. While [23] concen-
trates of the evaluation semantics for invariants, we have added to this pa-
per also rules for the evaluation of pre-/postconditions. Furthermore, many
rules were redesigned with the aim to make OCL’s underlying semantic
concepts more explicit and to make evaluation rules more reusable in other
language definitions. We also added a section on tailoring the semantics of
OCL towards the needs of a DSL.

The rest of the paper is organized as follows. In Sect. 2, we sketch our
approach and show, by way of illustration, a concrete application scenario
for our semantics. The basic evaluation steps are formalized by QVT rules
in Sect. 3. The formalized QVT rules have to be consistent to each other, at
least to a certain degree. Achieving consistency is more likely, if the under-
lying semantic concepts are made more explicit. Section 4 proposes a list of
semantic concepts and discusses their impact on evaluation rules. Section 5
shows the flexibility of our approach and presents a stepwise adaptation of
OCL’s semantics, so that the adapted version can be used as a constraint
language for a given DSL. In Sect. 6, we compare our approach with existing
approaches for formalizing the semantics of constraint languages. Section 7
draws conclusions.

2 A Metamodel-Based Approach for OCL Evaluation

In this section we briefly review the technique and concepts our approach
relies on and illustrate with a simple example the evaluation of OCL con-
straints. We concentrate on the evaluation of an invariant constraint in a
given state. The difficulties arising from the evaluation of pre-/postconditions
are described in Sect. 4.

2.1 Official Metamodels for UML/OCL

We base our semantics for OCL on the official metamodels for UML and
OCL. We support the last finalized version of OCL 2.0 [14]. However, since
our approach had the requirement to be integrated in the OCL tool Ro-
clET, which currently does only support UML1.5 diagrams, we refer also
in this paper to UML1.5 as the metamodel of the UML part, on which OCL
constraints rely. Figures 1 and 2 show the parts of the UML and OCL meta-
models that are relevant for this paper. Please note that Fig. 1 contains also
in its upper part a metamodel of the semantic domain of class diagrams.

2.2 Changes in the OCL Metamodel

In order to realize our approach in a clear and readable way, we had to add
a few metaassociations, -classes, and -attributes to the Values package part

Semantics of OCL Specified with QVT 5

ModelElement

name : Name

Link LinkEnd

Association

AssociationEnd

multiplicity : Multiplicity
ordering : OrderingKind

1 2..*

{ordered}
+connection 0..*

+linkEnd

1

0..*

+associationEnd

2

1

{ordered}
+connection

0..*

1 +association

1+instance

AttributeLink

Instance

Attribute

Classifier

DataValue

+value

0..*

0..*

+slot

0..*

1 +attribute

0..*

1+classifier

Feature
0..*

0..1
+owner

{ordered}
+feature

1

+type
0..*

+typedFeature
Class

1

0..*

+association

+participant

+association

1

Sy
nt

ax
Se

m
an

tic
s

Object

Operation

isQuery:Boolean

Parameter

+type

1

+parameter
{ordered}

Stimulus

argument
{ordered}

sender

receiver

1

0..1

*

Fig. 1 Metamodel for Class Diagrams - Syntax and Semantics

of the official OCL metamodel (see Fig. 3). The metaclass OclExpression
has a new association to Instance, what represents the evaluation of the
expression in a given object diagram. We revised slightly the concepts of
bindings (association between OclExpression and NameValueBinding) and
added to class LoopExp two associations current and intermediateResult,
and one attribute freshBinding. Furthermore, the classes StringValue, In-
tegerValue, etc. have now attributes stringValue, integerValue, etc. what
makes it possible to clearly distinguish a datatype object from its value.
We have created two new metaclasses StateTransition and ObjectMap that
are used in evaluations of pre and post-conditions. Metaclass ObjectMap
has two metaassociations with metaclass Instance and is used to relate
two Instances in a pre and a post-state. Metaclass StateTransition has two
metaassociations with Stimulus representing an Operation that corresponds
to a given StateTransition or a sent message. Stimulus itself is used to keep
the track about an operation invocation: receiver and sender of a message,
and operation arguments.

2.3 Evaluation

We motivate our approach to define OCL’s semantics with a small example.
In Fig. 4, a simple class diagram and one of its possible snapshots is shown.
The model consists of one class Stock with two attributes: capacity and
numOfItems, both of type Integer, representing capacity of Stock and the
current number of items it has, respectively. The additional constraint at-
tached to the class Stock requires that the current number of items in a

6 Slavǐsa Marković and Thomas Baar

LoopExp

IteratorExp

Classifier
(from Core)+type

1

VariableExp

+referredVariable
1

0..*

+type

1

LiteralExp

0..1

+appliedElement

0..1

+source

0..1

1+body

+loopExp0..1

1..*

IntegerLiteralExp
integerSymbol:Integer

OclExpression

TupleLiteralExp

TupleLiteralPart Attribute

+value
0..1

+part

+attribute
0..1

0..1

0..1

0..*
0..1

IterateExp 0..1 0..1 +result

+baseExp

TypeExp

0..1

0..*

0..1 +initExpression

0..1

+referredType

+iterator

+loopBodyOwner

Variable
varName : String

+referringExp

Attribute

OclExpression

AttributeCallExp

CallExp

AssociationEndCallExp AssociationEnd

0..1
+appliedElement

0..*

1

+referredAttribute
1

0..*

0..1

+source

+referredAssociationEnd

OperationCallExp Operation
0..* 1

+referredOperation

+argument
{ordered} 0..*

+parentCall0..1

+referringExp

+referringExp

+referringExp

Fig. 2 Metamodel for OCL - Syntax

stock must always be smaller than the capacity. The snapshot shown in the
right part of Fig. 4 satisfies the attached invariant because for each instance
of Stock (class Stock has only one instance in the snapshot) the value of
numOfItems is less than the value of attribute capacity. In other words,
the constraint attached to the class Stock is evaluated on object s to true.

In order to show how the evaluation of an OCL constraint is actually
performed on a given snapshot, we present in Fig. 5 the simplified state of
the Abstract Syntax Tree as it is manipulated by an OCL evaluator. Step
(a)-(b) performs the evaluation of the leaf nodes. Depending on the results
of these evaluations, step (b)-(c) performs evaluation of nodes at the middle
level. Finally, the last step (c)-(d) performs evaluation of the top-level of
the AST. Please note that in this example we were not concerned about
concrete binding of the variable self. The problem of variable binding is
discussed in Sect. 2.4.

The basic idea of our approach is that an OCL constraint can be anal-
ogously evaluated by annotating directly the OCL metamodel instance in-
stead of the AST.

Figure 6 shows the instance of the OCL metamodel representing the
invariant from Fig. 4. Here, we stipulate that all expressions have not been
evaluated yet because for each expression the link val to metaclass Instance

Semantics of OCL Specified with QVT 7

Instance

OclExpressionNameValueBinding
varName : String

+binding

0..*
0..1 +val1

ObjectDataValue

ElementValue
indexNr:Integer

PrimitiveValue OclVoidValue CollectionValue

BagTypeValue SetTypeValue

SequenceTypeValue

BooleanValue
booleanValue:Boolean

IntegerValue
integerValue:Integer

+element

0..1

0..*

0..1

LoopExp
freshBinding : Boolean

+current

+val

+val

0..*

0..1
+intermediateResult

StringValue
stringValue:String

RealValue
realValue:Real

0..*

0..*

0..1

0..10..*
0..*

TupleValue

EnumerationValue

EnumerationLiteral

+enumerationvalue

+enumerationliteral1

0..*

StateTransition

ObjectMap

ModelElement

Stimulus

pre

post
operation

message

map

1

1

1

0..1

0..*

so sm

Operation

operation 1

op
oo

Fig. 3 Changed Metamodel for OCL - Semantics

s:Stock

capacity=7
numOfItems=3

ace:AttributeCallExp

a:Attribute

name='capacity'

oce:OperationCallExp

source

referredAttribute

Stock

capacity: Integer
numOfItems: Integer

context Stock inv:
self.capacity>self.numOfItems

ve:VariableExp

source

vd:VariableDeclaration

name='self'referredVariable

o:Operation

name='>'

ace2:AttributeCallExp

a2:Attribute

name='noOfItems'

referredAttribute

ve2:VariableExp

source

referredVariable

arguments
parentOperation

referredOperation

al:AttributeLink

7:Integer

value

slot

instance

attributeLink
attribute

a:Attribute

name='capacity'

a2:Attribute

name='noOfItems'

s:Class

name='Stock'

instance
classifier

o:Object

name='s'

al:AttributeLink

3:Integer

value

slot

instance

attributeLink
attribute

Fig. 4 Example - Class Diagram and Snapshot

>

capacity numOfItems

self self

>

capacity numOfItems

self self

>

capacity numOfItems

self self

true

s s ss

77 3 3

s s

>

capacity numOfItems

self self

(a)

>

capacity numOfItems

self self

>

capacity numOfItems

self self

>

capacity numOfItems

self self

true

s s ss

77 3 3

s s

>

capacity numOfItems

self self

(b)

>

capacity numOfItems

self self

>

capacity numOfItems

self self

>

capacity numOfItems

self self

true

s s ss

77 3 3

s s

>

capacity numOfItems

self self

(c)

>

capacity numOfItems

self self

>

capacity numOfItems

self self

>

capacity numOfItems

self self

true

s s ss

77 3 3

s s

>

capacity numOfItems

self self

(d)

Fig. 5 Evaluation of OCL expressions seen as an AST: (a) Initial AST (b) Leaf
nodes evaluated (c) Middle nodes evaluated (d) Complete AST evaluated

is missing. Please note that here we assume that in all expressions variable
self is bound to the object o. For the sake of readability this information
is omitted in Figures 6 and 7.

The final state of the metamodel instance, i.e. after the last evaluation
step has been finished, is shown in Fig. 7. What has been added compared
to the initial state (Fig. 6) is highlighted by thick lines. The evaluation of
the top-expression (OperationCallExp) is a BooleanValue with booleanValue
attribute set to true, the two AttributeCallExpressions are evaluated to two

8 Slavǐsa Marković and Thomas Baar

ace:AttributeCallExp

a:Attribute

name='capacity'

oce:OperationCallExp

source

referredAttribute

ve:VariableExp

source

vd:Variable

varName='self'referredVariable

op:Operation

name='>'

ace2:AttributeCallExp

a2:Attribute

name='noOfItems'

referredAttribute

ve2:VariableExp

source

referredVariable

argument
parentCall

referredOperation

o:Object

name='s'al1:AttributeLink

value

slot
al2:AttributeLink

value

slot

C
ur

re
nt

St
at

e

iv2:IntegerValue
integerValue=3

iv:IntegerValue
integerValue=7

O
C

L
C

on
st

ra
in

t

attribute attribute

D
at

a

Fig. 6 OCL Constraint Before Evaluation

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute

ve:VariableExp

source

vd:Variable

varName='self'referredVariable

op:Operation

name='>'

ace2:AttributeCallExp

referredAttribute

ve2:VariableExp

source

referredVariable

referredOperation

o:Object

name='s'

valval

val

a:Attribute

name='capacity'

a2:Attribute

name='noOfItems'

al1:AttributeLink

attribute

value slot
al2:AttributeLink

attribute

valueslot

C
ur

re
nt

St
at

e
O

C
L

C
on

st
ra

in
t

bv:BooleanValue
booleanValue=true

iv2:IntegerValue
integerValue=3

iv:IntegerValue
integerValue=7

val val

D
at

a

argument
parentCall

Fig. 7 OCL Constraint After Evaluation in a Given Snapshot

IntegerValues with values 7 and 3, and each VariableExp is evaluated to
Object with name s.

2.4 Binding

The evaluation of one OCL expression depends not only on the current
system state on which the evaluation is performed but also on the binding
of free variables to current values. The binding of variables is realized in
the OCL metamodel by the class NameValueBinding, which maps one free
variable name to one value. Every OCL expression can have arbitrarily many
bindings, the only restriction is the uniqueness of variable names within the
set of linked NameValueBinding instances.

Semantics of OCL Specified with QVT 9

In the invariant of the Stock example we have used one free variable,
called self. Although self is a predefined variable in OCL, it can be treated
the same way as all other variables, which are introduced in LoopExp. For
example, the invariant

context Stock inv :
s e l f . capac i ty > s e l f . numOfItems

can be rewritten as

Stock . a l l I n s t an c e s −>f o rA l l (s e l f |
s e l f . capac i ty>s e l f . numOfItems)

The binding of variables is done in a top-down approach. In other words,
variable bindings are passed from an expression to all its sub-expressions.
Some expressions do not only pass the current bindings, but also add/change
bindings. An example for adding new value-name bindings will be presented
in more details in Sect. 3 where the evaluation rules for iterate and let
expressions are explained.

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute source

op:Operation

name='>'

ace2:AttributeCallExp

referredAttributesource

argument
parentCall

referredOperation

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute source

op:Operation

name='>'

ace2:AttributeCallExp

referredAttributesource

argument
parentCall

referredOperation

o:Object

name='s'

binding

binding

nvb:NameValueBinding

varName='self'

nvb:NameValueBinding
varName='self'

binding

binding

. . .

. . .

val

val
o:Object

name='s'

Fig. 8 Binding Passing

Figure 8 shows the process of binding passing on a concrete example. In
the upper part, the initial situation is given: The top-expression already has
one binding nvb for variable self. In the lower part of the figure, all subex-
pressions of the top-expression are bound to the same NameValueBinding
as the top-expression.

3 Core Evaluation Rules Formalized as Model Transformations

The previous section has shown the main idea of our approach: we annotate
the evaluation result of each (sub)expression directly to the corresponding
instance of class OclExpression in the OCL metamodel. What has not been
specified yet are the evaluation steps themselves, for example, that an At-
tributeCallExp is always evaluated to the attribute value on that object to

10 Slavǐsa Marković and Thomas Baar

which the source expression of AttributeCallExp evaluates. As shown below,
these evaluation steps will be formally given in form of model transformation
rules.

Although the graph-transformation rules are generally readable and un-
derstandable nicely, their number can become quite high if one wants to
accommodate all peculiarities of OCL (e.g. undefined values, flattening of
collections, @pre in postconditions, etc.). In order to structure the semantics
definition, we will present in this section the core version of evaluation rules
for certain types of expressions and will explain in the next Section 4 how
this core rules have to be extended/adapted in order to reflect all semantic
concepts of OCL.

3.1 Model Transformation Rules

For the specification of evaluation rules we use the formalism of model trans-
formations, more precisely a graphical syntax QVT (Query/View/Transfor-
mation) rules [16].

For our application scenario of QVT rules, source and target model are
always instances of the same metamodel; the metamodel for UML/OCL
including the small changes we have proposed in Sect. 2. Each QVT rule
consists of two patterns (LHS, RHS), which are (incomplete) instantiations
of the UML/OCL metamodel. When a QVT rule is applied on a given
source model, a LHS matching sub model of the source model is searched.
Then, the target model is obtained by rewriting the matching sub model
by a new sub model that is derived from RHS under the same matching.
If more than one QVT rule match on a given source model, one of them
is non-deterministically applied. The model transformation terminates as
soon as none of the QVT rules is applicable on the current model.

While in the conference version of this paper [23] we have sticked to the
official syntax of QVT rules, we take now the freedom to introduce some
additional shorthand notations which will help to improve the conciseness
and the readability of evaluation rules. One source of the complexity of
the rules given in [23] is, that the LHS contains two sub-patterns; one for
the structure to look for the current constraint under evaluation (e.g. an
AttributeCallExp) and one for the structure in the state, in which the con-
straint is evaluated. The RHS has again two patterns; one for the updated
structure of the OCL constraint and one for the structure in the state. Since
the evaluation of OCL expressions does not have side-effects on the state in
which the expression is evaluated, the state-subpattern of LHS must be the
same as the subpattern of RHS.

In order to avoid the redundancy of having the same subpatterns in
LHS in RHS, our evaluation rules contain besides LHS and RHS a third
part called Context, that specify the structures in the input, which must
be available when applying the rule but which are not changed (see Fig. 9
for a comparison of the old and the new form of evaluation rules). The

Semantics of OCL Specified with QVT 11

EvaluationRule

EvaluationRule

Context
CurrentState

i1:Instanceexp1:OclExpression exp1:OclExpression
val

{and} {and}

i2:Instancei2:Instance

exp2:OclExpression exp2:OclExpression

subexp subexp
i2:Instancei2:Instance

i1:Instance i1:Instance

valval

relation relation

i2:Instancei1:Instance
relation

i1:Instanceexp1:OclExpression
val

exp2:OclExpression
subexp

i2:Instance
val

exp1:OclExpression

exp2:OclExpression

subexp

i2:Instance
val

Fig. 9 Format of evaluation rules used in [23] and in this paper

Context part is optional. For the core rules presented in this section, the
Context will encode the assumed structures in the current state, in which
the OCL expression is being evaluated. When it comes to the evaluation of
pre-/postconditions, we will see in the next section that the Context can
also contain even more information. Besides the structures that describe the
system state, Context can also contain an optional part with data values
that are necessary for the evaluation of the rules.

3.2 Binding Passing

Before the source expression can be evaluated, the current binding of vari-
ables has to be passed from the parent expression to all its subexpressions.
Figure 10 shows the transformation rule for OperationCallExp. When ap-
plying this rule, the binding of the parent object oce (represented by a link
from oce to the multiobject nvb in LHS) is passed to subexpressions oe
and aoe (links from oe and aoe to nvb are established in RHS). Analogous
rules exist for all other kinds of OCL expressions which have subexpressions.
For the (subclasses of) LoopExp (see below) one needs also additional rules
for handling the binding because the subexpressions are evaluated under a
different binding than the parent expression.

12 Slavǐsa Marković and Thomas Baar

OperationCallExp-binding

oce:OperationCallExp

oe:OclExpressiono:Operation
sourcereferredOperation

binding
nvb:NameValueBinding

{when}
oe.binding->isEmpty() and
oce.argument->forAll(a | a.binding->isEmpty())

aoe:OclExpression

argument
parentCall oce:OperationCallExp

oe:OclExpressiono:Operation
sourcereferredOperation

binding
nvb:NameValueBinding

aoe:OclExpression

argument
parentCall

bindingbinding

Fig. 10 Binding of an expression

3.3 A Catalog of Core Rules

Each OCL expression is an instance of the metaclass OclExpression in the
OCL metamodel; more precisely – since OclExpression is an abstract meta-
class – an instance of one of the non-abstract subclasses of OclExpression.
For each of these non-abstract metaclasses, the semantics definition must
have at least one evaluation rule.

The semantics of a constraint language such as OCL can be split along
this syntactic dimension (in Section 4, we will see that it is useful to have also
another dimension for the semantics). However, it is not always appropriate
to organize a catalog of evaluation rules based on the metaclasses from
the abstract syntax metamodel. Sometimes, evaluation rules for different
metaclasses are very similar so that these evaluation rules could be put
into the same category (for example, Navigation Expressions). But there is
also the opposite case, where instances of the same metaclass are evaluated
using very different mechanisms, what is a sign for a wrong granularity of
metaclasses in the metamodel (for example, OperationCallExp).

We propose to organize the evaluation rules for OCL based on Navi-
gation Expressions, Operation Expressions, Loop Expressions, Variable Ex-
pressions, Literal Expressions, If Expressions, Message Expressions2, Let-
Expressions, State Expressions3, Tuple Expressions. For the class of Oper-
ation Expressions, it is useful to distinguish expressions that refer (1) to
predefined operations from the OCL library, (2) to queries defined by the
user in the underlying class model, (3) to typecheck or cast operations (e.g.
oclIsTypeOf()), (4) to allInstances().

Here, we discuss only the most representative rules. The main goal is
to demonstrate that the evaluation of all kinds of OCL expressions can be
formulated using graph-transformations in an intuitive but precise way.

3.3.1 Navigation Expressions OCL expressions of this category are, for
example, instances of AttributeCallExp and AssociationEndCallExp. Such

2 Message Expressions can occur only in post-conditions and are ignored here.
3 We consider as the semantic domain of our evaluation only object diagrams

in which the objects do not have a reference to an explicit state given in a state
diagram. Consequently, State Expressions are ignored here.

Semantics of OCL Specified with QVT 13

expressions are evaluated by ’navigating’ from the object, to which the
source expression is evaluated, to that element in the object diagram, which
is referenced by the attribute or association end.

AttributeCallExp The semantics of AttributeCallExp is specified by the
rule AttributeCallExp-evaluation given in Fig. 11. The evaluation of ace is
datavalue d, which is also the value of the attribute a for object o. Note,
that we stipulate in the LHS, that oc, the source expression of ace, has
been already evaluated to object o.

Context

AttributeCallExp-evaluation

DataCurrentState

ace:AttributeCallExp

a:Attribute
source referredAttribute

ace:AttributeCallExp

oc:OclExpression a:Attribute
source referredAttribute

d:DataValue

valo:Object
oc:OclExpression

{when}
ace.val->isEmpty()

val

val

o:Object al:AttributeLink d:DataValue

a:Attribute

valueslotinstance
attributeLink
attribute

o:Object

Fig. 11 Attribute Call Expression Evaluation

AssociationEndCallExp We discuss here only the case of navigating over
an unordered association end with multiplicity greater than 1 (the case of
multiplicities equal to 1 is very similar to AttributeCallExp). The rule shown
in Fig. 12 specifies that the value of aece is a newly created object of type
SetTypeValue whose elements refer to all objects o2 that can be reached
from object o via a link for ae. Again, object o is the evaluation of source
expression oe. The rule shown in Fig. 12 contains at few locations the mul-
tiplicities 1-1 at the link between two multiobjects, for example at the link
between le2 and l. This is an enrichment of the official QVT semantics on
links between two multiobjects. Standard QVT semantics assumes that a
link between two multiobject means that each object from the first multi-
object is linked to every object from the second multiobject, and vice versa.
This semantics is not appropriate for the situation shown in Fig. 12 where
each element of multiobject l must be connected only to one element from
multiobject le2, and vice versa. By using 1-1 multiplicities, we indicate a
non-standard semantics of links between two multiobjects.

3.3.2 Operation Expressions

Expressions Referring to Predefined Operations Expressions from this
category are instances of the metaclass OperationCallExp but the called op-
eration is a predefined one, such as +, =. These operations are declared and

14 Slavǐsa Marković and Thomas Baar

AssociationEndCallExp-setvalued-evaluation

aece:AssociationEndCallExp

source referredAssociationEnd
aece:AssociationEndCallExp

oe:OclExpression
source referredAssociationEnd

o:Object
val

o:Object

o2:Objectm:ElementValue
element

val
1 1

{when}

sv:SetTypeValue

aece.val->isEmpty() and ae.isSetValued()

val val
oe:OclExpression

Context CurrentState

o:Object o2:Object

linkEnd
instance

associationEndl:Link
link

connectionconnection
link

instance

linkEnd1
1

1
1

1
1

ae:AssociationEnd
ordering=unorderedlinkEnd

le2:LinkEndle1:LinkEnd

ae:AssociationEnd
ordering=unordered

ae:AssociationEnd
ordering=unordered

Fig. 12 Association End Call Expression Evaluation that Results in Set of Ob-
jects

informally explained in the chapter on the OCL library in [14]. As an exam-
ple, we explain in the following the semantics of operation ”=” (equals). We
show only two rules here, one specifies the evaluation of equations between
two objects, and the other the evaluation of equations between two integers.

In Fig. 13, the evaluation is shown for the case that both subexpres-
sions oe1, oe2 are evaluated to two objects o1 and o2, respectively. In this
case, the result of the evaluation is bv of type BooleanValue with attribute
booleanValue b, which is true if the evaluations of oe1 and oe2 are the same
object, and false otherwise.

EqualExp-Objects-evaluation

bv:BooleanValue

booleanValue=b

{when}
if o1=o2 then b=true else b=false endif

oce:OperationCallExp

op:Operation

name= '='

referredOperation

source

val

oe2:OclExpression

argument

oe1:OclExpression

val

o2:Objecto1:Object

oce:OperationCallExp

op:Operation

name= '='

referredOperation

source

val

oe2:OclExpression

argument

oe1:OclExpression

val

o2:Objecto1:Object{when}
oce.val->isEmpty()

val

Fig. 13 Equal Operation Evaluation for Objects

If oe1 and oe2 evaluate to IntegerValue, the second QVT rule shown
in Fig. 14 is applicable and the result of evaluation will be an instance
of BooleanValue with attribute booleanValue set to true if the attribute
integerValue of iv1 is equal to integerValue of i2, and to false otherwise.

Expressions Referring to a User-defined Query If a user-defined query
is used in an OCL constraint, then the semantics of the used query must
be specified by a body-clause, which is attached to the query. The query
might also have attached a pre-condition, which must evaluate to true in the

Semantics of OCL Specified with QVT 15

EqualExp-Integers-evaluation

val

{when}

oce:OperationCallExp

op:Operation

name= '='

iv1:IntegerValue

integerValue=i1

source

referredOperationval

oe2:OclExpression

argument

iv2:IntegerValue

integerValue=i2

oe1:OclExpression

val

{when}
oce.val->isEmpty()

bv:BooleanValue

booleanValue=b

if i1=i2 then b=true else b=false endif

oce:OperationCallExp

op:Operation

name= '='

iv1:IntegerValue

integerValue=i1

source

referredOperationval

oe2:OclExpression

argument

iv2:IntegerValue

integerValue=i2

oe1:OclExpression

val

Fig. 14 Equal Operation Evaluation for Integers

current situation. Otherwise, the query-expression is evaluated to undefined.
If the pre-condition evaluates to true, then the value of the OperationCallExp
is the same as the evaluation of the clause body under the current argument
binding.

Fig. 15 shows evaluation rules for user-defined queries. The first rule
creates a set of NameValueBindings for the expressions in precondition and
body. Every NameValueBinding from this set corresponds to exactly one ar-
gument of the OperationCallExp opce. The second rule performs evaluation
of the query in such a way, that if the precondition does not evaluate to true
then the result of the evaluation will be undefined, otherwise the result of
evaluation of the body. One problem, however, is, that the body-expression
might contain again an OperationCallExp referring to op, i.e. the definition
of op is recursive. Recursive query definitions lead in some but not all cases
to infinite loops during the evaluation. Brucker et al. propose in [24] that
recursive query definitions should be checked by the user for unfounded
recursions, but this would require substantial analysis effort.

Expressions for Typecheck and Typecast To this group belong all Opera-
tionCallExps referring to the predefined operation oclAsType and oclIsTypeOf,
oclIsKindOf. The operation oclAsType makes a cast of the source expres-
sion to the type specified in the argument. If this cast is successful, the
whole expression is evaluated to the same object as the source expression.
If the cast is not successful (i.e., the evaluation of the source expression is
an object whose type does not conform to the type given in the argument),
then the whole expression is evaluated to undefined. Because we treat the
evaluation to undefined in the next Section 4 in a general manner, we skip
the rule for oclAsType here.

The rules for oclIsTypeOf and oclIsKindOf are very similar; Fig. 16
shows the rule for oclIsKindOf.

allInstances()-Expressions The predefined operation allInstances() yields
all existing objects of the specified type and all its subtypes. The rule is
shown in Fig. 17. Note that the multiobject os represents according to the
QVT semantics the maximal set of objects o, for which the condition given
in the when-clause of the Context holds.

16 Slavǐsa Marković and Thomas Baar

QueryExp-binding

{when}
opce.val->isEmpty()

oce:OclExpression ocem:OclExpression

val
i:Instance

val

im:Instance

opce:OperationCallExp

op:Operation
isQuery=true

referredOperation

source argument

p:Parameter

parameter

oce:OclExpression ocem:OclExpression

val
i:Instance

val
im:Instance

opce:OperationCallExp

op:Operation
isQuery=true

referredOperation

source argument

p:Parameter

parameter

{when}
nvSet.varName=Set{'self'}->union(op.parameter.name) and
nvSet->forAll(nv | (nv.varName='self') implies nv.val=i and
 (nv.varName<>'self') implies nv.val=
 ocem.at(op.parameter->indexOf(op.parameter->select(p | p.name=nv.varName)->any(true)).val) and
c.stereotype.name='pre' and oceb2.binding->isEmpty()

e2:ExpressionInOcl
body

oceb2:OclExpression

bodyExpression
binding

body oceb2:OclExpression

bodyExpression

val

opce:OperationCallExp

op:Operation
isQuery=true

referredOperation

e2:ExpressionInOcl

body
oceb2:OclExpression

bodyExpression

im:Instance
val

opce:OperationCallExp

op:Operation
isQuery=true

referredOperation

e2:ExpressionInOcl

body oceb2:OclExpression

bodyExpression

val

im:Instance

val

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression
bodyExpression

constraint

c:Constraint

e:ExpressionInOcl
body oceb1:OclExpression

bodyExpression

constraint

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression

bodyExpression

constraint

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression

bodyExpression

constraint

i:Instance

bm:BooleanValue
val

{when}
if bm.booleanValue<>true then i.oclIsTypeOf(OclVoidValue) else i=im endif and
c.stereotype.name='pre'

bm:BooleanValue
val

nvSet:NameValueBinding

{when}
opce.val->isEmpty()

QueryExp-evaluation

bindinge2:ExpressionInOcl

Fig. 15 Evaluation of an expression referring to a query

3.3.3 Loop Expressions Iterator expressions are those in OCL which have
as the main operator one from select, reject, forAll, iterate, exists, collect,
any, one, collectNested, sourtedBy, or isUnique. Since all these expressions
can be expressed by macros based on iterate, it is sufficient to refer for their
semantics just to the semantics of iterate.

In the Fig. 18 are shown evaluation rules that describe the semantics of
iterate.

Semantics of OCL Specified with QVT 17

OclIsKindOf-evaluation

val

{when}

oce:OperationCallExp

op:Operation
name= 'oclIsKindOf'

source

referredOperationval

te:TypeExp
argument

oe:OclExpression

referredType

{when}
oce.val->isEmpty()

bv:BooleanValue

if c1.conformsTo(c) then bv = bv1 else bv=bv2 endif

oce:OperationCallExp

source

referredOperation

te:TypeExp
argument

oe:OclExpression

o:Object c:Class

Context

CurrentState

o:Object c1:Class

Data

op:Operation
name= 'oclIsKindOf'

val

o:Object c:Class

referredType

classifier bv1:BooleanValue
booleanValue=true

bv2:BooleanValue
booleanValue=false

Fig. 16 Evaluation Rule for oclIsKindOf

allInstances-evaluation

oce:OperationCallExp

op:Operation
name= 'allInstances'

source

referredOperation
te:TypeExp

referredType

{when}
oce.val->isEmpty()

c:Classifier

Context
CurrentState

{when}
os->forAll(o| o.classifier.conformsTo(c))

oce:OperationCallExp

op:Operation
name= 'allInstances'

source

referredOperation

te:TypeExp

referredType

c:Classifier

os:Object

stv:SetTypeValue

ev:ElementValue

os:Object

1
1

val

element

Fig. 17 Evaluation Rule for allInstances

The rule Iterate-Initialisation makes a copy of evaluation of the source
expression, and assigns it under the role current to ie. Furthermore, one
NameValueBinding is created and assigned to the body expression. The
name of the NameValueBinding is the same as the name of result variable,
and its value is the same as the value of the initExpression for the result
variable. For some technical reasons, the attribute freshBinding of ie is set
to false.

The rule Iterate-IteratorBinding updates the binding on body expres-
sion oe for the iterator variable v with a new value vp. The element with
the same value vp is chosen from the collection current and is removed af-
terwards from this collection. The attribute freshBinding is set to true and
the binding for oe has changed.

18 Slavǐsa Marković and Thomas Baar

Iterate-evaluation

Iterate-initialisation

Iterate-iteratorBinding

source

val

oes:OclExpression

element

source

val
current

Iterate-intermediateEvaluation

ie:IterateExp

freshBinding=true

val

oe:OclExpression
body

oe:OclExpression
body

{when}
s.element->isEmpty() and ie.val->isEmpty()

{when}

s:CollectionTypeValue

element

element

1
1

1

1

1

ec:ElementValue

ec:ElementValue es:ElementValue

s:CollectionTypeValue

oes:OclExpression

c:CollectionTypeValue

vi:Instance

vc:Instancevi:Instance

current

c:CollectionTypeValue

result

1

oe:OclExpression

body

current

oe:OclExpression

bodybindingb:NameValueBinding

varName=v

{when}

current

s:CollectionTypeValue

es:ElementValue

s:CollectionTypeValue
iterator

bm=bm1->excluding(nvb|nvb.name=v) and oe.val->isEmpty()

vd:Variable

varName=v

bm:NameValueBindingbm1:NameValueBinding

bindingbinding

ie:IterateExp

freshBinding=false

oe:OclExpression body

oe:OclExpression
body

vp:Instance

ie:IterateExp

freshBinding=false

ie:IterateExp

freshBinding=false

ie:IterateExp

freshBinding=true

ie:IterateExp

ie:IterateExp

val

val val

valval

s.clone(c) and es.clone (ec) and vc.clone (vi)

vp:Instance

{when}
oe.val->isEmpty()

inite:OclExpression

vd:Variable

varName=v

res:Variable

varName=r

val
vt:Instance

initExpression

binding

b:NameValueBinding

varName=r

val

ins:Instance ins:Instance

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val

binding

b:NameValueBinding

varName=r

oe:OclExpression
body

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val
ins:Instance

result

res:Variable

varName=r

s:CollectionTypeValue
current

ie:IterateExp

oe:OclExpression
body

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val
ins:Instance

val

result

inite:OclExpression

res:Variable

varName=r

val

vt:Instance

initExpression

iterator

element

Fig. 18 Iterate - Evaluation Rules

The rule Iterate-IntermediateEvaluation updates the binding for the
variable with the same name as the result variable of ie based on the new
evaluation of oe. Furthermore, the value of attribute freshBinding is flipped
and the evaluation of body expression oe is removed..

The final rule Iterate-evaluation covers the case when the collection
current of ie is empty. In this case the value of ie is set to that value
which is bound to the NameValueBinding with the same name as the result
variable.

3.3.4 Variable Expressions Figure 19 shows the evaluation rule for Vari-
ableExp. When this rule is applied, a new link is created between Variable-

Semantics of OCL Specified with QVT 19

Exp and the value to which NameValueBinding, with the same name as
VariableDeclaration, is connected.

VariableExp-eval

ve:VariableExp

{when}
ve.val->isEmpty()

vd:Variable
varName=ni:Instance

nvb:NameValueBinding
varName=n

val

binding

referredVariable

ve:VariableExp

i:Instance

nvb:NameValueBinding
varName=n

val

binding

referredVariable

val
vd:Variable

varName=n

Fig. 19 Variable Expression Evaluation

3.3.5 Literal Expressions In Fig. 20, the evaluation of IntegerLiteralExp is
shown. By applying this rule, a new IntegerValue is created whose attribute
integerValue has the same value as the attribute integerSymbol for expres-
sion ie. Note, that this type of expressions does not need variable bindings
because their evaluation does not depend on the evaluation of any variable.

IntegerLiteralExp-eval

ie:IntegerLiteralExp
integerSymbol=i

ie:IntegerLiteralExp
integerSymbol=i

valiv:IntegerValue
integerValue=i

{when}
ie.val->isEmpty()

Fig. 20 Integer Literal Expression Evaluation

3.3.6 If-Expressions Figure 21 shows the evaluation rule for an if expres-
sion. The result of the evaluation depends on the value to which condition
expression c is already evaluated. As it is stated in the when clause of the
rule, if the value of the condition is true then the result of the evaluation
will be the value of the thenExpression, otherwise it will be value of the else-
Expression. Please note that in this example we don’t deal with evaluation
to undefined and that this aspect of OCL will be discussed later.

3.3.7 Let-Expressions The evaluation of Let-Expressions is a little bit dif-
ferent from the other rules because it changes NameValueBinding for its
subexpressions (similarly to LoopExpression). The evaluation rules for Le-
tExp are shown in Fig. 22. The first rule performs binding of the Let-
variable to the value to which initExpression evaluates (by creating a
new NameValueBinding instance), and then passes this NameValueBinding
to the in part of the expression. The second part specifies that result of
evaluation of an LetExp will be the same as evaluation of its in expression.

20 Slavǐsa Marković and Thomas Baar

ifExp-evaluation

ie:IfExp

condition

c:OclExpression

{when}
ie.val->isEmpty()

thenExpression

i1:Instance

elseExpression
e:OclExpression

i2:Instance

t:OclExpression

bv:BooleanValue
booleanValue=b

val val val

ie:IfExp

condition

c:OclExpression
thenExpression

i1:Instance

elseExpression

e:OclExpression

i2:Instance

t:OclExpression

bv:BooleanValue
booleanValue=b

val val val

i:Instance
val

{when}
if b=true then i=i1 else i=i2 endif

Fig. 21 If-Expression Evaluation

LetExp-binding

LetExp-evaluation

le:LetExp

i2:OclExpression

{when}
le.val->isEmpty()

val
in2:Instance

in
le:LetExp

i2:OclExpression

val

in2:Instance

in

val

le:LetExp

i2:OclExpression

in

vd:VariableDeclaration
varName=v

i1:OclExpression

val
in1:Instance

variable

initializedVariable
initExpression

bm:NameValueBinding

binding

le:LetExp

i2:OclExpression

in

vd:VariableDeclaration
varName=v

i1:OclExpression

val
in1:Instance

variable

initializedVariable
initExpression

b:NameValueBinding
varName=v

binding
bindingval

{when}
bm1=bm->excluding(nvb|nvb.varName=v)

bm1:NameValueBinding

binding

{when}
le.val->isEmpty() and
i2.binding->isEmpty() and
i2.val->isEmpty()

Fig. 22 Let Expression: Binding and Evaluation

3.3.8 Tuple Expressions In Figure 23, the evaluation rule for TupleExp is
shown. This rule consists of three parts. The first part creates a tempo-
rary TupleValue object that will become the result of evaluation once all
TupleLiteralParts are traversed. The middle rule shows the core semantics
of TupleExpression evaluation. This rule will be executed as many times
as there are TupleLiteralParts in the expression. Each time this rule is
triggered, a new AttributeLink is created and attached to the temporary
TupleValue. This newly created AttributeLink will point to one attribute
from the tuple type, and to the value that TupleLiteralPart has. The third
rule is used to create the final value of the TupleExp.

Semantics of OCL Specified with QVT 21

TupleExp-evaluation2

TupleExp-evaluation1

TupleExp-evaluation

tle:TupleLiteralExp

a:Attribute

part

i:OclExpression

val
i1:Instance

value

{when}
tv.slot->collect(attribute)->excludes(a)

tlp:TupleLiteralPart

attribute

tle:TupleLiteralExp

a:Attribute

part

i:OclExpression

val

i1:Instance

value

tlp:TupleLiteralPart

attribute

tv:TupleValue

al:AttributeLink
slot

instance
tv:TupleValue

value

attribute
attributeLink

tle:TupleLiteralExp

{when}
tle.val->isEmpty() and tle.type.typedFeature =
tv.slot.attribute->asSet()

tle:TupleLiteralExp tv:TupleValue

tv:TupleValue
val

tle:TupleLiteralExp

{when}
tle.val->isEmpty() and tle.temp->isEmpty()

tle:TupleLiteralExp tv:TupleValuetemp

temp

temp temp

Fig. 23 Tuple Expression Evaluation

3.4 Syntactic Sugar

Many pre-defined OCL operations are defined as an abbreviation for more
complex terms. For instance, the operation exists can be simulated by the
operation iterate. More precisely, expressions of form

c o l l−>e x i s t s (x | body (x))

can be rewritten to

c o l l−>i t e r a t e (x ; acc : Boolean=f a l s e | acc or body (x))

This rewriting step can also be expressed as a graph-transformation rule
what would make the rule for evaluating the pre-defined operation ’exists’
superfluous.

Figure 24 shows a QVT rule that transforms one exists expression into
corresponding IterateExp. RHS of the rule states that a new IterateExp is
created, new VariableDeclaration, new BooleanLiteralExp with booleanSym-
bol false. The source of the expression and the iterator remain the same as
for the exists operation. The body expression is modified and after the trans-
formation it represents the disjunction of the previous body and the newly
created variable expression that refers to the new VariableDeclaration. In
the when-clause, we state an additional constraint that the varName s used
in the newly created VariableDeclaration is not yet used as a name by any
of the free variables in the body. Note that this constraint was not specified
for the textual representation of the transformation and that would mean
that body expression does not contain any free variable with the name acc.

22 Slavǐsa Marković and Thomas Baar

Exists-to-Iterate

oe:OclExpression

sourceiterator

aoe:OclExpression

body

it:IteratorExp

name='exists'
appliedElementloopExp

oe:OclExpression

sourceiterator

oc:OperationCallExp
body

ie:IterateExp
appliedElementloopExp

bl:BooleanLiteralExp

booleanSymbol=false

result
baseExp

initExpression
initializedElement

aoe:OclExpressionve:VariableExp
o:Operation

name='or'

referredVariable

referredOperation
source argument

{when}
aoe->usedFreeVarName->excludes(s)

vds:Variable

r:Variable
varName=s

vds:Variable

Fig. 24 Transforming Exists expression to an iterate expression

4 Semantic Concepts in OCL

In the previous section, the most important evaluation rules for each of the
possible kinds of OCL expressions were given. The rules basically describe
the necessary evaluation steps in a given state, but they do not reflect yet
the complete semantics of OCL. For example, nothing has been said yet on
how an operation contract consisting of pre-/postconditions is evaluated,
how to handle the @pre construct in postconditions, under which circum-
stances an expression is undefined, etc. These are examples for additional
semantic concepts, that are realized in OCL but which are most likely not
realized in every other constraint language. Besides the syntactic dimension
already explained in Sect. 3.3 for the categorization of rules, the additional
semantic concepts form a second dimension for the rule categorization. We
have identified the following list of semantic concepts, which must be taken
into account when formulating the final version of evaluation rules (note
that in Sect. 3.3 only the rudimentary version of evaluation rules has been
shown).

– evaluation of operation contracts (pre-/postconditions)
– evaluation to undefined (including strict evaluation with respect to un-

defined, with some exceptions)
– dynamic binding when invoking a query
– non-deterministic constructs (any(), asSequence())4

In the next subsections, we discuss the semantical concepts that have
the most impact on the evaluation rules from Sect. 3.3.

4 Non-deterministic constructs lead to semantical inconsistencies as one of the
authors argues in [25]. They are not further discussed here.

Semantics of OCL Specified with QVT 23

4.1 Evaluation of Operation Contracts

The evaluation of an operation contract is defined with respect to a transi-
tion between two states.

StateTransition metaclass from our metamodel (see Fig. 3) is used to
capture one transition from a pre- to a post-state. This transition is charac-
teristic of one concrete operation execution with concrete values passed as
operation parameters. In order to be able to evaluate one pre- or one post-
condition we need all information about the state transition for which we
want to perform the evaluation: operation that caused the transition, val-
ues of the operation parameters, pre-state, post-state, relationships between
objects from pre- and post-state.

The evaluation of preconditions can be done analogously to the evalua-
tion of invariants. The current state the evaluation rules referred to in the
Context is in this case just the pre-state. In addition, the bindings for the
operation arguments have to be extracted from a Stimulus that belongs to
the StateTransition for which we perform the evaluation.

The evaluation of the postcondition is basically done in the post-state.
The keyword result is evaluated according to the binding for the return
parameter. The evaluation of result is fully analogous to the evaluation of
variable expressions.

The evaluation of @pre is more complicated. It requires a switch be-
tween pre- and post-state, more precisely, we have to manage the different
values for properties of each object in the pre- and post-state. Even more
complicated, it might be the case that the set of objects itself has changed
between pre- and post-state.

In the semantics of OCL described in [14, Annex A], the pre- and post-
states are encoded as a set of functions (each function represents an attribute
or a navigable association end) that work on a constant domain of objects.
Furthermore, there is an extra function that keeps track which of the ob-
jects are created in the current state. The formalization has the advantage
that the involved objects do not change their identity and thus is very easy
to understand. Unfortunately, we were not able to apply this simple model
to our semantics due to technical problems caused by the format of graph
transformations. In our semantics, the objects in the pre- and post-state
have different identities, but each object can be connected with one object
from the opposite state via an instance of the ObjectMap metaclass. Please
note, that for one object there can exist many ObjectMaps depending on
number of StateTransitions one object is involved in. A pair of related ob-
jects represents the same object when we would view a pre-/post-state pair
as an evolvement over the same domain. If an object from the pre-state is
not related with any object from the post-state, it means that this object
was deleted during the state transition. Analogously, objects in the post-
state without a counterpart in the pre-state were created.

Fig. 25 shows an example. The pre-state consists of two objects with
identifiers p1, p2 whose type is a class with name Person. The attribute

24 Slavǐsa Marković and Thomas Baar

Transitions

Data

PreState PostState

p2:Object

al2:AttributeLink

dv2:DataValue

al1:AttributeLink

c1:Class

name='Person'

dv1:DataValue

a1:Attribute

name='age'

dv3:DataValue

al11:AttributeLink

c1:Class

name='Person'
a1:Attribute

name='age'

al22:AttributeLink
post

classifier

classifier classifier

classifier

valuevalue valuevalue

attribute

attributeLink

instance slot

attributeLink
attribute

attribute
attributeLink

attributeLink

attribute

instance

instance

instance

slotslot

slot

instanceinstance

instance instance

st1:StateTransition

om1:ObjectMap

s1:Stimulus
operation

o:Operation

dv3:DataValue

pre

operation

argument

receiver

p21:Object

p11:Objectp1:Object

Fig. 25 Relationship between Pre- and Poststate

links for the attribute named age refer to the value dv1 and dv2, which
reside in the package Data. In the post-state, the identifiers for objects and
attribute links have completely changed. But since object p1 and p11 are
related by an ObjectMap om1, we know that p11 and p1 represent the same
object. Note, however, that the state of this object has changed since the
attribute link for attribute named age doesn’t refer any longer to the value
dv2 but to dv3. Since there are no other ObjectMaps we can conclude that
during the state transition from the pre-state to the post-state, the object
p2 was deleted and object p21 was created.

The @pre-Operator can now be realized as an extension to the already
existing core rules. Note that the official OCL syntax allows to attach @pre
on every functor, but @pre is only meaningful when attached to Navigation
Expressions or to an allInstances-expression. The most complicated case is
the application to AssociationEndCallExps.

Figure 26 shows the extended evaluation rule for AssociationEndCall-
Exp with a object-valued multiplicity (upper limit is 1). The current OCL
metamodel encodes @pre expressions as operation call expressions of a pre-
defined operation with name @pre. The source expression of this operation
call expression is exactly that expression, to which the @pre operator is
attached. The rule reads as follows: First, we wait for the situation in which
the source expression of the association end call expression is evaluated
(here, to o1). Note that the Context requires that o1 is an object from the
post-state (what should be always the case). Then, the corresponding ob-
ject of o1 in the pre-state is searched (o1pre) for which the original rule
for evaluation of the association end call is applied (in the pre-state). The
object representing the result of the association end call (o2pre) is then
projected to the post-state (o2), what is then given back as the result of

Semantics of OCL Specified with QVT 25

AtPreAssociationEndCallExp-evaluation

Context
PreState

source aece:AssociationEndCallExp

oc:OclExpression
source

valo1:Object

oc:OclExpression

{when}
oce.val->isEmpty() and not (ae.isSetValued())

val
o1:Object

oce:OperationCallExp
oce:OperationCallExp

o1pre:Object

op:Operation
name='@pre'

referredOperation

ae:AssociationEnd

referredAssociationEnd

le1:LinkEnd

le2:LinkEnd

l:Linkae:AssociationEnd

o2pre:Object

o2:Object

val

ae:AssociationEnd

referredAssociationEnd

instance

linkEnd

linkEnd

instance
associationEnd

linkEnd

connection
 link

 link
connection

source
source

PostState

o1:Object

o2:Object

Transitions

st1:StateTransition

om2:ObjectMap

om1:ObjectMap

postpre

pre post

map

map

 referredOperation
op:Operation
name='@pre'

aece:AssociationEndCallExp

Fig. 26 Evaluation of @pre attached to an object-valued association end call
expression

the evaluation. Note that we didn’t specify so far the cases, in which o1
does not have a counterpart on the pre-state (i.e. the source expression oc
evaluates to a newly created object) or that the result of the association end
call in the pre-state (o2pre) does not have a counterpart in the post-state
(i.e. the object o2pre was deleted during the state transition). This question
is answered in the next subsection.

4.2 Evaluation to undefined

The evaluation of OCL expressions to undefined is probably one of the most
complicated semantic concepts in OCL and has raised many discussions. The
value undefined has been often mixed in the literature with the null-value
(known from Java). Furthermore, questions like Can an AttributeLink refer
to undefined in a state? Can a Set-expression be evaluated to undefined?
Can a Set-value have elements that are undefined? are not fully clarified by
the official OCL semantics (cmp. also [24]).

First of all, we should note that the value undefined was added to the se-
mantic domain for the sole purpose to indicate exceptional situations during
the evaluation. For instance, when an object-valued AssociationEndCallExp
tries to navigate over non-existing links or that a cast of an expression to
a subclass fails. Thanks to the pre-defined operation oclIsUndefined() is it
possible to test if an expression is currently evaluated to undefined ; what
– together with the exception from strict evaluation for and, or, implies,
forAll etc – is a powerful tool to write OCL constraints reflecting the in-
tended semantics even in the presence of undefined values.

26 Slavǐsa Marković and Thomas Baar

But when is actually an expression evaluated to undefined? Strictly
speaking, we had to add for each core evaluation rule a variant of this
rule, that captures all situations in which undefinedness would occur. For-
tunately, we have designed our evaluation rule in such a way, that this
additional rule can be generated. Evaluation to undefined is always needed
in all cases, in which the pattern given in the Context does not match with
the current situation.

Let’s have a look to the rule for @pre on association end call expressions
(Fig. 26). If for instance of the object o1 (evaluation of the source expression)
was newly created during the state transition so that the pre-post link to
an object o1pre is missing, then the whole @pre-Expression evaluates to
undefined. Likewise, if the corresponding object o1pre exists but does not
have a link for association end ae. Another reason could be that the link
exist but the referred object o2pre is deleted during the state change. In
all these cases, the @pre-Expression should be evaluated to undefined and
these cases have in common that the pattern given in the Context does not
match.

4.3 Dynamic Binding

Dynamic (or late) binding is one of the key concepts in object-oriented
programming languages but has been mostly ignored in the OCL literature.
Dynamic binding becomes relevant for the evaluation of user-defined queries.
Let’s assume we have two classes A and B, the class B is a subclass of A and
the operation m() is declared as query with return type Integer in A.

We have the following constraints:

context A: :m() : Integer
body : 5

context B : :m() : Integer
body : 7

Let a and b be expressions that evaluate to an A and a B object, respec-
tively. The result of the evaluation of a.m() is clearly 5. The evaluation of
b.m() depends on whether or not OCL supports dynamic binding.

The core rule for query evaluation shown in Fig. 15 does not realize
dynamic binding so far because it doesn’t take into account potential inher-
itance hierarchy in the model. Result of the second rule shown in the figure
is value of any body expression (oceb2) regardless its context.

For the situation when different bodies can be attached to the same
operation (as in our example with classes A and B) we have to define a
strategy for choosing the right body. The most suitable strategy would be
to search the inheritance tree and take the body expression defined for the
classifier that is the least parent of the source classifier (in the case of b.m()
that would be the second body constraint 7).

Semantics of OCL Specified with QVT 27

In order to transform the static-binding evaluation rules for queries
shown in Fig. 15 to a dynamic-binding rule, we had to alter the when-
clauses in the LHS of the second rule with the following constraint:

i f bm. booleanValue<>t rue then i . oc l IsTypeOf (OclVoidValue)
else i=op . getRightBody (opce . source . va l . oclAsType (Object)

. c l a s s i f i e r −>any (t rue))
endif and
c . s t e r eo type . name=’ pre ’

The getRightBody query (when multiple inheritance is not allowed) is
defined as:

context Operation de f : getRightBody (c l : C l a s s i f i e r) : In s tance
=
i f s e l f . body . oclAsType (Express ionInOcl) . c o n t e x t u a lC l a s s i f i e r

−>e x i s t s (c l) then
op . body−>s e l e c t (b | b . oclAsType (Express ionInOcl)

. c o n t e x t u a lC l a s s i f i e r −>i n c l ud e s (c l))
−>any (t rue) . bodyExpression . va l

else i f c l . ge tDi rec tParent ()−>notEmpty () then
s e l f . getRightBody (c l . ge tDi rec tParent ()−>any (t rue))

else getOclVoidValue ()
endif

endif

5 Tailoring OCL for DSLs

This section contains an example how our approach for defining the seman-
tics of OCL can be applied for the definition of an OCL-based constraint
language that is tailored to a domain specific language (DSL).

As a running example we will use a simple Relational Database Lan-
guage for which we will define an extension of OCL. Two tables Person
and Dog (see Fig. 27) will be used as an example, for which we develop
domain-specific constraints. Each table has one primary key (personID for
the Person table and dogID for the Dog table). In addition, column ownerID
of table Dog has a foreign key relationship with the personID column of the
Person table.

A simple metamodel for relational databases is shown in Fig. 28. This
language is sufficient to specify the database from Fig. 27. Please note that,
for the sake of simplicity, we have avoided to introduce database-specific
types, but reuse already existing UML/MOF primitive types as types for
table columns.

When tailoring OCL as a constraint/query language for a domain spe-
cific language, it is necessary to introduce additional concepts to OCL in
order to capture domain specific constructs. In our example, two constructs
require an extension of the OCL metamodel: 1) navigation to a column 2)
navigation to a column constrained with a foreign key. The first navigation

28 Slavǐsa Marković and Thomas Baar

 Dog

dogID
(PK)

breed ownerID
(FK for personID)

1 Doberman 1
2 Bulldog 1
3 Poodle 2

Person
personID

(PK)
name age

1 John 23
2 Mark 17
3 Steve 45

Fig. 27 An Example of Relational Database

Instance

Row

Cell

PrimitiveValue

isEqualTo(PrimitiveValue):Boolean

Table

DatabaseClassifier

DataTypeForeignKeyPrimaryKey

DBConstraint

name:String

Column
name:String

ModelElement
name:String

1 1

1
1

1

1

11
1

1

0..1
0..*

0..*

0..*
0..*

0..* 0..*

0..*

0..*
+foreignKey

+refColumn

+type

+value

1

+table
+table

+column +cell

+row

+row

+constraintDB

+column

+constraintDB +column

+table

+database+database

+cell

+row

Fig. 28 Relational Database Metamodel

is applied on a Row and has to return the value of the Column for this
Row and the second one has to return a Row of the Table to which the
ForeignKey refers.

An example for these two new navigation expressions is the following:

Dog . a l l I n s t a n c e s ()−> s e l e c t (d | d . breed=’Doberman ’)
−>f o rA l l (dd | dd<=>ownerID . age >18)

This example expression uses three specificities of our relational database
DSL: Ordinary navigation to columns breed and age, foreign key navigation
to column ownerID (foreign key navigation is marked with <=> in order
to make it distinguishable from ordinary column navigation), and a call of
allInstances() on a table.

Another way of expressing the same could be by using only ordinary
column navigation and allInstances(), but this version is much longer:

Dog . a l l I n s t a n c e s ()−> s e l e c t (d | d . breed=’Doberman ’)
−>f o rA l l (dd | Person . a l l I n s t a n c e s ()

−>any (p | p . personID=dd . ownerID) . age >18)

Semantics of OCL Specified with QVT 29

In order to incorporate ordinary and foreign key column navigation into
the constraint language, the metamodel for OCL had to be altered. Figure 29
shows the part of the Domain Specific Query language that is different from
the standard OCL.

OclExpression

ColumnCallExp

0..1+appliedElement

0..*

1+referredColumn

1

0..*

0..1 +source

+referredColumn

0..* Operation1
+referredOperation

+arguments
{ordered} 0..*

+parentOperation0..1

Column

ForeignKeyCallExp

OperationCallExp

CallExp

Fig. 29 DSL Navigation Expressions

Fig. 30 shows the definition of the semantics of column call expressions
in form of an evaluation rule. The result of evaluation of such an expression
would be value of the Cell that belongs to the Row that is the source of the
expression, and that is referred by the chosen Column.

Context

ColumnCallExp-evaluation

CurrentState Data

cce:ColumnCallExp

c:Column
source referredColumn

cce:ColumnCallExp

oc:OclExpression c:Column

p:PrimitiveValue

source referredColumn

value
cell

cell column

r:Row valr:Rowoc:OclExpression
{when}

cce.val->isEmpty()

val

val

r:Row

c:Column

row

cl:Cell

p:PrimitiveValue

Fig. 30 Semantics of Column Navigation Specified with QVT

The semantics of ForeignKeyCallExp is shown in Fig. 31. This rule spec-
ifies that the value of the ForeignKeyCallExp will be a Row r2 for which
its primary key column has a Cell with the same value as the Cell of the
source Row r for the foreign key column.

A mandatory construct that is needed when specifying the semantics
of domain specific query languages and that cannot be reused from stan-

30 Slavǐsa Marković and Thomas Baar

Context

ForeignKeyCallExp-evaluation

fce:ForeignKeyCallExp

c:Column
source referredColumn

fce:ForeignKeyCallExp

oc:OclExpression c:Column
source referredColumn

r2:Row

r:Row valr:Rowoc:OclExpression

{when}
cce.val->isEmpty()

val

val

CurrentState

cell

cell

column

r:Row

c:Column

row

cl:Cell fk:ForeignKey

c:Column

cl2:Cellr2:Row

{when}
cl.value.isEqualTo(cl2.value)

column
cellrow

cell

constraintDB

refColumn
foreignKeycolumn

Fig. 31 Semantics of Foreign Key Navigation Specified with QVT

dard OCL is the operation call expression for the predefined operation
allInstances(). This construct operates on model elements that do not exist
in UML/MOF and therefore has to be explicitly defined as in Fig. 32.

allInstancesDB-evaluation

Context
CurrentState

oce:OperationCallExp

source

referredOperation
te:TypeExp

referredType

{when}
oce.val->isEmpty()

t:Table

oce:OperationCallExp

source

referredOperation

te:TypeExp

referredType
t:Table

rs:Row

stv:SetTypeValue

ev:ElementValue

rs:Row

1
1

val

element

t:Table
 table

row

val
op:Operation

name= 'allInstances'

op:Operation
name= 'allInstances'

Fig. 32 Semantics of allInstances Operation Call Expression for Relational
Database

Another way of defining the semantics of OCL expressions on the in-
stance level is by moving (transforming) an OCL expression to an equiva-
lent expression that queries the corresponding metamodel. As an example,
consider the following ColumnCallExpression specified using our concrete
syntax:

Semantics of OCL Specified with QVT 31

exp . age

Please note that the source expression exp can be any expression of type
Table. This short expression in the DSL-specific version of OCL can be em-
ulated by the following expression, which exploits the metalevel. However,
this expression is clearly much more complicated.

Column . a l l I n s t a n c e s ()−> s e l e c t (c o l | c o l . name=’ age ’ and
c o l . t ab l e=exp . t ab l e) . c e l l

−>s e l e c t (cc | cc . row=exp)
−>any (t rue)

6 Related Work

The work described in this paper combines techniques and results from dif-
ferent fields in computer science: logics, precise modeling with UML/OCL,
model transformation, modeling language design. For this reason, we sepa-
rated related work into three categories.

6.1 Approaches to define the semantics of OCL

There are numerous papers and even some dissertations that propose a for-
mal semantics for complete OCL or for a fragment of it, e.g., [26,27,15,28,
22,29–32] and, recently, [21]. Many other papers have identified inconsisten-
cies in the official OCL semantics and contributed in this form to a better
understanding of OCL’s concepts, e.g., [33,34,25,35,24].

Though we hope to have addressed in our semantics many of the issues
raised in previous paper, there is no guarantee we can give, that our seman-
tics has resolved all problems (a discussion on this would deserve another
paper). What is more relevant for the current paper is to compare the tech-
nique, which has been used for the semantics definition, with that of other
approaches. We restrict ourselves to a comparison with the two semantics
given in the OCL language standard.

6.1.1 Official OCL Semantics: Informative Annex A of [14] presents a set-
theoretical semantics for OCL, which goes back of the dissertation of Mark
Richters [15]. This semantics has been marked in the OCL standard as
informative.

The semantic domain of OCL is formalized by the notion of system state
(a triple consisting of the set of objects, the set of attribute values for the
objects, and the set association links connecting objects) and the interpre-
tation of basic types. The notion of system state is defined on top of the
notion of object model. What was formalized by Richters as system state is
known in UML terminology as object diagram, an object model corresponds
to a class diagram.

32 Slavǐsa Marković and Thomas Baar

In our approach, the class and object diagrams are directly formalized
by their metamodels and the interpretation of basic types is covered by the
package Values of the OCL metamodel. All three metamodels, on which
our approach relies, are part of the official language definition for UM-
L/OCL. However, there is one important difference to Richter’s semantics:
In Richter’s approach, one object can be in multiple states, whereas in our
approach, states are represented by object diagrams which can never con-
tain objects with the same identity. We solved this problem by introducing
ObjectMap objects (cmp. Sect. 2.2) whenever two different states are in-
volved in the evaluation of OCL constraints (e.g., post-conditions). Note
that a set of ObjectMap objects referring to a pre-state and a post-state
can also encode the information which of the objects were created/deleted
during the transition from pre- to post-state. In Richter’s approach, the
lifetime of an object is encoded by the function σCLASS .

The evaluation of OCL expressions is formalized in Richter’s semantics
by an interpretation function I, which is defined separately for each type
of OCL expression. The definitions for I are based on the above mentioned
ingredients of the semantics object model, system state, interpretation of
basic types. In our approach, the interpretation function I is implicitly given
by QVT rules, which are based on the metamodels for class diagrams, object
diagrams, and on the Values package.

One of the most interesting details when comparing the formalization
of expression evaluation is the handling of pre-defined functions. Following
Richter, pre-defined functions like =, union, concat, etc., are interpreted by
their mathematical counterparts, e.g. I(=t)(v1, v2) = true if v1 = v2 and
v1 6= ⊥ and v2 6= ⊥. Otherwise stated, the semantics of some operations of
the object language (OCL) is reduced to the semantics of some operations of
the meta language (mathematics). The same holds in our case, the semantics
of operation ’=’ of the object language (OCL) is reduced to the semantics
of the operation ’=’ in the metalanguage (QVT) (see Sect.3.3.2).

In both cases, it has to be assumed that the semantics of the meta-
language has been already defined externally (cmp. also [36]). In case of
Richter’s semantics, one could refer to textbooks introducing mathemat-
ics. In case of our semantics, we can refer to the implementation of QVT
engines, which actually map QVT rules to statements in a programming
language, e.g. Java.

6.1.2 Official OCL Semantics: Normative The semantics described in [14],
Sect. 10 Semantics Described Using UML is called normative OCL seman-
tics and shares the same main goal as our approach: to have a semantics
description of OCL, which is seamlessly integrated into the other artifacts
(metamodels) of OCL’s language definition. However, there are important
differences.

The normative semantics defines a package Values to encode pre-defined
data types and system states. We tried to align our approach as much as pos-
sible with this Values package (e.g. NameValueBinding), but some details

Semantics of OCL Specified with QVT 33

differ. Most notable, as already mentioned in the comparison with Richter’s
semantics, our states never contain identical objects. The normative OCL
semantics insists on keep object identities across states, but this yields to
a quite complicated encoding of attribute value and links, which have to
be kept separated from objects (see metaclass LocalSnapshot). Moreover,
the normative semantics encodes exactly one system trace (metaassociation
pred--succ on LocalSnapshot), while in our approach state transitions are
modeled explicitly by a new metaclass StateTransition.

The evaluation of OCL expressions is formalized in the normative seman-
tics by so-called evaluation classes. For each metaclass from the metamodel
of OCL’s abstract syntax, there is exactly one corresponding evaluation
class, e.g. AttributeCallExpEval. Evaluation classes are complimented by
a number of invariants, whose purpose is to specify the evaluation process.
In many cases, the invariants can be mapped to exactly one QVT rule in
our approach. For example, there is for each evaluation class one invari-
ant specifying the propagation of the current binding of variables (called
Environment in the normative semantics) to sub-expressions, what corre-
sponds to our variable binding propagation rules described in Sect. 2.4.

The normative semantics has been also the starting point for a seman-
tics formalization given by Chiarad́ıa and Pons in [37]. They alter the OCL
semantics’ metamodel by introducing visitor pattern in order to reduce the
duplication of information in AbstractSyntax and Evaluations packages of
OCL metamodel. Contrary to our approach, they use UML sequence dia-
grams to express the semantics of OCL expressions.

6.2 Approaches to define language semantics by model transformations

The application of model transformations (or, more general, graph trans-
formations) for the purpose of defining language semantics is not a new
idea. However, we are only aware of one paper, which applies this technique
for the definition of the semantics of OCL. Bottoni et al. propose in [38] a
graphical notation of OCL constraints and, on top of this notation, some
simplification rules for OCL constraints. These simplification rules specify
implicitly the evaluation process of OCL expressions. However, the seman-
tics of OCL is not developed as systematically as in our approach, only the
simplification rules for select are shown. Since [38] was published at a time
where OCL did not have an official metamodel, the simplification rules had
to be based on another language definition of OCL.

For behaviorial languages, Engels et al. define in [39] a dynamic seman-
tics in form of graph-transformation rules, which are similar to our QVT
rules. As an example, the semantics of UML statechart diagrams is pre-
sented.

In [40] Varró points out the abstraction gap between the ”graphical”
world of UML and mathematical models used to describe dynamic seman-
tics. In order to fill this gap he uses graph transformation systems to describe

34 Slavǐsa Marković and Thomas Baar

visual operational semantics. Application of the approach is demonstrated
by specifying semantics of UML statecharts.

Stärk et al. define in [41] a formal operational semantics for Java by
rules of an Abstract State Machine (ASM). The semantic domain of Java
programs is fixed by defining the static structure of an appropriate ASM.
The ASM encodes furthermore the Abstract Syntax Tree (AST) of Java
programs. As shown by our motivating example in Sect. 2, there are no
principal differences between an AST and an instance of the metamodel.
Also, ASM and QVT rules are based on the same mechanisms (pattern
matching and rewriting).

6.3 Other related work

An interesting classification of OCL language concepts was developed by
Chiorean et al. in [42]. In this paper, OCL language constructs are classi-
fied according to their usage in different domains, such as Transformations,
Assertions, and Commands. In our approach, we have concentrated on what
is called core OCL in [42], but it would be definitely worthwhile to investi-
gate the other domains as well.

Kolovos et al. define in [43] a navigation language for relational databases
that is similar to our language defined in Sect. 5. They use the metalanguage
EOL (which is based on OCL) to define the result of evaluation of new
expressions like column navigation.

7 Conclusions and Future Work

We have developed a metamodel-based, graphical definition of the semantics
of OCL. Our semantics consists of a metamodel of the semantic domain (we
have slightly adapted the existing metamodels from UML1.x) and a set of
transformation rules written in an extension of QVT that specify formally
the evaluation of an OCL constraint in a snapshot. To read our semantics,
one does not need advanced skills in mathematics or even knowledge in
formal logic; it is sufficient to have a basic understanding of metamodeling
and QVT. The most important advantage, however, is the flexibility our
approach offers to adapt the semantics of OCL to domain-specific needs.
Since the evaluation rules can directly be executed by any QVT compliant
tool, it is now very easy to provide tool support for a new dialect of OCL.
This is an important step forward to the OMG’s vision to treat OCL as a
family of languages.

We are currently investigating how an OCL semantics given in form of
QVT rules can be used to argue on the semantical correctness of refactoring
rules for UML/OCL, which we have defined as well in form of QVT rules.
A refactoring rule describes small changes on UML class diagrams with at-
tached OCL constraints. A rule is considered to be syntactically correct if
in all applicable situations the refactored UML/OCL model is syntactically

Semantics of OCL Specified with QVT 35

well-formed. We call a rule semantically correct if in any given snapshot
the evaluation of the original OCL constraint and the refactored OCL con-
straint yields to the same result (in fact, this view is a simplified one since
the snapshots are sometimes refactored as well). To argue on semantical
correctness of refactoring rules, it has been very handy to have the OCL
semantics specified in the same formalism as refactoring rules, in QVT. A
more detailed description together with a complete argumentation on the
semantical correctness of the MoveAttribute refactoring rule can be found
in [44].

Another branch of future activities is the description of the semantics
of programming languages with graphical QVT rules. Our ultimate goal is
to demonstrate that also the description of the semantics of a programming
language can be given in an easily understandable, intuitive format. This
might finally contribute to a new style of language definitions where the se-
mantics of the language can be formally defined as easy and straightforward
as it is today already the case with the syntax of languages.

References

1. OMG. UML 2.0 Infrastructure Specification. OMG Document ptc/03-09-15,
Sep 2003.

2. Kirsten Berkenkötter. OCL-based validation of a railway domain profile. In
Thomas Kühne, editor, Models in Software Engineering, Workshops and Sym-
posia at MoDELS 2006, Genoa, Italy, October 1-6, 2006, Reports and Revised
Selected Papers, volume 4364 of Lecture Notes in Computer Science, pages
159–168. Springer, 2007.

3. Birgit Demuth, Heinrich Hußmann, and Sten Loecher. OCL as a specification
language for business rules in database applications. In UML’01: Proceed-
ings of the 4th International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, volume 2185 of Lecture Notes in
Computer Science, pages 104–117. Springer, 2001.

4. Eric Cariou, Raphaël Marvie, Lionel Seinturier, and Laurence Duchien. OCL
for the specification of model transformation contracts. In Octavian Pa-
trascoiu, editor, OCL and Model Driven Engineering, UML 2004 Conference
Workshop, October 12, 2004, Lisbon, Portugal, pages 69–83. University of
Kent, 2004.

5. David H. Akehurst and Behzad Bordbar. On querying UML data models
with OCL. In Martin Gogolla and Cris Kobryn, editors, UML 2001 - The
Unified Modeling Language, Modeling Languages, Concepts, and Tools, 4th
International Conference, Toronto, Canada, October 1-5, 2001, Proceedings,
volume 2185 of Lecture Notes in Computer Science, pages 91–103. Springer,
2001.

6. Birgit Demuth and Heinrich Hußmann. Using UML/OCL constraints for
relational database design. In Robert B. France and Bernhard Rumpe, edi-
tors, UML’99: The Unified Modeling Language - Beyond the Standard, Second
International Conference, Fort Collins, CO, USA, October 28-30, 1999, Pro-
ceedings, volume 1723 of Lecture Notes in Computer Science. Springer, 1999.

36 Slavǐsa Marković and Thomas Baar

7. Hanna Bauerdick, Martin Gogolla, and Fabian Gutsche. Detecting OCL traps
in the UML 2.0 superstructure: An experience report. In Thomas Baar, Alfred
Strohmeier, Ana M. D. Moreira, and Stephen J. Mellor, editors, UML 2004 -
The Unified Modelling Language: Modelling Languages and Applications. 7th
International Conference, Lisbon, Portugal, October 11-15, 2004. Proceedings,
volume 3273 of Lecture Notes in Computer Science, pages 188–196. Springer,
2004.

8. Oslo Team. Oslo project. http://oslo-project.berlios.de/, 2007.
9. MDT-OCL Team. Eclipse MDT - OCL project.

http://www.eclipse.org/modeling/mdt/?project=ocl, 2007.
10. Dresden OCL Team. Dresden OCL Toolkit. http://dresden-

ocl.sourceforge.net/, 2007.
11. Octopus Team. Octopus – OCL Tool for Precise Uml Specifications.

http://octopus.sourceforge.net/, 2007.
12. USE Team. USE – a UML-based Specification Environment.

http://www.db.informatik.uni-bremen.de/projects/USE/, 2007.
13. OCLE Team. OCLE – Object Constraint Language Environment.

http://lci.cs.ubbcluj.ro/ocle/index.htm, 2007.
14. OMG. Object Constraint Language – OMG Available Specification, version

2.0. OMG Document formal/06-05-01, May 2006.
15. Mark Richters. A precise approach to validating UML models and OCL con-

straints. PhD thesis, Bremer Institut für Sichere Systeme, Universität Bre-
men, Logos-Verlag, Berlin, 2001.

16. OMG. Meta object facility (MOF) 2.0 Query/View/Transformation Specifi-
cation. OMG Document ptc/05-11-01, Nov 2005.

17. Slavǐsa Marković. Evaluating UML/OCL using QVT.
http://lgl.epfl.ch/members/markovic/evaluation/, 2007.

18. RoclET Team. RoclET project. http://www.roclet.org/, 2007.
19. Borland. Together technologies. www.borland.com/together/, 2007.
20. Achim D. Brucker and Burkhart Wolff. The HOL-OCL book. Technical

Report 525, ETH Zurich, 2006.
21. Achim D. Brucker. An Interactive Proof Environment for Object-oriented

Specifications. Ph.D. thesis, ETH Zurich, 2007. ETH Dissertation No. 17097.
22. Tony Clark, Andy Evans, and Stuart Kent. Engineering modelling languages:

A precise meta-modelling approach. In Ralf-Detlef Kutsche and Herbert We-
ber, editors, Fundamental Approaches to Software Engineering. 5th Interna-
tional Conference, FASE 2002 Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April
2002, Proceedings, volume 2306 of LNCS, pages 159–173. Springer, 2002.

23. Slavǐsa Marković and Thomas Baar. An OCL semantics specified with QVT.
In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors,
Proceedings, MoDELS/UML 2006, Genova, Italy, October 1-6, 2006, volume
4199 of LNCS, pages 660–674. Springer, October 2006.

24. Achim D. Brucker, Jürgen Doser, and Burkhart Wolff. Semantic issues of
OCL: Past, present, and future. In Birgith Demuth, Dan Chiorean, Martin
Gogolla, and Jos Warmer, editors, OCL for (Meta-)Models in Multiple Appli-
cation Domains, pages 213–228, Dresden, 2006. University Dresden. Available
as Technical Report, University Dresden, number TUD-FI06-04-Sept. 2006.

25. Thomas Baar. Non-deterministic constructs in OCL – what does any() mean.
In Andreas Prinz, Rick Reed, and Jeanne Reed, editors, Proc. 12th SDL Fo-
rum, Grimstad, Norway, June 2005, volume 3530 of LNCS, pages 32–46.
Springer, 2005.

Semantics of OCL Specified with QVT 37

26. Mark Richters and Martin Gogolla. On formalizing the UML object constraint
language OCL. In Tok Wang Ling, Sudha Ram, and Mong Li Lee, editors,
Proc. 17th Int. Conf. Conceptual Modeling (ER’98), pages 449–464. Springer,
Berlin, LNCS 1507, 1998.

27. Mark Richters and Martin Gogolla. A metamodel for OCL. In Robert France
and Bernhard Rumpe, editors, UML’99 - The Unified Modeling Language.
Beyond the Standard. Second International Conference, Fort Collins, CO,
USA, October 28-30. 1999, Proceedings, volume 1723 of LNCS, pages 156–
171. Springer, 1999.

28. Maŕıa Victoria Cengarle and Alexander Knapp. A formal semantics for OCL
1.4. In Martin Gogolla and Cris Kobryn, editors, UML, volume 2185 of Lecture
Notes in Computer Science, pages 118–133. Springer, 2001.

29. Stephan Flake and Wolfgang Mueller. Formal Semantics of Static and Tempo-
ral State-Oriented OCL-Constraints. Journal on Software and System Mod-
eling (SoSym), 2(3):164.186, 2003.

30. Rolf Hennicker, Alexander Knapp, and Hubert Baumeister. Semantics of OCL
operation specifications. Electronic Notes in Theoretical Computer Science,
Proceedings of OCL 2.0 Workshop at UML’03, 102:111–132, 2004.

31. Thomas Baar. Über die Semantikbeschreibung OCL-artiger Sprachen. PhD
thesis, Fakultät für Informatik, Universität Karlsruhe, 2003. ISBN 3-8325-
0433-8, Logos Verlag, Berlin, In German.

32. Maŕıa Victoria Cengarle and Alexander Knapp. OCL 1.4/5 vs. 2.0 expressions
formal semantics and expressiveness. Software and System Modeling, 3(1):9–
30, 2004.

33. Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer,
and Alan Cameron Wills. The amsterdam manifesto on OCL. In Tony Clark
and Jos Warmer, editors, Object Modeling with the OCL: The Rationale behind
the Object Constraint Language, pages 115–149. Springer, 2002.

34. Stephan Flake. Ocltype - a type or metatype? Electr. Notes Theor. Comput.
Sci., 102:63–75, 2004.

35. David H. Akehurst, Gareth Howells, and Klaus D. McDonald-Maier. Support-
ing OCL as part of a family of languages. In Thomas Baar, editor, Proceed-
ings of the MoDELS’05 Conference Workshop on Tool Support for OCL and
Related Formalisms - Needs and Trends, Montego Bay, Jamaica, October 4,
2005, Technical Report LGL-REPORT-2005-001, pages 30–37. EPFL, 2005.

36. David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Se-
mantics of ”Semantics”? IEEE Computer Software, 37(10):64–72, October
2004.

37. Juan Mart́ın Chiarad́ıa and Claudia Pons. Improving the OCL semantics
definition by applying dynamic meta modeling and design patterns. In Bir-
gith Demuth, Dan Chiorean, Martin Gogolla, and Jos Warmer, editors, OCL
for (Meta-)Models in Multiple Application Domains, pages 229–239, Dresden,
2006. University Dresden. Available as Technical Report, University Dresden,
number TUD-FI06-04-Sept. 2006.

38. Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele
Taentzer. Consistency checking and visualization of OCL constraints. In
Andy Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The Unified
Modeling Language, Advancing the Standard, Third International Conference,
York, UK, October 2-6, 2000, Proceedings, volume 1939 of LNCS, pages 294–
308. Springer, 2000.

38 Slavǐsa Marković and Thomas Baar

39. Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer. Dy-
namic meta modeling: A graphical approach to the operational semantics of
behavioral diagrams in UML. In Andy Evans, Stuart Kent, and Bran Selic, ed-
itors, UML 2000 - The Unified Modeling Language, Advancing the Standard,
Third International Conference, York, UK, October 2-6, 2000, Proceedings,
volume 1939 of LNCS, pages 323–337. Springer, 2000.

40. Dániel Varró. A formal semantics of UML Statecharts by model transition
systems. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and
Grzegorz Rozenberg, editors, Proc. ICGT 2002: 1st International Conference
on Graph Transformation, volume 2505 of LNCS, pages 378–392, Barcelona,
Spain, October 7–12 2002. Springer-Verlag.

41. Robert F. Stärk, Joachim Schmid, and Egon Börger. Java and the Java
Virtual Machine - Definition, Verification, Validation. Springer, 2001.

42. Dan Chiorean, Maria Bortes, and Dyan Corutiu. Proposals for a widespread
use of OCL. In Thomas Baar, editor, Tool Support for OCL and Related
Formalisms - Needs and Trends, MoDELS’05 Conference Workshop, Mon-
tego Bay, Jamaica, October 4, 2005, Proceedings, Technical Report LGL-
REPORT-2005-001, pages 68–82. EPFL, 2005.

43. Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Towards
using OCL for instance-level queries in domain specific languages. In Bir-
gith Demuth, Dan Chiorean, Martin Gogolla, and Jos Warmer, editors, OCL
for (Meta-)Models in Multiple Application Domains, pages 26–37, Dresden,
2006. University Dresden. Available as Technical Report, University Dresden,
number TUD-FI06-04-Sept. 2006.

44. Thomas Baar and Slavǐsa Marković. A graphical approach to prove the se-
mantic preservation of UML/OCL refactoring rules. In Irina Virbitskaite
and Andrei Voronkov, editors, Proceedings, Sixth International Andrei Er-
shov Memorial Conference on Perspectives of System Informatics (PSI 2006),
Akademgorodok near Novosibirsk, Russia, volume 4378 of LNCS, pages 70–83.
Springer, 2007.

